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A B S T R A C T

Quadratic discriminant analysis (QDA) is a widely used classification technique. Based on a training dataset, each
class in the data is characterized by an estimate of its center and shape, which can then be used to assign unseen
observations to one of the classes. The traditional QDA rule relies on the empirical mean and covariance matrix.
Unfortunately, these estimators are sensitive to label and measurement noise which often impairs the model’s
predictive ability. Robust estimators of location and scatter are resistant to this type of contamination. However,
they have a prohibitive computational cost for large scale industrial experiments. We present a novel QDA method
based on a recent real-time robust algorithm. We additionally integrate an anomaly detection step to classify the
most atypical observations into a separate class of outliers. Finally, we introduce the label bias plot, a graphical
display to identify label and measurement noise in the training data. The performance of the proposed approach is
illustrated in a simulation study with huge datasets, and on real datasets about diabetes and fruit.
1. Introduction

Supervised classification is a very common task in statistics and ma-
chine learning. Given a training dataset of labeled instances, the goal is to
train a classifier such that new observations can be classified into one of
the known classes (groups). Many classification techniques exist, see e.g.
Refs. [5,10,14] for an overview. We will focus on discriminant analysis
(DA), one of the oldest and well-studied techniques. DA is based on the
underlying assumption that the data follow a mixture of multivariate
normal distributions. In its basic form DA has several attractive proper-
ties, most notably its conceptual and computational simplicity.

Traditional DA relies on the empirical mean and covariance matrix of
each class. Despite its nice properties, it is highly sensitive to violations of
the mixture density assumption. Two sources of these violations which
commonly occur in practice are label noise and measurement noise. Label
noise, also called mislabeling, occurs when instances in the training data
have been given a wrong label, so their recorded label differs from their
actual one. See Ref. [4] for a comprehensive survey. These instances can
heavily affect the classification result, since they essentially encourage the
classifier to associate characteristics of one class with the label of another
class. As training data is often labeled manually, the labels are prone to
human error and some degree of mislabeling is likely to occur in practice.
.J. Rousseeuw).
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The second type of noise, measurement noise, occurs when observa-
tions in the training data have deviating measurements. Such outliers
may affect the mean and covariance matrix of their class which is then
characterized poorly, causing classical DA to underperform.

Several proposals have been made to make DA robust against label and
measurement noise, see for example [1,2,9]. These methods all rely on
robust estimators of location and scatter, which work well but need sub-
stantial computation time for large datasets. The context of this paper is
that of real-time classification in an industrial setting, such as food sorting
or classification of plastics and glass. Typically, huge amounts of product
are scanned in an automated inspection process. Robust discriminant
analysis is an absolute must in this setting, since these datasets are typically
corrupted by both label and measurement noise. Unfortunately, none of
the previously mentioned robust algorithms can handle the sheer volume
of data that is generated by these classification tasks.

In this paper we address this issue by incorporating the recently
introduced RT-DetMCD method [3], a real-time robust estimator of
location and scatter, into the discriminant analysis framework. We
further integrate an anomaly detection step: if an observation does not
match any of the known classes it will be classified into a separate outlier
class, explicitly revealing significant measurement errors in the training
set. The resulting approach allows us to combine a high degree of
vember 2020
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Fig. 1. The effect of label and measurement noise on classical quadratic discriminant analysis.
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robustness against label and measurement noise with a low computation
time. We also introduce a graphical display to identify label and mea-
surement noise in the training data. Using extensive simulations we show
that the proposed approach works well at huge datasets, even with high
noise rates. The accuracy of the method is also illustrated on two real
datasets, in which we identify and interpret several sets of atypical
observations.

The remainder of the paper is organized as follows. In Section 2 we
describe our real-time robust classifier, which incorporates the anomaly
detection step. Section 3 introduces the new graphical display. The
simulation study in Section 4 compares the performance of the proposed
method with that of classical discriminant analysis under label and
measurement noise. Section 5 illustrates the method on two real datasets.
Finally, the main conclusions are summarized in Section 6.

2. Real-time robust QDA

2.1. Discriminant analysis

Suppose we have a p-variate random vector X which describes the
data generated by an experiment. Assume X follows a multivariate
normal mixture model with G classes (subpopulations), i.e. the density of
X can be written as f ðxÞ ¼ PG

g¼1pgfgðxÞ where pg denotes the prior
2

probability of class g ¼ 1,…, G and fg ~ N (μg, Σg) is the p-variate normal
density of class g described by the location vector μg and scatter matrixΣg.
The aim is to divide the p-dimensional space into G regions which
correspond to the classes. Based on these regions, new cases can be
classified into one of the classes. To find these regions DA uses the Bayes
discriminant rule, which assigns an unknown observation x to the class g
for which ln (pgfg(x)) is highest among all G classes. Using the density of
the multivariate normal distribution one obtains the quadratic discrim-
inant analysis (QDA) rule: assign x to the class g for which the quadratic
discriminant score d (x, μg, Σg, pg) is highest, with

dðx; μg;Σg; pgÞ ¼ �1
2
ln ∣ Σg ∣ �1

2
ðx� μgÞ>Σ�1

g ðx� μgÞ þ lnðpgÞ: (1)

If the covariance matrices Σg of all classes are equal they can be
replaced by a common covariance matrix Σ, which leads to linear
discriminant scores and the corresponding linear discriminant analysis
(LDA) method. However, as this homoskedasticity assumption is often
not realistic in practical settings, we will concentrate on QDA.
2.2. Classical discriminant analysis

The quadratic discriminant scores (1) are computed based on the
prior probabilities pg, the means μg and the covariance matrices Σg, which



Fig. 2. The effect of label and measurement noise on robust quadratic discriminant analysis.
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all have to be estimated from the data. Suppose we have a multivariate
dataset X of n observations in p dimensions sampled from G different
classes, and a class label vector y of length nwith yi in {1,…, G} for all i¼
1,…, n. Denote by ng the number of observations from class g in the data.
The set of observations and labels (X, y) is called the training set. In order
to estimate the unknown parameters μg and Σg, classical QDA (CQDA)
uses the empirical mean xg and empirical covariance matrix Sg of each
class. The unknown membership probabilities are estimated using the
relative frequencies of each class in the training data: p̂g;C ¼ ng= n where
C stands for classical. The CQDA rule then assigns x to the class g for
which dðx; xg ;Sg ; p̂g;CÞ is highest. Note that the data dimension p should
be below ming ng since otherwise Sg becomes singular.

