
 

 

 

When cell death goes wrong

Citation for published version (APA):

Bock, F. J., & Riley, J. S. (2023). When cell death goes wrong: inflammatory outcomes of failed apoptosis
and mitotic cell death. Cell Death and Differentiation, 30(2), 293-303. Advance online publication.
https://doi.org/10.1038/s41418-022-01082-0

Document status and date:
Published: 01/02/2023

DOI:
10.1038/s41418-022-01082-0

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 02 Oct. 2023

https://doi.org/10.1038/s41418-022-01082-0
https://doi.org/10.1038/s41418-022-01082-0
https://cris.maastrichtuniversity.nl/en/publications/52f101a0-257f-47cf-a2bb-79758082c93c


REVIEW ARTICLE

When cell death goes wrong: inflammatory outcomes of failed
apoptosis and mitotic cell death
Florian J. Bock 1✉ and Joel S. Riley 2✉

© The Author(s), under exclusive licence to ADMC Associazione Differenziamento e Morte Cellulare 2022

Apoptosis is a regulated cellular pathway that ensures that a cell dies in a structured fashion to prevent negative consequences for
the tissue or the organism. Dysfunctional apoptosis is a hallmark of numerous pathologies, and treatments for various diseases are
successful based on the induction of apoptosis. Under homeostatic conditions, apoptosis is a non-inflammatory event, as the
activation of caspases ensures that inflammatory pathways are disabled. However, there is an increasing understanding that under
specific conditions, such as caspase inhibition, apoptosis and the apoptotic machinery can be re-wired into a process which is
inflammatory. In this review we discuss how the death receptor and mitochondrial pathways of apoptosis can activate
inflammation. Furthermore, we will highlight how cell death due to mitotic stress might be a special case when it comes to cell
death and the induction of inflammation.

Cell Death & Differentiation; https://doi.org/10.1038/s41418-022-01082-0

FACTS

● Death receptors can signal both cell death and inflammation.
● Through release of mtDNA, mitochondrial cell death can be

inflammatory.
● Problems during mitosis lead to cell death.
● Mitotic stress can also induce inflammation.

OPEN QUESTIONS

● Under which circumstances is physiological apoptosis inflam-
matory?

● What are the differences between death receptors with
regards to inflammation?

● Why is mitotic stress inflammatory?

INTRODUCTION
Every day billions of cells die in our bodies. In order to maintain a
healthy, well-functioning organism, these cells must be rapidly
removed to prevent any unwanted immune responses. To cope
with this constant turnover, cells have developed elegant path-
ways of programmed cell death which execute the cell’s demise
[1, 2]. The best studied of these is apoptosis, a complex but highly
regulated form of cell death which serves to activate caspase
proteases resulting in the demolition of the cell. Apoptosis is
executed through two main pathways: the extrinsic pathway,

which is activated by death receptors on the cell membrane or in
the cytosol, and the intrinsic pathway, which harnesses unique
features of the mitochondria to initiate cell death. Other forms of
regulated cell death, such as necroptosis and pyroptosis, are
highly inflammatory, serving as powerful barriers against bacterial,
viral, protozoan, and fungal infection [3]. In contrast, given the
large number of cells which undergo apoptosis, apoptosis does
not elicit an immune response. However, work in the last number
of years has contradicted this, and in certain and specific
situations apoptosis (or rather activation of the apoptotic
machinery) can be highly inflammatory leading to a potent
induction of various inflammatory pathways, such as NF-κB and
type I interferons [4–6]. In this review we will summarise the
recent evidence that apoptosis and activation of the extrinsic,
intrinsic and mitotic apoptotic machinery can be pro-
inflammatory.

THE APOPTOTIC MACHINERY: A BRIEF PRIMER
Broadly, apoptosis is activated through one of two mechanisms.
The first of these is the death receptor, or extrinsic pathway.
Binding of a cognate ligand to a plasma membrane-bound death
receptor (such as death domain (DD)-containing TRAIL-R1, TRAIL-
R2 or Fas/CD95) stimulates the trimerisation of the receptor which
is then capable of recruiting FADD through homotypic DD
interactions on the cytoplasmic portion of the death receptor
forming the death-inducing signalling complex (DISC) [7]. FADD in
turn recruits death effector domain (DED)-containing proteins
such as caspase-8, which is activated and cleaves a number of
substrates [8, 9]. These substrates include the effector caspases-3
and -7 (in type I cells) or BID, a pro-apoptotic BH3-only protein
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which permeabilises the mitochondrial outer membrane (in type II
cells) [10]. In addition, other DED proteins, notably c-FLIP, also
form part of the DISC and depending on levels of expression can
promote or inhibit apoptosis [11–15] (Fig. 1). Furthermore, DISCs
can form intracellularly on autophagosomal membranes, not only
at the plasma membrane [16].
The other pathway of apoptosis is the intrinsic, or mitochondrial

