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The rooted subtree prune and regraft (rSPR) distance between two rooted binary phylogenetic 
trees is a well-studied measure of topological dissimilarity that is NP-hard to compute. 
Here we describe an improved linear kernel for the problem. In particular, we show that 
if the classical subtree and chain reduction rules are augmented with a modified type of 
chain reduction rule, the resulting trees have at most 9k − 3 leaves, where k is the rSPR 
distance; and that this bound is tight. In comparison, the previous best-known linear kernel 
is of size at most 28k. To achieve this improvement we introduce cyclic generators, which 
can be viewed as cyclic analogues of the generators used in the phylogenetic networks 
literature. As a corollary to our main result we also give an improved weighted linear 
kernel for the minimum hybridization problem on two rooted binary phylogenetic trees.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The central challenge of phylogenetics is to infer the 
evolutionary history of a set of contemporary species X . 
Often this history is modeled by a rooted phylogenetic tree; 
essentially, a rooted tree in which the leaves are bijec-
tively labeled by X and evolution is explicitly directed 
away from the root [16]. Due to confounding biological or 
methodological factors the inferred trees sometimes differ 
in topology, and then it is useful to formally quantify these 
differences [10]. One popular such difference measure is 
the rooted subtree prune and regraft (rSPR) distance. Infor-
mally this measures the number of times that a subtree 
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must be pruned, and re-attached, to transform one tree 
into another. Despite the NP-hardness of computing this 
distance [3], very fast fixed-parameter tractable branching 
algorithms have been developed which allow the problem 
to be well solved in practice, as long as the rSPR distance 
does not become too large [20,21]. A related concept is 
kernelization: polynomial-time pre-processing rules which 
reduce the size of the input trees to purely a function of 
their rSPR distance [8]. Compared to branching algorithms 
there has been relatively little work on kernelization of 
rSPR. Indeed, currently the best-known result is that after 
exhaustive application of the subtree and chain reduction 
rules the input trees have at most 28k leaves, where k is 
the rSPR distance [3].

In this paper, we show that when a third, modified 
chain reduction rule is added to the portfolio, the bound 
improves to 9k − 3, and that this is in fact tight. To prove 
this we first show that computation of rSPR distance is es-
sentially equivalent to the problem of parsimoniously em-
bedding the two input trees into a potentially cyclic phy-
logenetic network (i.e. graph); it is a cyclic variant of the 
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much-studied minimum hybridization problem (see e.g. [17]
and links therein). This allows us to introduce cyclic genera-
tors which summarize the backbone of such networks, and 
allow us to carefully bound the size of reduced instances. 
Our approach is inspired by a similar strategy which has 
proven to be very powerful in the design of reduction rules 
for unrooted phylogenetic trees [12]. As a corollary to our 
main rSPR result, we also show that the three aforemen-
tioned reduction rules yield a weighted linear kernel of 
7k − 2 for the minimum hybridization problem, where k is 
the hybridization number of the two trees. This improves 
upon the weighted 9k − 2 kernel given in [13].

2. Preliminaries

Throughout this paper, X denotes a non-empty finite 
set.

Phylogenetic trees. A rooted phylogenetic X-tree T is a 
rooted tree with no degree-2 vertex, except for the root 
which has degree at least 2, and whose leaf set is X . All 
edges of T are directed away from the root, i.e. if (u, v) is 
an edge of T , then u lies on the directed path from the 
root of T to v . Furthermore, T is binary if its root has de-
gree 2 and all other interior vertices have degree 3. The 
leaf set X is the label set of T and denoted by L(T ). For 
two vertices u and v in T , we say that u is an ancestor of 
v if there is a directed path from the root of T to v that 
contains u. We next define three types of subtrees of T
relative to a subset X ′ ⊆ X . First, we write T [X ′] to denote 
the minimal rooted subtree of T that connects all elements 
in X ′ . Second, the restriction of T to X ′ , denoted by T |X ′ , 
is the rooted phylogenetic X ′-tree obtained from T [X ′] by 
suppressing all vertices with in-degree 1 and out-degree 
1. Lastly, a rooted subtree of T is pendant if it can be de-
tached from T by deleting a single edge. Since all rooted 
phylogenetic trees throughout this paper are binary, we re-
fer to a rooted binary phylogenetic tree simply as a rooted 
phylogenetic tree. For two rooted phylogenetic X-trees T
and T ′ , we say that T and T ′ are isomorphic if there is 
a bijection φ from the vertex set V of T to the vertex set 
of T ′ such that φ(x) = x for each x ∈ X , and (u, v) is an 
edge of T if and only if (φ(u), φ(v)) is an edge of T ′ for 
all u, v ∈ V . If T and T ′ are isomorphic, we write T = T ′ .

rSPR and agreement forests. Let T be a rooted phyloge-
netic X-tree. For the purposes of the upcoming definitions 
and indeed much of the paper, we view the root of T as a 
vertex ρ adjoined to the original root by a pendant edge. 
Furthermore, we regard ρ as part of the label set of T , 
that is L(T ) = X ∪ {ρ}. Fig. 1 illustrates an example of two 
rooted phylogenetic X-trees with X = {x1, x2, . . . , x6} with 
their roots labeled with ρ . Let e = (u, v) be an edge of T
not incident with ρ . Let T ′ be the rooted phylogenetic X-
tree obtained from T by deleting e and re-attaching the 
resulting rooted subtree containing v via a new edge f as 
follows. Subdivide an edge of the component that contains 
ρ with a new vertex u′ , join u′ and v with f , and suppress 
u. We say that T ′ has been obtained from T by a rooted 
subtree prune and regraft (rSPR) operation. The rSPR distance
between any two rooted phylogenetic X-trees T and T ′ , 
denoted by drSPR(T , T ′), is the minimum number of rSPR
operations that transform T into T ′ . It is well known that 
2