Although CQDA remains a popular classification method, it is known
that it is very sensitive to mislabeling and outliers, as it is based on
classical estimators of location and scatter. To illustrate this, we consider
a bivariate toy example with two classes to which we apply the CQDA
classification rule. We generated data from two bivariate normal distri-
butions, depicted in the top left panel of Fig. 1. The dataset contains 80
observations of class 1 (orange) and 100 observations of class 2 (blue).
The tolerance ellipses correspond to the points x whose Mahalanobis

distance equals
ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ22;0:99

q
, the square root of the 0.99 quantile of the χ2

distribution with p ¼ 2 degrees of freedom. They visualize the shape of
3

the empirical covariance matrices and fit the data nicely. The grey curve
is the quadratic decision boundary obtained by CQDA. We see that it
separates the classes quite well, misclassifying only three orange in-
stances into the blue class. This is natural as there is some overlap be-
tween the classes.

MDðx; xg;SgÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xgÞ>

q
S�1
g ðx� xgÞ (2)

In the top right panel we have introduced mislabeling by replacing
the label of four observations from each class by the label of the other
class. The blown up ellipses and the modified decision boundary show
how much CQDA is affected. (The dashed curve is the decision boundary
based on the uncontaminated data.) Although the mislabeled cases have
no outlying measurements, they are outlying with respect to the class
they are (incorrectly) assigned to. This changes the empirical mean and
covariance matrix and therefore also the CQDA discriminant scores.

In a second experiment we replaced five observations from class 1 and
eight observations from class 2 by outlying points, thereby introducing
measurement noise. The blue outliers are positioned such that CQDA
based on the clean data would assign them to the orange class. The result
is shown in the lower left panel of Fig. 1. The outliers have perturbed the
classification, as both the decision boundary and the tolerance ellipses
have changed substantially. Because of this the cluster of blue outliers is
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now classified into the blue class, instead of the orange class in which the
uncontaminated boundary would put them.

Finally, the bottom right panel shows the dataset with both mis-
labeling and outliers, affecting the decision boundary and the ellipses
even more.

One must thus be careful when applying CQDA in practice, particu-
larly in situations where mislabeling and/or contamination occur
frequently. Note that when the dimension is above 3, the effects in Fig. 1
are no longer visible by eye.
2.3. Real-time robust discriminant analysis

In order to make DA more reliable in the presence of label and/or
measurement noise, several robust alternatives have been proposed. The
most common strategy is to replace the classical estimators by robust
counterparts. For example, [1] apply the Minimum Volume Ellipsoid
estimator introduced in [17], References [6] and [2] rely on S-estimators
for linear discriminant analysis, whereas [9] propose to use the Minimum
Covariance Determinant (MCD) estimator of [17]. While this approach
yields a more reliable version of DA, all these robust estimators become
increasingly computationally demanding at large datasets. Particularly in
industrial settings where large amounts of data have to be processed
near-instantly, the existing algorithms become infeasible.

To address this issue we propose to incorporate the recently
Fig. 3. LB-plots of classical and robust QDA applied to

4

introduced real-time deterministic MCD (RT-DetMCD) method of [3]. It
is a parallel algorithm for the MCD estimator which runs very fast. For
each class g the MCD estimator aims to find the subset of hg observations
whose sample covariance matrix has the lowest determinant. The raw
MCD estimates of location and scatter are then computed as the classical
mean and covariance matrix of the hg observations in this subset. The
number hg should be chosen such that ⌊(ng þ p þ 1)/2⌋⩽hg < ng and such
that ng � hg is above the actual number of cases in class g that are
contaminated by label or measurement noise. Since this number is un-
known, we take hg¼ ⌊(ngþ pþ 1)/2⌋ to be able to withstand up to 50% of
outliers in each class. Note that hg ¼ 0.75 ng is also often recommended,
as it yields more efficient estimates and a degree of robustness that is
sufficient in applications with less than 25% of contamination in each
class.

The MCD estimator can be computed using the FastMCD [18] or
DetMCD [8] algorithms, but their computational cost is still too high for
our purpose. The RT-DetMCD estimator takes a different approach by
first splitting up the data into q blocks which are processed in parallel. In
each block an improved version of the DetMCD algorithm is run, yielding
q estimates of location and scatter. These estimates are then combined
through a novel robust pooling strategy which results in a single raw
location and scatter estimate. This raw estimate allows a reweighting step
in which the classical mean and covariance are computed on all unflag-
ged observations, yielding the final reweighted location and scatter
artificial data with label and measurement noise.
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estimate. More details on the algorithm can be found in Ref. [3].
The RT-DetMCD algorithm is incorporated into QDA as follows. For

each class g ¼ 1, …, G in the training data we compute the RT-DetMCD
estimates of location and scatter, denoted by μ̂g;R and Σ̂g;R where the
subscript R stands for robust. In order to estimate the class probabilities
pg robustly we use the following procedure [9]: first we compute the
robust distance of every observation xi to its own class yi by

