

Hiking in the scheduling landscape

Citation for published version (APA):

Buchem, M. (2022). Hiking in the scheduling landscape: exact and approximation algorithms for parallel
machines. [Doctoral Thesis, Maastricht University]. Maastricht University.
https://doi.org/10.26481/dis.20221129mb

Document status and date:
Published: 01/01/2022

DOI:
10.26481/dis.20221129mb

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 13 Dec. 2023

https://doi.org/10.26481/dis.20221129mb
https://doi.org/10.26481/dis.20221129mb
https://cris.maastrichtuniversity.nl/en/publications/42823b9f-7be7-408f-9c16-d6d3b71febe7

Doctoral thesis

HIKING IN THE SCHEDULING LANDSCAPE:
EXACT AND APPROXIMATION ALGORITHMS

FOR PARALLEL MACHINES

Moritz Buchem

2022

HIKING IN THE SCHEDULING LANDSCAPE:
EXACT AND APPROXIMATION ALGORITHMS

FOR PARALLEL MACHINES

Dissertation

To obtain the degree of Doctor at Maastricht University,
on the authority of the Rector Magnificus, Prof. dr. P. Habibović,

in accordance with the decision of the Board of Deans,
to be defended in public

on Tuesday 29th of November 2022, at 16.00 hours

by

Moritz Yannik Buchem

Promotor
Prof. dr. T. Vredeveld

Copromotor
Dr. ir. T. Oosterwijk, Vrije Universiteit Amsterdam

Assessment Committee
Prof. dr. ir. C.P.M. van Hoesel (chair)
Dr. A. Berger
Prof. dr. N. Megow, Universität Bremen
Prof. dr. L. Sanità, Università Bocconi
Prof. dr. M. Skutella, Technische Universität Berlin

© Moritz Buchem, Maastricht 2022.
All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without
prior written permission of the author.

This book has been typeset by the author using LATEX.

Cover Bregje Jaspers, 2022
Production ProefschriftMaken || proefschriftmaken.nl
ISBN 978-94-6469-097-2

To my parents and my brother.

Not all those who wonder are lost.

- Free to J.R.R. Tolkien, The Lord of the Rings

Acknowledgments

This dissertation is the product of a four year journey as a PhD student
and a nine year journey in the city of Maastricht. Taking this jour-
ney would not have been possible without my family, friends and col-
leagues who accompanied and supported me through different parts
of this journey.

First of all, I would like to express my deepest gratitude to my promo-
tor and supervisor, Tjark Vredeveld. In the last six years you have been
a source of inspiration, guidance, mentorship in research, teaching and
(academic) life. Thank you for opening your academic network to me
and helping me to grow as a researcher myself. I know that I will al-
ways have someone to come to advice for and, hopefully, also some
more research adventures together. Thank you for always having a
minute (even if a minute turns into hours). I hope that you will find
something to do with all this new available time. Simply: Thank you
for everything, it means the world to me!

I would also like to say thank you to my co-supervisor Tim Ooster-
wijk. Thank you for always being available for constructive and thor-
ough feedback on talks or drafts and the great support throughout
the whole writing process of this dissertation. Thank you for mak-
ing MOPD as much fun as possible in my first year of teaching. Fur-
thermore, I would like to give a big thank you to the members of my
assessment committee: Stan van Hoesel, André Berger, Nicole Megow,
Laura Sanità and Martin Skutella. Thank you a lot for your time to
read and approve my dissertation.

Next, I would like to thank everyone else who was a part of my aca-
demic life in the past years at Maastricht University. Thank you Karin
van den Boorn, Vera Hoekstra and Yolanda Paulissen for always be-
ing there and having a friendly open ear when academic bureaucracy
seemed like a maze. I would like to express my huge appreciation for
all senior staff at the Quantitative Economics department and beyond

vii

Acknowledgments

for an inspiring research and teaching environment. A special thank
you to Alain Hecq, André Berger, Lars Rohwedder, Rudolf Müller and
Stan van Hoesel for the great teaching together. A special thank you to
Lars. I really enjoyed discussing and doing research with you. Thank
you for the many things I could learn from you. Also thank you to
Alex Grigoriev for the great and fruitful discussions on our work to-
gether and beyond. An extra thank you to Christof Defryn for your
supervision at the beginning of my PhD and allowing me to follow my
own path.

A huge aspect in the past four years was the life as a PhD student
which would not have been the same without my fellow PhD students.
Elisa, thank you for being there since the beginning: from the first stu-
dent house parties all the way until the final days as PhD students.
Thank you for (almost) always being up for an after work drink and
snack when both were strongly needed. You will always be a strong
part of my Maastricht memories. Dewi, you were also part of my life in
Maastricht for nine years after meeting the first time during the intro-
duction days of the bachelor. Thank you for always spreading a good
mood. Adam, thank you for all the fun times in and outside of the
office and all the serious and non-serious discussions. Niloufar, thank
you for sharing the joy of listening to records and repeatedly teaching
me to count in Farsi. Maybe one day I will not need to start at one
every few months. Julian, thank you for all the nice discussions and
our joint work. Rasmus, thank you for the great company in the of-
fice. Ashkan and Arman, thank you for the great company during the
last year of my PhD. Aditja, Alex, Benoit, Daniel, Farzaneh, Francesco,
Francois, Freija, Joep, Li, Li, Luca, Marie, Niels, Roland, Sean, Shash,
Son Tran and Thijs: thank you for being a part of the past four years,
the mutual support and for the fun times! To all members of the PhD
committee, thank you for the great time planning and attending the so-
cial events. To everyone I have mentioned and everyone I might have
missed: Thank you and see you soon!

viii

A big part of academic life is working and meeting with people all over
the world. I would like to thank José Correa, José Verschae and Andy
Wiese for hosting and inviting me to the workshop in Santiago de Chile
in 2020. This was my first experience of a research visit and full of great
discussions and inspiration. I would like to thank Martin Skutella for
inviting me for a research visit to Berlin. Thank you Martin, Daniel
Schmidt genannt Waldschmidt and all others from COGA and DISCO
for welcoming me with open arms and the great three months (mi-
nus quarantine plus Besprechungen). An extra thank you to Daniel
for being a great co-author and all the sometimes fruitful and some-
times frustrating research discussions. Thank you, Linda Kleist, for
your collaboration, your inspiration and for keeping Daniel and me
calm during the more frustrating meetings. Finally, I would like to
thank all conferences, workshop and seminar communities that I have
had the pleasure experiencing in the past years. The open, warm and
inspirational environment you all have created is what makes research
fun and productive.

Although this dissertation is the product of the last four years, achiev-
ing this would not have been possible without my friends and family.
A big thank you to all of my friends who have kept me sane in the
last four years. Thank you for all the fun times, all the distractions
from research, always being there and for keeping up with me. I wish
to express my deepest gratitude for my family for their unconditional
love and support. Oma, Steffi, Renate, Sylvie, Lennard und Kathi, vie-
len Dank für all eure Unterstützung und Begleitung auf meinem Weg.
Mama, Papa und Markus, ohne euch wäre Ich nicht dort wo Ich heute
bin. Dafür werde Ich euch immer dankbar sein. Danke für all eure
Liebe und Unterstützung, all eure Arbeit und Mühen. Danke dafür,
dass Ihr immer mein sicherer Hafen seid. Wenn ihr nichts hört, geht’s
mir gut. Mit viel Liebe, euer Moritz!

Moritz Buchem
Munich

October 24, 2022

ix

Contents

Acknowledgments vii

1 Introduction 1
1.1 Scheduling Problems . 2
1.2 Computational Complexity 8
1.3 Approximation Algorithms 12
1.4 Outline of Thesis . 17
1.5 Publications . 22

2 Additive approximation schemes for load balancing on iden-
tical machines 23

2.1 Introduction . 23
2.2 Additive approximation schemes for arbitrary num-

ber of machines . 28
2.3 Improvement for constant number of machines 52
2.A Details of second stage of local search procedure: Re-

pairing underloaded machines 57

3 Makespan minimization on identical parallel machines with
machine conflicts 61

3.1 Introduction . 61
3.2 Preliminary Notions . 66
3.3 Unit Jobs: Inapproximability for general conflict graphs 68
3.4 Unit Jobs: Exact and approximation algorithms for

special cases . 71
3.5 Generalizations to identical jobs 91

4 Just-in-time scheduling with quadratic penalties and unit
jobs 99

4.1 Introduction . 99
4.2 Unit weights . 102
4.3 Single common due date and general weights 112

Contents

4.4 The single machine problem with a constant number
of distinct due dates . 117

5 Theoretical and empirical analysis of stochastic online schedul-
ing policies on uniform machines 121

5.1 Introduction . 121
5.2 Lower bounds based on linear programming 126
5.3 SOS polices via speed-scaling 128
5.4 Computational study 137
5.A Improved lower bound for online-time model 149
5.B Complete results of computational study 151

6 Optimizing fuel consumption under uncertainty for a sin-
gle vessel in inland waterways 157

6.1 Introduction . 157
6.2 Optimal and near-optimal dynamic velocity policies . 166
6.3 Fixed arrival velocity policies 172
6.4 Computational Study 174

Bibliography 183

Summary and General Discussion 199

Impact Paragraph 203

About the author 207

Chapter 1

Introduction

The scarcity of resources is omnipresent in society. This poses many
challenges to decision makers in different areas ranging from service
industries to manufacturing and transportation industries. One of these
challenges is scheduling: the allocation of resources to activities over
time. Scheduling appears in a diverse range of applications such as
setting up educational timetables or planning industrial processes. The
theory of scheduling is concerned with the modelling and solving of fun-
damental scheduling problems underlying the challenges appearing in
practice [131]. In this thesis, five scheduling problems stemming from
theory and practice are investigated.

This introductory chapter establishes important notions and concepts
underlying the results in this thesis. In Section 1.1, the notion of schedul-
ing problems is formally introduced and different variants of schedul-
ing problems considered in this thesis are discussed. In Section 1.2,
we introduce several notions of computational complexity. Section 1.3
introduces the concepts of approximation and online algorithms used in
this thesis. Section 1.4 gives a detailed outline of the remainder of this
thesis.

1

Chapter 1. Introduction

1.1 Scheduling Problems
The Merriam-Webster dictionary defines a schedule as “a procedural
plan that indicates the time and sequence of each operation” [119].
Finding such schedules is a challenge occurring in various applica-
tions. Imagine the following situation faced by a car rental company.
Each week the company has to clean its fleet of cars on a specific day.
Two employees are tasked with cleaning the fleet and each of them can
clean at most one car at the same time. The time it takes to clean each
car is known. Furthermore, each car imposes a cost per unit of time
for which it is unavailable (not cleaned yet). To solve this problem, the
car cleaning company must find an order in which the cars are cleaned
such that the total cost incurred by unavailability is minimized.

Modelling and solving problems of this form is the core challenge of
scheduling problems, which are a sub-family of combinatorial optimiza-
tion problems. In combinatorial optimization the goal is to find an
optimal solution out of a set of finite or countably infinite possible so-
lutions (we refer to Schrijver [142] or Korte and Vygen [101] for an
extensive introduction into combinatorial optimization).

The scheduling problems considered in this thesis are concerned with
processing n jobs on a set of m machines under some constraints so as
to maximize or minimize a given objective function. We denote the set
of jobs by J = [n], where [n] = {1, ..., n}. Similarly, we denote the set
of machines byM = [m], where [m] = {1, ...,m}. In order to classify
scheduling problems, Graham et al. [63] introduced the three-field nota-
tion. Here, a scheduling problem is defined by the machine environment,
the job characteristics and the optimality criterion represented as α|β|γ.

2

The first parameter α denotes the machine environment. This defines
the nature and implicit restrictions of the machines underlying the
scheduling problem. In this work we focus on the parallel machine en-
vironment, where n jobs need to be processed by one of m parallel
machines that may schedule one job at a time. Furthermore, process-
ing job j on machine i takes pij units of time. If the processing time
depends solely on the job itself, we denote it by pj . We distinguish
between the following types of parallel machine environments:

• Single machine environment (α = 1): There is a single machine
available and, hence, p1j = pj .

• Identical parallel machine environment (α = P): There are m
machines available and the processing time solely depends on
the job itself, i.e., pij = pj for all i and j.

• Uniform parallel machine environment (α = Q): There are m
machines available and the processing time of job j on machine
i depends on the job as well as the speed si of machine i. Hence,
pij = pj/si for all i and j.

• Unrelated parallel machine environment (α = R): There are m
machines available and pij can be arbitrary and job and machine
specific.

The number of machines can either be fixed or given as part of the in-
put. For the latter we add an indicating value m to the machine envi-
ronment, e.g., α = Pm for the setting of identical parallel machines.

The second field β denotes the job characteristics. Job characteristics can
be of diverse nature. On the one hand job characteristics may involve
job-specific information and on the other hand job characteristics may
involve relation between jobs or relations between jobs and machines.
A scheduling problem can entail multiple job characteristics at once.
Two examples of job characteristics considered in this thesis are:

• Release dates: If rj ∈ β, then for every job j a release date rj
denotes earliest point in time at which a job can be processed.

3

Chapter 1. Introduction

• Due dates: If dj ∈ β, then for every job j a due date dj defines a
point in time at which jobs should be completed and completion
before or after this point is subject to incurred penalty costs.

Many other types of job characteristics are studied in the literature (see,
e.g., [131]). One of these is preemption which allows for interrupting
the processing of a job and resuming it later (possibly on different ma-
chines). In this thesis, we focus on the non-preemptive setting in which
jobs are not allowed to be preempted. Note that whenever job charac-
teristics impose no additional constraints, these job characteristics are
omitted in the second field, e.g., if all jobs are released at time 0.