Fig. 1. Two rooted phylogenetic trees T and T ′ with their roots labeled 
ρ , and an agreement forest F for T and T ′ . All edges are directed down-
wards.

one can always transform T into T ′ via a sequence of rSPR
operations. However, computing drSPR(T , T ′) is an NP-hard 
problem [3,9].

Now, let T and T ′ be two rooted phylogenetic X-trees. 
An agreement forest F = {Lρ, L1, . . . , Lk} for T and T ′ is a 
partition of X ∪ {ρ} such that ρ ∈ Lρ and the following 
two properties are satisfied:

(P1) For all i ∈ {ρ, 1, . . . , k}, we have T |Li = T ′|Li .
(P2) The trees in {T [Li] : i ∈ {ρ, 1, . . . , k}} and {T ′[Li] : i ∈

{ρ, 1, . . . , k}} are vertex-disjoint subtrees of T and T ′ , 
respectively.

An agreement forest for T and T ′ is a maximum agreement 
forest if, amongst all agreement forests for T and T ′ , it 
has the smallest number of elements. To illustrate, Fig. 1
shows an agreement forest F for the two rooted phylo-
genetic trees T and T ′ of the same figure. Indeed, F is 
a maximum agreement forest for T and T ′ . The follow-
ing theorem characterizes the rSPR distance between two 
rooted phylogenetic trees (with their roots labeled ρ) in 
terms of agreement forests.

Theorem 2.1. [3] Let T and T ′ be two rooted phylogenetic X-
trees, and let F be a maximum agreement forest for T and T ′ . 
Then drSPR(T , T ′) = |F | − 1.

3. Leaf-labeled graphs characterize the rSPR distance

In this section, we establish an alternative characteri-
zation for the rSPR distance between two rooted phyloge-
netic trees. A rooted leaf-labeled graph G on X is a rooted 
directed graph with no parallel edges or loops that satis-
fies the following four properties:

(i) the unique root has in-degree 0 and out-degree 1, and 
is labeled ρ ,

(ii) a vertex of out-degree 0 has in-degree 1, and the set 
of vertices with out-degree 0 is X ,

(iii) all other vertices either have in-degree 1 and out-
degree 2, or in-degree 2 and out-degree 1, and

(iv) each vertex can be reached from ρ via a directed 
path.

A vertex of G with in-degree 1 and out-degree 2 is a tree 
vertex, while a vertex of in-degree 2 and out-degree 1 is a 
reticulation. For two vertices u and v in G , we say that u
is a parent of v if (u, v) is an edge. In contrast to a rooted 
phylogenetic network [10,16], observe that G may contain 
a directed cycle. Nevertheless, as in the case of rooted (bi-
nary) phylogenetic networks, the number of reticulations 
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Fig. 2. Left: A rooted leaf-labeled graph G that displays the two rooted 
phylogenetic trees T and T ′ that are shown in Fig. 1. The reticulations of 
G are v1 and v2. To see that G displays T ′ , note that the graph obtained 
from G by deleting the two edges (u1, v1) and (u2, v2) is a subdivision 
of T ′ . Right: The cyclic 2-generator G ′ that underlies G . To obtain G from 
G ′ , the elements in {x1, x2, x3} are attached to the side (v2, v1) and the 
elements in {x4, x5, x6} are attached to the side (v1, v2).

in G = (V , E), denoted r(G), is equal to |E| − (|V | −1). This 
is because G , due to property (iv), has a directed span-
ning tree, rooted at ρ , with |V | − 1 edges. The spanning 
tree does not yet have any vertices with in-degree 2. Each 
of the |E| − (|V | − 1) edges from E that are not on the 
spanning tree, creates exactly one in-degree 2 vertex when 
added to it. Hence, there are exactly |E| − (|V | − 1) reticu-
lations in total.

As for rooted phylogenetic trees, a rooted subtree of G
is pendant if it can be detached from G by deleting a single 
edge. Let T and T ′ be two rooted phylogenetic X-trees. We 
say that T is displayed by G if there exists a subgraph of G
that is a subdivision of T . Moreover we set

r◦(T , T ′) = min
G

{r(G)}.
That is, r◦(T , T ′) equates to the minimum number of retic-
ulations over all rooted leaf-labeled graphs that display T
and T ′ . Fig. 2 shows a rooted leaf-labeled graph G that dis-
plays the two rooted phylogenetic trees T and T ′ that are 
depicted in Fig. 1. Note that r(G) = 2 = drSPR(T , T ′). The 
next theorem shows that this relationship is not a coinci-
dence. We note that the idea of viewing a sequence of rSPR 
operations as a rooted leaf-labeled graph was briefly men-
tioned in [15] for the purpose of highlighting that such a 
graph may contain a directed cycle.

Theorem 3.1. Let T and T ′ be two rooted phylogenetic X-trees. 
Then drSPR(T , T ′) = r◦(T , T ′).

