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A B S T R A C T

Modern industrial machines can generate gigabytes of data in seconds, frequently pushing the boundaries of
available computing power. Together with the time criticality of industrial processing this presents a challenging
problem for any data analytics procedure. We focus on the deterministic minimum covariance determinant
method (DetMCD), which detects outliers by fitting a robust covariance matrix. We construct a much faster
version of DetMCD by replacing its initial estimators by two new methods and incorporating update-based
concentration steps. The computation time is reduced further by parallel computing, with a novel robust ag-
gregation method to combine the results from the threads. The speed and accuracy of the proposed real-time
DetMCD method (RT-DetMCD) are illustrated by simulation and a real industrial application to food sorting.
1. Introduction

Modern industries are data-rich environments where information
from multiple sensors is captured at a high sampling frequency. Pro-
cessing such data has to cope with typical challenges such as the presence
of outliers. While classical statistical estimators can be highly affected by
outliers, their robust counterparts can cope with a significant fraction of
contamination. There is a vast literature about robust statistical tech-
niques (e.g. Refs. [1–4]). Although substantial research has already gone
into constructing fast robust algorithms, more work is needed to be able
to handle real-time multivariate situations with many thousands of ob-
servations per second, as required by some industrial processes.

For this task we will focus on the Minimum Covariance Determinant
(MCD) approach [2,5,6] which provides highly robust estimators for
multivariate location and covariance matrices. Its first practical algo-
rithm was FastMCD [7]. More recently the DetMCD algorithm [8] was
constructed, which is deterministic unlike the random sampling
component of FastMCD. Although DetMCD is significantly faster it is still
prohibitive for the huge sample sizes envisaged here. For routine use in
real-time industrial environments we need to speed it up further, which
motivated this research.

A recent review paper [9] discussed the perspectives of robust
methods for industrial process management when outliers are present. It
highlighted several paths that can be explored. One of these is the evo-
lution from a centralized analysis of large datasets towards parallel
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m 24 January 2020; Accepted 25

.

computing, whereby multiple threads work in parallel on data subsets
after which the results are combined for the final result. Our work on
DetMCD will indeed incorporate parallel computing.

The remainder of the paper is organized as follows. In Section 2 we
describe the DetMCD estimator and its main properties. Section 3 pro-
poses an improved serial version which incorporates various new tech-
niques and is substantially faster. Section 4 constructs a parallelized
version, which speeds up computation even more. The simulation in
Section 5 confirms the robustness, speed and accuracy of the proposed
method. Section 6 analyzes a real industrial dataset, and Section 7
concludes.

2. The minimum covariance determinant approach

Our goal is to detect outliers in a multivariate dataset with n obser-
vations and p variables. We denote the data by X ¼ ðx1;…; xnÞT where
each observation xi ¼ ðxi1; xi2;…; xipÞT is a p-dimensional column vector.
Here we assume that p is moderate, say no more than 40, otherwise a
dimension reduction technique such as robust PCA [10] can be used. The
sample size n should be higher than p and is allowed to be huge, even up
to several millions. We assume that the inliers roughly follow a multi-
variate Gaussian distributionNðμ;ΣÞwith center μ and covariance matrix
Σ, possibly after transforming some skewed variables.
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Fig. 1. The DetMCD algorithm. From left to right: six scatter matrices Sk from

step 2 are refined (step 3) to bΣkðZÞ, followed by C-steps until convergence (step

4). The matrix bΣrawðZÞ is the CkðZÞ with the lowest determinant (step 5). Step 6

creates the reweighted estimate bΣrewðZÞ which is then used to flag outliers
(step 7).
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2.1. The MCD estimator

Robust statistical methods aim to model the inlying cases and then
flag outliers as those observations that deviate toomuch from that model.
Here we will focus on the Minimum Covariance Determinant (MCD)
estimator [6]. Given a user-specified tuning constant h, where ½ðn þ p þ
1Þ =2� � h < n, the raw MCD estimator is ðbμraw; bΣrawÞ where the location
estimate bμraw is the mean of the h observations whose sample covariance
matrix has the smallest determinant. Intuitively these h observations are
the most concentrated, since the determinant of a covariance matrix
corresponds to the volume of its tolerance ellipsoid. The scatter matrix

estimate bΣraw is that covariance matrix multiplied by the consistency
factor cðαÞ of [11] that depends on α ¼ h=n and compensates for the fact
that only h out of n observations are included.

The indices i of these h observations form a set H, called an h-subset.
The raw MCD estimates are then given by

bμraw ¼
1
h

X
i in H

xi ; (1)

bΣraw ¼ cðαÞ
h� 1

X
i in H

ðxi � bμrawÞðxi � bμrawÞT : (2)

Note that the MCD is only defined when h > p, otherwise the
covariance matrix of any h-subset is singular, so we want n > 2p. In
practice it is however recommended that n be much larger, in order to
obtain a more accurate result.

The rawMCD estimator is highly robust as it can withstand up to n� h
outliers. The breakdown value of an estimator is the proportion of out-
liers that can be resisted. The breakdown value of the MCD is 1� α.
Choosing α ¼ 0:5 yields an estimator with a maximal breakdown value of
50% but a rather low statistical efficiency, whereas taking α ¼ 0:75 yields
a more efficient estimator with lower 25% breakdown value.