pathway. Upon encountering a cellular stress, such as ER stress,
DNA damage, or most anti-cancer drugs, cells activate BH3-only
proteins. They bind and inhibit members of the pro-survival BCL-2
family, such as BCL-2, BCL-xL and MCL-1, whose main function is
to safeguard the integrity of the mitochondrial outer membrane
by binding and inhibiting BAX and BAK [17] (Fig. 1). When pro-
survival BCL-2 proteins are inhibited BAX and BAK are free to be
activated by BH3-only proteins, and form pores in the mitochon-
drial outer membrane. This process is known as mitochondrial
outer membrane permeabilisation, or MOMP, and is the defining
hallmark of mitochondrial apoptosis. BAX/BAK pores allow for the
efflux of a number of different intermembrane space proteins,
such as cytochrome c, SMAC, and Omi [18]. Upon entering the
cytoplasm, cytochrome c binds and facilitates the formation of the
apoptosome, comprised of multiple copies of APAF-1, which acts
as an activation platform for caspase-9 [19]. Active caspase-9
cleaves a number of proteins, but most importantly it cleaves and
activates caspases −3 and −7, which together execute the
demolition phase of apoptosis [20, 21].

INFLAMMATION ARISING FROM DEATH RECEPTORS
Although most studies of death receptors focus on death as the
outcome, death is not always inevitable from death receptor
activation. Amongst the many studies which focus on the death of
a cell from death receptor activation, there are reports that both
TRAIL and Fas receptors promote the production of pro-
inflammatory chemokines and cytokines [22–25] and that cells
can survive TRAIL treatment [26]. Moreover, ligation of TRAIL and

Fas death receptors can have many other outcomes, such as
increased cell invasiveness [27], cancer metastasis [28–30],
proliferation [31], activation of dendritic cells [32], and entosis
[33]. Indeed, the founding member of the tumour necrosis factor
(TNF) superfamily, TNF, despite its name rarely kills cells, and
requires the blockade of NF-κB-mediated transcription to do so
(see Box 1). Together, the observations that TRAIL or Fas ligation
can have pro-survival roles in part explains the relative lack of
success of TRAIL receptor agonists in the clinic, particularly given
that TRAIL can actually promote tumourigenesis [34].
At the molecular level, complexes formed following TRAIL and

Fas receptor ligation are more complicated than originally
understood. Initially, TRAIL receptor activation leads to the
formation of a plasma membrane-bound DISC complex, com-
prised of the adaptor protein FADD, caspase-8, the long and short
isoforms of c-FLIP, TRAF2, and RIPK1, among others, termed
complex I. Here, ubiquitination events determine the signalling
outcomes, whether that be cell death or gene expression. For
example, caspase-8 can be modified with K63 ubiquitin chains by
the E3 ligase cullin-3 [35], promoting its activation, whereas TRAF2
can modify caspase-8 with K48 ubiquitin chains, which trigger the
proteasomal destruction of caspase-8 [36]. In this way, temporal
changes in ubiquitination can act as a molecular timer of caspase-
8 activation. More recently, the linear ubiquitin chain assembly
complex (LUBAC) has been shown to ubiquitinate caspase-8 and
RIPK1 with linear chains whilst they are in complex I [37]. LUBAC-
mediated ubiquitination of caspase-8 serves to limit caspase-8
activation and, through NEMO binding to linear ubiquitin chains,
recruits the IKK complex. LUBAC also ubiquitinates caspase-8 in
complex II, a complex which forms after complex I previously
thought to be mainly responsible for gene activation [38].
However, it is now understood that both TRAIL complexes I and
II can mediate apoptosis and cytokine production [37].
What is the biological significance of cytokine and chemokine

production in response to TRAIL and Fas receptor signalling? This
has perhaps been best studied in the context of cancer, especially