Proof. Throughout this proof, we continue with our con-
vention that trees and graphs have an in-degree 0, out-
degree 1 root labeled ρ .

We first show that r◦(T , T ′) ≥ drSPR(T , T ′). This part of 
the proof is similar to the second part of the proof of [18]. 
Let G be a rooted leaf-labeled graph on X that displays T
and T ′ such that r(G) = r◦(T , T ′). Let V (G) and E(G) be 
the vertex and edge set of G , respectively. Let E T be the 
edge set of a subdivision of T in G . Similarly, let E T ′ be the 
edge set of a (directed) spanning tree of G that is obtained 
from a subdivision of T ′ in G by adding a possibly empty 
set of edges. Note that |ET ′ | = |V (G)| − 1, and that both 
ET and ET ′ contain the edge of G that is incident with ρ . 
3

Lastly, let A be the subset of ET that contains precisely 
each edge that is not in ET ′ . We next obtain two graphs 
from G . First, obtain G ′ from G by deleting each edge in A. 
Observe that the edge set of G ′ contains each edge in ET ′
and, hence |E(G)| − |A| ≥ |V (G)| − 1. It therefore follows 
that

|A| ≤ |E(G)| − |V (G)| + 1 = r(G). (1)

Second, obtain F from G by deleting each edge that is 
not in ET , deleting each edge in A, deleting each of the 
resulting connected components that does not contain at 
least one vertex labeled with an element in X ∪ {ρ}, and 
applying any of the following operations until no further 
operation is possible.

1. Delete each vertex with in-degree 0 and out-degree 1 
that is not ρ .

2. Delete each unlabeled vertex with out-degree 0.
3. Suppress each vertex with in-degree 1 and out-degree 

1.

By construction, F has at most |A| + 1 elements. Further-
more, the partition of X ∪ {ρ} in which each block corre-
sponds to the label set of an element in F is an agreement 
forest for T and T ′ . Hence,

drSPR(T , T ′) ≤ |F | − 1 ≤ |A| ≤ r(G) = r◦(T , T ′),

where the first inequality follows from Theorem 2.1 and 
the third inequality follows from Equation (1).

We complete the proof by showing that r◦(T , T ′) ≤
drSPR(T , T ′). This part of the proof is by induction on 
drSPR(T , T ′). If drSPR(T , T ′) = 0, then G = T = T ′ is a rooted 
leaf-labeled graph with r(G) = 0 that displays T and T ′ . 
Assume that drSPR(T , T ′) = k and that the theorem holds 
for all pairs of rooted phylogenetic trees whose rSPR dis-
tance is at most k − 1. Then there exists a rooted phy-
logenetic X-tree T ′′ such that drSPR(T , T ′′) = k − 1 and 
drSPR(T ′′, T ′) = 1. (If k = 1, then T = T ′′ .) By the induction 
assumption, there exists a rooted leaf-labeled graph G ′ on 
X with r(G ′) ≤ k − 1 that displays T and T ′′ .

We next construct a rooted leaf-labeled graph G from 
G ′ . Let ET ′′ be the edge set of a subdivision of T ′′ in G ′ . 
Consider the rSPR operation that transforms T ′′ into T ′ . Let 
f be the edge that is deleted in T ′′ and let f ′ be the edge 
that is subdivided after the deletion of f . Then f (resp. 
f ′) corresponds to a directed path P (resp. P ′) in ET ′′ . Let 
e (resp. e′) be an edge of P (resp. P ′). Now obtain G from 
G ′ by subdividing e with a new vertex v1, subdividing e′
with a new vertex v2, and adding the edge (v2, v1). Clearly 
as G ′ is a rooted leaf-labeled graph on X , G is also such a 
graph with r(G) = r(G ′) + 1. Moreover, as G ′ displays T
and T ′′ , it follows from the construction that G displays T
and T ′ . Hence

drSPR(T , T ′) = drSPR(T , T ′′) + drSPR(T ′′, T ′)

≥ r(G ′) + 1 = r(G) ≥ r◦(T , T ′). �
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4. Cyclic generators

Let k ≥ 1 be a positive integer. A cyclic k-generator (or 
short cyclic generator if k is clear from the context) is a 
connected directed graph that may contain parallel edges 
but no loops, and that satisfies the following four proper-
ties:

(i) the unique root is labeled ρ and has in-degree 0 and 
out-degree 1,

(ii) there are exactly k vertices with in-degree 2 and out-
degree at most 1,

(iii) all other vertices have in-degree 1 and out-degree 2, 
and

(iv) each vertex can be reached from ρ via a directed 
path.

The sides of a cyclic k-generator are its edges, called the 
edge sides, and its vertices of in-degree 2 and out-degree 0, 
called the vertex sides.