The final field γ indicates the optimality criterion of the problem. Vari-
ous types of optimality criteria appear in the literature. In this thesis,
the focus lies on optimality criteria concerned with job completion times
and criteria concerned with machine loads.

• Job completion optimality criteria: The completion time of a job Cj

is defined as the time at which job j has finished processing.
The criterion is defined as a function of job completion times
f(C1, . . . , Cn). Two well-studied optimality criteria of this form
are: (1) makespan minimization in which the goal is to mini-
mize the completion time of the final job, i.e., f(C1, . . . , Cn) =
maxj Cj , and (2) the sum of (weighted) completion times, i.e.,
f(C1, . . . , Cn) =

∑
j(wj)Cj .

• Machine load optimality criteria: The load of a machine Li is de-
fined as the sum of processing times assigned to this machine.
The optimality criterion is defined as a function of machine loads
f(L1, . . . , Lm). In absence of any additional restrictions (β = ∅),
makespan minimization is equivalent to minimizing the maxi-
mum machine load, i.e., f(L1, . . . , Lm) = maxi Li. Another ex-
ample is the Santa Claus problem in which the goal is to maxi-
mize the minimum machine load, i.e., f(L1, . . . , Lm) = mini Li.

This dissertation particularly focuses on problems of the types of deter-
ministic scheduling and scheduling with uncertainty.

4

1.1.1 Deterministic scheduling

Deterministic scheduling encompasses scheduling problems in which
all parameters are known and available without any degree of uncer-
tainty.

In this setting, a feasible schedule is an allocation of jobs to machines over
time satisfying all constraints. These constraints are implicitly given by
the machine environment as well as the job characteristics. The qual-
ity of a schedule is measured by the objective given by the optimality
criteria (γ). Depending on the type of criterion, an optimal schedule is a
feasible schedule minimizing or maximizing this criterion.

Recall the situation of the car rental company.

EXAMPLE 1.1: THE CAR CLEANING PROBLEM

Suppose the car rental company has two employees responsi-
ble for cleaning the fleet. Furthermore, assume that the whole
fleet is located at the station and each car can be cleaned at the
beginning of the day.
This problem can be modelled as P2||

∑
j wjCj as follows:

• α = P2: The fleet needs to be cleaned by two employees
with identical cleaning speeds.

• γ =
∑

j wjCj : The objective is to minimize total cost in-
curred by unavailability of cars.

5

Chapter 1. Introduction

1.1.2 Scheduling with Uncertainty

In contrast to deterministic scheduling, many real-world applications
face factors of uncertainty. For scheduling problems there are many
different types of uncertainty. On the one hand, the set of jobs may not
be fully available at once and jobs are revealed to the scheduler one-
by-one with the number of jobs not known in advance. On the other
hand, job specific information such as the processing times, may not be
known exactly and are better modelled using random variables rather
than deterministic values. Two major models for coping with uncer-
tainty in scheduling are stochastic scheduling and online scheduling.

In stochastic scheduling factors of uncertainty regarding the values of job
parameters are modeled. Whereas in deterministic scheduling the pro-
cessing times of jobs are assumed to be known, in stochastic scheduling
these are not certain and are subject to random fluctuations. For ex-
ample, only probability distributions underlying the processing times
could be known rather than the actual processing times. Although
Rothkopf [138] considered random processing times in the 1960s, the
field of stochastic scheduling only became active field in the 1980s [44].

Online scheduling is concerned with uncertainty regarding the avail-
ability of information on job parameters. In offline scheduling all in-
formation is available a priori and decisions can be made by taking into
account all job parameters. In online scheduling, however, this infor-
mation is revealed job-by-job and decisions must be made on the go.
These decisions can only take into account information that is available
so far. In online scheduling one distinguishes between the online-list
model and the online-time model as defined by Pruhs et al. [134]. In the
online-list model, job information is made available one by one at time
zero and decisions must be made irrevocably once a job is presented
to the scheduler. In the online-time model, job information is made
available upon the release dates of jobs and decisions can be delayed
beyond the release date but decisions concerning a specific job may not
be made before this job has been released.

6

Stochastic online scheduling, as introduced by Chou et al. [34] and Megow
et al. [118], combines these two frameworks of uncertainty. Here, job
processing times are only known in terms of underlying probability
distributions and these are presented in an online manner.

The dynamic nature of uncertainty demands for dynamic solution meth-
ods rather than a deterministic schedule. Therefore, the aim is to find
a stochastic online scheduling policy (SOS policy). Roughly, a stochastic
online scheduling policy defines a decision on which job to schedule at
any decision moment. We require a stochastic online scheduling policy
to be non-anticipatory. This means that each decision may only use in-
formation revealed up to this moment and no information about future
jobs nor about realized processing times of jobs that will be completed
in the future [118].

Consider the stochastic online variant of the car cleaning problem.

EXAMPLE 1.2: THE CAR CLEANING PROBLEM WITH UNCER-
TAINTY

Consider the car cleaning problem when each car is still located
at a customer’s location and will be returned to the station dur-
ing the day. In this situation, the rental company may face two
sources of uncertainty:

• Stochastic: The state of a car depends on various factors
such as the duration of the last rental period and the time
passed since the last time the car was cleaned. Therefore,
the time it takes to clean the car is subject to random fluc-
tuations.

• Online: The fleet is still located at customer locations and
no information is available before a car returns to the sta-
tion. Furthermore, a car can only be assigned to an em-
ployee and scheduled after it has arrived at the station.

In this SOS setting, the problem is denoted by P2|rj |E[
∑

j wjCj].

7

Chapter 1. Introduction

1.2 Computational Complexity
Optimization problems differ in terms of how difficult it is to find (op-
timal) solutions. Computational complexity theory is concerned with clas-
sifying (optimization) problems according to this difficulty.

In order to solve optimization problems, researchers develop algorithms.
An exact algorithm for an optimization problem is a computational
recipe that gives a step-by-step guideline for finding an optimal solu-
tion to any instance of that problem. The computational complexity
of a problem is closely related to the efficiency of the exact algorithms
known for this problem. This efficiency can be measured by the worst
case running time of the algorithm. Roughly speaking, this denotes the
time it takes an algorithm to find the solution in the worst possible
case. More formally, the running time of an algorithm is the worst case
number of elementary operations needed before the algorithm termi-
nates and returns an optimal solution. We are interested in finding the
relation between the running time of an algorithm and the size of the
input instance. The size of the input, denoted by |I|, is roughly the
number of bits needed to encode the instance.

A naive type of an exact algorithm is complete enumeration. However,
this often takes too much time in theory or practice. Consider for ex-
ample the car cleaning problem without release dates. Here the total
number of feasible schedules for cleaning n cars is 2n. This means that
the time it takes to find the optimal solution grows exponentially with
the number of cars needed to be cleaned. Hence, when applying this
technique for a large number of cars the rental company may have to
wait until the end of the day before knowing in which order to clean
the cars.

This motivates the development of efficient algorithms. In particular, we
are interested in algorithms whose running times can be bounded by a
polynomial in the input size.

8

Definition 1.1 (Polynomial time algorithm). Let Π be an optimization
problem and ALG an exact algorithm for Π. ALG is said to be a polynomial
time algorithm if there exists a polynomial p such that for every instance I of
size |I| the running time of ALG is bounded from above by p(|I|).

Consider the following variant of the car cleaning problem for which
a polynomial time algorithm exists.

EXAMPLE 1.3: CAR CLEANING PROBLEM WITH A SINGLE EM-
PLOYEE

Suppose that instead of two employees only one employee is
available to clean the fleet. This variant of the car cleaning prob-
lem can be modelled as 1||

∑
j wjCj . In this setting, cleaning cars

according to the famous Smith’s rule [150], which sorts the cars
in non-increasing order of the unavailability costs compared to
the time it takes to clean each car, finds an optimal schedule in
polynomial time.

In order to classify optimization problems according to their difficulty,
we distinguish between problems for which efficient exact algorithms
are known to exist and those for which no efficient exact algorithm is
known to exist and is deemed unlikely to exist. Before formalizing this
distinction, using the notion of hardness of optimization problems, we
first need to make a small excursion to the world of decision problems.

A decision problem is defined as a set of instances where each instance
is a either a “yes” or a “no” instance. The aim is to decide whether an
instance is a “yes” or a “no” instance. A certificate for an instance of a
decision problem is used to verify whether this instance is a “yes” in-
stance. An algorithm is said to solve a decision problem if it finds the
correct answer for any instance. Decision problems are closely related
to optimization problems. In particular, for a minimization (maximiza-
tion) problem the corresponding decision problem is defined by the in-
stance together with a value k and the question whether there exists a
feasible solution with objective value at most (at least) k. Note that an

9

Chapter 1. Introduction

(efficient) algorithm for the optimization problem can be used to solve
the corresponding decision problem. Analogously, under some mild
restrictions on the objective function, an efficient algorithm for the de-
cision problem combined with a binary search over all possible values
of k can be applied as an efficient algorithm for the optimization prob-
lem. Hence, the existence of efficient algorithms for an optimization
problem is closely linked to the existence of efficient algorithms for the
corresponding decision problem.

Towards the classification of decision problems the class NP has been
introduced, see, e.g., Garey and Johnson [59]. This class includes all
decision problems for which a “yes”-certificate can be verified in poly-
nomial time in the input size. A subclass of NP is the class P which
includes all decision problems for which an efficient exact algorithm
is known to exist. A famous open problem is to show whether or not
P = NP and it is strongly believed that P ≠ NP .

While the problems in P are known to be solvable in polynomial time,
for other problems in NP no such algorithm is known to exist. For
some of these problems, it can be shown that these are at least as
hard as other problems in the class NP . These are the so-called NP-
complete problems. Roughly speaking, the class ofNP-complete prob-
lems is the collection of the most difficult problems within the class
NP . More precisely, these problems can be transformed into any other
problem in NP such that the existence of an efficient algorithm for an
NP-complete problem would imply the existence of an efficient algo-
rithm for any problem in NP and, therefore, imply that P = NP . If
a decision problem is NP-complete even if the numeric values in the
input are bounded by a polynomial in the input size, we say that this
problem is NP-complete in the strong sense.

Whereas it suffices to develop an efficient algorithm to show that a
problem is in P , it is not sufficient to fail at developing such an algo-
rithm to prove that a problem is NP-complete. Instead, for this pur-
pose, we rely on polynomial reductions. A polynomial reduction is used
to show that a problem in NP with an unknown complexity status is

10

at least as hard as a problem which is known to be NP-complete. In
more detail, we consider a decision problem D1 in NP and an NP-
complete decision problem D2. If we can transform any instance of D2

into an equivalent instance of D1 in polynomial time and any solution
to D1 back into a solution to D2, then any efficient algorithm for D1

could be translated into an efficient algorithm for D2, which is not pos-
sible, unless P = NP . Therefore, D1 is at least as difficult as D2 and
also NP-complete.

Many decision problems have been shown to be NP-complete over
the years. Cook [36] laid the foundation of this by showing that the
satisfiability problem is NP-complete. Later, Karp [97] showed NP-
completeness of 21 fundamental decision problems. Since then many
more problems have shown to be NP-complete, see e.g., Garey and
Johnson [59].

Returning to the world of optimization problems, an optimization prob-
lem is said to be easy or solvable if the corresponding decision prob-
lem is in P . In contrast, an optimization problem is said to beNP-hard
if the corresponding decision problem is NP-complete. Furthermore,
an optimization problem is said to be strongly NP-hard if the deci-
sion problem isNP-complete in the strong sense. For the optimization
problem this implies that no pseudo-polynomial time exact algorithm ex-
ists, unless P = NP . A pseudo-polynomial time algorithm is one that
is polynomial if all numeric values in the input are bounded by a poly-
nomial in the input size.

Definition 1.2 (Pseudo-polynomial time algorithm). Let Π be an op-
timization problem and ALG an algorithm. ALG is said to be a pseudo-
polynomial time algorithm if there exists a polynomial p such that for every
instance I of size |I| with maximum numeric value ⟨I⟩ the running time of
ALG is bounded from above by p(|I|, ⟨I⟩).

We have seen that for a single employee the car cleaning problem is
in P . Let us now consider the setting with two employees or release
dates.

11

Chapter 1. Introduction

EXAMPLE 1.4: COMPUTATIONAL COMPLEXITY OF THE CAR

CLEANING PROBLEM

The decision version of the car cleaning problem can be formu-
lated as:

”Given an instance I of the car cleaning problem and an integer
k > 0, does there exist a feasible schedule with total weighted

completion time at most k?”

Bruno et al. [22] showed that this decision problem is NP-
complete via a reduction from the famous partition problem.
This implies that the car cleaning problem with two employees
is NP-hard. Thus, no polynomial time algorithm for finding an
optimal schedule exists, unless P = NP .

1.3 Approximation Algorithms

There are many alternative approaches to cope with NP-hard prob-
lems. The study of exact algorithms is concerned with the challenge
of developing algorithms that work well on realistic instances of the
problems but for which no polynomial running time is guaranteed.
Another popular direction of research is to consider special cases of
NP-hard problems and develop exact efficient algorithms for these.

In contrast to these approaches, the study of approximation algorithms
is concerned with developing algorithms that find solutions that are
provably close to the optimal solution. Two common paradigms of ap-
proximation are multiplicative approximation and additive approximation.
For an extensive introduction to approximation algorithms we refer to
the books by Williamson and Shmoys [169] or Vazirani [161].