Fig. 1 Overview of the death receptor and mitochondrial pathways of apoptosis. Ligation of the TRAIL or Fas death receptor stimulates its
trimerisation. FADD binds to the cytoplasmic death domain (DD) portion of the death receptor, which in turn recruits death effector domain-
containing proteins such as caspase-8, cFLIP, and caspase-10 to form the death-inducing signalling complex (DISC). Activation of caspase-8 at
the DISC forms a catalytically active dimer, which can cleave a limited number of substrates, but crucially including caspases −3 and −7 and
BID. Cleavage and activation of the executioner caspases −3 and −7 drives cellular demolition.
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since cytokines and chemokines have been shown to be
important in the tumour microenvironment [39]. Cancer cells
treated with TRAIL secrete a vast array of proteins, including the
cytokines and chemokines CXCL1, CXCL4, CCL2, IL-8, and NAMPT
[40]. Importantly, these cytokines and chemokines are secreted by
cells which survive TRAIL treatment, rather than those which die,
and strictly require the presence of FADD and caspase-8 (although
studies differ as to whether TRADD is required) [40–42]. However,
it does not require the caspase activity of caspase-8, as treatment
with the pan-caspase inhibitor QVD does not alter the inflamma-
tory outcome [42]. In line with this, Henry & Martin show that
TRAIL treatment results in the production of cytokines and
chemokines in HeLa cells, which can be uncoupled from cell
death [42]. While caspase-8 activity is dispensable for this cytokine
production, it requires FADD, RIPK1 and caspase-8 protein
expression. Cytokine and chemokine secretion also occurs when
cells are treated with doses of TRAIL insufficient to cause cell
death. In this scenario, procaspase-8 aids the assembly of a
cytoplasmic “FADDosome” complex consisting of FADD, RIPK1 and
caspase-8, also known as complex II to draw parallels to TNF
signalling (Fig. 2). Formation of the “FADDosome”/complex II
drives NF-κB-dependent inflammatory gene expression. Addition-
ally, LUBAC is recruited to both TRAIL complex I and II promoting
gene expression and preventing apoptosis [37]. What is the
function of this in cancer models? Non-small cell lung cancer
(NSCLC) patients with high levels of FADD mRNA have poorer
survival than patients with low FADD mRNA [43], leading to the
tempting suggestion that the FADDosome might form down-
stream of TRAIL receptor ligation in cancers, driving inflammatory
gene expression. Accordingly, deletion of FADD in a mouse model
of NSCLC significantly decreased tumour burden as well as levels
of IL-8, CXCL1 and CCL2 [40]. Furthermore, secretion of TRAIL/
TRAIL receptor-dependent CCL2 produces a tumour-supportive
microenvironment in which cancers can thrive. The FADDosome
also forms in vivo following activation of the Fas receptor in mice
lacking MLKL (crucial for necroptosis) and harbouring a non-

cleavable caspase-8 (Casp8DA/DAMlkl-/-), and deletion of one allele
of Fasl, Fadd or Ripk1 was sufficient to abrogate FADDosome-
dependent inflammation, highlighting the important role for this
complex in vivo [44]. Interestingly, selective expression of different
head and neck cancer associated-caspase-8 mutations show
different capacities to mediate inflammation [45]. For example,
the D303G mutation appears to increase chemokine and cytokine
production in cells and in xenograft in vivo models. It will be
interesting to see if these findings can be confirmed in more
sophisticated mouse models of cancer.
Taxanes are a group of microtubule poisons that induce mitotic

arrest and cell death via various cell death modalities [46] and are
commonly used in the clinic for the treatment of lung, breast, and
ovarian cancers. There is extensive evidence in the literature
showing that taxanes invoke inflammatory responses in cancers,
facilitating cancer progression and resistance [47–51]. However, in
addition to being microtubule poisons that induce cell death, they
also robustly induce endoplasmic reticulum (ER) stress, which is
known to cause ligand-independent TRAIL receptor activation,
although this remains the topic of some debate [52–55]. How
TRAIL receptors can activate and signal without a ligand was a
mystery. Whilst others have reported that misfolded proteins can
directly bind and activate TRAIL-R2 to invoke cell death [56],
Sullivan et al showed that ER stress leads to the transcriptional
upregulation of TRAIL receptors, which can then stimulate the
formation of the FADDosome complex, activating NF-κB and
expression of cytokines and chemokines [57] (Fig. 2). This
induction of inflammation does not fit within the usual
pathogen-associated molecular patterns (PAMPs) or damage-
associated molecular patterns (DAMPs) paradigm [58], and so a
new term has been coined: stress-associated molecular patterns
(SAMPs), which could potentially form in response to a wide
variety of stressors.
Similar to TRAIL/TRAIL-R signalling, binding of Fas ligand to the

Fas receptor stimulates the formation of a FADD/caspase-8/c-FLIP
DISC which is capable of activating caspase-8 and inducing rapid cell
death. Until recently, apoptosis was thought to be an immune-silent
event, which does not invoke an immune response. However, work
in the last decade has shown that dying cells secrete a number of
“find-me” signals that attract phagocytic cells to the dying cell to aid
in the removal of the corpse. These “find-me” signals include ATP
[59], lysophosphatidylcholine (LPC) [60], and IL-8, among others [61].
More recently, it was found that upon stimulation with Fas ligand,
multiple cell types can secrete more conventional cytokines and
chemokines, such as IL-6, CCL2, CXCL1, and sICAM-1 in a manner
that can be uncoupled from cell death [62]. Importantly, this appears
to be dependent on inhibitor of apoptosis (IAP) proteins, as
treatment with BV6 (an IAP antagonist) blocks the production of
cytokines as well as RIPK1 [62].