RDi;yi ¼ RDðxi; μ̂yi ;R; Σ̂yi ;RÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � μ̂yi ;RÞ>Σ̂

�1
yi ;Rðxi � μ̂yi ;RÞ

q
: (3)

Next we flag outliers within each class: we consider xi an outlier when
the robust distance with respect to its own class is too large, i.e. when

RDi;yi >
ffiffiffiffiffiffiffiffiffiffiffiffi
χ2p;0:99

q
. Note that these outliers can be the result of label and/or

measurement noise. We now drop these outliers from the calculation of
the membership probabilities, yielding robust estimates of the member-
ship probabilities p̂g;R ¼ ~ng=~n where ~ng denotes the number of non-

outliers in class g and ~n ¼ PG
g¼1~ng . Including this p̂g;R together with μ̂g;R

and Σ̂g;R into (1) yields robust discriminant scores.
On top of this we add another feature. Most classifiers have the

disadvantage that a new case x will always be assigned to one of the
known classes. In practice however, it is possible that the new case be-
longs to a different class which was not present in the training data. We
therefore incorporate an anomaly detection step into QDA by assigning a
new observation to the ‘overall outlier’ class with label 0 if its robust
distance with respect to all classes is too large. A similar idea was used in
the SIMCA method [22]. Any unknown observation x is thus assigned to
the class g for which the discriminant score is highest, under the condi-
tion that it does not deviate too much from all known classes. In the latter
case, x will be given the label 0.

Putting all of this together, we obtain the proposed real-time robust
quadratic discriminant analysis (RT-RQDA) classification given by

if mingRDðx; μ̂g;R; Σ̂g;RÞ >
ffiffiffiffiffiffiffiffiffiffiffiffi
χ2p;0:99

q
then assign x to class 0;

else assign x to the class g for which dðx; μ̂g;R; Σ̂g;R; p̂g;RÞ is highest.
In order to illustrate this classifier we reconsider the toy example of

Subsection 2.2. Fig. 2 shows the result of training RT-RQDA on the clean
dataset and on the datasets corrupted with label and/or measurement
noise. The top left panel shows that RT-RQDA acts like classical QDA in
the absence of noise, as the decision boundary and the tolerance ellipses
are almost identical to those in the top left panel of Fig. 1. The three other
panels contain the same contamination as in Fig. 1, but RT-RQDA now
yields decision boundaries and tolerance ellipses that are very similar to
those from the uncontaminated data. This robustness to label and mea-
surement noise will be studied more extensively in the simulation study
in Section 4.

3. The label bias plot

While the robust discriminant analysis method introduced above
performs well under label and measurement noise, by itself it gives little
insight into the presence or absence of such noise in individual obser-
vations. For that purpose we construct a graphical display which visu-
alizes label and/or measurement noise in the data.

Suppose we have an observation xi with observed class label yi which
is assigned to the class ŷi, so the discriminant score dðxi; μ̂ŷi ;R; Σ̂ŷi ;R; p̂ŷi ;RÞ
is the highest. If ŷi ¼ yi the QDA classifier has assigned xi to its given
class, hence dðxi; μ̂ŷi ;R; Σ̂ŷi ;R; p̂ŷi ;RÞ ¼ dðxi; μ̂yi ;R; Σ̂yi ;R; p̂yi ;RÞ. If on the other

hand dðxi; μ̂ŷi ;R; Σ̂ŷi ;R; p̂ŷi ;RÞ > dðxi; μ̂yi ;R; Σ̂yi ;R; p̂yi ;RÞ it follows that ŷi 6¼ yi,
so the observation xi was predicted to belong to a class different from its
given one. The larger this difference, the more the DA classifier wants to
assign xi to its predicted class ŷi instead of its given class. A high dif-
ference could be caused by one or more of the following:

● the observation xi may have been mislabeled (label noise);
5

● the observation xi may be outlying with respect to its given class yi
(measurement noise);

● there may be overlap between the classes yi and ŷi making them
difficult to separate.

To quantify label noise we define the label bias of the observation xi as

LBðxiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðxi; μ̂ŷi ;R; Σ̂ŷi ;R; p̂ŷi ;RÞ � dðxi; μ̂yi ;R; Σ̂yi ;R; p̂yi ;RÞ

q
: (4)

The label bias is exactly zero for well-classified cases, and when it is
strictly positive the predicted label differs from the given label. A high
label bias raises suspicion that the given label might be wrong
(mislabeling).

For quantifying potential measurement noise we use the robust dis-
tance (3) of xi to its given class yi. This measures how close xi lies to the
center of its class, relative to the scatter of its class. As described in
Subsection 2.3, high robust distances can be used to flag outliers.

We now introduce the label bias plot (LB-plot) of class g as the scatter
plot of the points

�
RDðxi; μ̂yi ;R; Σ̂yi ;RÞ;LBðxiÞ

�
(5)

for all xi that belong to same class g, i.e. with yi ¼ g. Note that we
defined LB in (4) as a square root, because the discriminant scores
contain the squared robust distances and we want to put the axes of the
label bias plot on the same footing.

In the label bias plot the points are colored according to their pre-
dicted class label ŷi. As one plot is made for each class, we obtain G
different LB-plots. High values of LB suggest mislabeling, whereas points
with high RD are outlying with respect to their observed class.

Fig. 3 presents the LB-plots of the artificial data with mislabeling and
outliers shown in the lower right panel of Fig. 2. The top panel shows the
LB-plots resulting from CQDA, whereas the bottom panel shows those for
RT-RQDA.