The quality of a multiplicative approximation algorithm is measured in
relative terms compared to the optimal solution. Formally, a multi-
plicative approximation algorithm is defined as follows.

12

Definition 1.3 (Multiplicative approximation algorithm). Consider a min-
imization (maximization) problem Π. An algorithm ALG is a multiplicative
α-approximation with α > 1 (α < 1), if for any instance I of Π, ALG finds a
feasible solution with value at most (at least) α times the optimal value. Here,
α is called the multiplicative approximation guarantee of ALG.

Analogously to the concept of multiplicative approximation, the qual-
ity of an additive approximation algorithm is measured in absolute terms
compared to the optimal solution value.

Definition 1.4 (Additive approximation algorithm). Consider an opti-
mization problem Π and let ρ(I) > 0 be a quantity defined for every instance
I of Π. An algorithm ALG is an additive ρ(I)-approximation if for any in-
stance I of Π, ALG finds a feasible solution such that the absolute difference
between the value of this solution and the optimal value is at most ρ(I). Here,
ρ(I) is referred to as the additive approximation guarantee of ALG.

We are particularly interested in finding approximation algorithms for
which the running time is bounded by a polynomial in the input size.
The ultimate goal in both approximation paradigms is to reach approx-
imation guarantees as small as possible, i.e., α should be as close to 1
as possible or ρ(I) as close to 0 as possible. To formalize this quest, we
define the concept of approximation schemes.

For the setting of multiplicative approximation algorithms, a polyno-
mial time approximation scheme (PTAS) is a family of polynomial time
approximation algorithms such that for any approximation guaran-
tee a corresponding approximation algorithm is defined. Formally, a
PTAS is defined as follows.

Definition 1.5 (Polynomial time approximation algorithms (PTAS)).
Consider a minimization (maximization) problem Π. A polynomial time ap-
proximation scheme is a family of (1+ ϵ)-approximation algorithms ((1− ϵ)-
approximation algorithms) running in polynomial time for any fixed ϵ > 0.

13

Chapter 1. Introduction

We say that a PTAS is an efficient polynomial time approximation scheme
(EPTAS) if the running time is given as f(1/ϵ)poly(|I|), where f(1/ϵ) is
some (not necessarily polynomial) function depending on ϵ and poly(|I|)
is a polynomial function of the input size. If f(1/ϵ) is a polynomial
function, we refer to the approximation scheme as a fully polynomial
time approximation scheme (FPTAS).

In the setting of additive approximations, approximation schemes can
be defined in a similar fashion. Here, an approximation scheme is de-
fined as a family of additive ϵρ(I) approximation algorithms based on
a quantity ρ(I) referred to as the approximation parameter. More for-
mally, this is defined as follows.

Definition 1.6 (additive PTAS (add-PTAS)). Consider a minimization prob-
lem Π and let ρ(I) > 0 be a quantity defined for any instance I of Π. A
polynomial time additive approximation scheme is a family of additive ϵρ(I)-
approximation algorithms running in polynomial time for any fixed ϵ > 0.

Similar to PTASs, we say that a add-PTAS is an additive efficient poly-
nomial time approximation scheme (add-EPTAS) if the running time is of
the form f(1/ϵ)poly(|I|), where f(1/ϵ) is some (not necessarily polyno-
mial) function depending on ϵ and poly(|I|) is a polynomial function
of the input size. If f(1/ϵ) is a polynomial function, we refer to the
approximation scheme as a additive fully polynomial time approximation
scheme (add-FPTAS).

14

While for some problems the quest of finding polynomial time approx-
imation schemes has been successful, for other problems this has been
shown to be unreachable. In the study of the hardness of approxima-
tion we investigate the limitations of approximation algorithms. An
important implication of the complexity of an optimization problem
on the hardness of approximation, is that a strongly NP-hard prob-
lem does not admit an FPTAS nor an add-FPTAS, unless P = NP .
Hence, the best one can wish for here is the existence of an EPTAS or
an add-EPTAS. Moreover, for some optimization problems it has even
been shown that no polynomial time (additive) approximation algo-
rithm can achieve better approximation guarantees than some value
α∗ (ρ∗(I)), unless P = NP .

The study of approximation algorithms and hardness of approxima-
tion is an important and active pillar of the research within the field
of scheduling. Graham [61] derived a constant multiplicative approxi-
mation guarantee for makespan minimization on identical parallel ma-
chines which also yields an additive pmax approximation, where pmax

is the maximum processing time. For makespan minimization on iden-
tical parallel machines with m being a constant, Pm||Cmax, Sahni [140]
introduced a FPTAS. For the case that m is part of the input, P ||Cmax,
Hochbaum and Shmoys [80] developed PTAS. This was later improved
to an EPTAS, see e.g. Jansen et al. [90]. Due to P ||Cmax being strongly
NP-hard, this is the best one can achieve. A prominent example of a
problem which encounters limits of approximation is makespan mini-
mization on unrelated machines, for which Lenstra et al. [107] showed
that no polynomial time approximation algorithm can attain a guaran-
tee less than 3

2 , unless P = NP .

Recall the car cleaning problem. While for a single employee the prob-
lem without release dates can be solved in polynomial time, it turns out
to be NP-hard for two employees. However, scheduling jobs greedily
according to Smith’s rule turns out to find a provably good schedule
for any instance.

15

Chapter 1. Introduction

EXAMPLE 1.5: APPROXIMATION ALGORITHMS FOR THE CAR

CLEANING PROBLEM

Adapting Smith’s rule [150] to the setting of two employees
works as follows: we assign the next job to the employee
with the earliest possible starting time for this job. Kawaguchi
and Kyan [98] showed that this way we construct a sched-
ule with multiplicative approximation guarantee of (1 +

√
2)/2-

approximation in time O(n log n).

When uncertainty is taken into account, the notion of approximation
algorithms may be adapted. In stochastic online scheduling, where
the objective value of a policy is a random variable, we follow the def-
inition of Möhring et al. [122] of the performance guarantee of SOS poli-
cies. The performance guarantee compares the expected solution value
of an SOS policy with an optimal stochastic offline scheduling policy
which has access to all stochastic job information a priori.

Definition 1.7 (Performance guarantee in SOS). Let P be a stochastic
online scheduling problem with a minimization (maximization) objective and
let OPT (I) be the stochastic offline optimal policy for instance I . A stochastic
online scheduling policy Π is said to attain a performance guarantee of c with
c > 1 (c < 1) if for any instance I it finds a solution of expected value at most
(at least) c · E [OPT (I)]. We refer to c as the performance guarantee.

In addition to the performance guarantee, the asymptotic behavior of a
policy is of interest when assessing the quality of a policy. The asymp-
totic optimality of a policy implies that the performance guarantee goes
towards 1 as the instance increases.

Definition 1.8. Consider a stochastic online scheduling problem with a min-
imization (maximization) objective and let OPT (I) be the stochastic offline
optimal policy for instance I . Let Π be a stochastic online scheduling policy
with performance guarantee c. Π is said to be asymptotically optimal if

c
n→∞−−−→ 1

16

or equivalently
E [Π(I)]− E [OPT (I)]

E [OPT (I)]

n→∞−−−→ 0,

where n→∞ indicates that the number of jobs in instance I tends to infinity.
Here, E [Π(I)] is the expected objective of Π on instance I .

EXAMPLE 1.6: SOS POLICY FOR THE CAR CLEANING PROBLEM

Consider the stochastic online variant of the car cleaning prob-
lem in which cars are still located at customer locations and re-
turn to the station during the day. Megow et al. [118] consider
the following adaptation of Smith’s rule to this setting. When-
ever a car arrives at the station it is greedily assigned to one of
the employees. For each individual employees, a shifted version
of Smith’s rule is applied. This SOS policy yields a performance
guarantee of 1+max{1+ δ

α , α+δ+ ∆+1
4 }, where α is an arbitrary

parameter and δ and ∆ are parameters measuring the stochas-
ticity of the input.

1.4 Outline of Thesis
The research underlying this thesis entails the study of various schedul-
ing problems. Here, we summarize the main results and outline the
remainder of this thesis.

17

Chapter 1. Introduction

Chapter 2 is devoted to the study of load balancing problems on iden-
tical parallel machines under the additive approximation paradigm.
More precisely, we consider three different load balancing problem:
the classic scheduling problem of makespan minimization for which
the objective is to minimize the maximum machine load, the max-
min allocation problem in which we want to maximize the minimum
machine load and the envy-minimizing Santa Claus problem where
the goal is to minimize the difference between the maximum machine
load. The first two problems are well-studied from a multiplicative ap-
proximation perspective and (efficient) polynomial time approxima-
tion schemes exist [3, 30, 79, 89, 90, 109]. The third problem, how-
ever, does not admit any multiplicative approximation guarantee, un-
less P = NP , as it is strongly NP-hard to decide whether there ex-
ists a solution such that all machines have the same load [58]. For
all three problems, we devise additive approximation schemes with
ρ(I) = pmax being the maximum processing time of all jobs. In the
case of an arbitrary number of machines, we develop an add-PTAS.
Hereto, we first introduce a new mixed-integer linear programming
relaxation which integrally assigns slots to machines and fractionally
assigns jobs to slots. We identify structural properties of (near-)optimal
solutions leading to techniques to find such solutions in polynomial
time for any ϵ > 0. To complement this, we develop a local-search
algorithm inspired by the rounding techniques for the restricted as-
signment problem [91, 92, 155]. The local search technique considers
any feasible solution of the relaxation and returns an integral solution
such that the error introduced on each machine load is at most ϵ · pmax.
When the number of machines is fixed, we show that the techniques by
Sahni [140] and Woeginger [171] for FPTASs, can be adjusted to obtain
add-FPTASs.

In Chapter 3, we focus on a natural extension of makespan minimiza-
tion on identical parallel machines with a single common server intro-
duced by Hall et al. [72] and Kravchenko and Werner [103]. In this
context, jobs consist of a pre-processing and processing component.
While the processing component has to be executed on one of m identi-

18

cal parallel machines the pre-processing component has to be executed
by an external server which can serve at most one machine at a time.
Jobs must be executed non-preemptively without any interruption be-
tween pre-processing and processing. We generalize this problem by
considering a third job component (post-processing) which has to be
executed non-preemptively and without interruption on the server af-
ter the job has been processed on one of the machines. Moreover, we
combine this model with the concept of machine conflicts defining for
each pair of machines if they can access the server in parallel or not. As
done before by Chrobak et al. [35] and Höhne and van Stee [81], ma-
chine conflicts are represented as a conflict graph where two machines
are said to be conflicting if they are adjacent. We refer to this general-
ized problem as SMC. In this work, we restrict our attention towards
the special case where all three job components are equal to 1 for ev-
ery job (denoted by SMC-UNIT). By establishing a connection between
this problem and the task of finding a maximum induced bipartite sub-
graph of the conflict graph, we prove that SMC-UNIT on m machines
does not allow for a O(m1−ε)-approximation algorithm for any ε > 0.
Motivated by this inapproximability result, we consider special graph
classes. We translate polynomial time (approximation) algorithms for
finding maximum induced bipartite subgraphs into approximation al-
gorithms for SMC-UNIT implying approximation results for various
graph classes. Regarding the original setting considered in [72, 103],
we show that SMC-UNIT can be solved in polynomial time when the
conflict graph is complete. Most prominently, we devise a polynomial
time algorithm to solve SMC-UNIT on bipartite conflict graphs offer-
ing possible insights into obtaining stronger approximation results for
other graph classes. Finally, we generalize some of the results to the
more general setting of identical jobs by showing how to translate a
suitable collection of independent sets of the conflict graph into sched-
ules with a provable approximation guarantee.

Chapter 4 is concerned with a just-in-time scheduling problem with
quadratic penalties. Just-in-time scheduling has received a lot of at-
tention and has been studied in various settings [137]. We consider

19

Chapter 1. Introduction

the problem of minimizing the (weighted) squared deviation from a
common or distinct job due dates. We particularly focus on the special
case where all jobs have equal processing times. In the unweighted
setting, we show that the problem can be solved in polynomial time.
The algorithmic techniques to achieve this are based on structural in-
sights on optimal schedules on a single machine combined with the
optimality of so-called balanced schedules for the identical machine
environment. If the job weights are not all the same, we show that the
problem can be solved in polynomial time for a single common due
date if this due date is sufficiently large to allow jobs to be scheduled
(almost) symmetrically around it. If this is not the case, we present an
algorithm exponential in the number of machines. Finally, we consider
the weighted version on a single machine with a constant number of
different due dates and devise an add-FPTAS with ρ(I) = wmax being
the maximum job weight.

In Chapter 5, we turn our attention to a stochastic online scheduling
problem. More precisely, we consider the problem of minimizing to-
tal weighted expected completion time on a special case of uniform
parallel machines where each machine speed is either 1 or s > 1. Fol-
lowing the work of Megow et al. [118] for identical parallel machines
and Gupta et al. [67] for unrelated machines, we investigate the per-
formance of fixed assignment policies for the online-list as well as the
online-time model. Fixed assignment policies are a class of stochastic
online scheduling policies which first irrevocably assign each job to a
machine once it is presented to the scheduler and then use a single ma-
chine policy for each machine individually. We adapt and refine these
policies to the special case of uniform machines with two different
speeds. In the online-list model, we adapt the greedy fixed assignment
policies [67, 118] to the uniform parallel machine setting by taking into
account machine speeds. We derive a performance guarantee depend-
ing on the number of (fast) machines and the degree of variation un-
derlying the processing time distributions. Furthermore, we show that
this policy for the online-list model is asymptotically optimal under
the assumption that the expected processing times and weights are

20

bounded from above and below. For the online-time, model we in-
troduce a random fixed assignment policy and combine it with a sin-
gle machine policy introduced by Gupta et al. [67]. Finally, we com-
plement the theoretical investigation of the presented policies with a
computational study analysing the realized performance of the poli-
cies and comparing it to the theoretically expected performance.

