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Abstract

This paper presents an improved exact algorithm for solving the order picking problem,

a special case of the planar Travelling Salesperson Problem. The algorithm heavily relies

on graph reduction techniques: it removes unnecessary vertices and edges from the planar

graph that are not necessary in the optimal solution. As a result, we achieve a significant

increase in calculation speed and reduction in the running time.

The order pickers routing problem entails collecting items from storage in response

to customer requests. We use the Traveling Salesperson Problem (TSP) to optimize the

routes taken by order pickers. In the literature, exact algorithms — typically based on

dynamic programming — only exist for small warehouses with a small number of blocks

(two), while for larger warehouse layouts mainly heuristic and metaheuristic methods are

provided.

The presented graph reduction method allows us to adequately solve larger — more

realistic — instances in a short amount of time. Our algorithm is tested on different

problem instances from the literature and its performance is compared with the current

state-of-the-art. We conclude that our algorithm outperforms existing algorithms in terms

of simplicity, size and calculation time.

Keywords: Order Picking, Routing, Pre-processing, Graph Reduction, Warehouse

management
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1 Introduction and research context

For businesses operating with physical products, warehouses play an integral part in the

efficiency of their supply chains. [24] highlight that — while modern supply chains have

aimed at reducing inventory through initiatives such as “Just-In-Time” — warehouses are still

present in most supply chain stages. The warehousing service is a very important component

of the logistics system and plays a vital role in the supply chain process by balancing supply

and demand. Thanks to the rapid growth of the e-commerce sector (accelerated by the

covid19 pandemic), the number of warehouses has even increased considerably over the last

decade [17, 7]. As a result, supply chain sectors and specifically warehouses are forced to

further streamline processes by increasing efficiency and cutting costs, while still ensuring

high service levels to their customers Dembińska [16] and Gutelius, Theodore, et al. [25].

A warehouse process that provides significant cost-saving potential, is the order picking

process as it is estimated to account for up to 55 percent of the total warehouse operating

cost [46]. Efficient warehousing provides an important economic benefit to the business as

well as to the customers. Due to the introduction of operating programs (such as cycle time

reduction and quick response to orders) and new marketing strategies (e.g., micro marketing),

the order picking process has become increasingly significant to manage. Moreover, catalyzed

by the rapid technological advancements, the world of e-commerce is transforming fast. This

significant growth in digital marketing together with the daily increase in the number of

customers that buy online imposes challenges for warehouses to remain responsive as well as

efficient. Any under-performance in order picking can result in high operational costs and an

unsatisfactory service for the warehouse as well as the supply chain as a whole.

The order picking process is defined as the retrieval of products from their storage locations

based on customer orders. Various activities comprise the order-picking process, including,

e.g., traveling between items and packaging the order. Tompkins et al. [46] state that travelling

can consume 50% of a picker’s time, which in manual-picking systems constitutes high (labour)

costs. As a result, efficient routing algorithms are needed to optimize the pick tours for

retrieving the products from storage.

The problem of sequencing and finding an optimal route for a picker, i.e., obtaining the

shortest tour that starts and ends at the depot and visits all items included in an order

list (each item is visited exactly once) resembles the Traveling Salesperson Problem (TSP).

The TSP is an NP-hard optimization problem (see Garey, Graham, and Johnson [20], Liers,

Martin, and Pape [31], and Arora [2]). Within the academic literature, therefore, exact

algorithms are only available for very small instances with a standard warehouse lay-outs

consisting of two and three ‘blocks’, separated by a cross aisle [45].

In this paper, we present an exact routing algorithm for general warehouse lay-outs using

the TSP as the model to be solved. The TSP for order picking has a special structure in

two ways. First, the warehouse lay-out provides an underlying planar graph. Second, all pick
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locations are found in aisles where they have degree 2 in the planar graph. Both properties are

extensively used within our approach to reduce the size of the graph of the TSP: we remove

a substantial amount of nodes and edges. Then, the Miller-Tucker-Zemlin formulation of the

TSP is used to solve the problem to optimality.

The remainder of this paper is structured as follows. In Section 2, we review the related

studies in the literature. In Section 3 we provide a formal problem description and briefly

represent the warehouse layout with a mathematical explanation. The graph reduction meth-

ods are provided in section 4. The mathematical formulation of the problem is provided in

section 5. Furthermore, in section 6, the computational results are presented. The conclusions

of our work are presented in Section 7 along with some further research suggestions.