Note that each LB-plot has two dashed lines, corresponding to cutoffs
on the axes. For the robust distances on the horizontal axis we use the

cutoff value c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
χ2p;0:99

q
that we already used in Subsection 2.3 to flag

outliers in a class. For the LB on the vertical axis we use the cutoffffiffiffiffiffiffiffiffiffiffiffi
lnð2Þp ¼ 0:83. Points above this cutoff have a mixture model likelihood

pgfg (xi) that is at least twice as high for their predicted class ŷi than for
their given class yi.

Finally, we depict the overall outliers, i.e. the observations for which
mingRDðxi; μ̂g;R; Σ̂g;RÞ > c, as empty circles rather than dots. These ob-
servations are outlying with respect to every class in the data, suggesting
they may be gross errors or members of a different population.

We first discuss the LB-plots of RT-RQDA in the lower half of Fig. 3,
since they are the most informative. Looking at the LB-plot for class 1
(orange), we immediately note that most points have LB¼ 0 and lie to the
left of c. These are the regular observations from class 1 that are classified
to belong to class 1. Next, we see five points with LB ¼ 0 and a robust
distance above the cutoff c. They are displayed as empty circles, indi-
cating that they are also outlying with respect to class 2. They correspond
to the orange outliers in Fig. 2, which were generated to be closer to class
1 than to class 2. Hence they are not misclassified but the LB-plot in-
dicates that they do not sit well in the orange class. The plot also contains
seven points with a strictly positive label bias, meaning they have been
assigned to the blue class although their given label is orange. Three of
them have a relatively low LB, and a low robust distance indicating that
they are within the robust tolerance ellipse of class 1. The LB-plot thus
tells us that while the classifier assigns these points to class 2, they are
also quite close to class 1. This suggests overlap, and indeed in Fig. 2
these three points lie in the region where the ellipses overlap. There are
also three points of class 1 with a high LB and RD > c. This suggests label
or measurement noise, and these three points were indeed deliberately
mislabeled in Fig. 2. Note that the LB-plot does not allow us to determine



Table 1
Classical and robust discriminant analysis results for uncontaminated data.

CQDA RT-RQDA

π1 π2 π3 π0 π1 π2 π3 π0

Extended confusion matrices
π1,1 0.990 0.000 0.000 0.010 0.986 0.000 0.000 0.013
π2,2 0.000 0.981 0.010 0.009 0.000 0.978 0.009 0.013
π3,3 0.000 0.004 0.986 0.009 0.000 0.005 0.983 0.013

Performance metrics
KL <0.001 <0.001 <0.001 0.007 0.007 0.007
∣ Σ̂ ∣ 1.001 120.100 49.994 0.764 91.750 38.195
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the root cause of their outlyingness: it could be that the observations
belong to class 1 but due to measurement noise they ended up closer to
class 2, or they could actually belong to class 2 but received label 1 due to
label noise. In either case the points would show up in the upper right
quadrant of the LB-plot. Since the points are plotted as dots and not as
empty circles, they are not outlying with respect to class 2. This lends
more credence to label noise than measurement noise. Finally there is
one point with LB� 2 and a robust distance which is slightly smaller than
c. This is a borderline case, which could be due to overlap or mislabeling.
On the scatter plot in Fig. 2 we see that one of the mislabeled points of
class 1 indeed belongs to the overlapping region.

The LB-plot of class 2 indicates that most points are well classified,
but there are 12 points with large LB and large RD. Four of them are
plotted as dots, indicating that they do not have a large robust distance
with respect to class 1. These correspond to the mislabeled points in
Fig. 2. The other eight points in the top right of the LB-plot are displayed
as empty circles and are therefore outlying with respect to all classes.
They correspond to the small blue cluster of outliers in Fig. 2, which
indeed lies closer to the orange class yet it is also outlying to that class.

The LB-plots based on RT-RQDA thus gave us insight into how well
the cases were classified, whether there is overlap between the classes,
and whether there are any suspicious labels or outliers. This information
becomes evenmore useful in higher dimensions, when there is no version
of Fig. 2 to look at.

The LB-plots based on CQDA are shown in the top panels of Fig. 3. The
horizontal axis now shows the classical Mahalanobis distances (2) based
on the sample mean and covariance matrix. The label bias is defined as in
(4) but now based on the classical discriminant scores. Although we see
some similarities with the LB-plots from RT-RGDA, there are several
important differences. For class 1, only four out of the five overall outliers
are flagged with empty circles, and only one of the mislabeled points has
a distance above c. The other mislabeled points look less suspicious,
instead the plot rather suggests they are in an overlapping region. In the
LB-plot of class 2 only one point has a distance above c. Indeed, in the
bottom right panel of Fig. 1 the CQDA tolerance ellipses were so inflated
that they engulf all blue points but one. In general, the label and mea-
surement noise is less visible in the LB-plots based on CQDA than in those
based on RT-RQDA. The LB-plots of CQDAwould lead us to think that the
misclassifications are mainly due to a large overlap between the classes,
which we know is not the ground truth in these generated data. In
practice we therefore recommend to use the LB-plots based on the robust
estimates whenever available.

4. Simulation study

In this section we compare the performance of the proposed RT-
RQDA classifier to that of classical QDA through a simulation study.
We will denote the true classes as πg for g ¼ 1, …, G.

4.1. Simulation setup

We first generate uncontaminated (clean) data X with label vector y.
We create three classes π1, π2 and π3 of p ¼ 5 dimensional observations.
6

The observations of class πg are sampled from a normal distributionN (μg,
Σg), where the class centers are given by μ1 ¼ (6,0,0,0,0)>, μ2 ¼
(0,0,6,0,0)> and μ3 ¼ (0,0,0,0,6)>. The covariance matrices of the classes
are the diagonal matrices Σ1 ¼ I5, Σ2 ¼ diag (1, 2, 3, 4, 5) and Σ3 ¼ diag
(1, 1, 1, 5, 10). The number of observations in each class is set to n1 ¼
250, 000, n2 ¼ 350, 000 and n3 ¼ 400, 000 with n ¼ 1, 000, 000 to
emulate industrial data sizes. The true prior probabilities of the classes
π1, π2 and π3 are thus 0.25, 0.35 and 0.4.