Chapter 6 studies a scheduling problem with uncertainty occurring in
inland waterway transportation. Inland waterways play a significant
role in the transportation of goods [53]. An important aspect of the
coordination and management of inland waterways is the presence of
locks which are responsible for connecting river segments with differ-
ent water levels and transport vessels from one segment to the other.
We consider a velocity optimization problem from the perspective of
a single vessel facing stochastic waiting times at the lock. These wait-
ing times are due to uncertainty of the lock processing time of a sec-
ond vessel approaching the lock. The goal is to find find a choice of
velocities for any point in time such that our vessel crosses two river
segments connected by a lock and the total expected fuel consumption
is minimized. We formulate a mathematical model and develop two
solution techniques. The first technique is a pseudo-polynomial time
algorithm which finds a near-optimal solution and the second tech-
nique is a simple heuristic based on a fixed arrival time at the lock. To
evaluate these solution techniques, we conduct a computational study
regarding the efficiency in terms of fuel savings and the simplicity in
terms of implementation.

21

Chapter 1. Introduction

1.5 Publications
The work in this dissertation is based on the following publications.
Published:

• M. Buchem, L. Rohwedder, T. Vredeveld, and A. Wiese. “Ad-
ditive Approximation Schemes for Load Balancing Problems”.
In: 48th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2021). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik. 2021

• M. Buchem and T. Vredeveld. “Performance analysis of fixed
assignment policies for stochastic online scheduling on uniform
parallel machines”. In: Computers & Operations Research 125 (2021)

• M. Buchem, J. A. P. Golak, and A. Grigoriev. “Vessel velocity
decisions in inland waterway transportation under uncertainty”.
In: European Journal of Operational Research 296 (2022), pp. 669–678

Accepted for publication:

• M. Buchem, L. Kleist, and D. Schmidt genannt Waldschmidt.
“Scheduling with Machine Conflicts”. To appear in: Proceedings
of International Workshop on Approximation and Online Algorithms
2022 (WAOA 2022). A pre-published version can be found in [24].

22

Chapter 2

Additive approximation schemes
for load balancing on identical machines

2.1 Introduction
Load balancing problems are among the classical problems in the liter-
ature on approximation algorithms. This dates back to the seminal
work of Graham [61, 62] on the first approximation algorithms for
makespan minimization on identical parallel machines. In this chap-
ter, we particularly focus on a family of load balancing problems on
identical parallel machines. Formally, these problems are defined by a
set M of m identical parallel machines and set J of n jobs. For each
job j ∈ J a processing time pj is given and each job must be pro-
cessed exactly once while a machine may only process one job at a
time in a non-preemptive fashion. The task is to find an assignment
σ : J → M so as to minimize or maximize a given load balancing
function f(L1, . . . , Lm), where the load of machine i, denoted by Li, is
defined as the sum of the processing times assigned to machine i.

Parts of this chapter have been published in: M. Buchem, L. Rohwedder, T. Vrede-
veld, and A. Wiese. “Additive Approximation Schemes for Load Balancing Prob-
lems”. In: 48th International Colloquium on Automata, Languages, and Programming
(ICALP 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 2021

23

Chapter 2. Additive approximation schemes for load balancing on
identical machines

We consider the following three load balancing problems:

i Makespan minimization: The aim is to minimize the maximum ma-
chine load, i.e., f(L1, . . . , Lm) = maxi∈M Li. Recall that this is
denoted by Pm||Cmax or P ||Cmax when the number of machines
is constant or part of the input, respectively.

ii Max-min load: The aim is to maximize the minimum machine
load, i.e., f(L1, . . . , Lm) = mini∈M Li. This problem is also re-
ferred to as the Santa Claus problem in the restricted assignment
model [14].

iii Envy-minimizing Santa Claus problem: The aim is to minimize the
difference between the maximum and the minimum machine load,
i.e., f(L1, . . . , Lm) = maxi∈M Li −mini∈M Li. This problem also
appears as the minimum envy problem in the area of goods allo-
cation [112].

The problem of finding a schedule which assings the same load to each
machine is weakly NP-hard when the number of machines is con-
stant [59] and strongly NP-hard when the number of machines is ar-
bitrary [58]. Thus, the considered load balancing problems exhibit the
same complexity. The hardness of these problems has led to a lively
history of research on approximation algorithms and approximation
schemes.

Previous Work. Makespan minimization is a classical scheduling prob-
lems on parallel machines. The work on this problem dates back to the
first approximation algorithms introduced by Graham [61, 62]. Gra-
ham shows that the so-called LIST-scheduling algorithm, which greed-
ily assigns jobs one-by-one to the machine with the lowest load, yields
a multiplicative (2− 1/m) approximation. In his follow-up work, Gra-
ham [62] introduces a variant of LIST-scheduling which assigns jobs
in non-increasing order of processing times, the longest processing
time first (LPT) rule, and shows that this admits a multiplicative ap-
proximation guarantee of (4/3− 1/3m). When the number of machines

24

is constant, Sahni [140] developed a fully polynomial time approxi-
mation scheme (FPTAS) based on a dynamic programming algorithm
and an interval partitioning technique. This technique was later gen-
eralized by Woeginger [171]. For the setting where m is part of the
input, Hochbaum and Shmoys [80] introduced the first polynomial
time approximation scheme (PTAS). Their algorithm is based on the
dual approximation approach and runs in time O((n/ϵ)1/ϵ

2
). This re-

sult led to a lively chain of research on improving the running time
of the approximation scheme towards an efficient polynomial time ap-
proximation scheme (EPTAS), see e.g, [3, 30, 79, 89, 90, 109]. The lat-
est improvement is due to Jansen et al. [90]. They design an EPTAS
based on structural insights of the configuration-IP running in time
2O(1/ϵ log4(1/ϵ)) + poly(n). The configuration-IP (and its relaxation) have
been proven to be powerful tools in obtaining approximation algo-
rithms for scheduling and packing problems and date back to the work
of Gilmore and Gomory [60]. The result by Jansen et al. [90] settles the
gap to the lower bound on the running time of any EPTAS (unless the
Exponential Time Hypothesis (ETH) fails) shown by Chen et al. [30].

The objective of maximizing the minimum load was referred to as
the max-min allocation problem by Chakrabarty [28]. Deuermeyer et
al. [45] investigate the performance of LPT for this objective. Based
on a minimal counterexample analysis, they show that LPT yields a
multiplicative approximation guarantee of 3/4. Csirik et al. [38] later
showed that the exact multiplicative approximation guarantee of LPT
is (3m−1/4m−2). When the number of machines is a constant, the tech-
niques of Sahni [140] and Woeginger [171] can be used to construct
an FPTAS for this objective on identical machines as well. In case the
number of machines is part of the input, Woeginger [170] introduced
an (efficient) polynomial time approximation scheme. A similar result
is shown by Alon et al. [3] who prove the existence of EPTASes for a
general family of scheduling problems with load balancing objectives.
Following the same generalization, Jansen et al. [90] prove that their
EPTAS for makespan minimization can be extended to the objective of
maximizing the minimum machine load. In the restricted assignment

25

Chapter 2. Additive approximation schemes for load balancing on
identical machines

setting where each job can only be assigned to a subset of machines,
Bansal and Sviridenko [14] coined this problem as the Santa Claus prob-
lem. In this setting, various approximation algorithms are known (see,
e.g., [5, 6, 31, 40, 56, 69, 76]) and the currently best known result is a
polynomial time (4+ ϵ) multiplicative approximation due to Davies et
al. [40] and Cheng and Mao [31]. Recently, Haxell and Szabó showed
that the integrality gap of the configuration-LP is bounded from above
by roughly 3.534 [76].

The envy-minimizing Santa Claus problem has been considered before
by Lipton et al. [112] for the more general case of unrelated machines.
For this case they present an algorithm with an additive approximation
guarantee of maxi∈M,j∈J pij . Note that it is strongly NP-hard to decide
whether or not the envy is 0 [58]. Therefore, unless P = NP , there
cannot exist any polynomial time approximation algorithm with any
(multiplicative) performance guarantee.

While the majority of research has focused on finding multiplicative
approximation algorithms (or schemes), additive approximation algo-
rithms have only been considered for a small number of problems in
the literature. One of these is the well-studied bin-packing problem
where task is to pack a set of items into the least possible number
of bins with fixed capacity. Kamarkar and Karp [96] developed the
first additive approximation algorithm for this problem with an ap-
proximation guarantee of O(log2OPT), where OPT is the number of
bins in an optimal solution. Hoberg and Rothvoss [78] improved this
by presenting algorithm with an additive approximation guarantee of
O(logOPT) after an initial improvement to O(logOPT · log logOPT)
by Rothvoss [139]. Recently, in follow-up work of the results in this
chapter, Inoue and Kobayashi [86] presented an add-PTAS for max-
imizing Nash social welfare with identical additive valuations. The
Nash social welfare is measured as the geometric mean of the received
valuations of the agents (or in terms of machine scheduling the geo-
metric mean of the machine loads). Vizing’s algorithm [166] yields an
additive approximation of 1 for the graph coloring problem.

26

Our Contributions and Outline. In this chapter, we complement this
long history of research by approaching the considered load balanc-
ing problems under the additive approximation paradigm. We devise
additive approximation schemes with ρ(I) = pmax being the max-
imum processing time of all jobs. For the makespan minimization
and max-min load objectives this gives an improvement over multi-
plicative approximation schemes whenever the maximum processing
time is much smaller than the value of an optimal solution. For the
envy-minimizing Santa Claus problem, this demonstrates that addi-
tive approximation schemes can lead to non-trivial guarantees even
for problems for which no multiplicative guarantee is possible. While
a straightforward analysis of LIST-scheduling as well as LPT gives
an additive approximation guarantee of O(pmax) for all three prob-
lems, new techniques are needed to obtain additive approximation
schemes.

The main contribution of this chapter are additive polynomial time ap-
proximation schemes (add-PTASes) when the number of machines is
part of the input as well as additive fully polynomial time approxi-
mation schemes (add-FPTASs) when the number of machines is a con-
stant.

In Section 2.2, we take a closer look at the case where m is part of
the input and devise add-PTASes for this setting. The approximation
schemes for this setting are based on a generalization of the considered
load balancing problems. For this generalization, we introduce a new
mixed integer linear programming relaxation. In a first step, we derive
structural properties of solutions to this relaxation. These structural
properties provide insights for developing algorithmic techniques to
find these solutions. To complement these techniques we introduce a
rounding procedure based on a local search algorithm. This rounding
procedure finds an integral solution to the original such that the load of
each machine is close to the load of each machine in the solution to the
relaxation. In Section 2.3, we develop add-FPTASs following similar
techniques as Sahni [140] and Woeginger [171] for fixed m.

27

Chapter 2. Additive approximation schemes for load balancing on
identical machines

2.2 Additive approximation schemes for arbitrary
number of machines

In this section, we develop add-PTASes for makespan minimization,
the max-min load problem and the envy-minimizing Santa Claus prob-
lem when m is part of the input.

Before discussing the details of our algorithms, we first discuss the dif-
ficulties that standard techniques to obtain multiplicative approxima-
tion schemes face when aiming towards additive approximation guar-
antees. Two techniques that are commonly used by (E)PTASes (such as
the algorithm by Jansen et al. [90]) are the notion of small or large jobs
and rounding processing times such that only a constant number of
different processing times is considered. For the former, a job j is said
to be small if pj ≤ ϵOPT and large otherwise. This leads to the prop-
erty that in an optimal solution only a constant number of large jobs is
assigned to each machine. Therefore, methods based on enumeration
or integer programming in constant dimension such as Lenstra’s algo-
rithm [108] can be used after rounding or grouping job sizes. The final
schedule is obtained by greedily assigning small jobs. From an addi-
tive approximation point of view this is problematic if pmax < ϵOPT as
all jobs are greedily assigned giving an additive error of pmax > ϵpmax.
Adjusting this approach by defining a job j as a large job if pj > ϵpmax

fails since this does not guarantee that there are only a constant num-
ber of large jobs assigned to each machine in an optimal solution. The
rounding of processing times can be useful as it allows to apply tech-
niques known to solve the problem to optimally for a constant number
of different processing times [139]. However, when unrounding the
processing times an error of ϵ

∑
j pj > ϵpmax may be introduced on

each machine.

This underlines the need of new (non-trivial) machinery to obtain ad-
ditive approximation schemes. Hereto, we consider the corresponding
feasibility problem which we refer to as the target load balancing prob-
lem.

28

Definition 2.1. In the target load balancing problem we are given a set of
jobs J with a processing time pj for each j ∈ J and a set of machines M
with values ℓ, u. The goal is to find an assignment of jobs to machines such
that for every machine i ∈M it holds that Li ∈ [ℓ, u].

The target load balancing problem in combination with guesses on the
machine lower and upper bounds generalizes the considered load bal-
ancing problems. For example, for makespan minimization let ℓ = 0
and u = T with T being a guess of the maximum machine load. The
task is then to find a solution to the corresponding target load balanc-
ing problem for the smallest possible T which can be done via binary
search. Similarly, the target load balancing problem to generalizes the
max-min load and envy-minimizing Santa Claus problem.