To increase the efficiency we carry out a reweighting step. For this we
first measure howmuch each data point xi deviates from the rawMCD fit,

by computing the robust distances RDi ¼ dðxi; bμraw; bΣrawÞ where the sta-
tistical distance d is defined as

dðx; μ;ΣÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� μÞTΣ�1ðx� μÞ

q
:

The reweighted MCD estimates ðbμrew; bΣrewÞ are then computed as the
mean and covariance matrix of the observations xi whose RDi do not

exceed the cut-off value cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2p;0:975

q
(where χ2p is the chi-squared dis-

tribution with p degrees of freedom). Then outliers are flagged as those

cases whose final robust distance RDi ¼ dðxi; bμrew; bΣrewÞ exceeds cp. Note
that a higher cutoff such as

ffiffiffiffiffiffiffiffiffiffiffiffi
χ2p;0:99

q
could be chosen, but in this paper the

0.975 quantile was used throughout to be able to detect outliers that are
relatively close to the majority. This was important in the application on
food sorting in Section 6, where letting pass some foreign material cre-
ates bigger problems (such as regulatory) than discarding a small fraction
of potentially clean food.

Note that the reweighted MCD inherits the breakdown value of the
raw MCD, so setting α ¼ 0:5 yields a reweighted estimator with a
breakdown value of 50%.

When any nonsingular affine transformation is applied to the data
(such as a rotation, a reflection or rescaling) the MCD estimator trans-
forms along with it. This is called affine equivariance. Therefore the
robust distances RDi remain invariant under such a transformation.

The exact raw MCD is very hard to compute, as it requires the eval-

uation of all
�
n
h

�
subsets of size h which is infeasible for increasing n.

The FastMCD algorithm of [7] approximates the MCD in an efficient,
robust and affine equivariant way. A major component of FastMCD is the
so-called concentration step (C-step), which works as follows. Given initial
2

estimates bμold for the center and bΣold for the scatter matrix, we do:

1. Compute the distances of all n observations as

doldðiÞ¼ dðxi; bμold ; bΣoldÞ: (3)

2. Sort these distances, yielding a permutation π for which

doldðπð1ÞÞ� doldðπð2ÞÞ�… � doldðπðnÞÞ:

3. Define the h-subset Hnew as

Hnew ¼fπð1Þ; πð2Þ;…; πðhÞg:

4. Compute the new estimates based on Hnew :

bμnew ¼
1
h

X
i in Hnew

xi ; (4)

bΣnew ¼ 1
h� 1

X
i in Hnew

ðxi � bμnewÞðxi � bμnewÞT : (5)

Proposition 1 in Ref. [7] showed that detðbΣnewÞ � detðbΣoldÞ, with

equality if and only if bΣnew ¼ bΣold . When C-steps are applied iteratively,
the sequence of determinants must therefore converge.

FastMCD starts by drawing a random ðp þ 1Þ-subset from the data.

Next, its mean and covariance matrix serve as bμold and bΣold in a C-step.
The algorithm draws many such ðp þ 1Þ-subsets, applies several C-steps
to each, and keeps the solution with the overall lowest determinant.

The computational cost of FastMCD obviously depends on n and p, but
also on the number of random ðp þ 1Þ-subsets. The default number of
initial subsets is 500, but [8] illustrates that this is insufficient at high
contamination levels when p exceeds 10, independent of the sample size
n. In those situations a substantially larger number of initial subsets
would be required, thereby increasing the computational cost
significantly.

2.2. The DetMCD algorithm

As an alternative the DetMCD algorithm [8] was constructed. It is
fully deterministic as it does not use random subsets. It is more robust
than FastMCD, and needs less computation time. The only price to pay is
the loss of affine equivariance. DetMCD is only location and scale
equivariant, but simulations in Ref. [8] showed that it is very close to
affine equivariant. The main steps of DetMCD are summarized below,
and its flowchart is depicted in Fig. 1. For all details we refer to Ref. [8].
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1. Each variable of the dataset X is standardized by subtracting its me-
dian and dividing by a robust scale estimate, yielding the standard-
ized dataset Z.

2. Six initial estimates SkðZÞ, k ¼ 1;…;6 of the scatter of Z are con-
structed. These initial estimators are fully deterministic and each of
them is resistant to certain types of outliers.

3. As the eigenvalues of SkðZÞ might be inaccurate, they are refined by
the routine described in Subsection 3.3. We denote the resulting
covariance matrix by bΣkðZÞ and its location by bμkðZÞ.

4. Each ðbμkðZÞ; bΣkðZÞÞ is used to start C-steps which are iterated to
convergence. In each case the resulting scatter matrix is multiplied by
cðαÞ as in (2), yielding the scatter estimate CkðZÞ.

5. The raw DetMCD covariance estimate bΣraw is chosen as the CkðZÞwith
the lowest determinant, with corresponding location estimate bμraw.

6. A reweighting step is applied to improve the statistical accuracy as in
Ref. [7], yielding the final DetMCD estimates ðbμrew; bΣrewÞ.

7. The robust distances RDi ¼ dðzi; bμrew; bΣrewÞ then allow to classify the
observations into Inliers and Outliers.

The DetMCD algorithm thus uses an ensemble of initial estimators to
ensure high robustness against different contamination patterns. It is
faster than the algorithm in Subsection 2.1, but not yet fast enough for
real-time applications with high n. The main bottlenecks are the
computation of some of the initial estimators Sk and the time taken by the
C-steps. The next Section describes how these costs can be reduced.