2 Related literature

The order picking problem has been the subject of significant research in the past few decades,

with numerous solution approaches proposed, including Dynamic Programming, Integer Lin-

ear Programming (ILP), and various heuristics. Most research has focused on modeling the

problem as either a Traveling Salesman Problem (TSP) or a Steiner TSP. Cases where the

warehouse has one or two blocks have been shown to be solvable in polynomial time.

Ratliff and Rosenthal [37] and Cornuéjols, Fonlupt, and Naddef [12] were the first to

propose a dynamic programming approach for a warehouse with one block, which was poly-

nomial in the number of items and aisles. This approach was then extended by Roodbergen

and De Koster [39] to the case of two blocks and later by Cambazard and Catusse [5] to ware-

houses with h cross-aisles (maximum h to be solved exactly is 8); the latter being solvable

non-polynomially but exponential in h.

In some papers, the Steiner TSP is used for solving this problem since it is not necessary

to visit all vertices in the warehouse graph. The Steiner TSP was first studied by Cornuéjols,

Fonlupt, and Naddef [12] and Fleischmann [19]. Several other formulations for the com-

pact Steiner TSP were proposed by Letchford, Nasiri, and Theis [29], Pansart, Catusse, and

Cambazard [33], Scholz et al. [43], and Valle, Beasley, and Cunha [48].

The order picker routing problem has also been studied by modelling it as the capacitated

vehicle routing problem (CVRP) in multiple studies, including Glock and Grosse [21] and

Scholz and Wäscher [42]. In the CVRP formulation for this problem, each pick location is

considered a node that should be visited only once by a vehicle (i.e., picker). The vehicle

capacity is given by the picking trolley or forklift capacity. The objective is to find routes

with the minimal total travel distance or time.

Given the limitations of the existing exact methods, in practice , the order picking problem

is typically solved using heuristics. Common methods are the largest gap, return, midpoint,
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composite routing strategy, the combined routing strategy and finally, the S-shape method

in which order pickers move in a S-shape curve along with the pick locations [22, 18, 26, 34].

A preliminary research on heuristic routing in multi-parallel aisle warehouses was done by

Hall [26]. Some of the important and commonly used heuristic algorithms are illustrated in

figure 1.

Figure 1: Picker routing heuristics considered to retrieve items of a pick list (from Cano, Correa-
Espinal, and Gómez-Montoya [6]).

The S-shape strategy leads to a route in which each aisle containing a pick location to be

visited is completely traversed, and aisles where nothing has to be picked are skipped. The

picker enters an aisle from one end and leaves from the other end, starting at the left side

of the warehouse. After picking the last item, the order picker returns to the front end of

the aisle. This S-shape strategy is used frequently, because it is very simple to use and to

understand.

The Largest Gap strategy has the picker entering an aisle as far as the largest gap within

the aisle, with a gap representing the distance between any two adjacent picks, between the

first pick and the front aisle, or between the last pick and the back aisle. The largest gap is

the part of the aisle that the order picker does not visit, and if the largest gap is between two

adjacent picks, the picker performs a return route from both ends of the aisle. If a return
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route is needed, it can be taken from either the front or back aisle. The largest gap in an

aisle is the part the picker does not travel through. This method is particularly useful when

switching aisles takes little time and there are not many picks per aisle. In their study, Ho and

Tseng [27] present a new way to solve the picker routing problem by combining the largest

gap heuristic with a simulated annealing heuristic. Their proposed method is more efficient

than the largest gap heuristic alone.

The combined heuristic uses both the Largest Gap and S-Shape heuristics. This means

an aisle is either fully traversed or entered and exited from the same side. The best option

is chosen between these two methods, and then the next aisle is entered. This process is

repeated until the last item is picked, and the best route between the two options is selected.

The combined routing heuristic is one of the best heuristic methods available and is provided

in Roodbergen [40] and Roodbergen and De Koster [39].

The S-shape and largest gap heuristics are the most commonly used routing policies in

real warehouses. This is because order pickers prefer straightforward and easy-to-understand

routing schemes.

In Petersen [35], more advanced heuristics are presented and their performance is com-

pared to the optimal algorithm. De Koster and Van Der Poort [14] developed an algorithm

for finding the shortest order picking routes in a warehouse with decentralized depositing. In

the same year, Roodbergen and De Koster [41] provide three heuristics for different situa-

tions, including a narrow-aisle warehouse used by order picking trucks. Vaughan [49] present

a routing heuristic that makes use of dynamic programming for warehouses with more than

two cross aisles and studied the effect of warehouse cross aisles on order picking efficiency.