Now, let G be a rooted leaf-labeled graph with r(G) = k
that has no pendant subtree with at least two leaves. Then, 
we can obtain a cyclic k-generator G ′ from G by deleting 
all leaves and suppressing each resulting vertex with in-
degree 1 and out-degree 1. We say that G ′ is the cyclic 
k-generator that underlies G . Reversely, the edge and ver-
tex sides of a cyclic generator are the places where leaves 
can be attached to obtain a rooted leaf-labeled graph. More 
precisely, let Y = {y1, y2, . . . , ym} be a set of leaves, and 
let G ′ be a cyclic k-generator. Then, attaching Y to an edge 
side (u, v) of G ′ is the operation of subdividing (u, v) with 
m vertices w1, w2, . . . , wm and, for each i ∈ {1, 2, . . . , m}, 
adding an edge (wi, yi). Moreover, attaching Y to a ver-
tex side v of G ′ is the operation of adding an edge (v, r), 
where r is the root of a rooted phylogenetic Y -tree. If at 
least one new leaf is attached to each pair of parallel edges 
and to each vertex side in G ′ , then the resulting graph is a 
rooted leaf-labeled graph G with r(G) = k. We summarize 
the construction in the next observation.

Observation 4.1. Let G be a rooted leaf-labeled graph that has 
no pendant subtree with at least two leaves, and let G ′ be a 
cyclic r(G)-generator. Then G ′ underlies G if and only if G can 
be obtained from G ′ by attaching a (possibly empty) set of leaves 
to each edge and vertex side of G.

As an example, Fig. 2 shows the cyclic 2-generator G ′ that 
underlies the rooted leaf-labeled graph G that is depicted 
in the same figure.

The proof of the next lemma was first established for 
generators without any directed cycle in [13]. However, 
the same proof applies without any changes to cyclic k-
generators.

Lemma 4.2. Let k ≥ 1, and let G ′ be a cyclic k-generator. Then 
G ′ has 4k0 + 3k1 − 1 edge sides, where k0 is the number of 
vertex sides in G ′ and k1 is the number of vertices in G ′ with 
in-degree 2 and out-degree 1.
4

5. Reductions

This section describes three reductions that can be ap-
plied to two rooted phylogenetic trees to shrink them to 
two smaller trees before computing their rSPR distance. 
The first two reductions were established in [3], where 
the authors have shown that each reduction preserves the 
rSPR distance. The third reduction, which was established 
in [20] in the context of a depth-bounded search tree al-
gorithm for computing the rSPR distance reduces the rSPR 
distance by 1.

Let T be a rooted phylogenetic X-tree, and let C =
(x1, x2, . . . , xn) be a sequence of elements in X with n ≥ 2. 
We say that C is an n-chain (or short chain) of T if the 
parent of x1 coincides with the parent of x2 or the par-
ent of x2 is the parent of the parent of x1, and, for each 
i ∈ {3, 4, . . . , n}, the parent of xi is the parent of the parent 
of xi−1. By definition, no chain of T contains ρ . If C is a 
chain of T and the parent of x1 coincides with the parent 
of x2, then we say that C is pendant in T , in which case 
C = (x1, x2, x3, . . . , xn) = (x2, x1, x3, . . . , xn). If a chain is a 
chain of both T and T ′ , we say that it is a common chain. 
Referring back to Fig. 1, we note that T and T ′ as shown 
in this figure have two common 3-chains (x1, x2, x3) and 
(x4, x5, x6) and each is pendant in one of T and T ′ .

Let T and T ′ be two rooted phylogenetic X-trees. We 
next describe three reductions to obtain two rooted phy-
logenetic trees S and S ′ from T and T ′ , respectively, with 
fewer leaves.
Subtree reduction. For m ≥ 2, let {x1, x2, . . . , xm} be the 
leaf set of a maximal pendant subtree that is common to T
and T ′ . Then set S = T |X \ {x2, x3, . . . , xm} and S ′ = T ′|X \
{x2, x3, . . . , xm}.
Chain reduction. For n ≥ 4, let C = (x1, x2, . . . , xn) be a 
maximal n-chain that is common to T and T ′ . Then set 
S = T |X \ {x4, x5, . . . , xn} and S ′ = T ′|X \ {x4, x5, . . . , xn}.
3-2-chain reduction. Let (x1, x2, x3) be a pendant 3-chain 
of T . If (xi, x3) is a pendant 2-chain in T ′ with xi ∈ {x1, x2}, 
then set S = T |X \ {x j} and S ′ = T ′|X \ {x j} with {xi, x j} =
{x1, x2}.

Note that after an application of the 3-2-chain reduc-
tion, (xi, x3) is a pendant 2-chain that is common to S and 
S ′ . It can therefore be further reduced by a subtree reduc-
tion.

The next lemma shows that an application of the 3-2-
chain reduction reduces the rSPR distance by 1. A slightly 
more general result was established in [20], where the au-
thors applied the reduction to two forests instead of to 
two rooted phylogenetic trees. To keep the exposition self 
contained, we include a full proof that is adapted to the 
setting of our paper.

Lemma 5.1. Let T and T ′ be two rooted phylogenetic X-trees, 
and let S and S ′ be two trees obtained from T and T ′ , respec-
tively, by a single application of the 3-2-chain reduction. Then 
drSPR(S, S ′) = drSPR(T , T ′) − 1.

Proof. Without loss of generality, we establish the lemma 
using the same notation as in the definition of a 3-2-chain 
reduction. Let F S be a maximum agreement forest for S
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and S ′ , and let F T be a maximum agreement forest for T
and T ′ . Then F S ∪ {{x j}} is an agreement forest for T and 
T ′ , which implies that |F S | + 1 ≥ |F T |. Hence

drSPR(S, S ′) = |F S | − 1 ≥ |F T | − 2 = drSPR(T , T ′) − 1.