3. An improved deterministic MCD

3.1. Standardizing the data

In the first step each variable is standardized by means of a robust
estimator of location and scale. Whereas DetMCD used themedian and an
M-estimator of scale, we now use the univariate reweighted MCD esti-
mator of [4] with coverage ~h ¼ ½n =2� þ 1. Note that for univariate data,
the raw MCD estimates reduce to the mean and the standard deviation of
the ~h-subset with smallest variance. They can be computed in Oðn logðnÞÞ
time as in Ref. [4] by sorting the data, followed by looping over
contiguous ~h-subsets while updating their means and variances. We
prefer the univariate MCD because methods that give zero-one weights to
observations can be more robust against nearby contamination [12]. The
standardized dataset Z then consists of the columns Zj ¼ ðXj � bμuniðXjÞÞ=bσuniðXjÞ.
3.2. New initial estimators

The six initial estimates used by DetMCD are of several types. The first
three estimators start by transforming the variables one by one, either by
the sigmoid transformation ~Zj ¼ tanhðZjÞ, the rank transformation, or the
normal scores from the ranks. The resulting estimator is then the classical
covariance matrix of the transformed variables. We will replace these
three estimates by a single new one from Ref. [13], using the
transformation

~zij ¼ g
�
zij
�¼

8<: zij
q1
0
tanh

�
q2
�
c� ��zij����sign�zij� if 0 � ��zij�� � b

if b <
��zij�� � c

if
��zij�� > c

(6)

for i ¼ 1;…; n and j ¼ 1;…;p. This transformation is called wrapping. The
default choices are b ¼ 1:5, c ¼ 4, q1 ¼ 1:541 and q2 ¼ 0:862, which
yield a continuous function g. These default choices strike a balance
between accuracy for clean data and robustness for contaminated data.
The choice b ¼ 1:5 implies that for perfectly Gaussian data about 85% of
the values are left unchanged, so that the subsequent computations
remain accurate. The value c ¼ 4 reflects that we do not trust
3

measurements that lie more than 4 standard deviations away.
Next, we compute the new initial estimator ~S1 as the covariance

matrix of the wrapped data. In an extensive comparison study [13], this
approach was shown to perform at least as well as the other three
transformations, so we replace S1, S2 and S3 by ~S1.

The initial estimators S4 and S5 in DetMCD belong to the class of
Generalized Spatial Sign Covariance Matrices (GSSCM) [14], which
generalizes [15]. Among several versions [14], concluded that the
so-called linearly redescending GSSCM performed very well, so we will use
it as our second initial estimator ~S2. It is defined as

~S2 ¼ 1
n

Xn

i¼1

ξ2ðjjzijjÞ zizTi (7)

where the weight function ξ is given by

ξðrÞ¼
8<: 1 if r � A

ðB� rÞ=ðB� AÞ if A < r � B
0 if r > B :

The cutoffs A and B depend on the set of norms jjzijj as detailed in
Ref. [13]. In particular, A is roughly equal to the median of the jjzijj. We
replace S4 and S5 by ~S2, which achieves a breakdown value of 50%.

The final initial estimator S6 was the OGK estimator [16]. Whereas S6
performed quite well, it was by far the most computationally demanding
among the six initial estimators of DetMCD. Fortunately simulations
showed that the new ~S1 and ~S2 together are sufficient, so we can replace
the six initial estimates by the fast methods ~S1 and ~S2 which saves
computation time.

3.3. Refinement of initial estimates

As our initial estimators ~Sk for k ¼ 1; 2 may have inaccurate or tiny
eigenvalues, we propose a refinement procedure similar to that in
Ref. [8] which uses parts of [16].

1. ~Sk is a symmetric matrix so it can be diagonalized as

~Sk ¼VDVT

where V is the matrix of eigenvectors of ~Sk and D is the diagonal matrix
with decreasing eigenvalues λ1 � … � λp. Compute the matrix T of
principal component scores as

T¼ZV :

2. If the condition number λ1=λp of ~Sk exceeds a predefined threshold of
(say) κmax ¼ 1000, then ~Sk is said to be ill-conditioned [17]. Then a
warning is given and we do not continue with ~Sk .

3. Applying the univariate MCD estimator to the scores yields a new
diagonal matrix

~D¼ diag
�bσ2

uniðT1Þ;…; bσ2
uni

�
Tp

��
from which we compute the refined scatter matrix as

bΣk ¼V ~DVT :

4. The center of Z is estimated by sphering the data, yielding ~Z ¼ bΣ�1=2
k Z

with columns ~Zj for j ¼ 1;…; p. The univariate MCD estimator for
location is then applied to each ~Zj and the result is transformed back,
i.e.
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bμkðZÞ¼ bΣ1=2

k

�bμunið~Z1Þ;…; bμuni

�
~Zp

��T
:

3.4. Speeding up the C-step by Cholesky decomposition

Starting from both refined estimators bΣk we then iterate C-steps as in
the DetMCD algorithm. The main cost of a C-step is the computation of

the distances (3) based on the inverse of the covariance matrix bΣold. For
this we propose to use the Cholesky decomposition, i.e.

bΣold ¼LLT

with L a lower triangular p� p matrix. We then compute yi ¼
L�1ðzi �bμoldÞ by forward substitution. It can easily be verified that

dðzi; bμold; bΣoldÞ¼ jjyijj :
We prefer the Cholesky decomposition over other approaches as it is

fast and very stable numerically [18]. It immediately yields the deter-

minant by detðbΣoldÞ ¼ ðQp
j¼1LjjÞ2 with Ljj the diagonal elements of L.

The Cholesky decomposition also allows us to monitor the condition
number, following Algorithms 4.1 and 5.1 in Ref. [19]. If����bΣold

��j1 ����bΣ�1

old

��j1 � κmax

we approach singularity, and then the C-step is not taken. We thus
monitor the condition number in two different stages of the algorithm: in
the refinement procedure of ~Sk (Subsection 3.3) and in each C-step.