Petersen and Aase [36] evaluate several picking, routing, and storage policies to determine

which policy or combination of policies would provide the biggest tour reduction in total,

considering four factors: picking policy, routing policy, storage policy, and average order size.

In a recent study by Weidinger, Boysen, and Schneider [50] on the picker-routing problem

for mixed shelves warehouses, a nearest neighborhood heuristic method is proposed. It consid-

ers a cart pushed by the picker that allows for the assembly of multiple orders concurrently and

multiple access points to the central conveyor system where completed orders are handed over.

Furthermore, Theys et al. [45] propose and compare the LKH (Lin–Kernighan–Helsgaun) TSP

heuristic with some of the existing heuristics in the literature such as S-shaped and largest gap

and concluded that the LKH heuristic provides better solution quality (closer to optimum),

although its computation time is higher.

Various metaheuristic methods have been proposed in addition to the heuristic methods

discussed in the literature, such as genetic algorithms [3, 47], Ant Colony Optimization [30,

11, 15], particle swarm optimization [23, 44, 32], and tabu search [13]. Chabot et al. [10]

use an adaptive large neighborhood search (ALNS) to solve the order picker routing prob-

lem and compare their proposed heuristic solution with four other existing heuristics in the
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literature, namely S-shape, the largest gap, the mid-point, and the combined heuristics, show-

ing that the ALNS outperforms the other four heuristics. Bódis and Botzheim [4] applied

a bacterial memetic algorithm based on pick list characteristics and order picking system

characteristics to solve the order picker routing problem. Recently, Zhou et al. [51] devel-

oped three routing metaheuristics, namely a genetic algorithm, an ant colony optimization,

and a cuckoo search algorithm, to solve the order picker routing problem in non-conventional

fishbone warehouses with narrow aisles and a single storage system. Ardjmand, Bajgiran,

and Youssef [1] investigated the order picker routing problem using two genetic algorithms

with a list-based simulated annealing. Metaheuristic methods improve the performance of the

calculation method, provide a set of guidelines or strategies to find an approximate solution

for the problem, and decrease the running time.

3 Problem description

In this section, we model the warehouse lay-out as a graph GL and formulate the problem of

picking orders as a shortest (closed) walk problem on GL. Then, we define a smaller graph

GPL solely on the pick locations as vertices. On this graph the problem can be defined as

a TSP. The TSP problem is easier to formulate and solve compared to the shortest walk

problem. Afterwards, in Section 4, we develop ideas to reduce the number of edges and

vertices in GPL drastically to obtain good solution times.

3.1 Graph representation of the warehouse layout

Standard, multi-parallel-aisle warehouses consist of a number of longitudinal pick aisles, where

product items can be picked, and intersecting cross aisles that connect these pick aisles. In

practice, the cross aisles do not contain any items to pick but just allow the order picker to

move efficiently from one pick aisle to another. The items are stored on both sides of the pick

aisles. Order pickers are assumed to be able to traverse the aisles in both directions and to

change direction within the aisles.

Each order consists of a number of items that are usually spread over multiple aisles. We

assume that the items of an order can be picked in a single round. The task of a picker is to

find a route (a closed walk) that starts at a depot, and then visits all picking locations, and

ends at the depot again. This route should, of course, be as short as possible.

Each standard warehouse lay-out is divided in a number of blocks. A block is a row of

pick aisles between two cross aisles. A detailed picture of the standard warehouse lay-out is

given in figure 2.
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Figure 2: A standard warehouse lay-out (from Roodbergen [38]).

Though most warehouse lay-outs in the literature are indeed modelled as the standard

lay-out above, this is not a limitation. Other lay-outs, such as the fish-bone lay-out, flying V,

Chevron etc. have been researched too (see, e.g., Çelik and Süral [9] and Figure 3). For our

research, the lay-out does not really matter: As long as it can be drawn in the plane (planar

graph), our results apply.

Figure 3: Two other warehouse lay-outs (from Celik and Sural [8]).
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3.2 The pick location problem as a shortest walk problem

We model the lay-out of the warehouse with a graph GL = (VL, EL). Every point in the

lay-out where two or more aisles meet is a vertex in VL. Each aisle, connecting two such

vertices, is represented by an edge in EL. When picking locations are added as vertices, each

edge in EL is replaced by a path (see below). An edge in EL may or may not contain picking

locations. This brings us to the second part of the definition of GL: a second set of vertices

is defined by the pick locations.