In order to evaluate the performance of the method in more realistic
scenarios, we also consider three simulation setups with contamination.
In the first we only include label noise. In this setting the data is cor-
rupted according to the noisy completely at random (NCAR) process [4].
For each class πg we randomly relabel ϵℓng observations: ϵℓng/2 instances
receive one of the other labels k6¼g, while the other half acquire the
remaining label. We choose the label noise fraction ϵℓ ¼ 20%.

The second setup contains measurement noise but no label noise. The
measurement noise is generated as follows. For class π1 the outliers are
sampled from cluster contamination at Nðμ*1;Σ*

1Þ with μ*1 ¼
ð�6;0; 0;0;0Þ> and Σ*

1 ¼ 1
10Σ1. For class π2 we consider point contami-

nation by concentrating all outliers into a single point μ*2 ¼
ð0; 0;�15;0; 20Þ>. For the third class π3 we generate shift contamination
according to Nðμ*3;Σ3Þ with μ*3 ¼ ð14; 0;0;0;�6Þ>. We replace ϵmng
random observations of each class g by outliers of the corresponding
types, where ϵm denotes the fraction of measurement noise, which we set
to 20% in this simulation. Note that the contamination has been gener-
ated in such a way that the contaminating points are outlying with
respect to all classes. Hence, we expect a good classifier to predict them as
‘overall outliers’, that is, assign them to the additional class π0.

In the final setup we combine both types of noise by introducing ϵℓ/2
label noise and ϵm/2 measurement noise, both as described above.

4.2. Evaluation of results

Each simulation setup is replicated 50 times and the performance of
RT-RQDA is compared to CQDA in several ways. First of all, we compare
the misclassification errors of both methods by computing the average
confusionmatrix over all replications. The standard confusionmatrix will
not allow us to properly analyze the results under label and measurement
noise. Therefore, we will present extended confusion matrices, for which
we need some notation. Consider class πg. The observations in this class
can be split up in up to 4 subclasses, depending on the contamination
scheme. The largest subclass is that of the clean observations, which were
generated from N (μg, Σg) and received the correct label. This subclass is
denoted πg,g. Secondly, there are the observations which were generated
from the clean distribution of class πg but which received a wrong label.
We denote these as πg,k and πg,ℓ where k and ℓ are the labels of the other
two classes. Finally, there are the observations with measurement error
denoted as πg,0.

Instead of creating confusion matrices with three rows, one for each
class, we split up each class into its nonempty subclasses. For the
experiment with clean data, we still have only three rows. The experi-
ment with only label noise has three subclasses in each class, and hence



Table 2
Classical and robust discriminant analysis results with 20% label noise.

CQDA RT-RQDA

π1 π2 π3 π0 π1 π2 π3 π0

Extended confusion matrices
π1,1 0.999 0.000 0.000 0.000 0.986 0.000 0.000 0.013
π1,2 0.999 0.000 0.000 0.000 0.986 0.000 0.000 0.013
π1,3 0.999 0.000 0.000 0.000 0.986 0.000 0.000 0.013
π2,1 0.001 0.975 0.021 0.004 0.000 0.979 0.008 0.012
π2,2 0.001 0.975 0.020 0.004 0.000 0.979 0.008 0.012
π2,3 0.001 0.975 0.021 0.004 0.000 0.979 0.008 0.012
π3,1 0.003 0.002 0.992 0.003 0.000 0.005 0.982 0.012
π3,2 0.003 0.002 0.992 0.003 0.000 0.005 0.982 0.013
π3,3 0.003 0.002 0.992 0.003 0.000 0.005 0.982 0.013

Performance metrics
KL 11.123 2.394 2.315 0.007 0.007 0.007
∣ Σ̂ ∣ 143.230 1047.600 508.410 0.766 97.165 38.609
α 0.329 0.133 0.383 0.949 0.926 1.082
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yields an extended confusion matrix with nine rows. When only mea-
surement noise occurs each class has two subclasses, yielding an
extended confusion matrix with six rows. The experiment with both label
and measurement noise has all twelve rows. By extending the confusion
matrices in this way, we obtain very precise insight into what happens
with every type of data point, corrupted or otherwise. Finally, we also
add an additional column to the confusion matrix, denoted π0, which
shows the percentage of points classified as an overall outlier using the
outlier detection rule of RT-RQDA.

In addition to the extended confusion matrices we also report the
average Kullback–Leibler (KL) divergence. The KL divergence of the
estimated scatter matrix Σ̂g from the true covariance matrix Σg of class πg
is defined as

KLg ¼ traceðΣ̂gΣ�1
g Þ � p� ln ∣ Σ̂gΣ�1

g ∣ : (6)

The determinants of the true covariance matrices are |Σ1| ¼ 1, |Σ2| ¼
120 and |Σ3| ¼ 50. The estimated determinants ∣ Σ̂g ∣ are also reported.
Ideally, the estimated determinants should be close to the theoretical
ones as this suggests that they accurately describe the volume of the clean
data cloud. Finally, for each class we also report how many observations
are flagged as outlying with respect to their own class. These are the
observations xi for which RDi;yi > cwhere RDi;yi is the robust distance (3).
We normalize this number by the total number of noisy observations in
class πg given by (ϵℓ þ ϵm)ng, and denote the resulting quantity by αg.
Ideally, αg should be close to one, as this indicates the label and mea-
surement noise are well detected. Our simulations were done in MATLAB
on an Intel Core i7-8700K processor based computer with 16 GB of 3.70
GHz RAM. The same hardware was used in all experiments.
Table 3
Classical and robust discriminant analysis results with 20% measurement noise.