3.5. Further speedup by updating

To further speed up the C-step, we avoid redoing all computations for
the new h-subset. Let Hold be the current h-subset, and Hnew the new one
obtained by sorting distances. We describe the changes in going fromHold

to Hnew by an n-dimensional vector δ ¼ ðδ1;…; δnÞT in which δi in
fþ1; 0;�1g indicates whether observation i enters, stays in, or leavesHold

. Obviously
P
i
δi ¼ 0. We will use the sum of squares and cross-products

(sscp) matrix Λold ¼ ðh�1ÞbΣold which is the covariance matrix bΣold

without denominator. Initially bμnew ¼ bμold and Λnew ¼ Λold. We then
update the center and the sscp matrix sequentially [20–22] as follows.
For each i with δi 6¼ 0:

1. The total number of observations in the subset is updated:

h← hþ δi :

2. The center bμnew is updated, and the contribution of zi before and after
the update is computed:

ui ¼ zi � bμnew

bμnew ← bμnew þ δi
h
ui

vi ¼ zi � bμnew :

3. Finally the sscp matrix Λnew is updated as

Λnew ←Λnew þ δiuivTi :

This one-pass loop replaces (4) and (5) of the original C-step pro-
cedure, and accounts for a noteworthy speedup.

When
P
i
jδij ¼ 2, i.e. when only two cases are interchanged, it is even

faster to update the inverse directly. From the Sherman-Morrison-
Woodbury identity
4

ðAþ uvT Þ�1 ¼A�1 � A�1uvTA�1

1þ vTA�1u
we obtain

�
Λnew þ δiuivTi

��1 ¼Λ�1
new � δi

Δi

�
Λ�1

newuivTi Λ
�1
new

�
with Δi :¼ ð1 þ δivTi Λ

�1
newuiÞ. Finally, we update the determinant for each

change in a case i using the identity

det
�
Λnew þ δiuivTi

�¼ΔidetðΛnewÞ :

After the C-steps have converged, we multiply bΣnew ¼ Λnew=ðh�1Þ by
cðαÞ as in (2).

4. Parallel computation and aggregation

Our final computational improvement stems from parallelization. Let
X denote the dataset of n observations in p dimensions as before. We then
randomly partition the dataset in q disjoint blocks XðlÞ ofm ¼ ⌊n=q⌋ cases
(discarding the remaining cases if n is not divisible by q). Next, we
standardize the blocks by

zðlÞij ¼ xðlÞij � bμuni

�
Xj

�
bσuni

�
Xj

�
where l ¼ 1;…; q and bμunið:Þ and bσunið:Þ are the univariate MCD estima-
tors of location and scale (Subsection 3.1). As in Fig. 2 we then use the
available processing threads as follows.

1. Compute the initial estimate ~S
ðlÞ
1 ðZðlÞÞ by wrapping (6), and ~S

ðlÞ
2 ðZðlÞÞ

by the GSSCM method (7).
2. Both estimates are then refined using the procedure outlined in

Subsection 3.3, which yields bΣ1ðZðlÞÞ and bΣ2ðZðlÞÞ.
3. We then apply step 4 of the DetMCD algorithm in Subsection 2.2 to

each, using the improvements of Section 3, yielding C1ðZðlÞÞ and
C2ðZðlÞÞ.

4. The raw DetMCD for the block l ¼ 1;…; q is then given by

�bμðlÞ
raw;

bΣðlÞ
raw

�
: ¼

(�bμðlÞ
1 ; bΣðlÞ

1

�
if det

�bΣðlÞ
1

� � det
�bΣðlÞ

2

�
�bμðlÞ

2 ; bΣðlÞ
2

�
otherwise;

where the type of initial estimator can vary between blocks. Note that the
percentage of inliers in the blocks fluctuates around the percentage in the

overall dataset, so it is likely that a majority of the q fits ðbμðlÞ
raw;

bΣðlÞ
rawÞ are

robust, but some may not be.

5. We now need to aggregate these q fits in a robust way. They have

many dimensions since the symmetric matrices bΣðlÞ
raw contain

pðp�1Þ=2 distinct entries, and the bμðlÞ
raw have p additional entries.

Since the total dimension will often be higher than q, computing a
typical robust estimate of the q fits is problematic. Therefore we
compute the entrywise median of the q fits, yielding the entrywise

median of the bμðlÞ denoted as

bμmed ¼
�
medianl

��bμðlÞ
raw

�
1

	
;…;medianl

��bμðlÞ
raw

�
p

	T

and the entrywise median of all scatter matrices, given by

ðbΣmedÞjk ¼medianl
��bΣðlÞ

raw

�
jk

	
(8)

for j; k ¼ 1;…; p. (Instead of the median also other robust univariate



Fig. 2. First part of the parallel processing topology of RT-DetMCD, which computes q raw scatter estimates.
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estimators could be used.) Note that the matrix bΣmed is a robust summary,

but it does not have to be positive definite. Therefore, we cannot use bΣmed

as a final aggregated outcome.

6. As a measure of how far the l-th fit ðbμðlÞ
raw;

bΣðlÞ
rawÞ is from the entrywise

median ðbμmed; bΣmedÞ , each thread computes the Kullback-Leibler de-

viation KL½ðbμmed; bΣmedÞ; ðbμðlÞ
raw;

bΣðlÞ
rawÞ� given by
KL½ða;AÞ; ðb;BÞ� : ¼ trace
�
AB�1

�� p� log
�
det

�
AB�1

��þ ða� bÞTB�1ða� bÞ : (9)
The quantity KL½ða;AÞ; ðb;BÞ� is nonnegative. It is zero when a ¼ b and
A ¼ B, low when ða;AÞ deviates little from ðb;BÞ, and high when they are
very different.