INFLAMMATION ARISING FROM THE MITOCHONDRIAL CELL
DEATH MACHINERY
The large majority of apoptosis is executed via the mitochondrial
cell death pathway. In a healthy cell, the mitochondrial outer
membrane is kept under constant guard by a delicate balance of
pro- and anti-apoptotic proteins, which together maintain
membrane integrity. Upon encountering a cellular insult, the
balance of these proteins is disrupted in such a way that it tips in
favour of pro-apoptotic proteins, allowing BAX/BAK to form pores
on the mitochondrial outer membrane [17] (Fig. 1). Through these
pores flow a number of different proteins, such as cytochrome c,
SMAC and Omi, and when they enter the cytoplasm they activate
caspases [17]. For example, when cytochrome c enters the
cytoplasm it triggers the formation of the apoptosome, a
multimeric complex of APAF-1 at which the initiator procaspase-
9 is activated. This triggers a caspase cascade which activates
caspases −3 and −7 which ultimately demolish the cell by

Box 1. The TNF signalling pathway

Tumour necrosis factor (TNF) gained its name due to the observation that it could
shrink some tumours [137]. However, when administered to patients, TNF causes
shock and cytokine storms, which was attributed to huge upregulation in gene
expression [138]. More recent studies have shown this to actually be due to TNF-
induced cell death [139].
TNF binds to both TNFR1 and TNFR2, however since only TNFR1 possesses a

death domain (DD) it is the only receptor which can reliably be called a death
receptor. Binding of TNF to TNFR1 results in receptor trimiersation, similar to TRAIL
and Fas death receptor ligation. Following trimerisation, TRADD and RIPK1 are
recruited through homotypic DD interactions [140], and this complex initiates
the formation of the TNF receptor signalling complex, or TNF-RSC. TRAF2 is then
recruited to TRADD, which can then recruit cIAP1 and cIAP2, E3 ligases which
ubiquitinate RIPK1 and other proteins in the TNF-RSC. Addition of ubiquitin chains
allows the recruitment of the linear ubiquitin chain assembly complex (LUBAC), a
multimeric protein which forms another E3 ligase capable of conjugating M1-linked
linear ubiquitin chains to components of the TNF-RSC. The orchestrated concert of
ubiquitin chains added to TNF-RSC components by cIAP1, cIAP2 and LUBAC are
essential to recruit kinase-containing complexes such as IKKα/IKKβ/NEMO [141],
TAK1/TAB2/TAB3 [142] and IKKε/TANK/TBK1 [143]. Together, this complex, known as
complex I, blocks cell death and activates NF-κB-, JNK- and p38-dependent innate
immune and pro-survival gene transcriptional programs [144]. However, under
certain circumstances such as incomplete ubiquitination of RIPK1, complex I can
dissociate from the membrane and form a cytosolic complex II comprised of FADD,
caspase-8, c-FLIP, RIPK1, as well as RIPK3 if expressed. FADD and RIPK1 can assemble
to activate caspase-8, which induces apoptosis (complex IIa/b), or, if caspase-8
activity is blocked the cell death can be converted to necroptosis, which requires
both RIPK1 and RIPK3 (complex IIc) [145–147].
In addition to complexes that form from the plasma membrane, intracellular

death complexes can form independently of death receptor ligation. For example,
the Ripoptosome forms in response to genotoxic stress and depletion of IAPs. In
fact, this complex is identical to complex IIb, but since it forms independently of
death receptor ligation it is termed the Ripoptosome [148, 149]. It can also contain
additional proteins, such as caspase-10, c-FLIPL, or RIPK3, depending on cell type,
but importantly is capable of inducing apoptosis and inflammation [150].
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cleaving a large array of substrates. Similarly, when SMAC enters
the cytoplasm it binds and neutralizes members of the IAP family,
cellular inhibitors of caspases. Importantly, mitochondrial permea-
bilisation is a point-of-no-return, and once it has occurred, the cell
will die regardless of caspase activation.
In contrast to other forms of cell death, such as necrosis,

apoptosis has been considered a largely regulated and “immune-
silent” form of cell death. However, work from the past number of
years has shown that mitochondrial apoptosis in particular is far
from immune-silent and in fact has the potential to trigger potent
immune responses under specific conditions, such as when
caspases are inhibited. One of the major drivers of this is due to
the origins of mitochondria, which arrived into a host cell related
to Asgard archaea as an endosymbiotic alphaproteobacterium,
and over time have become adapted to the host through
significant proteome rewiring [63, 64]. However, due to this
bacterial origin they have maintained their own independent
genome, mitochondrial DNA (mtDNA). Usually mtDNA is kept
inside the mitochondria and away from innate immune sensors in
the cytoplasm. But what happens if the mitochondrial membranes
are permeabilised? A number of studies in 2014 were the first to
show that pharmacological or genetic blockade of caspases was
sufficient to drive a cGAS-STING type I interferon response in cells
[5, 6]. Further investigation revealed that mtDNA was being
released from the mitochondria into the cytoplasm. Importantly,
the activity of apoptotic caspases (such as caspase-9 and caspase-
3/7) was enough to block this inflammatory response, rendering
apoptosis immunologically silent. Using super-resolution micro-
scopy, we and others have shown that BAX/BAK pores during the
initial stage of MOMP are large enough to only permit the release
of small proteins, such as cytochrome c. However, these initial
pores rapidly unite to form large BAX/BAK “macropores” through
which the mitochondrial inner membrane herniates, ruptures, and
allows the release of mtDNA into the cytoplasm [65–67]. Once in
the cytoplasm, it is detected by cGAS, which catalyses production
of a second messenger cGAMP, which then activates STING.
STING subsequently activates TBK1, which phosphorylates IRF3