In the remainder of this section, we develop a polynomial time algo-
rithm which for any ϵ > 0 either finds an approximate solution to the
target load balancing problem such that each machine load lies in the
interval [ℓ − ϵpmax, u + ϵpmax] or asserts that no feasible solution ex-
ists. This, in combination with guessing possible candidates of ℓ and
u yields add-PTASes for makespan minimization, the max-min load
problem as well as the envy-minimizing Santa Claus problem. We
start by introducing a new mixed integer linear programming relax-
ation for the target load balancing problem, which we refer to as the
slot-MILP. The slot-MILP can be regarded as a strengthened variant of
the assignment linear program which is shown below.∑

i∈M
xi,j = 1 ∀j ∈ J

ℓ ≤
∑
j∈J

pjxi,j ≤ u ∀i ∈M

xi,j ≥ 0 ∀j ∈ J , i ∈M

As it evenly distributes jobs to machines, the assignment-LP has an
integrality in O(pmax) which can be observed even for a single job.

29

Chapter 2. Additive approximation schemes for load balancing on
identical machines

To strengthen the assignment-LP, we introduce the additional require-
ment that for each group of jobs with similar processing times an in-
tegral number of jobs is assigned to each machine. In particular, we
first group jobs with similar processing times (without rounding) and
introduce integer variables denoting the number of slots for each job
group on each machine. Then, jobs are fractionally assigned to these
slots. More formally, the slot-MILP is defined as follows. Let I be
an instance of the target load balancing problem and ϵ > 0 such that
1/ϵ ∈ N. We define the slot-MILP for the target load balancing as fol-
lows. First, we group jobs according to their processing times into sets
J1, . . . ,J1/ϵ, where for k ∈ [1/ϵ] the set Jk contains all jobs j ∈ J with
pj ∈ ((k − 1)ϵ · pmax, kϵ · pmax]. Then, for each machine i ∈ M and
each job type k ∈ [1/ϵ], we introduce an integer variable yi,k denoting
the number of slots of type k assigned to i. Additionally, we introduce
fractional assignment variables xi,j for every i ∈M and j ∈ J .

∑
i∈M

xi,j = 1 ∀j ∈ J

ℓ ≤
∑
j∈J

pjxi,j ≤ u ∀i ∈M

∑
j∈Jk

xi,j = yi,k ∀i ∈M,∀k ∈ [1/ϵ]

xi,j ≥ 0 ∀j ∈ J , i ∈M
yi,k ∈ N0 ∀i ∈M, k ∈ [1/ϵ]

Since the number of integer variables depends linearly on the number
of machines, the application of techniques for MILPs with a constant
number of integral variables such as Lenstra’s algorithm [108] is not
possible. Instead, in Section 2.2.1 we derive a structural property of the
slot-MILP which gives insights for algorithmic techniques to find a fea-
sible solution. While this solution is feasible for the slot-MILP it may
still give a fractional assignment of jobs to machines. In Section 2.2.2

30

we introduce a rounding procedure which finds a solution to the slot-
MILP with an integral assignment of jobs such that the lower and up-
per bounds on the machine loads are violated by at most ϵpmax. This
rounding procedure is based on local search techniques introduced for
the restricted assignment problem [91, 92, 155] where jobs have restric-
tions on the machines they can be assigned to. In fact, the success-
ful application of this rounding procedure shows that the slot-MILP is
stronger than both the assignment-LP which has an additive integral-
ity gap of up to pmax and the configuration-LP which has an additive
integrality gap of at least OPT/1023 ≥ pmax/1023 [106]. In Section 2.2.3
we present an alternative structural property of the slot-MILP leading
to an improvement in the running time of the add-PTASes.

2.2.1 The first step towards the add-PTAS: Solving the
slot-MILP

The first task towards towards an add-PTAS is to either find a solution
to the slot-MILP in polynomial time or to assert that there is no feasible
solution to the instance of the target load balancing problem. In the fol-
lowing, we derive a structural property of the slot-MILP which allows
us to guess the integer slot variables and solve the remaining linear
program. To this end, for a given a solution (x, y), we define the slot
vector of machine i, denoted by yi, as the (1/ϵ)-tuple (yi,1, . . . , yi,1/ϵ).
Based on an argument by Eisenbrand and Shmonin [50] for bin-packing,
we show that there exists an optimal solution using only a small num-
ber of different slot vectors.

Lemma 2.2. If the slot-MILP is feasible, then there exists a solution (x, y)
such that for all i, i′ ∈M with yi ≡ yi′ mod 2 it holds that yi = yi′ .

Proof. Let (x, y) be a solution to the slot-MILP minimizing

∑
i∈M

1/ϵ∑
k=1

∥yi,k∥2. (2.1)

31

Chapter 2. Additive approximation schemes for load balancing on
identical machines

Suppose towards contradiction that there exist two machines with sim-
ilar but not equal slot vectors, i.e., there exist machines i1, i2 with
yi1 ≡ yi2 mod 2, but yi1 ̸= yi2 .

We will construct a new solution (x′, y′) with a lower value of the po-
tential function (2.1). The idea is to leave all machines other than i1
and i2 the same, while evenly distributing all jobs between i1 and i2.

Hence, for all j we set x′i,j = xi,j for all i /∈ {i1, i2} and x′i1,j = x′i2,j =
(xi1,j + xi2,j)/2. Furthermore, for all k we set y′i,k = yi,k for all i /∈
{i1, i2} and y′i1,k = y′i2,k = (yi1,k + yi2,k)/2. Now, we check that the
solution remains feasible. For every job j ∈ J , we have∑

i∈M
x′i,j = x′i1,j + x′i2,j +

∑
i/∈{i1,i2}

x′i,j

=
xi1,j + xi2,j

2
+

xi1,j + xi2,j
2

+
∑

i/∈{i1,i2}

xi,j

=
∑
i∈M

xi,j = 1.

Hence, all jobs are still fully assigned. Next, consider the machine
loads. For all machines i /∈ {i1, i2} the load does not change and, hence,
the load of machine i remains within [ℓ, u]. For i1 and i2 the new load
according to (x′, y′) is equal to the average of the loads according to
(x, y): ∑

j∈J
pjx

′
i1,j =

∑
j∈J

pjx
′
i2,j =

∑
j∈J

pj
xi1,j + xi2,j

2

=
1

2

∑
j∈J

pjxi1,j +
1

2

∑
j∈J

pjxi2,j

≤ u

2
+

u

2
= u,

32

and ∑
j∈J

pjx
′
i1,j =

∑
j∈J

pjx
′
i2,j =

∑
j∈J

pj
xi1,j + xi2,j

2

=
1

2

∑
j∈J

pjxi1,j +
1

2

∑
j∈J

pjxi2,j

≥ ℓ

2
+

ℓ

2
= ℓ.

Next, consider the integrality constraint, i.e., the correct number of jobs
must be assigned to every machine with respect to the slot variables.
Again, this remains true for all machines i /∈ {i1, i2} since neither the
assignment nor the slot variables change. Let k ∈ [1/ϵ]. Since yi1,k ≡
yi2,k, we have that yi1,k + yi2,k is even. It follows that∑

j∈Jk

x′i1,j =
∑
j∈Jk

x′i2,j =
yi1 + yi2

2

is integral. Thus, (x′, y′) is a feasible solution to the slot-MILP. Further-
more, since yi,1 ̸= yi,2, the triangle inequality implies the following for
at least one k:

∥y′i1,k∥2 + ∥y
′
i2,k∥2 = 2

∥∥∥∥yi1,k + yi2,k
2

∥∥∥∥
2

< ∥yi1,k∥2 + ∥yi2,k∥2.

As all other machines remain unchanged, we can conclude that (x′, y′)
has a lower value of the potential function (2.1) than (x, y).

This structural property allows us to find a solution to the slot-MILP
or assert that there is no solution in polynomial time.

Lemma 2.3. Let I be an instance of the target load problem. We can find
a feasible solution to the corresponding slot-MILP or assert that there is no
solution to I in time mO(21/ϵ) · nO(1/ϵ·21/ϵ).

33

Chapter 2. Additive approximation schemes for load balancing on
identical machines

Proof. By Lemma 2.2 we know that there is a feasible solution using
at most 21/ϵ many different slot vectors. Therefore, we may guess all
values of yi,k (up to permutations of machines) of the optimal solution
as follows. For each of the 21/ϵ necessary slot vectors we guess:

• The number of machines having this slot vector and

• for each k ∈ {1, ..., 1/ϵ} we guess the value of yi,k for each ma-
chine i ∈Mwith this slot vector.

Since the machines are identical, it suffices to guess the number of each
slot vector, rather than guessing the slot vector of each machine. The
total number of guesses is bounded by mO(21/ϵ) · nO(1/ϵ·21/ϵ). For each
guess, a linear program remains to be solved. This can be done in
polynomial time using known techniques [159, 160]. The running time
due to solving these linear programs gives an additional factor of nO(1)

which is dominated by the double exponential dependency in 1/ϵ. If
one of the guesses was correct, then the linear program must have a
feasible solution. Otherwise, we can assert that there is no feasible
solution to I.

2.2.2 The second step towards the add-PTAS: Rounding the
slot-MILP

The algorithm underlying Lemma 2.2 finds a solution to the slot-MILP.
However, this is not a feasible solution to the target load balancing
problem due to the fractional assignment of jobs. In this section, we
describe a rounding procedure which turns the feasible solution to the
slot-MILP into an integral assignment of jobs satisfying the initial slot
variables. The goal is to round the solution such that the target load
intervals are violated by at most ϵ · pmax for every machine.

The local search starts with an arbitrary assignment of jobs to machines
based on a solution (x, y) to the slot-MILP. Hereto, we can imagine
that each machine i ∈ M has yi,k slots for the jobs in Jk, for each
k ∈ {1, ..., 1/ϵ}. These slots are said to be of type k. Due to the fea-
sibility of (x, y), we have

∑
i∈M yi,k = |Jk| for every type k. Hence,

34

arbitrarily assigning yi,k jobs of type k to each machine i gives a feasi-
ble assignment satisfying the slot variables. This initial solution may
include machines whose loads are not in [ℓ − ϵ · pmax, u + ϵ · pmax].
We refer to a machine with load less than ℓ − ϵ · pmax as underloaded
and a machine with load more than u + ϵ · pmax as overloaded. Starting
from this initial assignment, we iteratively repair the solution by de-
creasing (increasing) the load of overloaded (underloaded) machines.
This is done in two stages. In the first stage, we repair all overloaded
machines while not decreasing the load on any machine too much en-
suring that no machine will become underloaded. In the second, stage
we repair all remaining underloaded machines and ensure that no ma-
chine becomes overloaded. It is important to remark that the rounding
procedure is not based on the assignment variables x but only on the
slot variables y. The assignment variables are, however, needed to en-
sure the existence of a fractional solution satisfying the slot variables.

In the following we give a detailed description and analysis of the first
stage of the local search procedure. The second stage is described in
Appendix 2.A and follows similar ideas and arguments.

The first stage: Repairing overloaded machines. As mentioned above,
the initial assignment of jobs to machines satisfying the load variables
may lead to some machines being overloaded. In this stage of the lo-
cal search, the load on these machines is decreased iteratively while
not making non-overloaded machines overloaded. To this end, in each
iteration the goal is to swap a job of type k currently assigned to an
overloaded machine with a smaller job of type k assigned to a non-
overloaded machine. We call the non-overloaded machines for which
such a pair can be found direct neighbors of overloaded machines. If
for some overloaded machines one of its direct neighbors has load at
most u, we may execute a swap. This swap decreases the load on the
overloaded machine while increasing the load of its direct neighbor.
However, since the load of the direct neighbor was at most u, we do
not create new overloaded machines. If, however, for all overloaded
machines all direct neighbors have load strictly more than u, we must

35

Chapter 2. Additive approximation schemes for load balancing on
identical machines

first decrease the load on one of these direct neighbors. Therefore, we
again search among all neighbours of these machines to find a swap-
pable pair of jobs. If such a pair exists and the neighboring machine
has load at most u we execute the swap and decrease the load of a
direct neighbor of an overloaded machine. Otherwise, we repeat the
procedure again. With this procedure, we eventually find a sequence
of swaps such that the load of the direct neighbor of some overloaded
machines is at most u and the desired initial swap can be executed. Fig-
ure 2.1 shows a visualization of a successful sequence of such swaps.

u+ εpmax

u

(a) Initial assignment and swaps.

u+ εpmax

u

(b) Assignment after first swap.

u+ εpmax

u

(c) Assignment after second swap.

u+ εpmax

u

(d) Final assignment.

Figure 2.1: Visualization of the first stage of local search procedure.