Note that Formula (9) is not symmetric in its arguments, meaning that
KL½ða;AÞ; ðb;BÞ� need not be the same as KL½ðb; BÞ; ða; AÞ�. In fact, (9)
requires B to be invertible but does not require A to be invertible. This is

why we chose the matrix bΣðlÞ
raw for B because it is invertible (its deter-

minant is nonzero), whereas the entrywise median matrix bΣmed need not
be.

7. Sort the deviations from lowest to highest and keep the first q= 2
estimates. To simplify notation we pretend that these correspond to
l ¼ 1; …; q=2. These are the block estimates closest to the robust

summary bΣmed . Since the bΣðlÞ
raw are all positive definite we can now

aggregate them. A simple way would be to average the matrices bΣðlÞ
raw

for l ¼ 1;…; q=2 and all the corresponding centers bμðlÞ
raw .

Instead we can take the union of the corresponding h-subsets and
compute its classical mean and covariance matrix. A faster way to do this
is by a single-pass pooling method [20]. We initialize the sscp matrix

Λpooled by ðm�1ÞbΣð1Þ
raw and bμpooled by bμð1Þ

raw, and set npooled ¼m. Denoting the

results from the next block by ðbμ; bΣÞ we
5

(a) compute the difference in location bμΔ ¼ bμ � bμpooled and the sscp

matrix Λ ¼ ðm�1ÞbΣ .
(b) update the pooled sscp matrix, center and observation count by

Λpooled ←Λpooled þ Λþ bμΔbμT
Δ

npooled m
npooled þ m

;

bμpooled ←
npooled bμpooled þ m bμ

npooled þ m
;

npooled ← npooled þ m ;

and we continue this way until all blocks have been pooled. We then putbΣrawðZÞ :¼ Λpooled=ðnpooled �1Þ .
8. Next we need to compute the reweightedMCD estimate ðbμrew; bΣrewÞ

as described in Section 2. For this we compute the robust distances

RDðlÞ
i ¼ dðzðlÞi ; bμraw; bΣrawÞ for all blocks l and all cases i ¼ 1;…;m in each.

Doing this in the master thread would take too long, so we again
distribute this computation over the threads. Each thread thus obtains a

reweighted estimate ðbμðlÞ
rew;

bΣðlÞ
rewÞ.

9. The master thread receives all local weights and reweighted es-
timates, and combines them into the final overall reweighted es-

timate ðbμrew; bΣrewÞ by a pooling process similar to step 7 above.
10. Finally, each thread computes robust distances relative to the

reweighted estimates and flags the outliers in parallel as those

cases whose final robust distance dðzðlÞi ; bμrew; bΣrewÞ exceeds cp .

The proposed aggregation strategy is depicted in Fig. 3.

Note that the final estimate ðbμðlÞ
rew;

bΣðlÞ
rewÞ obtained at the end of step 9

can be used as a “warm start” input to step 3 in a subsequent run of the
algorithm, when additional data require updating the result.



Fig. 3. Second part of the parallel processing topology of RT-DetMCD, responsible for the parallel aggregation (left), reweighting (middle) and the detection of
outliers (right)

Table 1
The DetMCD algorithm and four increasingly modified versions.

Estimator Section Remark Initial Distance C-
steps

Parallelization

DetMCD 2 DetMCD ∘ ∘ ∘ ∘
I þ 3.1,

3.2, 3.3
� ∘ ∘ ∘

ID þ 3.4 � � ∘ ∘
IDC þ 3.5 Serial

RT-
DetMCD

� � � ∘

IDCPq þ 4 Parallel
RT-
DetMCD

� � � �
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5. Simulations

This section analyzes the statistical and computational performance
of RT-DetMCD. We proposed three different algorithmic modifications in
Section 3 and one in Section 4. Switching them on one after the other
yields the five variations depicted in Table 1. The top row is DetMCD
without any modifications. The next versions (rows) switch on modifi-
cations: new Initial estimators (I), Distance calculation by Cholesky
decomposition (D), update-based C-steps (C), and parallelization (P).
Table 2
Kullback-Leibler deviation and speedup for Σ of type A09.

Point contamination Shift contamina

p ¼ 4 p ¼ 8 p ¼ 16 p ¼ 4

A: KL deviation
ε ¼ 0:1
DetMCD 0.0226 0.0243 0.0266 0.0227
I 0.0225 0.0246 0.0266 0.0228
ID 0.0226 0.0248 0.0266 0.0227
IDC 0.0227 0.0248 0.0262 0.0227
IDCP4 0.0233 0.0258 0.0280 0.0233
ε ¼ 0:3
DetMCD 0.373 0.347 0.336 0.373
I 0.373 0.348 0.336 0.376
ID 0.373 0.345 0.336 0.373
IDC 0.372 0.348 0.336 0.373
IDCP4 0.376 0.349 0.340 0.390
B: Speedup factor
ε ¼ 0:1
I 90 102 244 195
ID 104 123 203 231
IDC 113 137 291 270
IDCP4 115 148 291 357
ε ¼ 0:3
I 336 419 432 96
ID 408 481 500 119
IDC 478 516 572 126
IDCP4 574 557 687 140

6

Version IDC is the serial version of RT-DetMCD which does not require a
parallel architecture. The parallel version of RT-DetMCD is abbreviated
as IDCPq where the subscript q denotes the number of blocks used.
Comparing the computation times of the different versions is fair, as they
share a common Cþþ codebase.