allowing the expression of type I interferon genes [68] (Fig. 3).
Importantly, it should be noted that for MOMP-induced inflam-
mation to proceed, caspases must be inhibited. One of the
reasons for this is that proteins in innate immune pathways, such
as cGAS, IRF3 and MAVS are rapidly cleaved and inactivated by
caspases, helping to maintain the immuno-silent nature of
apoptosis [69].
The release of mtDNA during cell death has now been noted in

a variety of different pathological settings [70]. In cancer, inducing
mitochondrial cell death with BH3 mimetics while simultaneously
inhibiting caspase activity may seem counterintuitive, but has
actually been shown to be a more effective means of controlling
tumour growth. Using a variety of in vitro and in vivo models of
cancer, Giampazolias et al. showed that deleting APAF-1 or
pharmacological caspase inhibition not only activated NF-κB-
dependent inflammation (through the release of SMAC and
activation of NIK), but also cGAS-STING-dependent type I
interferon responses (through the release of mtDNA into the
cytoplasm) [4]. In a mouse model of breast cancer, irradiation
causes MOMP, leading to the release of mtDNA through BAX/BAK
pores [71]. In this scenario, if autophagy is inhibited mtDNA
accumulates in the cytoplasm, triggering cGAS-STING-dependent
type I interferon responses, a process that bears resemblance to
mtDNA in heart failure [72]. In mouse models of colorectal cancer,
inhibiting apoptotic caspase activity using FDA-approved emrica-
san/IDN-6556 combined with radiation enhances anti-tumour
immunity, resulting in better tumour control [73]. Together, this
strongly suggests that targeting MOMP while simultaneously
inhibiting caspases could be a new strategic approach to treating
a variety of different cancers.
The cGAS-STING axis is not the only immune pathway activated

by mtDNA release into the cytoplasm. Some viruses, such as
severe fever with thrombocytopenia syndrome virus (SFTSV) also
release mtDNA in a BAX/BAK-dependent mechanism (though the
precise mechanism is unclear); however the mtDNA is not
recognised by cGAS but rather by the NLRP3 inflammasome, a
multiprotein cytosolic sensor of DNA [74] (Fig. 3). Caspase-1 is

Fig. 2 Death receptor apoptotic machinery can be proinflammatory. Ligation of the TRAIL receptor stimulates the formation of the death-
inducing signalling complex (DISC). FADD is the first to be recruited, which allows the recruitment of multiple copies of caspase-8 through
death-effector domain (DED) interactions. RIPK1 is also recruited, and can be modified with ubiquitin chains by cIAP1/2. This complex can
then dissociate from the plasma membrane, forming the FADDosome which can activate NF-κB-dependent gene transcription and cytokine
and chemokine production.
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recruited to, and activated at, the NLRP3 inflammasome, which
enables the cleavage and secretion of IL-1β. IL-1β is secreted by
cells as part of an innate anti-microbial defence system.
Interestingly, cells exposed to IL-1β are known to activate cGAS-
STING signalling, which is now understood to be due to mtDNA
release [75]. While not formally tested, the authors speculate that
this might be due to BAX/BAK pore formation, since FOXO3 is
activated following IL-1β stimulation, and there is evidence, albeit
limited, suggesting that FOXO3 is linked to a “transient MOMP”
[76, 77]. Similarly, TNF treatment induces the release of mtDNA
into the cytoplasm in a model of arthritis, and again, although not
formally tested, it seems plausible that this could be due to BAX/
BAK pore formation [78]. Although this observation may be
completely unrelated to apoptosis since there appears to be no
loss of cell viability, it is intriguing that pharmacological caspase
inhibition with zVAD-fmk enhances interferon production. Thus, it
is tempting to speculate that there may be some degree of non-
lethal “minority MOMP” (see below), although this should be
formally tested.
In another example of inflammatory signals flowing from

permeabilised mitochondria, SMAC release via BAX/BAK pores
can trigger NLRP3 inflammasome activation in macrophages.
Here, released SMAC binds and facilitates the degradation of IAPs,
licensing formation of the Ripoptosome and caspase-8 activation
which enables IL-1β secretion [79] (Fig. 3). Alternatively, SMAC
release can also lead to IAP depletion allowing NLRP3 inflamma-
some formation which can likewise lead to IL-1β secretion, in a
manner independent of gasdermin proteins [80].
It should be noted that not all mtDNA release occurs as a result

of BAX/BAK-mediated permeabilisation of the mitochondrial outer
membrane. Amyotrophic lateral sclerosis (ALS) is characterised by
cytoplasmic accumulation of TDP-43, a nuclear DNA/RNA binding
protein, which can enter the mitochondria [81–83]. TDP-43
expression in cells triggers the release of mtDNA into the
cytoplasm through the mitochondrial permeability transition pore
(mPTP) where it is detected by cGAS, activating a STING-
dependent inflammatory response [84]. In a mouse model of