36

More formally, the first stage works as follows. As long as there is
at least one overloaded machine, let M1 be the set of all overloaded
machines. We define the direct neighbors of a machine i ∈ M1 as all
i′ ∈ M \M1 such that for some job type k ∈ {1, ..., 1/ϵ} there exists
a pair j, j′ with pj > pj′ such that j is assigned to machine i and j′ is
assigned to machine i′. We refer to such a pair j and j′ as a pair of
swappable jobs. LetM2 be the set of all direct neighbors of machines
in M1. Using the same definition we construct the set M3 including
the direct neighbors ofM2. Repeating this construction, the aim is to
find the smallest h such that for some machine inMh−1 there exists a
direct neighbor inMh with load at most u. For this pair of machines
we execute the swap of the corresponding swappable pair of jobs. Note
that for setMh, h − 1 can be seen as the distance between a machine
inMh and an overloaded machine inM1. Intuitively, we either find
a direct neighbor of an overloaded machine with load at most u and
execute a swap as to decreasing the load of the overloaded machine
or we find a machine closest to an overloaded machine as to eventu-
ally decrease the load on a direct neighbor of an overloaded machine.
Once a swap is executed, we repeat the procedure. In particular, we
do not reuse the constructed setsM1, . . . ,Mh+1 for the next swap but
instead we forget these sets before the next swap starts. Once there are
no more overloaded machines, the local search enters its second stage
where a similar procedure is used to repair all underloaded machines
(see Appendix 2.A). Note that in the first stage no machine becomes
underloaded as we only decrease the load of a machine with load at
least u. Hence, after decreasing the load this machine has load at least
u− ϵpmax.

In order to show the correctness and running time of the first stage of
the local search, we first prove that we can find a swappable pair of
jobs in polynomial time in any iteration.

Lemma 2.4. If there is an overloaded machine, there exists a pair of swap-
pable jobs j, j′ and finding such a pair can be done in time O(n2).

37

Chapter 2. Additive approximation schemes for load balancing on
identical machines

Proof. Consider an iteration of the first stage of the local search with
machine sets M1, . . . ,Mℓ. Suppose towards contradiction that there
exists no swappable pair of jobs. This means that for all job types k
there exists no pair j, j′ ∈ Jk such that j is assigned to a machine i ∈
Mℓ with load more than u+ ϵ · pmax and job j′ is assigned to a machine
i′ /∈ M1 ∪ . . . ∪ Mℓ and p′j < pj . If this is the case, the machines in
M1 ∪ . . . ∪Mℓ are assigned the smallest jobs of every job type k while
each having a load strictly more than u. Thus, the average load of these
machines is strictly larger than u implying that not even a fractional
assignment of all jobs can guarantee that the load of all these machines
is at most u. This gives a contradiction to the feasibility of the initial
solution to the slot-MILP.

In order to find a pair of jobs to swap we need to consider each pair of
jobs needs to be considered at most once. Hence, in the worst case we
have a running time of O(n2) for each iteration.

To complete the running time analysis of the first stage of the local
search procedure it remains to be shown that the number of total it-
erations can also be bounded by a polynomial in the input size. For
this purpose, we give an alternative formulation of the local search as
a repeated breadth-first search (BFS).

An alternative formulation of the local search procedure. We con-
struct a weighted, directed graph G = (V,A) representing the current
assignment of jobs to machines. We define V containing one special
vertex, the source s and one vertex for each slot such that |V |= n + 1.
Slot vertices are associated with a machine and a job group. Next, we
define the set of arcs A. First of all, for all slot vertices u, v ∈ V asso-
ciated with the same machine we introduce arcs (u, v) and (v, u) with
weight 0, i.e., vertices associated with the same machine form a clique.
Secondly, for v, w ∈ V we introduce an arc (v, w) with weight 1 if: (1) v
and w are not associated with the same machine, (2) v and w are associ-
ated with the same job type and (3) v is currently assigned a larger job
than w. Finally, we introduce arcs (s, v) of weight 0 for all v ∈ V being

38

associated with an overloaded machine. In each iteration, the algo-
rithm performs a BFS on the graph above starting in the source vertex.
Once a slot vertex on a machine with load at most u is reached, the al-
gorithm selects the arc (v, w) over which the machine was reached and
swaps the jobs assigned to the slots v and w. Note that the distance
between the source vertex and a slot vertex is the number of machines
needed to cross before reaching a machine with load at most u. This
procedure is repeated until no machine is overloaded. Figure 2.2 illus-
trates an iteration of the BFS algorithm in which a path from s to a slot
vertex on a machine with load at most u is found.

u+ εpmax

u

(a) Current assignment and path from s
to slot vertex

u+ εpmax

u

(b) Assignment after swapping last two
jobs on the path

Figure 2.2: Visualization of the breadth-first search

We next show that the distance between the source vertex and the slot
vertices does not decrease after a swap.

Lemma 2.5. In any iteration of the first stage of the local search procedure,
the distance from s to any other slot does not decrease by a swap.

Proof. Note that a swap reverses the direction of an arc. Let (v, w) be
the slots whose jobs were swapped. Then, the key idea of the proof is
that the distance in the original graph to w is equal to the shortest path
to v plus 1. After the swap, this shortest path is eliminated whereas
all other paths from s to w remain. Therefore, the distance from s to w
will not decrease. Furthermore, the distance from s to v did not change
due to the swap.

39

Chapter 2. Additive approximation schemes for load balancing on
identical machines

Formally, we observe how the graph changes when swapping two
jobs. Let d(w) denote the distance from s to some slot vertex w be-
fore the swap. Clearly, removing arcs from the graph cannot decrease
d(w) for any w ∈ V . Furthermore, arcs between slots of the same ma-
chine do not change and no new arcs are added from the source, since
no overloaded machines are created by a swap. Hence, it is sufficient
to look at the possible changes in arcs of weight 1. Although such an
arc (v, w) might be added to the graph, we will show that this happens
only when d(w) ≤ d(v) + 1. Therefore, adding such an arc cannot de-
crease any distances, since the first part of a shortest path using (v, w)
could always be replaced by a path to w without this arc.

Now we have to check that these are the only changes made to the
graph. Let v, w be the slots in which we exchange the jobs. The size of
the job in v decreases while the size of the job in w increases. We only
need to look at the incoming and outgoing arcs of v and w, since all
other arcs remain the same.

Consider the incoming arcs of v. Since the size of the job in v decreases,
there could be new incoming arcs. Let (w′, v) be an arc of weight 1 that
is added. This means the job in slot w′ has a larger size than the job on
v. Either w′ is a slot on the same machine as w or (w′, w) ∈ A before
the swap. The former case implies that d(w′) = d(w) = d(v) + 1. In the
latter case we have d(v) = d(w) − 1 ≤ d(w′). No outgoing arc from v
can be added, since the size of v’s job decreases.

For w, the reverse holds. Since the size of its job increases, no incoming
arc can be added. As for the outgoing arcs, let (w,w′) be an outgoing
arc added by the swap. Then either v and w′ are slots on the same
machine or (v, w′) was is in the graph before the swap. In the former
case, d(w′) = d(v) = d(w) − 1. In the latter case, d(w′) ≤ d(v) + 1 =
d(w).

Using Lemmas 2.4 and 2.5 we can bound the maximum number of
swaps necessary in the first stage of the algorithm. Intuitively, this is
due to the distance between the source vertex and a slot vertex being

40

equivalent to the distance between the machine corresponding to this
slot vertex and a slot on an overloaded machine. Since this distance is
bounded and does not decrease after a swap, the claim follows.

Lemma 2.6. The first stage of the local search terminates after at most O(n3)
swaps.

Proof. Let j1, . . . , jn be the jobs J in increasing order of size. Define
d(ji) as the distance from s to the slot to which ji is assigned. We claim
that the following potential function increases with every swap:

n∑
i=1

i · d(ji)

Since this function is integral and bounded by n3, this proves the lemma.
To prove the claim, let jk, jh be the jobs that are swapped. Assume that
k < h, i.e., pjk < pjh . Let d, d′ be the distance functions before and
after the swap. Based on Lemma 2.5 we know that d′(ji) ≥ d(ji) for all
i /∈ {k, h}, d′(jh) ≥ d(jk) and d′(jk) ≥ d(jh), since these jobs swapped
their slots. Hence, it follows that

k · d′(jk) + h · d′(jh) ≥ k · d(jh) + h · d(jk)
= k · d(jh) + (h− k) · d(jk) + k · d(jk)
> k · d(jh) + (h− k) · d(jh) + k · d(jk)
= h · d(jh) + k · d(jk).

Hence, the first stage of the local search procedure terminates after at
most O(n3) many iterations.

Following similar arguments as the proofs for the first stage, the sec-
ond stage of the local search procedure can be shown to run in polyno-
mial time as well (see Appendix 2.A). Hence, the total running time of
the local search procedure is given as follows.

41

Chapter 2. Additive approximation schemes for load balancing on
identical machines

Lemma 2.7. Given a solution to the slot-MILP, in time O(n5) we can com-
pute an integral solution to slot-MILP such that

∑
j∈J pjxi,j ∈ [ℓ − ϵ ·

pmax, u+ ϵ · pmax] for each machine i ∈M.

The polynomial time additive approximation scheme for the target
load balancing problem follows from Lemmas 2.3 and 2.7.

Theorem 2.8. There is an algorithm for the target load balancing problem
with a running time of mO(21/ϵ) ·nO(1/ϵ·21/ϵ) that computes an integral solu-
tion in which the load of each machine i ∈M is in [ℓ− ϵ · pmax, u+ ϵ · pmax],
or asserts that there is no feasible solution.

From this we obtain add-PTASes for the considered load balancing
problems based on guessing the machine target load intervals up to
multiples of ϵ · pmax. For makespan minimization we set ℓ = 0 and
guess u as a multiple of ϵ·pmax in the interval [1m

∑
j∈J pj ,

1
m

∑
j∈J pj+

pmax], where the upper bound follows from greedily assigning jobs to
machines. For the max-min problem, set u =

∑
j∈J pj and guess ℓ

within the interval [1m
∑

j∈J pj − pmax,
1
m

∑
j∈J pj], where the lower

bound follows from greedily assigning jobs to machines. For both
problems this amounts to a total of at most f(ϵ) = 1/ϵ guesses. For the
envy-minimizing Santa Claus problem we need to guess both ℓ and u
simultaneously from the intervals used for the max-min load problem
and makespan minimization, respectively. Hence, a total number of
f(ϵ) = 1/ϵ2 guesses is needed. This gives the following result.

Corollary 2.9. There exist additive polynomial time approximation schemes
(add-PTASes) for makespan minimization, the max-min load and the envy
minimizing Santa Claus problem with running time f(ϵ)·mO(21/ϵ)·nO(1/ϵ·21/ϵ).

42

2.2.3 Improving the running time of the add-PTAS

The running time of the add-PTASes based on Theorem 2.8 is f(ϵ) ·
mO(21/ϵ) · nO(1/ϵ·21/ϵ) and double exponential with respect to 1/ϵ. In the
following, we show how to improve the running time’s dependency on
1/ϵ. Since the running time of the local search procedure is independent
of 1/ϵ, this improvement must take place in the first step of the add-
PTASes, that is, solving the slot-MILP.

The key idea behind the improvement is to sacrifice the exactness of
the solution to the slot-MILP and allow it to slightly violate the target
load intervals. To this end, we introduce a weaker version of the target
load balancing problem with lower and upper bounds ℓ′ = ℓ− δ · pmax

and u′ = u + δ · pmax for some δ > 0. The corresponding weakened
version of the slot-MILP is referred to as slot-MILP’. We next show
that we can find a solution to slot-MILP’ in time m2(n

δϵ)
O(1/ϵ) or assert

that no solution to the slot-MILP exists.

First, we derive an alternative structural property of the slot-MILP.
Given a solution (x, y), we denote by zi,k the average size of jobs of
type k assigned to machine i such that

zi,k · yi,k =
∑
j∈Jk

pjxi,j .

This allows us to freely choose the value of zi,k when yi,k = 0. This
is important for the upcoming structural property. Furthermore, we
refer to as zi,k · yi,k as the total size of slots for type k on machine i.

Using these definitions, we show that there exists a solution the slot-
MILP such that for every job type k the average job sizes are non-
decreasing with respect to the machines. Furthermore, for any type
k and for every prefix of machines the total size of the jobs of type k
assigned to these machines is at least the total sum of processing times
of the smallest jobs which could be integrally assigned to the slots on
these machines. For each integer n′, let Jmin

k (n′) ⊆ Jk be the n′ small-
est jobs in Jk.

43

Chapter 2. Additive approximation schemes for load balancing on
identical machines

Lemma 2.10. If the slot-MILP is feasible, then there is a solution (x, y) and
a corresponding vector {zi,k}i∈M,k∈[1/ϵ] such that

ℓ∑
ℓ′=1

yℓ,kzℓ,k ≥
∑

j∈Jmin
k (y1,k+···+yℓ,k)

pj
∀k ∈ [1/ϵ]

∀ℓ ∈M
(2.2)

∑
i∈M

yi,kzi,k =
∑
j∈Jk

pj ∀k ∈ [1/ϵ] (2.3)

zℓ,k ≤ zℓ+1,k

∀k ∈ [1/ϵ]

∀ℓ ∈M \ {m}.
(2.4)

Proof. Let (x, y) be a feasible solution to the slot-MILP with correspond-
ing vector of average job sizes {zi,k}i∈M,k∈[1/ϵ]. Then, Conditions (2.2)
and (2.3) follow directly from the feasibility of (x, y) and the definition
of the average job sizes. Therefore, it remains to be shown that we can
find an ordering of machines such that Condition (2.4) holds. Since
we are considering identical machines this ordering corresponds to an
index rearrangement.

Let ẑ1 ≤ · · · ≤ ẑn̄ be an ordering of the n̄ = |{(i, k) : yik > 0}| values
zi,k for all i ∈ M, k ∈ [1/ϵ] with yik > 0. Assume that (x, y) is the
solution maximizing the following potential function

n̄∑
i=1

n2(m/ϵ−i)ẑi. (2.5)

We will now show that we can find an ordering of the machines such
that Condition (2.4) holds, or otherwise unless (x, y) does not maxi-
mize (2.5). Thus, giving a proof by contradiction.