Now consider F T . If {x j} ∈ F T then F \{{x j}} is an agree-
ment forest for S and S ′ , so drSPR(S, S ′) ≤ drSPR(T , T ′) − 1
and we are done. Assume therefore that {x j} /∈ F T . Let B
be the element in F T , with |B| ≥ 2, that properly contains 
x j . Then (P2) in the definition of an agreement forest im-
plies that xi and x3 cannot both be contained in B . We 
next consider three cases.

First, assume that x3 ∈ B and xi /∈ B . Then {xi} ∈ F T . Let 
B ′ = (B \ {x j}) ∪ {xi}. Since T |B = T ′|B , it follows that

(F T \ {B, {xi}}) ∪ {{x j}, B ′}
is a maximum agreement forest for T and T ′ . Second, as-
sume that xi ∈ B and x3 /∈ B . Then {x3} ∈ F T and an argu-
ment that is similar to that used in the first case implies 
that there exists a maximum agreement forest for T and T ′
in which {x j} is an element. Third, assume that xi, x3 /∈ B . 
Then, as F T satisfies (P2), {xi} and {x3} are both elements 
in F T . Hence

(F T \ {B, {xi}, {x3}}) ∪ {{xi, x3}, {x j}, B \ {x j}}
is a maximum agreement forest for T and T ′ .

Taken together, the three cases described in the last 
paragraph show that there exists another maximum agree-
ment forest for T and T ′ in which {x j} is an element. We 
may therefore assume that F T is indeed such a forest. This 
implies that F T \ {{x j}} is an agreement forest for S and S ′
with |F S | ≤ |F T | − 1 and, so,

drSPR(T , T ′) − 1 = |F T | − 2 ≥ |F S | − 1 = drSPR(S, S ′).

Combining both cases establishes the lemma. �
6. A new kernel for rSPR distance

The current smallest kernel size for computing the rSPR 
distance as stated in the next lemma was established in 
2005 [3].

Lemma 6.1. Let S and S ′ be two rooted phylogenetic X-trees. 
Suppose that S and S ′ cannot be reduced any further by apply-
ing the subtree or chain reduction. Then |X | ≤ 28drSPR(S, S ′).

We next show that the size of the rSPR kernel can be 
substantially improved by additionally applying the 3-2-
chain reduction.

Theorem 6.2. Let S and S ′ be two rooted phylogenetic X-trees 
such that drSPR(S, S ′) ≥ 1. Suppose that S and S ′ cannot be re-
duced any further by applying the subtree, chain, or 3-2-chain 
reduction. Then |X | ≤ 9drSPR(S, S ′) − 3.

Proof. Let G be a rooted leaf-labeled graph on X that dis-
plays S and S ′ such that r(G) = r◦(S, S ′) = drSPR(S, S ′) =
5

k ≥ 1, where the second equality follows from Theorem 3.1. 
Let G ′ be the cyclic k-generator that underlies G . Now G
can be obtained from G ′ by attaching leaves in X to the 
edge and vertex sides of G ′ . In what follows we bound 
the number of leaves that can be attached to three dif-
ferent types of such sides in G ′ . First, let v be a vertex 
with in-degree 2 and out-degree 0. If no leaf is attached 
in obtaining G from G ′ , then G is not a rooted leaf-labeled 
graph. Moreover, if at least two leaves are attached to G ′ , 
then S and S ′ have a common pendant subtree with at 
least two leaves and can be further reduced by applying 
the subtree reduction. Hence, G is obtained from G ′ by at-
taching exactly one leaf to v . Second, let e = (u, v) and 
e′ = (u′, v) be two edge sides such that v is a vertex side. 
Let x1 be the unique leaf that is attached to v in obtaining 
G from G ′ . Now assume that at least two leaves x2 and x3

are attached to one of e and e′ , say e. Without loss of gen-
erality, we may assume that (p3, p2) and (p2, v) are edges 
in G , where p2 and p3 are the parent of x2 and x3, respec-
tively. Since r(G) = r◦(S, S ′), it follows that, regardless of 
how many leaves are attached to e′ , (x1, x2, x3) is a pen-
dant 3-chain in one of S and S ′ , and (x2, x3) is a pendant 
2-chain in the other tree. This is because, if we consider 
subdivisions of S and S ′ in G , at least one of the two sub-
divisions does not use the edge (p2, v). If both used edge 
(p2, v), then the other edge entering v would not be used 
by either subdivision, and could safely be deleted, contra-
dicting the assumed minimality of G i.e. r(G) = r◦(S, S ′). 
Consequently, S and S ′ can be further reduced by apply-
ing the 3-2-chain reduction. Hence G is obtained from G ′
by attaching at most one leaf to e and at most one leaf to 
e′ . Third, let e be an edge side that is not directed into a 
vertex side. If at least four leaves are attached in obtain-
ing G from G ′ , then S and S ′ have a common 4-chain and 
can be further reduced by the chain reduction. Hence G
is obtained from G ′ by attaching at most three leaves to 
e. Now, in G ′ , let k0 be the number of vertex sides, and 
let k1 be the number of vertices with in-degree 2 and out-
degree 1. Then k = k0 +k1. Moreover, by Lemma 4.2, G ′ has 
4k0 + 3k1 − 1 = 2k0 + 2k0 + 3k1 − 1 edge sides. Since there 
are 2k0 edge sides that are directed into a vertex side and 
2k0 + 3k1 − 1 edge sides that are not directed into a vertex 
side, we have