For the standard lay-out described above, this results in a grid graph with symmetric

distance. For the fish-bone and other warehouse lay-outs the graph is somewhat different.

However, since all lay-outs are 2-dimensional physical structures, GL is planar.

Now, every edge {v, w} ∈ EL containing pick locations is replaced by a path as follows.

Suppose that the edge {v, w} contains j − 1 pick locations (p1, . . . , pj−1). Let v = p0 and

w = pj . We now replace the edge {v, w} with the path v = p0, p1, . . . , pj = w. So, besides

adding the vertices p1, . . . , pj−1, we also add the edges {pi−1, pi}, (i = 1, . . . , j) to EL. Note

that the vertices representing pick locations have degree 2 — which is important for the

remainder of our analysis.

A special vertex in VL is the depot, where we start and end the pick tour.

The graph GL for two example lay-outs is illustrated in Figures 4 and 5. Here, black dots

represent pick locations and white dots represent corner points of aisle.

Figure 4: Graph GL for standard warehouse lay-out (from Roodbergen [38] and Çelik and Süral [9]).

Figure 5: Graph GL for a fish-bone warehouse lay-out (from Çelik and Süral [9]).
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Each edge {v, w} ∈ EL has a length dvw, representing the actual distance between the

vertices v and w in the warehouse lay-out. Thus, this is simply the length of the edge in the

lay-out connecting v and w.

We then define the order picking problem as follows: find a shortest walk in GL that starts

and ends at the depot, visiting each vertex, representing a pick location in VL, at least once.

3.3 Modelling the pick location problem as a TSP

The problem can be modelled as a TSP on a graph, containing only the nodes of the pick

locations. This graph GPL = (VPL, EPL) only contains the vertices of GL that represent pick

locations and the depot. Each edge {v, w} ∈ EPL has a length that is the shortest distance

between the pick locations v and w in the lay-out graph GL. In GPL, the problem is to find

the shortest tour through all vertices, i.e., the standard TSP problem.

Distances in GPL if the underlying graph GL is from a standard lay-out

Consider the standard lay-out (see again Figure 4), where GL is a grid graph. To calculate

the length of each edge in GPL, which is the shortest path between the two vertices (either a

pick location or the depot) of the edge, we do the following:

1. If both nodes (product locations) are in different blocks (different row of aisles) the

shortest distance between the two nodes is calculated as the Manhattan distance, which

is the rectilinear route measured along parallels to the horizontal and vertical axes of

the plane. The Manhattan distance between two points with coordinates (x1, y1) and

(x2, y2) is

d12 =| x1 − x2 | + | y1 − y2 | .

2. If both nodes (product locations) are in the same block (same row of aisles), the shortest

path has to go through one of the two cross aisles adjacent to the block. The length of

both possible paths is then determined and the shorter one is kept. Therefore, for two

points with coordinates (x1, y1) and (x2, y2) we will have

d12 = {min{γ1+γ2, β1+β2}+ | x1−x2 |} = {| x1−x2 | + | y1−y2 | +2×min{γ2, β1}}.

Here, γi, (i = 1, 2), is defined as the difference between the yi-coordinate of each location

with the cross node located above it, and βi, (i = 1, 2), is defined as the difference

between the yi-coordinate of each location with the cross node located below it. A

graphical sketch of the warehouse lay-out for this case is illustrated in figure 6.
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Figure 6: Distance of vertices in the same block, but different aisles.

4 Properties of the lay-out graph GL and the pick locations

graph GPL

In this section we do two things: reduction of vertices and reduction of edges in GPL. First,

we show that some pick locations need not be present in GPL. Second, we show that there is

an optimal walk in GL that can be translated into an optimal tour in GPL, using only a very

small portion of the edges in GPL. Roughly speaking, we only need the edges of GPL that

correspond to shortest paths in GL with at most one intermediate pick location.

4.1 Visiting pick locations in GL

Following Pansart, Catusse, and Cambazard [33], there are three different ways by which

items in each aisle in a warehouse can be picked, as illustrated in figure 7:

1. Visit the complete aisle in one direction (two ways). See 7a, and 7b.

2. Enter the aisle from one of the corner nodes until you reach the last product location

on the aisle and then return to the same corner node (two ways). See 7c, and 7d.