CQDA

π1 π2 π3 π0

Extended confusion matrices
π1,0 1.000 0.000 0.000 0.00
π1,1 0.794 0.000 0.205 0.00
π2,0 0.000 1.000 0.000 0.00
π2,2 0.000 0.977 0.005 0.01
π3,0 0.193 0.000 0.782 0.02
π3,3 0.193 0.191 0.614 0.00

Performance metrics
KL 42.500 47.844 37.411
∣ Σ̂ ∣ 18.029 2180.300 1732.700
α 0.065 0.074 0.046
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4.3. Results on clean data

We first consider the setting of clean data, for which the results are
presented in Table 1. The confusion matrix has only three rows, one for
each class, since no label noise or measurement noise was introduced.

Since we have set the outlier cutoff to
ffiffiffiffiffiffiffiffiffiffiffiffi
χ2p;0:99

q
, perfect classification

corresponds with diagonal values equal to 0.99 and a π0 column equal to
1%. We see that both classification methods perform very well on clean
data. Note that CQDA is somewhat more efficient in this clean setting as it
has lower KL values than RT-RQDA, and the determinants of the esti-
mated covariance matrices are closer to the true values. The tolerance
ellipsoids of RT-RQDA have somewhat lower volumes, resulting in
slightly higher values in the column of π0.

4.4. Results under label noise

The results of the simulation setup with 20% label noise are sum-
marized in Table 2. For CQDA the performance metrics show large in-
creases in the KL divergences and in the determinants of the estimated
covariance matrices. Although CQDA fails to accurately estimate the
model parameters, its classification error remains rather low as can be
inferred from its extended confusionmatrix. This is mainly due to the fact
that the true classes are well separated. Unlike CQDA, RT-RQDA shows a
very stable behavior, with virtually unchanged estimates of the model
parameters and a confusion matrix that is similar to the clean setting.
Finally, note that the αg values suggest that CQDA identifies only a small
fraction of the mislabeled observations as outliers with respect to the
class of their given label, whereas RT-RQDA flags nearly all of them.
RT-RQDA

π1 π2 π3 π0

0 0.000 0.000 0.000 1.000
0 0.989 0.000 0.000 0.011
0 0.000 0.000 0.000 1.000
8 0.000 0.980 0.009 0.010
6 0.000 0.000 0.000 1.000
3 0.000 0.004 0.985 0.010

0.001 0.001 0.001
0.905 108.720 45.223
1.046 1.045 1.045



Table 4
Classical and robust discriminant analysis results with 10% label and 10% measurement noise.

CQDA RT-RQDA

π1 π2 π3 π0 π1 π2 π3 π0

Extended confusion matrices
π1,0 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000
π1,1 0.940 0.000 0.060 0.000 0.988 0.000 0.000 0.012
π1,2 0.940 0.000 0.060 0.000 0.988 0.000 0.000 0.012
π1,3 0.940 0.000 0.060 0.000 0.987 0.000 0.000 0.012
π2,0 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000
π2,1 0.004 0.980 0.011 0.005 0.000 0.981 0.009 0.011
π2,2 0.004 0.980 0.011 0.005 0.000 0.980 0.009 0.011
π2,3 0.004 0.980 0.011 0.005 0.000 0.980 0.009 0.011
π3,0 0.491 0.000 0.373 0.136 0.000 0.000 0.000 1.000
π3,1 0.110 0.065 0.823 0.002 0.000 0.005 0.984 0.011
π3,2 0.110 0.065 0.822 0.002 0.000 0.005 0.983 0.011
π3,3 0.110 0.065 0.822 0.002 0.000 0.005 0.983 0.011

Performance metrics
KL 24.547 21.399 17.698 0.003 0.004 0.003
∣ Σ̂ ∣ 141.900 4596.400 2259.200 0.837 106.090 42.160
α 0.251 0.159 0.246 1.014 0.987 1.058
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4.5. Results under measurement noise

Table 3 reports the results when the data contains 20% of measure-
ment noise. Since by construction all contaminated points are outlying to
all classes, they should be classified into π0. The extended confusion
matrix now has six rows because each class has a subclass generated as
outliers (πg,0) and a subclass generated as clean data (πg,g). We see major
differences between CQDA and RT-RQDA. First note that CQDA barely
detects outliers as indicated by the low values in the column of π0.
Instead, it classifies the outliers as regular observations. The performance
metrics in the table reveal the problem with CQDA: the estimates of the
parameters are affected so strongly by the outliers that the resulting
model does not detect them anymore. This illustrates the so-called
masking effect [12]. In contrast, RT-RQDA correctly detects the intro-
duced noise as outlying observations. A second important effect is that
with CQDA the classification of the clean data suffers. In particular, the
regular observations of class π1 and class π3 have a misclassification rate
of roughly 20% and 40%. The proposed RT-RQDA method instead has a
stable performance which is comparable to that in the clean scenario of
Table 1.
Fig. 4. LB-plots of the classes of negative (left) and positive

8

4.6. Results under label and measurement noise

Finally, Table 4 presents the simulation results with label and mea-
surement noise occurring simultaneously. Also here RT-RQDA exhibits a
stable behavior. All of the far outliers are detected and allocated to the
outlier class π0. The misclassification errors are similar to those for clean
data and the model parameters are estimated accurately, as indicated by
the low values of the KL divergence and the determinants of the esti-
mated covariance matrices.

In contrast, CQDA is heavily affected by the noise. It fails to detect the
outliers as can be seen from the low percentages in the column of class
π0 and the low values of αg. The classification of the clean data is also
affected, in particular for subclass π3,3 which has a misclassification error
of 18%. The estimated parameters deviate substantially from their true
values as evidenced by the elevated KL divergences and high
determinants.