|X | ≤ 1 · 2k0 + 3(2k0 + 3k1 − 1) + 1 · k0

= 9k0 + 9k1 − 3 = 9k − 3 = 9drSPR(S, S ′) − 3. �
We next establish that the bound as stated in the last 

theorem is tight. The approach we take is similar to that 
of [11, Theorem 6]. We start by briefly introducing some 
new definitions and refer the interested reader to [11]
(and references therein such as [1,6,14]) for full details. 
A binary character f on X is a function that assigns each 
element in X to an element in {0, 1}. Let T be an un-
rooted binary phylogenetic X-tree with vertex set V , that 
is, T can be obtained from a rooted binary phylogenetic 
X-tree (without ρ) by suppressing its root with in-degree 
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Fig. 3. For k ≥ 1, the cyclic k-generator G ′
k used in the construction of a 

family of pairs of rooted phylogenetic trees to show that the linear kernel 
established in Theorem 6.2 is tight. All edges are directed downwards.

0 and out-degree 2. An extension g of f to V is a func-
tion g that assigns each element in V to an element 
in {0, 1} such that g(x) = f (x) for each x ∈ X . The par-
simony score of f on T , denoted by l f (T ), denotes the 
minimum number of edges {u, v} in T such that g(u) 
=
g(v), ranging over all extensions of f . Now, for two un-
rooted binary phylogenetic X-trees T and T ′ , the maximum 
parsimony distance on binary characters d2

MP is defined as 
d2

MP(T , T ′) = max f |l f (T ) − l f (T ′)| where f ranges over all 
binary characters on X . Lastly, the tree bisection and recon-
nection distance dTBR(T , T ′) between T and T ′ can, infor-
mally, be viewed as the minimum number of operations 
needed to transform T into T ′ , where each operation con-
sists of deleting an edge in a tree and then re-attaching 
the two resulting (smaller) trees back together by joining 
them with a new edge. It is an unrooted analogue of the 
rSPR distance. Indeed, similar to Theorem 2.1, Allen and 
Steel [1] have shown that dTBR(T , T ′) can be character-
ized by (unrooted) maximum agreement forests. In what 
follows, the maximum parsimony distance on binary char-
acters and the TBR distance between T and T ′ will play 
an important role because d2

MP(T , T ′) is a lower bound on 
dTBR(T , T ′) [6] and dTBR(T , T ′) is a lower bound on the 
rSPR distance between two rooted binary phylogenetic X-
trees that can be obtained by rooting T and T ′ . We now 
make this more precise.

Theorem 6.3. Let S and S ′ be two rooted phylogenetic X-trees 
such that drSPR(S, S ′) ≥ 1. Suppose that S and S ′ cannot be re-
duced any further by applying the subtree, chain, or 3-2-chain 
reduction. Then |X | ≤ 9drSPR(S, S ′) − 3 is a tight bound.

Proof. Let k ≥ 1, and let G ′
k be the cyclic k-generator that 

is shown in Fig. 3. Observe that G ′
k has k vertex sides, 2k

edge sides that are directed into a vertex side and 2k − 1
edge sides that are not directed into a vertex side. Obtain a 
rooted leaf-labeled graph Gk on X ∪{ρ} from G ′

k by attach-
ing one leaf to each vertex side and to each edge side di-
rected into a vertex side, and attaching three leaves to each 
remaining edge side. Then |X | = k +2k +3(2k −1) = 9k −3.

In what follows, we say that an edge (u, v) that is di-
rected into a reticulation in Gk is a left reticulation edge
(resp. right reticulation edge) if, in the process of obtain-
ing Gk from G ′ , u subdivides an edge side (p, v) of G ′ , 
k k

6

where v is a vertex side and p is to the left (resp. right) 
of v in Fig. 3. Now, let Sk be the rooted phylogenetic tree 
with label set X ∪ {ρ} obtained from Gk by deleting all 
right reticulation edges and suppressing all resulting ver-
tices of in-degree 1 and out-degree 1. Similarly, let S ′

k be 
the rooted phylogenetic X-tree obtained from Gk by delet-
ing all left reticulation edges and suppressing all resulting 
vertices of in-degree 1 and out-degree 1. It is straightfor-
ward to check that Sk and S ′

k cannot be reduced under 
the subtree, chain, or 3-2-chain reduction. We next show 
that drSPR(Sk, S ′

k) = k. By construction, Sk and S ′
k are dis-

played by Gk and, so drSPR(Sk, S ′
k) ≤ k. It remains to show 

that drSPR(Sk, S ′
k) ≥ k. The claim holds immediately when 

k = 1 because Sk 
= S ′
k . Hence, we assume that k ≥ 2. Let 

S̄k and S̄ ′
k be the two unrooted binary phylogenetic X-

trees obtained from Sk and S ′
k , respectively, by deleting ρ , 

suppressing the resulting vertex of in-degree 0 and out-
degree 2, and ignoring the directions on the edges. Con-
sider the edge side (u, w) of G ′

k as shown in Fig. 3. By 
construction, and because k ≥ 2, there is a directed path 
(u, v1), (v1, v2), (v2, v3), (v3, w) in Gk and, therefore, also 
in Sk . Now let f be the binary character that assigns 0 to 
each element in X if and only if it is a descendant of v1

in Sk . Then l f ( S̄k) = 1. On the other hand, by applying the 
well-known Fitch algorithm [7], we see that l f ( S̄ ′

k) = k + 1
and, thus,

1 − (k + 1) = k ≤ d2
MP( S̄k, S̄ ′

k) ≤ dTBR( S̄k, S̄ ′
k),

where the last inequality is established in [6]. We next 
show that dTBR( S̄k, ̄S ′

k) is a lower bound on drSPR(Sk, S ′
k). 