We will generate n cases from a p-variate Gaussian distribution
Nð0;ΣÞwith center zero, where p is set to 4, 8 or 16 and n depends on the
experiment. Without loss of generality we set the diagonal of Σ to 1. Since
the methods under consideration are not affine equivariant we cannot
just set Σ equal to the identity matrix. Instead we consider matrices Σ of
different types:

1. The ALYZ covariance matrices are generated as in Section 4 of [23],
yielding a different Σ in each replication. These matrices typically
contain relatively weak correlations.

2. The A09 type is defined by Σjk ¼ ð�0:9Þjj�kj for j; k ¼ 1;…; p. This
allows for some strong correlations.

Next, we replace εn random cases by outliers of different types, where
ε denotes the fraction of contamination. Shift contamination was gener-
ated from NðμC ;ΣÞ where μC lies in the direction where the outliers are
hardest to detect, namely that of the last eigenvector v of the true
covariance matrix Σ. We rescale v to the typical size of a data point by
making vTΣ�1v ¼ E½Y2� ¼ p where Y2 � χ2p . Finally μC ¼ γv in which γ
tion Cluster contamination

p ¼ 8 p ¼ 16 p ¼ 4 p ¼ 8 p ¼ 16

0.0242 0.0266 0.0229 0.0241 0.0266
0.0244 0.0265 0.0230 0.0241 0.0264
0.0245 0.0266 0.0230 0.0242 0.0265
0.0243 0.0271 0.0230 0.0241 0.0266
0.0258 0.0287 0.0245 0.0252 0.0280

0.345 0.336 0.373 0.344 0.336
0.345 0.337 0.373 0.345 0.336
0.347 0.336 0.373 0.344 0.336
0.345 0.338 0.373 0.343 0.338
0.351 0.343 0.375 0.348 0.341

215 222 74 231 304
273 269 88 261 240
291 325 97 297 333
376 350 112 295 323

134 227 119 285 297
149 265 146 312 325
161.91 297 166 296 336
177 405 183 365 395
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can be varied. Cluster contamination stems from NðμC;0:052 IÞ where I is
the identity matrix. Finally, point contamination places all outliers in the
point μC so they behave like a tight cluster. These settings make the
simulation consistent with those in Refs. [8,24].

The distance of an estimated bΣ to the true Σ is measured by the

Kullback-Leibler deviation KLðbΣ;ΣÞ using (9) without the centers, that is,

KLðA;BÞ¼ trace
�
AB�1

�� p� log
�
det

�
AB�1

��
:

This measure was used in several other simulation studies such as [14,
23,24]. We will compare the accuracy of the new methods to that of
DetMCD, and also compute the speedup factor as

speedup¼ timeðDetMCDÞ = timeðnew methodÞ :
The first experiment has n ¼ 216 ¼ 65536 observations in p ¼ 4;8;16

dimensions. In all versions of MCD we set α ¼ 0:5 so h 	 n= 2 observa-
tions are covered, which is the most robust choice. Table 2 is for Σ of type
A09 and γ ¼ 50. The scenarios are point contamination (left), shift
contamination (middle) and cluster contamination (right), both for 10%
and 30% of outliers. The top panel presents the KL deviations and the
bottom panel reports the corresponding speedup factors, each averaged
over 50 replications. Table 3 shows the same results for Σ of type ALYZ.

The DetMCD method is in the first row of all panels. The next row
contains the I version, which modifies the original DetMCD algorithm by
incorporating the new data standardization described in Subsection 3.1
and replacing the six initial estimators by the two new ones of Subsection
3.2. The I version is much faster than the original DetMCD as seen in its
substantial speedup factors in both Tables 2 and 3. This is due to
replacing six initial estimators (including a slower one) by two fast ones.

Note that the accuracy of the I version (as measured by the KL devi-
ation) is as good as that of the slower DetMCD. In some instances with
lower γ (not shown) the I version was actually more accurate than
DetMCD. This improvement stems from using redescending techniques,
which assign zero weights to observations that lie far away from the
majority of data, as in (6) and (7). The standardization (Subsection 3.1)
and the refinement procedure (Subsection 3.3) both use the univariate
MCD, and the new initial estimators are based on wrapping and the
linearly redescending GSSCM. This makes the proposed algorithm even
more robust against contamination.
Table 3
Kullback-Leibler deviation and speedup for Σ of type ALYZ.

Point contamination Shift contamina

p ¼ 4 p ¼ 8 p ¼ 16 p ¼ 4

A: KL deviation
ε ¼ 0:1
DetMCD 0.0227 0.0242 0.0265 0.0227
I 0.0230 0.0242 0.0264 0.0233
ID 0.0227 0.0247 0.0267 0.0233
IDC 0.0228 0.0242 0.0272 0.0229
IDCP4 0.0236 0.0257 0.0286 0.0237
ε ¼ 0:3
DetMCD 0.372 0.348 0.339 0.373
I 0.372 0.346 0.339 0.375
ID 0.372 0.345 0.339 0.373
IDC 0.372 0.347 0.339 0.373
IDCP4 0.375 0.351 1.62 0.379
B: Speedup factor
ε ¼ 0:1
I 83 197 238 176
ID 98 219 304 211
IDC 109 267 378 269
IDCP4 134 330 464 347
ε ¼ 0:3SS
I 256 263 281 188
ID 318 301 318 216
IDC 347 326 364 241
IDCP4 473 357 379 349

7

The next version (ID) switches on the numerically more stable dis-
tance computation by Cholesky decomposition, followed by the IDC
version which also incorporates the updating mechanism. These versions
do not change the KL deviation much, because both would be equivalent
to version I if numerical precision were perfect. But the new imple-
mentations do improve the speedup factor. Overall IDCwas faster than ID
which in turn was faster than I, so each modification has contributed to
the speedup.