From the simulation study we conclude that the proposed RT-RQDA
method is more reliable than CQDA in the presence of label and/or
measurement noise while maintaining a competitive performance on
clean data.
(right) subjects in the diabetes data, using RT-RQDA.



Fig. 5. Pairwise scatter plot of the scores of the fruit data after robust principal component analysis.
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5. Applications to real data

5.1. Diabetes data

We start by analyzing a benchmark data set which arose out of a study
about the onset of diabetes mellitus [19]. The data were downloaded
from Ref. [11]. The subjects (cases) are females from a community of
Pima Native Americans, with classes ‘positive’ (diabetic) and ‘negative’.
For each subject eight variables were recorded: number of pregnancies,
plasma glucose concentration, diastolic blood pressure, triceps skin fold
thickness, serum insulin, a body mass index (BMI), diabetes pedigree
function, and age. Following [16] we removed the cases with physically
impossible measurements (such as zero blood pressure), leaving us with
392 subjects. Since several variables were skewed, we robustly trans-
formed all variables toward central normality by the technique of [15]
with its default options. We also verified that each of the eight variables
has a positive relation to diabetes, in the sense that higher values increase
the odds of the disease.

Applying RT-RQDA yielded the LB-plots in Fig. 4. The left panel
shows the negative class. The correctly classified cases are shown as blue
points with label bias LB ¼ 0. The red points were misclassified into the
positive class. Some of them have a high label bias above the dashed
9

horizontal line, meaning that RT-RQDA considers it more than twice as
likely for them to be diabetic rather than negative. The most extreme
ones are marked (a), (b) and (c). Case (a) has high glucose, insulin and
age, while (b) has high blood pressure and pedigree. Case (c) has high
glucose, pedigree, and the highest insulin of the entire dataset. All of
these characteristics point to diabetes, arousing suspicion that these
subjects were misclassified or have a high probability of being diagnosed
in the future.We also see two points with high robust distance but lower
LB. Subject (d) has high blood pressure and very high BMI. Subject (e) is
correctly assigned to the negative class since LB ¼ 0, but has a high
distance partly due to an extremely low blood pressure of 30. Note that
(a), (d) and (e) have hollow plot symbols, indicating that their distance to
the other class is above the distance cutoff as well, so they are not close to
either class. On the other hand, (c) has a high distance from the negative
class but its solid plot symbol indicates that it is not so far from the other
class.

The LB-plot of the subjects labeled positive for diabetes is in the right
panel of Fig. 4. The subjects with highest label bias are marked (f) and
(g). Subject (f) has very low triceps, insulin and BMI, which is in line with
the negative class. Subject (g) has extremely low blood pressure and
rather low glucose and insulin. These would point to the negative class,
hence the high LB. The high BMI of (g) correctly suggests the positive



Fig. 6. LB-plot of cultivar D (left) with a pairs plot of the PC scores of this class using the same colors and plotting symbols (right).

Fig. 7. LB-plot of cultivar H (left) with a pairs plot of the PC scores of this class using the same colors and plotting symbols (right).
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class but is unusual, which increases the robust distance on the horizontal
axis. Point (h) corresponds to the highest blood pressure in the entire
dataset as well as the highest BMI. Subject (i) has the highest triceps in
the dataset as well as the highest pedigree. From the plot symbols of (g),
(h) and (i) we conclude that they lie far away from the centers of both
classes.
5.2. Fruit data

We analyze the fruit dataset originally collected by Colin Greensill
(Central Queensland University, Rockhampton, Australia), parts of which
were analyzed in Refs. [9,21]. The original dataset contains the result of a
spectroscopy experiment conducted on n ¼ 2818 cantaloupe melons of
six different cultivars. Each of the spectra was measured on 256 wave-
lengths. We selected four of the six cultivars (labeled “D”, “H”, “Ha” and
“E”) for illustrating our methods. The motivation for this selection is
twofold. First, the largest cultivar (named “ES”) was not included because
it did not have a roughly elliptical distribution, which makes its classi-
fication by QDA less appropriate. Second, the smallest cultivar (named
“M”) was not included because we do not have additional information on
it, making the interpretation of the results more difficult. The selected
four cultivars yield a dataset of size 1774 � 256 which consists of four
classes of sizes 490, 180, 500 and 988. It is known that the data from
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cultivar Ha was collected using different illumination setups and so one
might expect subgroups within this class. The previous analyses of [9,21]
did in fact identify one subgroup within this cultivar corresponding with
a different illumination setup.

We aim to classify the spectra into the four classes corresponding to
the cultivars. It is worth noting that the spectra were all recorded on the
same wavelengths and scale, and they do not contain missing values.
Therefore we did not apply any preprocessing method. Before applying
RT-RQDA we reduced the dimensionality by means of robust principal
component analysis [7], and selected p ¼ 3 components as they explain
over 97.5% of the variability. In the context of classification, there may
be more appropriate techniques for dimensionality reduction such as
approaches based on (local) linear discriminant analysis [13,20]. How-
ever, it is recommended to use a robust method in order to avoid the loss
of information in the reduced data due to the presence of outliers.
Because of its simplicity and robustness and for the purpose of illustra-
tion, we decided on robust PCA. Fig. 5 shows the scores resulting from
this dimensionality reduction step.We clearly see that class Ha consists of
two subgroups, possibly due to the different illumination setups of the
spectroscopy experiment. In addition we see that classes E and H may
also contain subgroups.

We apply RT-RQDA to the data and construct the LB-plots of all
classes. Fig. 6 shows the LB-plot of cultivar D as well as a clarifying pairs



Fig. 8. LB-plot of cultivar Ha (left) with a pairs plot of the PC scores of this class using the same colors and plotting symbols (right).