3. Let the biggest gap between two pick locations be the one between pi−1 and pi. Enter

the aisle from corner node p0 to pi−1 and return, and from corner node pj to pi and

return. See 7e.

Consequently, there are at most 4 relevant pick locations in each aisle: the ones closest to

the corner nodes and the ones that have the biggest gap between them. Note that there can

be fewer than four relevant pick locations on an aisle, or some of the nodes could coincide.

When removing irrelevant nodes one should pay attention to the situation where the biggest

gap may move. In that case we take care of that in the model by adding constraints that

force necessary edges to be in the walk. To do this, we implement following:
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Figure 7: the five different ways for aisle traversal (from Pansart, Catusse, and Cambazard [33]).

for every sub-aisle do∣∣∣ - Compute a largest gap between two vertices∣∣∣ - Identify the two sets containing all products below and above the largest gap (call them

set T and set S). These sets can be empty or singleton.∣∣∣ - In each subset, keep the two products that are the farthest apart (t,t2 ∈ T and s1, s2 ∈ S )∣∣∣ - Add the constraints forcing the order picker to traverse each set once. (In the math-

ematical model it translates into the following constraints: ({s1, s2} + {s2, s1} >= 1 and

{t1, t2}+ {t2, t1} >= 1).

In these constraints, {s1, s2} refers to the edges in set S connecting first and second farthest

products.

end

Please note that the above mentioned constraints are added only when by removing one

product, the place of Largest gap changes. Otherwise we do not need such constraints in our

model.

4.2 Properties of an optimal walk in GL

Lemma 4.1. An optimal walk in GL = (VL, EL) that visits all pick locations at least once,

will not use any edge in GL twice, or more, in the same direction.

Proof. Consider a walk W . Let the edge e = {v, w} ∈ EL be used twice (or more) in the

direction v → w by W . Then, W contains two paths from w to v, say P1 and P2. The walk
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is now: W = (v, w, P1, v, w, P2, v). Now, consider the walk W ′ = (w,P1, v, P
−1
2 , w), where

P−1
2 is the path P2 traversed in backward direction. W ′ is shorter than W as it does not

use the edge e anymore. Moreover, it visits every vertex that W visits, using edges from W .

Concluding, W cannot be optimal. The proof is visualized in Figure 8.

Figure 8: Edge twice in same direction

In Kai and Chuanhou [28], a somewhat more complicated proof is given of this lemma.

From Lemma 4.1, we can conclude that in an optimal walk, every edge is traversed at most

twice. And if twice, then in opposite directions.

Lemma 4.2. If an optimal walk in GL = (VL, EL) uses the edge e = {ve, we} twice — in oppo-

site direction, as a consequence of the previous lemma — (say, W = (ve, P1, ve, we, P2, we, ve)),

then the paths P1 and P2 have no vertices of GL in common.

Proof. Suppose that a walk W contains e = {ve, we} twice (in opposite direction), and that

a vertex v ̸= ve, we is visited by both paths P1 and P2. Then the walk can be described as

W = (ve, P
′
1, v, P

′′
1 , ve, we, P

′
2, v, P

′′
2 , we, ve)

Here: P1 = (P
′
1, v, P

′′
1 ) and P2 = (P

′
2, v, P

′′
2 ), where

P
′
1 is a path from ve to v.

P
′′
1 is a path from v to ve.

P
′
2 is a path from we to v.

P
′′
2 is a path from v to we.

From W we create a better walk W ′ as follows:

W ′ = (ve, P
′
1, v, P

′′
2 , we, P

′
2, v, P

′′
1 , ve)

W ′ visits all vertices of W , but does not use the edge e = {ve, we} anymore and thus, it

is shorter. See a visual of this proof in Figure 9.
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Figure 9: No alternating edges

As a corollary we now have the following Theorem.

Theorem 4.3. Consider an optimal walk W in GL = (VL, EL) that uses the pick location

v1 twice. If there is a vertex v, also visited twice, then these locations are not visited in an

alternating way, i.e., W = (v1, P1, v, P2, v1, P3, v, P4, v1) is not possible.

Note that P1 and P3 denote paths from v1 to v and P2 and P4 are paths from v to v1.

The proof of this theorem leans on the fact that the pick location vertices have degree 2

in GL. This applies for any practical lay-out, due to the fact that the pick location vertices

lie on a path representing an aisle between the two corner vertices of the aisle.

Proof. If vertex v1 is visited twice, then both incident edges must be used twice (each in

opposite direction): If only one incident edge is visited twice, or both edges are visited once,

then v1 is visited only once.