When the sample size n is large we need to speed up the computation
even more. This can be achieved by adding the parallel computation
architecture of Section 4, yielding the IDCP version. Tables 2 and 3 show
IDCP4 which splits up the data into 4 blocks. This indeed improves the
speedup factor. However, in some situations (here for ε ¼ 0:3 in Table 3)
the speedup is at the expense of a higher KL deviation, i.e. a loss of ac-
curacy. This is due to the fact that the blocks have a lower sample size
(here n=4), and for high p (here for p ¼ 16) there are not always enough
cases per dimension to provide an accurate estimate of the underlying
covariance matrix.

We therefore need to choose the number of blocks carefully. Paral-
lelization splits up the n� p dataset X into q blocks XðlÞ, each withm ¼ n=
q observations. When choosing qwe should take care that the blocks have
enough observations per dimension to yield accurate estimates, so we
impose

m = p � ω

and we will try various choices of ω, starting from 212 ¼ 4096. We only
consider values of q that satisfy this condition, i.e. q � n=ðp ωÞ. In
particular, if n=p < ω we will not parallelize. On the other hand we want
to choose q as high as possible to obtain the best speedup. Combining
these constraints yields the choice

q¼max
�

n
p ω

; 1
�
: (10)

When this rule yields q ¼ 1 we use the serial algorithm IDC. In practice, q
is further bounded from above in terms of the available number of CPU
cores.

In view of these considerations we carried out a new experiment with
increasing total numbers of observations. We generated datasets with n ¼
tion Cluster contamination

p ¼ 8 p ¼ 16 p ¼ 4 p ¼ 8 p ¼ 16

0.0241 0.0267 0.0229 0.0244 0.0264
0.0241 0.0269 0.0230 0.0244 0.0265
0.0254 0.0268 0.0230 0.0244 0.0263
0.0247 0.0264 0.0229 0.0244 0.0264
0.0326 0.0292 0.0237 0.0262 0.0283

0.345 0.336 0.374 0.347 0.334
0.347 0.336 0.375 0.348 0.337
0.346 0.336 0.373 0.348 0.335
0.345 0.337 0.373 0.348 0.335
0.349 0.343 0.382 0.354 1.02

158 238 203 227 183
190 241 241 256 249
214 307 268 272 239
219 395 325 360 349

233 258 195 190 267
270 281 239 223 297
286 315 264 236 323
320 383 358 292 416



Table 4
Kullback-Leibler deviation and speedup factor for Σ of type ALYZ with fraction ε ¼ 0:3 of point contamination, where the number of parallel blocks q is given by (10), for
various dataset dimensions and values of ω.

n ω ¼ 212 ¼ 4096 ω ¼ 213 ¼ 8192 ω ¼ 214 ¼ 16384

p ¼
4

p ¼ 8 p ¼ 16 p ¼ 4 p ¼ 8 p ¼ 16 p ¼ 4 p ¼ 8 p ¼ 16

A: KL deviation
210 0.380 0.593 0.847 0.429 0.617 0.778 0.447 0.490 0.879
211 0.415 0.378 0.571 0.397 0.413 0.515 0.405 0.411 0.544
212 0.328 0.349 0.433 0.352 0.375 0.444 0.360 0.393 0.445
213 0.362 0.351 0.386 0.368 0.338 0.369 0.362 0.346 0.362
214 0.360 0.341 0.358 0.362 0.349 0.362 0.360 0.359 0.352
215 0.374 0.350 0.346 0.375 0.349 0.347 0.383 0.349 0.354
216 0.370 0.349 0.345 0.377 0.349 0.333 0.367 0.344 0.343
217 0.370 0.342 0.329 0.373 0.339 0.333 0.371 0.343 0.331
218 0.370 0.342 0.332 0.371 0.346 0.326 0.370 0.346 0.326
219 0.371 0.345 0.335 0.371 0.344 0.334 0.370 0.344 0.333
B: Speedup factor
210 6.75 10.8 13.9 7.54 9.91 14.5 7.44 10.9 13.6
211 9.15 12.7 17.3 11.0 12.7 16.3 9.35 13.0 16.8
212 13.8 19.3 22.9 14.9 18.789 23.2 15.0 18.8 23.3
213 25.8 32.3 37.3 23.6 31.7 37.0 26.9 31.7 36.4
214 49.1 63.2 72.9 47.5 61.8 66.5 50.8 61.8 68.7
215 160 122 129 96.8 110 128 93.8 121 124
216 490 387 229 301 203 233 174 214 225
217 1190 1060 769 838 715 396 547 384 389
218 2490 2450 2150 2080 2010 1360 1680 1250 766
219 5020 5250 5140 4660 4730 3860 4090 3670 2610
C: Number of blocks
210 1 1 1 1 1 1 1 1 1
211 1 1 1 1 1 1 1 1 1
212 1 1 1 1 1 1 1 1 1
213 1 1 1 1 1 1 1 1 1
214 1 1 1 1 1 1 1 1 1
215 2 1 1 1 1 1 1 1 1
216 4 2 1 2 1 1 1 1 1
217 8 4 2 4 2 1 2 1 1
218 16 8 4 8 4 2 4 2 1
219 32 16 8 16 8 4 8 4 2

Fig. 4. 1000� 2000 pixel region of the classifier training set. The image con-
tains almonds as well as almond shells and dust.
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210; 211;…; 219 with Σ of type ALYZ and fraction ε ¼ 0:3 of point
contamination with γ ¼ 35. We let ω range from 212 to 214. Table 4
summarizes the results, with the same panels for the KL deviation and
speedup as before. The bottom panel shows the number of blocks q as
determined from (10), noting that it is 1 for the smaller sample sizes n.