Fig. 9. LB-plot of cultivar E (left) with a pairs plot of the PC scores of this class using the same colors and plotting symbols (right).

Table 5
Confusion matrix of the validation set based on classical (left) and robust (right)
discriminant analysis.

CQDA RT-RQDA

D H Ha E D H Ha E

D 0.933 0.034 0.011 0.022 0.950 0.050 0.000 0.000
H 0.500 0.477 0.023 0.000 0.136 0.864 0.000 0.000
Ha 0.000 0.057 0.000 0.943 0.000 0.000 1.000 0.000
E 0.000 0.000 0.000 1.000 0.000 0.000 0.000 1.000
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plot containing only the points of cultivar D. All points in this LB-plot
belong to class D, but some have LB > 0 meaning they are assigned to
other classes indicated by their color. The red points in the LB-plot sug-
gest that there is some overlap with class H. This overlap was to be ex-
pected from the original plot of the scores in Fig. 5. In addition to the
overlap with cultivar H, class D has quite a few outliers as can be seen
from the green and red empty circles in the LB-plot. This is confirmed by
the position of these points in the right panel of Fig. 6, where the same
colors and plotting symbols were used as in the left panel.

The LB-plot of cultivar H is shown in Fig. 7. We see right away that
this cultivar consists of two subgroups. One subgroup is found in the
bottom left corner of the LB-plot. This subgroup contains the bulk of the
data, and has a little bit of overlap with cultivar D as indicated by the
handful of green points with LB > 0. The other subgroup is found in the
top right portion of the LB-plot. These green empty circles have a high
label bias and a high robust distance. The latter indicates that they lie
quite far from the bulk of the data, which is confirmed in the plot of
(PC2,PC3) in the right panel of Fig. 7. The fact that these objects are
plotted as empty circles in the LB-plot indicates that they are also far from
the other classes. It turns out that this subgroup corresponds exactly to
the first 60 spectra measured for this cultivar. This strongly suggests that
the experimental setup was changed after 60 measurements.

Fig. 8 shows the LB-plot of cultivar Ha. It is known that during the
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spectroscopy experiments on this cultivar the illumination setup was
changed twice. The initial illumination setup produced the first 180
points, which can be seen in the top right of the LB-plot. It corresponds to
all points with a robust distance over 20. Therefore the initial illumina-
tion has produced a different data distribution from the others. This is
confirmed by the clear separation in the pairwise plots in the right panel
of Fig. 8. The remaining 320 spectra of cultivar Ha are found in the
bottom left of the LB-plot. The blue points are correctly assigned to class
Ha, and the orange ones to class E. It is not immediately clear whether
these orange points form a subgroup which should be considered sepa-
rately, but in the pairs plots we see more of a gradual transition than a
clean separation.
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The LB-plot of cultivar E is shown in Fig. 9. Also here we see two
distinct classes. The majority of the points has LB ¼ 0 and a relatively
small robust distance, suggesting a homogeneous subgroup. This is
confirmed by the orange points in the right hand panel of Fig. 9. The
other subgroup is found in the top right portion of the LB-plot, and clearly
separated from the bulk of the data in the pairwise plot of (PC2,PC3). It
turns out that the spectra of this cultivar were collected on two different
dates. The first 200 were measured roughly one month before the
remaining 788. Furthermore, the outlying subgroup visible on the plot
corresponds almost exactly with the first 200, suggesting that the sub-
groups cannot be considered as coming from the same population. This
may be the result of different experimental setups, which is not unlikely
given that the data of the two groups were collected one month apart.

In order to evaluate the classification performance of RT-RQDA on the
fruit data, we split the data at random into a training set and a validation
set containing 60% and 40% of the data (i.e. 1294 and 864 observations).
Note that the validation set also contains outliers, which we do not want
to take into account when evaluating classifiers. The points in the vali-
dation set that are outlying with respect to their class are therefore dis-
carded in the calculation of misclassification rates. This procedure yields
a validation set of 632 observations, with classes of sizes 179, 44, 106 and
303 for cultivars D, H, Ha and E.

The left part of Table 5 shows the resulting confusionmatrix of CQDA.
Its misclassification rate is about 22%. In the right part of Table 5 we see
that RT-RQDA performs better, with a misclassification rate of 2%. The
largest difference between CQDA and RT-RQDA occurs in the classifi-
cation of cultivar Ha. Here CQDA assigns most non-outlying spectra to
cultivar E, indicating that it has failed to characterize cultivar Ha due to
its large number of outliers. The RT-RQDA method does classify cultivar
Ha accurately, and only shows a slight confusion between cultivars D and
H which is not surprising as these classes overlap.

6. Conclusion

Classical quadratic discriminant analysis (CQDA) is known to be
sensitive to label noise and measurement noise (outliers). To address this
issue we proposed a procedure for real-time robust quadratic discrimi-
nant analysis, called RT-RQDA. It incorporates the recent RT-DetMCD
algorithm as well as an anomaly detection step, which flags observa-
tions that stand out relative to all classes. Robust discriminant scores are
obtained from the RT-DetMCD estimates of location and scatter as well as
robust membership probabilities. An extensive simulation study showed
that the speed of RT-RQDA allows it to handle huge data sets and that it
remains effective even if the data are contaminated by label and mea-
surement noise simultaneously.

We also introduced a graphical display, the LB-plot, which gives
insight into the presence of label and measurement noise in each class of
the training data. The LB-plot makes atypical observations stand out,
thereby identifying outliers, potential mislabeling, overlap, and obser-
vations which may be hard to classify.

Finally, the proposed method was illustrated on two real datasets. In
both applications, the RT-RQDA procedure with the LB-plot correctly
identified several atypical observations.
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