Let i be the machine minimizing
∑1/ϵ

k=1 zi,k. Then, for all other ma-
chines i′ one of the following two conditions must be true: (1) zi,k ≤
zi′,k for all k ∈ [1/ϵ] or (2) zi,k > zi′,k for some k. If for all machines i′

44

condition (1) holds, we relabel machine i as machine 1. Otherwise, we
consider a machine i′ ̸= i such that for some k we have

zi,k > zi′,k (2.6)

Then, as i minimizes
∑1/ϵ

k=1 zi,k we know that there must exist k ̸= k
with

zi,k < zi′,k (2.7)

Due to the free choice of the value of the average size of jobs assigned,
whenever the number of slots for a certain job type on a machine is 0,
we know that yi,k, yi,k, yi′,k, yi′,k > 0.

We now gradually exchange jobs ofJk andJk between i and i′ without
changing the total load on either of the machines. By (2.6), there must
exist a pair j, j′ ∈ Jk with xi,j > 0, xi′,j′ > 0, and pj > pj′ . Conversely,
by (2.7), there are j, j

′ ∈ Jk with xi,j > 0, x
i′,j

′ > 0, and pj < p
j
′ . We

now change the solution using some δ, δ > 0 in the following way:

xi,j′ ← xi,j′ + δ x
i,j

′ ← x
i,j

′ + δ

xi,j ← xi,j − δ xi,j ← xi,j − δ

xi′,j′ ← xi′,j′ − δ x
i′,j

′ ← x
i′,j

′ − δ

xi′,j ← xi′,j + δ xi′,j ← xi′,j + δ

Clearly, for δ and δ sufficiently small each assignment variable remains
non-negative. Moreover, each job remains fully assigned and the sum
of the assignment variables of jobs of Jk and Jk assigned to i and i′

remains the same.

By setting δ = δ(pj − pj′)/(pj′ − pj) the load over each of the two
machines stays the same. Furthermore, as pj > pj′ and p

j
′ > pj we

have that δ, δ > 0. We choose δ maximal such that all x variables re-
main non-negative and the inequalities (2.6) and (2.7) still hold or turn

to equality. Hence, we decreased zi,k by
δ(pj−p′j)

yi,k
and zi′,k by

δ(pj−pj′)

yi,k
.

45

Chapter 2. Additive approximation schemes for load balancing on
identical machines

At the same time we increased zi,k by
δ(pj−pj′)

yi,k
and zi′,k by

δ(pj−p′j)

yi′,k
.

Since zi′,k and zi,k̄ (the respective smaller z-variables for i and i′ that

we change) increase by at least
δ(pj−p′j)

n and zi,k and zi′,k̄ decrease by at
most δ(pj−p′j), we have that (2.5) increases. This gives a contradiction.

Iteratively repeating this argument with the assumption that machines
[i0] are correctly sorted for some i0 ∈ M, we have that there exists a
solution (x, y) with vector {zi,k}i∈M,k∈[1/ϵ] such that Condition (2.4)
holds.

This structural property of the slot-MILP allows us to derive a result
for the weakened variant, the slot-MILP’, in which we allow machine
loads to violate the bounds by at most δpmax. Specifically, we show
that if there exist vectors {yi,k, zi,k}i∈M,k∈[1/ϵ] such that Conditions (2.2)
and (2.4) of Lemma 2.10 are satisfied, then there exists a solution to
slot-MILP’ and this solution can be constructed in polynomial time.

Lemma 2.11. Suppose that we are given slot and average load vectors vectors
{yi,k, zi,k}i∈M,k∈[1/ϵ] such that conditions (2.2) and (2.4) hold. Moreover,
assume that for each i ∈M it holds that

ℓ ≤
1/ϵ∑
k=1

yi,kzi,k ≤ u+ δpmax (2.8)

and for each k ∈ [1/ϵ] we have that the following holds∑
j∈Jk

pj ≤
∑
i∈M

yi,kzi,k ≤
∑
j∈Jk

pj + δϵ · pmax. (2.9)

Then we can compute a vector {xi,j}i∈M,j∈J in time O(mn2) such that
(x, y) is a solution to slot-MILP’.

Proof. Let the slot and average size vectors {yi,k, zi,k}i∈M,k∈[1/ϵ] be given.
We now construct a solution (x, y) to slot-MILP’.

46

First, we construct an assignment vector which satisfies the following
for all i ∈M and k ∈ [1/ϵ]:∑

j∈Jk

pjxi,j ≤ yi,kzi,k ≤ u+ δpmax. (2.10)

To this end, we make use of Condition (2.2) of Lemma 2.10. Based on
this property we iteratively construct the assignment vectors for each
job type k independently. First, we completely assign the smallest jobs
Jmin
k (y1,k) to machine 1, then Jmin

k (y1,k + y2,k) \ Jmin
k (y1,k) and so on.

Since this assignment does not necessarily satisfy the desired property
(2.10), we need to repair the property for i = 2, . . . ,m since machine 1
clearly satisfies (2.10) because of (2.2).

Let i ∈ {2, . . . ,m − 1} such that all machines 1, . . . , i satisfy (2.10). We
may assume that, when repairing machine i, machines 1, . . . , i contain
only Jmin

k (y1,k + · · · + yi,k) since we do not consider jobs currently
assigned to machines i+1, . . . ,m. If machine i satisfies (2.10)) we con-
tinue with i + 1. If this is not the case, we know that there exists a job
j ∈ Jk with pj > zi,k and xi,j > 0. Moreover, because of Condition (2.2)
we have

i∑
i′=1

∑
j∈Jmin

k (y1,k+···+yi,k)

pjxi′,j =
∑

j∈Jmin
k (y1,k+···+yi,k)

pj ≤
i∑

i′=1

yi′,kzi′,k.

(2.11)
Since i violates (2.10) there must be some i′ < i satisfying (2.10) with
strict inequality. In particular, there is a job j′ with pj′ < zi′,k ≤ zi,k <
pj and xi′,j′ > 0. We now choose an α > 0 and exchange j′ and j
between i and i′ as follows:

xi,j′ ← xi,j′ + α, xi′,j′ ← xi′,j′ − α,

xi,j ← xi,j′ − α, xi′,j′ ← xi′,j′ + α.

47

Chapter 2. Additive approximation schemes for load balancing on
identical machines

Clearly, the solution remains feasible since only jobs j and j′ are touched.
We choose α maximal such that either i′ satisfies (2.10) with equality, i
satisfies (2.10), xi,j = 0, or xi′,j′ = 0. This choice of α ensures that each
pair of jobs will be exchanged at most once. This procedure is repeated
until i satisfies (2.10). As the procedure is repeated for all i and possi-
bly has to check all pairs of every job type in each exchange we have a
running time of O(mn2).

It remains to be shown that for all i and k the following is true∑
j∈Jk

pjxi,j ≥ yi,kzi,k − δϵ · pmax. (2.12)

Suppose towards contradiction that for some machine i′ (2.12) does not
hold. Then, due to (2.10) and condition (2.3), we have that∑

j∈Jk

∑
i∈M

xi,jpj <
∑
i∈M

yi,kzi,k − δϵ · pmax <
∑
j∈Jk

pj . (2.13)

This, however, contradicts the fact that all jobs must be fully assigned.
Hence, we know that the constructed assignment vector satisfies (2.10)
and (2.12). Therefore, (x, y) is a feasible solution to slot-MILP’.

Based on Lemmas 2.10 and 2.12, we now introduce a dynamic pro-
gramming algorithm to find a solution to slot-MILP’. This, in combi-
nation with the local search procedure described in Section 2.2.2, leads
to faster polynomial time additive approximation schemes for the con-
sidered load balancing problems.

The main idea of the dynamic program is to compute slot and aver-
age load vectors {yi,k, zi,k}i∈M,k∈[1/ϵ] that satisfy the conditions due
to Lemma 2.11 such that we can compute a solution to slot-MILP’
in polynomial time. The key insight towards the dynamic program
is that when considering machine i in the ordering, we only need to
remember the number of previously assigned jobs from each set Jk,

48

the current left hand side of inequality (2.2) for each k and the vec-
tor {zi−1,k}k∈[1/ϵ] of the previously considered machine i− 1. Then, at
each iteration we guess the vectors {yi,k, zi,k}i∈M,k∈[1/ϵ] such that the
new solution consisting of the guess for machine i and the remembered
solution for machine i′ satisfies the conditions stated in Lemma 2.12. If
none of the guesses satisfies these conditions the DP cell corresponding
to this iteration remains empty.

More specifically, we introduce a dynamic programming table with
one cell for each combination of

• a value i ∈ M indicating the number of machines that have al-
ready been considered,

• a vector {zi,k}k∈[1/ϵ] where zi,k ∈
{
0, δϵn pmax,

2δϵ
n pmax, ..., pmax

}
for

k ∈ [1/ϵ]. The vector zi,k corresponds to the average loads on the
currently considered machine,

• a vector {yi,k}k∈[1/ϵ] where yi,k ∈ [nk] for each k ∈ [1/ϵ]. The
vector yi,k corresponds to the number of jobs on the currently
considered machine and

• for each k ∈ [1/ϵ]

– a value n′
k ∈ {0, ..., |Jk|} indicating the number of slots for

jobs of Jk that have already been assigned to machines,

– a value Sk with Sk ∈
{
0, δϵn pmax,

2δϵ
n pmax, ..., npmax

}
which

corresponds to the value
∑i

i′=1 yi′,kzi′,k.

Each cell corresponds to the subproblem of checking whether there is a
solution using machines [i] such that machine i is assigned yi,k jobs of
each type k with average load zi,k and for each type k a total number
of n′

k slots is assigned of a total volume of Sk. If such a solution exists
the corresponding cell is a true-cell. Otherwise, it is a false-cell. The
dimension of the dynamic program is given by m2 · (n

δϵ)
O(1/ϵ).

49

Chapter 2. Additive approximation schemes for load balancing on
identical machines

To recursively solve the dynamic program we proceed as follows. When
considering cell(

i, {zi,k}k∈[1/ϵ] , {yi,k}k∈[1/ϵ] ,
{
n′
k

}
k∈[1/ϵ] , {Sk}k∈[1/ϵ]

)
the dynamic program checks whether there exist vectors {z̃i−1,k}k∈[1/ϵ]
and {ỹi−1,k}k∈[1/ϵ] such that the entry of the dynamic program is true
in cell(

i− 1, {z̃i−1,k}k∈[1/ϵ] , {ỹi−1,k}k∈[1/ϵ] ,
{
ñ′
k

}
k∈[1/ϵ] ,

{
S̃k

}
k∈[1/ϵ]

)
,

where ñ′
k = n′

k − yi,k for each k ∈ [1/ϵ], and S̃k = Sk − yi,kzi,k for
each k ∈ [1/ϵ]. If this is the case, we must verify if for every k ∈
[1/ϵ] the currently total assigned load satisfies the right-hand side of
Condition (2.9) and the average slot vector is non-decreasing in the
machines:

Sk ≤ δϵ · pmax +
∑
j∈Jk

pj (2.14)

zi,k ≥ z̃i−1,k. (2.15)

If these conditions are true, then there exists a solution for the cell(
i, {zi,k}k∈[1/ϵ] , {yi,k}k∈[1/ϵ] ,

{
n′
k

}
k∈[1/ϵ] , {Sk}k∈[1/ϵ]

)
such that the order of the average loads as well as the upper bound of
the total assigned load is satisfied. To fill each individual cell in this
procedure takes (n

δϵ)
O(1/ϵ).

Finally, we consider the base case. For each possible combination of
vectors {zm,k}k∈[1/ϵ] {ym,k}k∈[1/ϵ] we check whether there exists a solu-
tion for the dynamic programming cell(

m, {zm,k}k∈[1/ϵ] , {ym,k}k∈[1/ϵ] ,
{
n′
k

}
k∈[1/ϵ] , {Sk}k∈[1/ϵ]

)
,

50

where all jobs are assigned and for every k ∈ [1/ϵ] we have that∑
j∈Jk

pj ≤ Sk ≤
∑
j∈Jk

pj + δϵ · pmax.

If such a solution exists we can use standard backward recursion to
find the corresponding slot and average size vectors for all machines.
Given this solution, we know by Lemma 2.11 that there is a solution
to the slot-MILP’ and the corresponding assignment variables can be
found in polynomial time. If there is no such solution we assert that
there is no solution to the original relaxation, i.e., to slot-MILP.

Lemma 2.12. For each δ > 0 there is an algorithm with a running time of
m2(n

δϵ)
O(1/ϵ) which either finds a δ-approximate solution to the slot-MILP

(and thus a feasible solution to slot-MILP’) or asserts that the slot-MILP is
infeasible.

Proof. The running time follows from the dimension of the dynamic
program and the time it takes to validate each specific cell. This amounts
to a total running time of m2(n

δϵ)
O(1/ϵ).

Regarding the correctness of the dynamic program two observations
are crucial. Firstly, due to conditions (2.14) and (2.15) and the way we
check whether a solution corresponding to a DP cell exists we have that
there exists a solution for machine i if and only if there is a solution for
machine i− 1. Hence, a solution can be found via backward recursion.
Secondly, if for some {zm,k}k∈[1/ϵ] and {ym,k}k∈[1/ϵ] there is a solution
for the cell(

m, {zm,k}k∈[1/ϵ] , {ym,k}k∈[1/ϵ] ,
{
n′
k

}
k∈[1/ϵ] , {Sk}k∈[1/ϵ]

)
,

Lemma 2.11 implies that there exists a feasible solution to the slot-
MILP’. If no such solution exists, this implies that there is also no so-
lution satisfying Lemma 2.10. Thus, there is no solution to the slot-
MILP.