Consider one of the two edges, say e1 = {v1, v2}. Now, the optimal walk W can be

described as W = (v1, P1, v1, e1, v2, P2, v2, e
−1
1 , v1). According to lemma 4.2, the paths P1 and

P2 have no vertex in common. Thus, a vertex v ̸= v1, v2 that occurs twice in W , does so

either twice in P1 or twice in P2.

This brings us to the conclusion that all vertices in the optimal walk that are visited twice

are not alternating. For a specific vertex, say v, this means that, in the walk (v, P1, v, P2, v)

the occurrence of the other vertices visited twice are either both in P1 or both in P2. Thus,

the occurrence of the vertices has a nested structure. See the visualization in Figure 10. In

this figure, the circle represents the complete walk W . Each piece between two connected

vertices on the circle represents a subpath of W , with only vertices that are visited exactly

once by W .

In case a vertex v has degree higher than 2, theorem 4.3 does not apply, since the theorem

uses that if a node is visited twice then an edge is visited twice, and this need not be true

when a vertex has degree higher than 2.

However, for a node with degree higher than two, we can take one of its incident edges

and move it up that edge a small amount ϵ. Then, we can apply the previous theorem again
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Figure 10: No alternating vertices.

(see figure 11), as all vertices of GPL have degree 2 again in GL. This may not be useful to

the picker routing problem that we treat, but it is helpful for the TSP problem in general

planar graphs.

Figure 11: From degree > 2 to degree = 2

4.3 From an optimal walk in GL to an optimal TSP tour in GPL

Figure 10 illustrates an example of how pick locations appearing twice could be on the optimal

walk W in GL. Each connection between two such vertices is a path in GL with possibly

some vertices that occur exactly once. We shall transform the walk W into a tour on the

pick locations only, e.g., the vertices in GPL. In doing so we only use a limited set of edges

in GPL.

We start with removing the vertices of W that are not pick locations. Every sub-path

that begins and ends with a pick location — with no other intermediate pick locations —

is replaced by a single edge. This results in a walk W ′ in GPL: the vertices are only pick
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locations, and the edges connect two pick locations. This walk is optimal as the “contracted”

subpaths are shortest paths in GL with the same length.

The pick locations that occur twice in W also appear twice in the new walk W ′. Our next

step is to remove one of the two occurrences of these vertices.

First, we number the occurrences of these doubly occurring vertices in the order that

we visit them on the walk W ′. See figure 12. Now note that due to theorem 4.3, the two

occurrences have different parity: one has an odd number, the other an even number. Next,

each occurrence of a vertex with an even number is removed by connecting the neighbor

pick locations (independent of whether these occur once or twice in the walk) with a direct

edge. Note that this edge is present in GPL. Now, the new walk contains only edges of EPL.

Moreover, the edges that we use have at most one pick location on the path in GL. Finally,

each pick location is now visited exactly once. Thus, not only is the walk a tour in GPL,

but it only uses edges on which at most one intermediate pick location is present. Thus, in

solving the TSP problem of GPL, we can restrict ourselves to using such edges only.

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15
16

Figure 12: No alternating vertices.

In figure 13, we translated the lay-out graph GL to the graph GPL with only the edges

needed to find an optimal TSP tour. The figure illustrates how the graph GPL is reduced to

a graph with a much smaller amount of edges than in the complete graph GPL. The depot

node V1, for example, is not connected to the product locations x4, x5 and x6, since there

exist more than one pick locations on the possible shortest paths between them.

5 Mathematical formulation

We now formulate the proposed exact picker routing model described above. In our algorithm,

we are looking for the shortest tour in GPL such that the order picker visits all the ordered
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(b) GPL with reduced set of edges.

Figure 13: Graph reduction example

product locations only once, starting and ending from the depot. The problem is formulated

as a traveling salesman problem (TSP). When solving the model, we find the optimal pick

tour regardless of the warehouse layout or the number of items to be picked in each aisle.

Remark: Common practice is that nodes in mathematical formulations are described with

indices i and j, rather than the descriptions v and w. In the sequel we shall do that as well.

Nodes 0 and n+ 1 are considered to be the visiting order of the depot in the beginning and

the end of the tour.

Table 1: Notation for TSP model.

Parameters
dij Distance between nodes indexed i and j.

Decision variables
xij Binary variable, 1 if arc (i, j) is traversed by the picker; 0 otherwise.
ui Position of node i in the pick tour.