Let Fk be a maximum agreement forest for Sk and S ′
k . Let 

Lρ be the element in Fk such that ρ ∈ Lρ . Then, the forest 
F̄k obtained from Fk by replacing Lρ with Lρ \ {ρ} is an 
(unrooted) agreement forest for S̄k and S̄ ′

k with | F̄k| ≤ |Fk|. 
In summary, we have

k ≤ d2
MP( S̄k, S̄ ′

k) ≤ dTBR( S̄k, S̄ ′
k) (2)

≤ | F̄k| − 1 ≤ |Fk| − 1 = drSPR(Sk, S ′
k),

where the third inequality follows from [1]. Setting S = Sk
and S ′ = S ′

k , the theorem now follows. �
7. Minimum hybridization

In this section, we turn to rooted leaf-labeled graphs 
without any directed cycle which are known as rooted phy-
logenetic networks. In this context, computing the hybridiza-
tion number

r(T , T ′) = min
N

{r(N)},
where the minimum is taken over all rooted phylogenetic 
networks that display T and T ′ , has attracted much inter-
est over the last 15 years. The hybridization number can 
also be characterized in terms of agreement forests. Let 
F = {Lρ, L1, . . . , Lk} be an agreement forest for T and T ′ . 
Then F is acyclic if the graph G F with vertex set F and for 
which (Li, L j) with i, j ∈ {ρ, 1, . . . , k} is an edge precisely 
if
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(i) the root of T [Li] is an ancestor of the root of T [L j], 
or

(ii) the root of T ′[Li] is an ancestor of the root of T ′[L j]

does not contain a directed cycle. Moreover, a maximum 
acyclic agreement forest for T and T ′ is an acyclic agree-
ment forest for T and T ′ whose number of elements is 
minimum.

Theorem 7.1. [2] Let T and T ′ be two rooted phylogenetic X-
trees, and let F be a maximum acyclic agreement forest for T
and T ′ . Then r(T , T ′) = |F | − 1.

Computing r(T , T ′) is known to be NP-hard but fixed-
parameter tractable [4,5], and the current best weighted 
kernel has size at most 9k, where k = r(T , T ′) [13]. Viewed 
without weighting, the hybridization number kernel is 
quadratic in size [19]. This result relies on applying the 
subtree reduction and the following modified chain reduc-
tion that reduces a common n-chain to a (weighted) 2-
chain, and k-generators which are cyclic k-generators with 
no directed cycle.
Chain reduction. For n ≥ 3, let C = (x1, x2, . . . , xn) be a 
maximal n-chain that is common to T and T ′ . Then set 
S = T |X \ {x3, x4, . . . , xn} and S ′ = T ′|X \ {x3, x4, . . . , xn}.

It is natural to ask whether or not the 3-2-chain re-
duction can also be applied when computing r(T , T ′). The 
next lemma answers this question affirmatively. A slightly 
more general result was also established in [20].

Lemma 7.2. Let T and T ′ be two rooted phylogenetic X-trees, 
and let S and S ′ be two trees obtained from T and T ′ , respec-
tively, by a single application of the 3-2-chain reduction. Then 
r(S, S ′) = r(T , T ′) − 1.

Proof. This proof can be established in exactly the same 
way as the proof of Lemma 5.1 by replacing each oc-
currence of “agreement forest” with “acyclic agreement 
forest”, each occurrence of “drSPR(T , T ′)” (resp.
“drSPR(S, S ′)”) with “r(T , T ′)” (resp. “r(S, S ′)”), and noting 
that the construction given in the proof of Lemma 5.1 re-
sults in an acyclic agreement forest. �

Let T and T ′ be two rooted phylogenetic X-trees, and 
let S1 and S ′

1 be two trees resulting from T and T ′ , re-
spectively, by exhaustively applying the subtree and chain 
reduction. In [4] a weight is associated to each 2-chain that 
results from applying the chain reduction. Without going 
into detail, a common n-chain is reduced to a 2-chain with 
a weight of, essentially, n −2. The weights are necessary to 
compute the size of a maximum acyclic agreement forest 
for T and T ′ given such a forest for S1 and S ′

1. Hence, if 
we first apply a chain reduction and, subsequently, a 3-2-
chain reduction, we would need to take into account the 
weight of any previously reduced n-chain with n ≥ 3. To 
avoid this, we establish the following.

Lemma 7.3. Let T and T ′ be two rooted phylogenetic X-trees. 
Let S2 and S ′

2 be two trees obtained from T and T ′ , respectively, 
by applying the subtree and 3-2-chain reduction until no such 
7

reduction is possible, and let S and S ′ be two trees obtained from 
S2 and S ′

2 , respectively, by applying the chain reduction until no 
further reduction is possible. Then none of the three reductions 
can be applied to S and S ′ .