the autoimmune disease lupus, voltage-dependent anion chan-
nels (VDACs) can form pores in the mitochondrial outer
membrane in response to oxidative stress, leading to mtDNA
expulsion and cGAS-STING-dependent inflammation [85]. VDAC
channels have also been implicated in mtDNA release observed in
skin and lung samples from patients infected with SARS-CoV-2
[86]. Given the intimate relationship between BAX/BAK and
VDACs, it is possible BAX/BAK may have a role [87], though the
requirement for VDACs in mitochondrial permeabilisation is still a
subject of debate [88, 89]. Finally, gasdermins D and E (GSDMD,
GSDME) are pore forming proteins more recognised for their roles
in permeabilising the plasma membrane during pyroptosis.
However, a number of laboratories have shown that GSDMD
and GSDME can both permeabilise the mitochondrial outer
membrane [90, 91], and in the case of NLRP3 inflammasome
activation, GSDMD can permeabilise the mitochondria to allow the
efflux of mtDNA [91].
In addition to mtDNA, mitochondria also contain mtRNA. Under

homeostatic conditions, this mtRNA is degraded by the degrado-
some, principally comprised of the mitochondrial RNA helicase
SUV3 and polynucleotide phosphorylase PNPase. When this is
disrupted (for example in patients with mutations in PNPase)
mtRNA accumulates. In such pathogenic conditions, mtRNA is
released through BAX/BAK pores on the mitochondrial outer
membrane and into the cytoplasm where it is detected by the
RNA sensor MDA5, which through MAVS elicits a type I interferon
response [92] (Fig. 3). Similarly, mitochondrial-targeted transcrip-
tion activator-like effector nuclease (TALEN)-mediated induction of
mtDNA damage or radiation activates BAX/BAK pore formation on
the mitochondrial outer membrane, facilitating the release of
mtRNA which is detected by RIG-I (and presumably MDA5),
triggering a type I interferon response [93] (Fig. 3). Notably, BAX/
BAK pore formation following mtDNA damage induced by TALENs
is not apoptotic, and thus does not cause caspase activation. How
BAX/BAK can form pores on the mitochondrial outer membrane
that does not result in apoptotic signalling is intriguing, but as of
yet unclear.

Fig. 3 Mitochondrial apoptosis is pro-inflammatory via BAX/BAK pores. Permeabilisation of the mitochondrial outer membrane by BAX/
BAK can trigger inflammation in a number of different ways. Firstly, following MOMP, the inner membrane herniates and permeabilises,
allowing the efflux of mtDNA into the cytoplasm where it activates cGAS-STING-dependent inflammatory responses, such as activation of type
I interferon responses and NF-κB. SMAC release during MOMP triggers IAP degradation and NIK activation, leading to NF-κB activation. During
infection with viruses, such as SFTSV, BAX/BAK pores facilitate the release of oxidized mtDNA, which can bind and activate the NLRP3
inflammasome, triggering NF-κB responses. Finally, mitochondrial RNA can be released via BAX/BAK pores, which are detected by MDA5 and
MAVS in the cytoplasm, triggering a type I interferon response.
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Mitochondrial permeabilisation as an immune alarm
Permeabilisation of the mitochondrial outer membrane has always
been thought of as an all-or-nothing event, in that within a single
cell all mitochondria undergo MOMP and the cell rapidly dies
[94, 95]. However, the general idea that all cells treated with a cell
death-inducing stimulus die has been challenged: in 2010, Lovric &
Hawkins noted that in a given population of cells treated with
TRAIL some cells die, but not all [26]. Although they did not test a
role for mitochondria, the cells which survive often have mutations
dependent on caspase-8 activation, showing that surviving cell
death creates mutations in the cells that do not die. Subsequently,
we and others showed that treating cells with sub-lethal doses of
drugs which invoke cellular stresses or anti-cancer drugs was able
to permeabilise only a few mitochondria within a cell, challenging
the notion that MOMP occurs in all mitochondria in a cell.
Importantly, in cells which undergo “minority MOMP”, we were
able to detect a small, but significant, degree of caspase activation,
enough to cleave the inhibitor of caspase-activated DNase (ICAD),
releasing active CAD which induces DNA damage and genomic
instability [96, 97]. We also recently defined the underlying basis of
this process, showing that minority MOMP induced by BCL-2
antagonism occurs preferentially on dysfunctional, fragmented
mitochondria, which possess higher levels of anti-apoptotic BCL-2
expression and higher BAX due to reduced retrotranslocation,
rendering them more primed towards minority MOMP [98].
Since mtDNA can be extruded from mitochondria during cell