The mathematical model for the general TSP problem is as follows.
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min
∑
i,j

di,jxi,j (1)

s.t.∑
i:i ̸=j

xij = 1 ∀j ∈ VPL (2)

∑
j:j ̸=i

xij = 1 ∀i ∈ VPL (3)

ui − uj + n ∗ xij ≤ n− 1 ∀i, j ∈ VPL (4)

u0 = 0 (5)

un+1 = n+ 1 (6)

u ∈ Z, xij ∈ {0, 1} ∀i, j ∈ VPL (7)

The objective function (1) minimizes the total distance travelled by the picker. Con-

straints (2) and (3) force the order pickers to enter and exit every location exactly once,

respectively. Constraints (4) eliminates sub-tours by allocating an index to each visited lo-

cation. In constraints (5) and (6) the depot is initiated as the start and the end of the tour,

respectively. Finally, constraints (7) set the domain of the decision variables.

6 Model implementation and numerical results

To test the performance of our graph reduction approach, we perform a set of computation

experiments on two different benchmark, single block instances from Scholz et al. [43] and

multi-block instances from Theys et al. [45].

The mathematical model presented in this paper is implemented in gams 24.2 and solved

using ibm cplex 12.9. All experiments are run on a Macbook Air with an Apple Silicon m1

chip and 16GB of RAM. The computing time for each instance is limited to 30 minutes.

6.1 Single block: comparison with the instances presented in Scholz et al.

[43]

The numerical results using the first benchmark instances from Scholz et al. [43] containing

only a single block (two cross aisles) are given in table 2. In this table, the two parameters

given as m and n, are the number of aisles and the number of items in the order list respec-

tively. We solved each instance 10 times and put the average results in the table 2. The

numerical results of from Scholz et al. [43] are presented in the last column.

As shown in this table, the average graph reduction in comparison to the TSP model

(complete graph without reduction) is 72.85 percent, which is significant. Furthermore, for all
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Table 2: Numerical results of proposed model on different instances

m-n Time (sec) VarNum ConNum Initial edges Reduced edges Reduction(%) Shcolz(sec)

5-30 0.031 68 93 435 21 95 0.09
5-45 0.046 76 101 990 29 97 0.09
5-60 0.063 84 109 1770 41 97 0.09
5-75 0.081 92 116 3492 50 98 0.09
5-90 0.109 100 125 4005 64 98 0.10
10-30 0.047 256 301 435 136 68 1.60
10-45 0.110 274 319 990 145 85 1.03
10-60 0.125 292 337 1770 191 89 1.42
10-75 0.281 360 413 2775 213 92 1.36
10-90 0.906 376 423 4005 220 94 0.62
15-30 0.479 456 504 435 167 61 2.29
15-45 1.187 576 631 990 247 75 5.28
15-60 2.297 620 685 1770 346 80 10.64
15-75 2.337 698 782 1914 391 79 15.10
15-90 2.508 730 813 2106 438 79 19.41
20-30 1.225 438 484 435 315 27 10.57
20-45 1.391 812 878 990 349 64 27.32
20-60 1.651 1016 1091 1770 476 73 114.33
20-75 1.981 1030 1108 2775 495 82 216.63
20-90 3.023 1046 1129 4005 679 83 485.71
25-30 0.911 618 672 435 206 52 54.46
25-45 2.160 1090 1178 990 377 62 85.46
25-60 2.425 1270 1353 1770 588 66 258.92
25-75 3.063 1346 1437 2775 703 74 527.39
25-90 4.469 2106 2213 4005 939 76 646.59
30-30 3.234 626 681 435 348 20 204.18
30-45 5.547 1176 1250 990 511 48 406.19
30-60 6.328 1906 2007 1770 627 64 508.80
30-75 7.042 2409 2521 2775 833 70 638.89
30-90 7.601 2862 2981 4005 997 75 786.29

of the instances, our model gives the optimal solution almost instantaneously. The maximum

computation time for the biggest instance (with 30 aisles and 90 products) is 7.6 seconds,

which is considerably less compared to 786.29 seconds by Scholz et al. [43].

Scholz et al. [43] are not able to solve the instances with more than 3 blocks. Also for

10% of the instances with only 3 blocks, no optimal solutions were reported. However, we

will show in the next section that our model with the help of the pre-processing phase is able

to solve much larger instances in a very short time.