Proof. We make use of the following observations. First, 
the chain reduction cannot create new common pendant 
subtrees. Second, the chain reduction cannot use leaves 
from a weighted 2-chain created earlier since this would 
contradict the maximality of the chain that was reduced 
earlier. Hence, we can view exhaustive applications of the 
chain reduction as simultaneously applying the reduction 
to a maximal set of leaf-disjoint maximal common chains 
in S2 and S ′

2, immediately yielding S and S ′ . Clearly, S and 
S ′ do not have a common subtree or n-chain with n ≥ 3. 
Assume that S and S ′ can be further reduced under the 3-
2-chain reduction. Then there exist a pendant 3-chain C3 =
(x1, x2, x3) in one of S or S ′ , say S , and a pendant 2-chain 
C2 = (x3, xi) with i ∈ {1, 2} in S ′ . Since S2 and S ′

2 cannot 
be reduced any further under the 3-2-chain reduction, C3
is not a pendant chain in S2 or C2 is not a pendant chain 
of S ′

2; and the existence of C1 and C2 is necessarily caused 
by leaves that are deleted by the chain reduction. First, if 
C2 is not pendant in S ′

2, then there exists a pendant 2-
chain c ∈ {(xi, xl), (x3, xl)} in S ′

2 with xl ∈ X \ {x1, x2, x3}, 
and an n-chain C with n ≥ 3 such that C is common to 
S2 and S ′

2 and the first two elements of C are identical 
with those of c. In obtaining S and S ′ from S2 and S ′

2
respectively, C is reduced to c; thereby contradicting that 
C2 is pendant in S ′ . Second, if C3 is not pendant in S2, 
then an element c ∈ {(x1, xl), (x2, xl), (x3, xl), (x1, x2, xl)} is 
a pendant chain in S2. Moreover, similar to the first case 
there exists an n-chain C with n ≥ 3 such that C is com-
mon to S2 and S ′

2 and the first two (resp. three) elements 
of C are identical with those in c. If c 
= (x1, x2, xl), then 
C is reduced to a 2-chain that contains xl ; thereby con-
tradicting that C3 is pendant in S ′ . On the other hand, if 
c = (x1, x2, xl) then, as C is common to S2 and S ′

2, it fol-
lows that (xi, x3, x j) is a pendant 3-chain of S ′

2 and (xi, x j)

is a pendant 2-chain of S2, where x j is the leaf in {x1, x2}
not equal to xi . Hence S2 and S ′

2 can be reduced by a 3-2-
chain reduction; a contradiction. �

The next theorem establishes an improved kernel for 
computing r(T , T ′).

Theorem 7.4. Let S and S ′ be two rooted phylogenetic X-trees 
such that r(S, S ′) ≥ 1. Suppose that S and S ′ cannot be reduced 
any further by applying the subtree, 3-2-chain, or chain reduc-
tion. Then |X | ≤ 7r(S, S ′) − 2.

Proof. Let G be a rooted phylogenetic network on X that 
displays S and S ′ such that r(G) = r(S, S ′) = k ≥ 1, and 
let G ′ be the k-generator underlying G . Recall the chain 
reduction that is described at the start of Section 7. Then 
analogous to the proof of Theorem 6.2, G can be obtained 
from G ′ by attaching exactly one leaf to each vertex side, 
at most one leaf to each edge side that is directed into 
a vertex side, and at most two leaves to each edge side 
that is not directed into a vertex side. Now, let k = k0 + k1, 
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where k0 is the number of vertex sides of G ′ and k1 is 
the number of vertices with in-degree 2 and out-degree 1 
in G ′ . Since Lemma 4.2 also applies to generators without 
any directed cycle, it follows that G ′ has 2k0 edges sides 
that are directed into a vertex side and 2k0 + 3k1 − 1 edge 
sides that are not directed into a vertex side. Hence

|X | ≤ 1 · 2k0 + 2(2k0 + 3k1 − 1) + 1 · k0

= 7k0 + 6k1 − 2 ≤ 7k − 2 = 7r(S, S ′) − 2. �
As the next theorem shows, the kernel presented in the 

last theorem is again tight.

Theorem 7.5. Let S and S ′ be two rooted phylogenetic X-trees 
such that r(S, S ′) ≥ 1. Suppose that S and S ′ cannot be reduced 
any further by applying the subtree, 3-2-chain, or chain reduc-
tion. Then |X | ≤ 7r(S, S ′) − 2 is a tight bound.

Proof. First observe that the k-generator G ′
k used in the 

proof of Theorem 6.3 is acyclic. Obtain a rooted phyloge-
netic network Gk on X ∪ {ρ} from G ′

k by attaching one 
leaf to each vertex side and to each edge side directed 
into a vertex side, and attaching two leaves to each re-
maining edge side. Then |X | = k + 2k + 2(2k − 1) = 7k − 2. 
Since drSPR(T , T ′) ≤ r(T , T ′) for any two rooted phyloge-
netic trees, tightness can now be established in exactly the 
same way as in the second paragraph of the proof of The-
orem 6.3 and replacing Inequality (2) with

k ≤ d2
MP( S̄k, S̄ ′

k) ≤ dTBR( S̄k, S̄ ′
k)

≤ | F̄k| − 1 ≤ |Fk| − 1 = drSPR(Sk, S ′
k) ≤ r(Sk, S ′

k). �
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