death, and that it is possible that only a limited subset of
mitochondria can undergo MOMP in a given cell, Brokatzky et al
set out to test the possibility that pathogens could trigger minority
MOMP. Indeed, they were able to show that sub-lethal doses of
BH3 mimetics was sufficient to trigger IL-6 release in a BAX/BAK-,
BCL-xL- and STING-dependent manner [99]. Furthermore, when
screening various of bacterial, viral and protozoan pathogens they
were able to show that infection also causes minority MOMP and
DNA damage. In cells, the function of this is likely to induce MOMP
to trigger mtDNA release (or release of other proteins) to activate
cGAS-STING and elicit a type I interferon response. In this manner,
the infected cell becomes an “alarm” for the surrounding cells,
perhaps to warn them of a potential threat. Similarly, infection with
Helicobacter pylori also induces sub-lethal caspase activation and
inflammatory signalling. In contrast to other pathogens however,
Hp infection seems to only permit the release of SMAC from BAX/
BAK pores, and not cytochrome c. How SMAC can be preferentially
released from BAX/BAK pores remains to be elucidated, but it is in
line with other data [100, 101]. One tempting hypothesis may be
drawn from recent data from the Garcia-Saéz laboratory, who
showed that BAX and BAK form different-sized pores at divergent
rates. It has been known for a number of years that BAX and BAK
can form pores that resemble lines, arcs and rings [102, 103];
however we now know that BAK can oligomerise and form pores
faster, but at a smaller size than BAX [104]. Crucially, this means
cells which predominantly express BAK release mtDNA faster than
cells which only express BAX. The mitochondrial protein ERA G-
protein-like 1 (ERAL1) is also released from the mitochondrial
matrix through BAX/BAK pores following infection with RNA
viruses such as VSV and Sendai virus [105]. Translocation of ERAL1
into the cytoplasm appears to promote ubiquitination of RIG-I and
MDA5, which promote oligomerisation of MAVS on the mitochon-
drial outer membrane, resulting in anti-viral responses [105].
However, it is not clear from this study how cells remain alive, as
formation of the BAX/BAK pore would usually result in a rapid and
complete cell death, so it is possible that other processes, such as
minority MOMP and/or caspase inhibition could play a role.

INFLAMMATION ARISING FROM MITOTIC CELL DEATH
The correct and error-free execution of cell division is essential for
an organism to prevent the introduction or propagation of

damaged or dangerous cells [106]. Errors introduced during
mitosis can have a profoundly negative impact if passed on to
daughter cells. Cells have therefore developed several strict
checkpoints during the cell cycle that have to be passed before
they can progress [106]. Failure to fulfill these checkpoint
requirements can lead to a stall in mitosis to remedy the
underlying reason of the failure to pass the checkpoint. If this
stall cannot be overcome, e.g., if the sustained damage is too
severe, the cell undergoes cell death. While cell death due to
errors in mitosis often uses much of the same machinery as the
intrinsic pathway of apoptosis described previously, particularly in
the execution of the death, how it is specifically induced is still a
matter of active research and not yet understood in detail.
Recent publications suggest that activation of caspase-2 in a

complex called the PIDDosome promotes cleavage and inactiva-
tion of MDM2, which under basal conditions promotes degrada-
tion of p53 [107–110]. Activation of p53 can then push cells
towards cell cycle arrest, senescence, or apoptosis, the distinction
between those different outcomes believed to be due to the
dynamics and sustained levels of increased p53 [111–113]. In some
cancer cells, active nuclear caspase-8 cleaves the deubiquitinase
USP28 in response to DNA damage. The cleaved USP28 is therefore
incapable of stabilizing p53, enabling the cell to progress in mitosis
instead of undergoing p53-mediated apoptosis [114].
Like apoptosis triggered by other stresses, mitotic cell death

relies on activation of pro-apoptotic BH3-only proteins and
concomitant inactivation of pro-survival BCL-2 family members
[115]. Several of these pro- and anti-apoptotic proteins are
modified by components of the cell cycle machinery. While in
reality the picture might be more complicated and is still to be
elucidated, current models suggest that the interplay between
mitotic progression and induction of apoptosis ultimately decides
the fate of a cell encountering problems during mitosis.
In addition to the intrinsic pathway, components of the extrinsic

pathway interface with the regulation of mitosis. A non-apoptotic
and non-inflammatory “Ripoptosome” (see Box 1) forms during
mitosis to ensure that chromosomes are segregated correctly
[116]. Furthermore, phosphorylation of procaspase-8 by Cdk1/
cyclin B1 and polo-like kinase 1 (Plk1) prevents its activation
during mitosis [117], while phosphorylation of FADD by casein
kinase 1α is required for the progression of mitosis [118].
While canonical apoptosis is considered immunologically silent