6.2 Multi-block: Comparison with the instances presented in Pansart,

Catusse, and Cambazard [33]

The second benchmark is from Pansart, Catusse, and Cambazard [33] and consists of 9

different scenarios: three different numbers of aisles (5,15,60), three different numbers of

cross-aisles (3,6,11) and three different numbers of products in the order (15,60,240). We

solve these instances on the multi-block warehouse. As it is shown in the table 3, our method

is able to solve all the multi-block instances optimally in less than one minute.

Table 4 illustrates the number of unsolved instances within the 30 minutes time limit

both for Pansart, Catusse, and Cambazard [33] and our proposed method. In this table,
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Table 3: Numerical results of the proposed model on different instances

Aisles Cross aisles Products CPLEX Time(sec)

5 3 15 0.42
5 3 60 0.89
5 3 240 1.62
5 6 15 0.60
5 6 60 1.43
5 6 240 3.13
5 11 15 1.02
5 11 60 4.30
5 11 240 8.65
15 3 15 1.42
15 3 60 4.07
15 3 240 11.05
15 6 15 4.32
15 6 60 17.64
15 6 240 30.77
15 11 15 17.81
15 11 60 43.68
15 11 240 48.98
60 3 15 1.23
60 3 60 6.33
60 3 240 14.09
60 6 15 5.32
60 6 60 21.52
60 6 240 34.08
60 11 15 22.13
60 11 60 50.25
60 11 240 59.69

scfs+ stands for the standard single commodity flow formulation with pre-processing and

the additional valid inequalities and pdyn refers to a dynamic program, both proposed by

Pansart, Catusse, and Cambazard [33].

As it is shown in this table, Pansart, Catusse, and Cambazard [33] are not able to solve

larger instances with 240 products or more than 6 cross-aisles (15-11-240, 5-11-240, 60-11-240,

60-3-240, 60-6-240). Furthermore, their proposed dynamic program is very efficient for the

small instances, however, it is not scalable and it becomes intractable for instances with more

than 6 cross-aisles. Our model, however, is able to solve all the instances to optimality within

the time limit.

Moreover, it is shown that the average running time for the largest instance solved in

less than 30 minutes for them is 111.64 seconds which is 4.7 times larger than our results.

Furthermore, the average computation time for our model is 15.34 seconds for all the instances

which is 58% lower than their proposed single commodity flow formulation. It is worth

mentioning that the lower total average time for the dynamic program model for Pansart,

Catusse, and Cambazard [33] is due to the fact that this model is only able to solve the

smaller instances.
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Table 4: Number of unsolved instances after 30 minutes. Benchmark against Pansart, Catusse, and
Cambazard [33]

Total # aisles # cross-aisles # products
5 15 60 3 6 11 15 60 240

SCFS+ 18 1 4 13 1 2 15 0 0 18
PDYN 90 30 30 30 0 0 90 30 30 30

Our method 0 0 0 0 0 0 0 0 0 0

# instances 270 90 90 90 90 90 90 90 90 90

Table 5: Average computation time (seconds) for instances solved in 30 minutes. Benchmark against
Pansart, Catusse, and Cambazard [33].

Total # aisles # cross-aisles # products
5 15 60 3 6 11 15 60 240

SCFS+ 36.07 23.89 56.96 27.12 3.44 35.88 71.69 0.07 4.05 111.64
PDYN 0.27 0.05 0.16 0.61 0 0.54 - 0.24 0.27 0.30

Our method 15.34 2.34 19.82 23.84 4.56 13.20 28.50 6.03 16.67 23.56

7 Concluding Remarks

This study aimed to develop an efficient algorithm for the planar TSP, specifically for the

order pickers routing problem in a multi-block warehouse layout. While exact algorithms for

small warehouses exist in the literature, solution algorithms for larger warehouse layouts often

rely on (meta)heuristic approaches.

The proposed algorithm utilizes graph reduction to eliminate unnecessary vertices and

edges from the graph (The network size reduction achieved by our algorithm was, on average,

72.85%), resulting in a significant reduction in computation time. This approach is applicable

to any warehouse layout presented as a planar graph, making it practical for real-world

applications.

To solve the routing problem, a general TSP model was used. The algorithm was imple-

mented on various problem instances from the literature, and its performance was compared

with existing methods. The results showed that the proposed algorithm outperformed existing

formulations in terms of simplicity, size, and calculation time. Overall, the results indicate

that the proposed algorithm is a promising approach for solving the order pickers routing

problem in multi-block warehouse layouts.
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