In Table 4 we see that the KL deviation remained stable over all
8

dataset sizes. This indicates that provided q is chosen by (10), i.e. the
blocks have enough observations per dimension, the accuracy of parallel
RT-DetMCD is comparable to that of the serial version. At the same time
the parallel version achieves much higher speedup factors than the serial
version. We also note that the estimation accuracy was rather stable
across the three values of ω considered. It thus appears that ω ¼ 212

(which yields the best speedup factors) is a reasonable default choice.

6. Industrial application of RT-DetMCD

Industrial food inspection machines scan millions of individual ob-
jects per hour, yielding faster and more accurate results than manual
inspection. Mechanical sorting boosts the processing capacity of a pro-
duction line, enabling the food producer to simultaneously provide
consistent food quality and safety guarantees. We illustrate the feasibility
of anomaly detection by RT-DetMCD in this context. The example is an
almond inspection setting, where the machine measures the object
response on p ¼ 4 wavelengths using a line scan image acquisition sys-
tem. Each incoming scan line consists of 4096 pixels and has to be
classified within milliseconds to comply with the production throughput.
The goal is the adequate detection of foreign material (such as shells,
hulls, wood, stones and pieces of glass) between the almonds, so the
foreign material can be removed in real time.

We use the RT-DetMCD method for unsupervised classification. This
is considerably different from the customary classification setting, where
training sets from each individual product must first be analyzed care-
fully by hand in order to assign its objects to different types of material.
Instead, we assume that the training sets are contaminated by defects,
that is, outliers.



Fig. 5. Industrial almond dataset: (a) segmenting the training dataset of Fig. 4 into foreground and background by RT-DetMCD with foreground shown in yellow; (b)
detecting outliers among the foreground pixels reveals foreign material shown in yellow; correctly detected foreground (c) and defects (d) in a test dataset. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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In the example the training set consists of 2048 sequentially stacked
scan lines of 4096 pixels which captured the incoming product flow,
totaling over 8 million observations (pixels) with p ¼ 4 dimensions each.
The first dimension of the dataset is visualized in black and white in
Fig. 4. All the images of this example were clipped to a region of interest
of 1000� 2000 pixels so the image resolution can be rendered here.

We first extract the relevant foreground objects by training
parallelRT-DetMCD on all eight million observations, yielding a fit ðbμ1;bΣ1Þ. As the majority of these observations consist of background (i.e. the
dark pixels in Fig. 4), RT-DetMCD identified the foreground material as
anomalies, shown in Fig. 5a. Next, RT-DetMCD was trained on the

3 127 973 foreground objects, yielding a fit ðbμ2; bΣ2Þ in seconds, which
revealed non-almond material (Fig. 5b). Closer inspection showed that
entire shells were adequately detected as outliers, as well as almond
discolorations and damaged almond skins.

The next task was to classify a variety of unknown material in a test
dataset, i.e. a previously unseen image of material. This was achieved by
computing robust distances of new observations from the existing fit, and
checking when they exceed the cutoff. The computation was done in
parallel, using the third part of the flowchart in Fig. 3 corresponding to
step 10 in the algorithm in Section 4. This construction forms an anomaly
detector that uses the fits trained on the image shown in Fig. 4. The

robust distances from the background segmentation fit ðbμ1; bΣ1Þ
9

performed as expected, detecting all foreground material on the fly
(Fig. 5c). It also revealed the presence of water droplets on the image
acquisition lens, seen as vertical stripes around columns 800 and 1000.

Presented with the foreground objects, the second detector based on ðbμ2;bΣ2Þ revealed all non-almond material (e.g. almond tree wood), with the
output shown in Fig. 5d.

Segmenting the entire new image (the test dataset) with over 8
million observations into background and foreground only took 8.4 ms,
whereas segmenting the approximately 3 million foreground cases took
3.3 ms.

Note that in industrial settings the computation speed of RT-DetMCD
is an important advantage since it means that the classifier can be re-
trained quickly, even on-the-fly whenever new data are observed. In
this particular application it was sufficient to run RT-DetMCD at regular
intervals.

7. Conclusions and outlook

Real-time industrial processes are very demanding in terms of
computation speed. Often the detection of anomalies is of crucial
importance, e.g. for food sorting machines that need to remove foreign
material on the fly. This paper focused on anomaly detection by robust
estimation using the minimum covariance determinant (MCD) approach.
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Although the existing DetMCD algorithm is fast enough for off-line
statistical analysis, it cannot cope with the huge sample sizes and strin-
gent speed requirements of industrial processes. Therefore we con-
structed an improved method called RT-DetMCD by incorporating
several new ideas, resulting in high speedup factors without loss of ac-
curacy. A major speedup is obtained by parallel processing, which splits
up the data into blocks that are analyzed separately. Combining these
results into an overall fit required the development of a novel aggregation
approach.

The performance of RT-DetMCD was studied by simulation, which
showed that each improvement contributed to the overall speedup. Its
ability to handle real-time industrial processes was illustrated by a case
study on the automated sorting of almonds. The industrial Cþþ code of
RT-DetMCD used in the simulation and application is proprietary, but a
research-level Matlab version which mimics its results is available from
the webpage http://wis.kuleuven.be/statdatascience/robust/software.

The output of the new RT-DetMCD technique can be used as a basis
for other multivariate techniques such as robust principal component
analysis and classification in industrial settings.
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