and not able to trigger an inflammatory response, does the same
hold true for mitotic cell death? While clear evidence that mitotic
cell death itself is inflammatory is unavailable, some features
leading to its induction make it more likely to induce an
inflammatory response. One trigger of mitotic cell death is DNA
damage, induced by radiation or genotoxic drugs. Additionally, in
a pathway reminiscent of minority MOMP (see above), prolonged
mitotic arrest can lead to limited activation of caspases. After
caspase-mediated cleavage of ICAD, activated CAD can then
cleave genomic DNA and thereby induce DNA damage [119]. Even
though it has been known for a while that DNA damage can
induce inflammation, this activation seems to be independent of
mitosis and rather mediated by the canonical DNA damage
response [120, 121]. DNA damage occurred during mitosis can
lead to DNA double-strand breaks and the formation of
micronuclei, fragments of chromosomes encapsulated by nuclear
membranes outside the nucleus. These micronuclei can then be
detected by cGAS, leading to activation of an interferon response
and inflammation [122, 123]. A similar effect has also been
described during senescence: here cytoplasmic chromatin frag-
ments (CCF) translocate from the nucleus to the cytoplasm, where
they are subsequently detected by cGAS and induce inflammation
[124–126]. These data are in line with the general perception that
cGAS is a sensor of “out of place” dsDNA, for example from
pathogens or mitochondria. Chromatin fragments, micronuclei or
other sources of nuclear DNA in the cytoplasm are detected by
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cGAS and constitute signs that necessitate an inflammatory
response. Several mechanisms exist to prevent accidental activa-
tion of cGAS, which can also be found in the nucleus, such as its
tight tethering to nucleosomes [127]. Inhibition of cGAS in this
way also prevents its activation during mitosis, when the nuclear
envelope breaks down and nuclear DNA is exposed to cGAS.
Surprisingly, activation of the cGAS-STING pathway itself can

eventually lead to the induction of mitotic cell death [128]. Here,
prolonged mitotic arrest leads to low-level activation of IRF3 by
cGAS. Interestingly, while this IRF3 activation is insufficient to
induce an inflammatory response, by a yet undefined mechanism
this cGAS-STING-IRF3 axis promotes MOMP via inactivation of BCL-
xL [128] (Fig. 4).
In cancer, activation of cGAS due to chromosomal instability

and micronuclei can also have negative effects. Mediated by
STING, tumor cells with chromosomal instability induce NF-κB
signaling and inflammation, promoting metastasis [129]. These
results are in accordance with previous research showing
heightened carcinogenesis due to STING-dependent inflammation
[130]. Remarkably, tumour cells have even developed mechanisms
to counteract anti-tumour immunity evoked by STING in
chromosomally instable cells. By expressing the ectonucleotidase
ENPP1, they degrade the cGAMP that is produced by cGAS and
excreted to the extracellular space [131]. Therefore, cGAMP cannot
be recognised by surrounding immune cells and activate an anti-
tumour response in them. In this way, the tumor can become
resistant to elimination by the host immune system.

CONCLUDING REMARKS
It is now evident that in addition to being immuno-silent,
apoptosis can be, under certain circumstances, an inflammatory

event. Active areas of current research include uncovering in
which physiological settings apoptosis can be inflammatory,
independent of pharmacological or genetic inhibition of caspases,
as well as how it can be exploited therapeutically. For example,
cardiomyocytes show a decreased expression of APAF-1
[132, 133], rendering them functionally deficient in the activation
of caspase-9 and thus intrinsic apoptosis. Whether this deficiency
results in increased inflammation of the heart when cardiomyo-
cytes undergo mitochondrial permeabilisation is an interesting
avenue for future research, particularly since heart disease is the
leading cause of death in the developed world.
Another interesting potential role of apoptosis-induced inflam-

mation mediated by caspase inhibition is during cellular infection
with viruses, which often express proteins that inhibit caspases
[134]. These inhibitors, therefore, prevent apoptosis of the infected
cell and give the virus more time to replicate. One can speculate
that inflammation induced by the induction of apoptosis triggered
by viral infection, in combination with viral caspase inhibition, is
an additional cellular mechanism to boost inflammation to fight
the virus.
Clinically, some chemotherapeutic drugs like doxorubicin

have been shown to induce an inflammatory response even
under caspase-proficient conditions [135]. However, it is
believed that these and some other drugs initiate a specific
form of cell death termed “immunogenic cell death” [136],
characterised by the release of several DAMPs which activate
the immune system.
While there is an increasing number of reports suggesting an

inflammatory outcome of apoptosis, so far they are limited to
fairly specific situations. It remains to be seen whether apoptosis is
potentially inflammatory, or if this controversial role is merely a
byproduct of the circumstances.

Fig. 4 Stress during mitosis activates apoptosis and inflammation. DNA damage or other mitotic stresses can lead to defects in mitosis,
including chromosomal instability and micronuclei. These issues are detected by various surveillance mechanisms to prevent the propagation
of potentially mutated or otherwise harmful cells. Micronuclei or cytoplasmic chromatin fragments are detected by the cGAS-STING pathway,
leading to the activation of type I interferon, NF-κB signaling, and subsequently inflammation, but also metastasis or cell death.
Supernumerary centrosomes promote the activation of the PIDDosome, which cleaves and inhibits MDM2. Therefore, p53 is stabilized and
can promote apoptosis, cell cycle arrest or senescence. Mitotic stress also shifts the balance of pro-survival BCL-2 proteins and proapoptotic
BH3-only proteins to promote apoptosis.
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