51

Chapter 2. Additive approximation schemes for load balancing on
identical machines

In combination with Lemma 2.6 and choosing δ := ϵ, this dynamic
program yields a significant improvement on the running time of the
add-PTASes.

Theorem 2.13. There is an algorithm for the target load balancing problem
with a running time of m2nO(1/ϵ) that computes a solution in which the load
of each machine i ∈ M is in [ℓ− ϵ · pmax, u+ ϵ · pmax], or asserts that there
is no feasible solution.

Corollary 2.14. There exist additive polynomial time approximation schemes
(add-PTASes) for makespan minimization, the max-min load problem and
the envy-minimizing Santa Claus problem with a running time of f(ϵ) ·
m2nO(1/ϵ).

2.3 Improvement for constant number of machines

In this section, we consider the three load balancing objectives in the
setting where the number of machines is a constant rather than part
of the input. Here, we present additive fully polynomial time approx-
imation schemes (add-FPTASes). These approximation schemes are
based on an adjustment of the techniques introduced by Sahni [140]
and Woeginger [171].

For completeness, we first present the dynamic program introduced
by Sahni [140]. The idea of this dynamic program is to enumerate over
all possible load vectors of the form (L1, L2, ..., Lm). Hereto, the dy-
namic program iteratively constructs the set Sj including all unique
load vectors possible when considering a subset of jobs [j] for j ∈ J .
In a final step, the optimal solution can be found in Sn for each of
the problems by finding the load vector optimizing the corresponding
objective function. The running time of the dynamic program can be
bounded by O(nPm), where P =

∑
j∈J pj .

52

Algorithm 2.1 Dynamic Program for load balancing on identical par-
allel machines for constant m.

1: Initialization: S0 = {(0, ..., 0)};
2: for j = 1, ..., n do
3: Sj = ∅
4: for (L1, ..., Lm) ∈ Sj−1 do
5: for ℓ = 1, ...,m do
6: Sj = Sj ∪ {(L1, ..., Lℓ + pi, ..., Lm)}
7: end for
8: end for
9: end for

Following similar ideas as in [140, 171], we introduce a truncated dy-
namic program based on interval partitioning (see Algorithm 2.2).

Algorithm 2.2 Truncated dynamic program for load balancing on iden-
tical parallel machines with constant m.

1: Initialization:
2: Ŝ0 = {(0, · · · , 0)}.
3: I0 = {0}, Iℓ =

(
(ℓ− 1)Pϵ

n2 , ℓ
Pϵ
n2

]
for 1 ≤ ℓ ≤ ⌈n2

ϵ ⌉.
4: for j = 1, . . . , n do
5: Ŝj = ∅.
6: for (L1, . . . , Lm) ∈ Ŝj−1 do
7: for ℓ = 1, · · · ,m do
8: Let k1, . . . , k

p
ℓ , . . . , km be such that

9: (L1, . . . , Lℓ + pj , . . . , Lm) ∈ Ik1 × · · · × Ikpℓ
× · · · × Ikm .

10: if Ŝj ∩ Ik1 × · · · × Ikpℓ
× · · · × Ikm = ∅ then

11: Ŝj = Ŝj ∪ {L1, · · · , Lℓ + pj , · · · , Lm}.
12: end if
13: end for
14: end for
15: end for

53

Chapter 2. Additive approximation schemes for load balancing on
identical machines

Intuitively, the main idea is to decrease the number of unique load
vectors that are considered while ensuring that for every possible load
vector a representative with similar individual loads is found. Hereto,
we partition the set of possible values for each Li into a polynomial
number of sub-intervals (line 3 of Algorithm 2.2). Then, for each com-
bination of sub-intervals we only store one representative of the possi-
ble load vectors (line 9 of Algorithm 2.2).

We show that the truncated dynamic program is indeed the basis of
a fully polynomial time additive approximation scheme. To this end,
we first prove that for any possible load vector found by the dynamic
program, the truncated dynamic program includes a load vector such
that on each machine the load deviates by at most ϵpmax. The proof
follows along the same lines as the results in [140, 171]. We still include
it for completeness.

Lemma 2.15. Let I be an instance of a load balancing problem on parallel
identical machines with jobs J . Consider the sets of load vectors S0, . . . Sm

and Ŝ0, . . . , Ŝm computed by the dynamic program and the truncated dy-
namic program, respectively. Then the following holds: For every j = 0, . . . , n
and (x1, . . . , xm) ∈ Sj there exists (x̂1, ..., x̂m) ∈ Ŝj such that

xh − j
Pϵ

n2
≤ x̂h ≤ xh + j

Pϵ

n2
∀h ∈M.

Proof. We prove the claim by induction on j. Clearly, for j = 0 we have
that S0 = Ŝ0 and the claim is true. Suppose the claim holds for some j
and let (x1, . . . , xm) ∈ Sj+1. Then, we must distinguish two cases:

• Case 1: If (x1, . . . , xm) ∈ Sj+1 ∩ Sj , we have that there exists
(x̂1, ..., x̂m)) ∈ Ŝj such that the statement holds and (x̂1, ..., x̂m) ∈
Ŝj ∩ Ŝj+1. So the claim holds for j + 1 as well.

• Case 2: If (x1, . . . , xm) ∈ Sj+1\Sj , then we know that ∃(y1, ..., ym) ∈
Sj such that for some ℓ ∈ {1, ...,m} we have that yℓ = xℓ − pj+1

and yh = xh for h ̸= ℓ.

54

We now show that the claim is true for ℓ = 1; for all other ℓ
the same argument holds. By assumption, the claim is true for
i and, thus, there exists (ŷ1, ..., ŷm) ∈ Ŝi such that yh − iPϵ

n2 ≤
ŷh ≤ yh + iPϵ

n2 , for h = 1, . . . ,m. If, in the (j + 1)-th iteration,
Algorithm 2.2 adds (ŷ1+ pj+1, ..., ŷm) to Ŝj+1, then we know that
the following inequalities need to be true:

ŷ1 + pj+1 ≤ y1 + j
Pϵ

n2
+ pj+1 = x1 + (j + 1)

Pϵ

n2
,

ŷ1 + pj+1 ≥ y1 − j
Pϵ

n2
+ pj+1 = x1 − (j + 1)

Pϵ

n2
.

Furthermore, for h = 2, . . . ,m, we have that yh = xh and thus it
follows that xh − (j + 1)Pϵ

n2 ≤ ŷh ≤ xh + (j + 1)Pϵ
n2 .

If (ŷ1+pj+1, ..., ŷm) is not added to Ŝj+1, then there already exists
a representative of the intervals corresponding to this solution
in Ŝj+1. Hence, there exists (z1, . . . , zm) ∈ Ŝj+1 such that ŷ1 +
pj+1 − Pϵ

n2 ≤ z1 ≤ ŷ1 + pj+1 +
Pϵ
n2 and for h = 2, . . . ,m we have

ŷh − Pϵ
n2 ≤ zh ≤ ŷh +

Pϵ
n2 . In this case we have

z1 ≤ ŷ1 +
Pϵ

n2
+ pj+1 ≤ y1 + (j + 1)

Pϵ

n2
+ pj+1 ≤ x1 + (j + 1)

Pϵ

n2
,

z1 ≥ ŷ1 −
Pϵ

n2
+ pj+1 ≥ y1 − (j + 1)

Pϵ

n2
+ pj+1 ≥ x1 − (j + 1)

Pϵ

n2
.

For all h ∈ {2, ...,m}we have:

zh ≤ ŷh +
Pϵ

n2
≤ xh + (j + 1)

Pϵ

n2

zh ≥ ŷh −
Pϵ

n2
≥ xh − (j + 1)

Pϵ

n2

Following the same argument for ℓ ∈ {2, ...,m}, the claim holds.

55

Chapter 2. Additive approximation schemes for load balancing on
identical machines

Lemma 2.15 together with the fact that for each Ŝj we have that |Ŝj |≤
n2m

ϵm and the truncated dynamic program taking n iterations, we obtain
a fully polynomial time additive approximation scheme. Note that,
once Algorithm 2.2 has been executed, the best solution can be found in
time O(n2m/ϵm) for any of the considered load balancing problems by
checking set Ŝn with respect to the corresponding objective function.

Theorem 2.16. There exists a fully polynomial time additive approximation
scheme for makespan minimization, the max-min load problem and the envy-
minimizing Santa Claus problem with a running time of O(n

2m+1

ϵm).

Remark 2.17. The dynamic program can be truncated for any ρ(I) which
is polynomial in the number of jobs and machines such that the load
on each machine varies by at most ϵρ(I). This implies an add-FPTAS
with respect to any such ρ(I).

56

Appendix

2.A Details of second stage of local search
procedure: Repairing underloaded machines

In the following, we give a complete description and analysis of the
second stage of the local search. The second stage starts with the cur-
rent solution after finishing the first stage and performs an analogous
procedure to repair underloaded machines, i.e., all machines whose
load is currently lower than ℓ− ϵpmax.

This is done in an iterative manner by increasing the load of these ma-
chines. For this purpose, we defineM1 to be the set of all underloaded
machines i ∈ M. We define the direct neighbors of a machine i ∈ M1

as all i′ ∈ M \M1 such that for some job type k ∈ [1/ϵ] there exists a
pair of jobs j, j′ with pj < pj′ such that j is assigned to machine i and
j′ is assigned to machine i′. This pair is referred to as a pair of swap-
pable jobs. LetM2 be the set of all direct neighbors of machines inM1.
Using the same idea we construct the setM3 of all direct neighbours
ofM2 and repeat this procedure until we find the smallest h such that
there exists a machine in Mh−1 with a direct neighbor in Mh whose
load is at least ℓ. Given this pair of machines we execute the swap of
the corresponding swappable pair of jobs. Similarly to the first stage,
the distance between an underloaded machine and a machine inMh

can be seen as h − 1. Intuitively, we either immediately increase the
load of an underloaded machine or we try to find the closest machine
with a load at least ℓ and use it to increase the load of a machine that
is one set closer to an underloaded machine. Then, eventually, we can
execute a swap between an underloaded machine and one of its direct
neighbors. Once a swap is executed, we repeat the procedure by start-
ing over withM1. Once there are no more underloaded machines, the
local search procedure terminates. Since we only increase the load of
machines with load at most ℓ no machines become overloaded. The
second stage algorithm terminates once it has found an assignment in

57

Chapter 2. Additive approximation schemes for load balancing on
identical machines

which no machine is underloaded anymore. Thus, in the final assign-
ment all machine loads are within [ℓ− ϵ · pmax, u+ ϵ · pmax].

Similarly to the first stage of the local search, we can show that there
always exists a pair of swappable jobs as long as there is at least one
underloaded machine in the second stage.

Lemma 2.18. If there is at least one underloaded machine, there exists a pair
of swappable jobs j, j′ and finding such a pair can be done in time O(n2).

Proof. Suppose towards contradiction that we can not find a swap-
pable pair of jobs in some iteration. Then, for all job types k there
exists no pair j, j′ ∈ Jk such that j is assigned to a machine i ∈ Mℓ

with load less than ℓ − ϵ · pmax and job j′ is assigned to a machine
i′ /∈ M1 ∪ . . . ∪ Mℓ and p′j > pj . If this is the case, the machines in
M1 ∪ . . . ∪Mℓ are assigned the largest jobs of every job type k while
each having a load strictly less than ℓ. Thus, the average load of these
machines is strictly less than ℓ implying that not even a fractional as-
signment of all jobs can guarantee that the load of all these machines
is at least ℓ. This gives a contradiction to the feasibility of the initial
solution to the slot-MILP.

To find a pair of jobs to swap we need to consider each pair of jobs
needs to be considered at most once. Hence, in the worst case we have
a running time of O(n2) for each iteration.

To finalize the proof of the running time of the second stage of the
local search, we again provide an alternative formulation as a BFS al-
gorithm. We can define the graph G in a similar fashion. The key
difference is the nature of the arcs. We add an arc (v, w) for to slot ver-
tices v, w ∈ V if: (1) v and w are not associated with the same machine,
(2) v and w are associated with the same job type and (3) v is currently
assigned a smaller job than w. Furthermore, we introduce arcs (s, v) of
weight 0 for all v ∈ V being associated with an underloaded machine.
The remaining graph remains the same as for the first stage.

58

In each iteration the algorithm starts at the source vertex and searches
for a path towards a vertex v on a machine with load at least ℓ to per-
form a swap of the jobs associated with the last two vertices along the
path.

Lemma 2.19. In any iteration of the second stage of the local search proce-
dure, the distance from s to any other slot does not decrease by a swap.

Proof. Let d(w) denote the distance from s to slot w before a swap.
Clearly, removing arcs does not decrease the distance from s to any
vertex. Arcs between slots of the same machine do not change and
we do not add new arcs from the source to a machine since we only
decrease the load on machines with load at least ℓ and, hence, do not
decrease any machine load below ℓ − ϵ · pmax. So we only have to
consider the changes in arcs of weight 1. Such an arc (u, v) might be
added to the graph but only when d(v) ≤ d(u)+1. Adding this arc will
not decrease any distances, since the first part of a shortest path using
(u, v) can always be replaced by a path to v not using (u, v). We have
to check that these are the only changes made to the graph.

Let u and v be the slots in which we exchange the jobs. This implies
that the size of the job assigned to slot u increases and the size of the
job assigned to slot v decreases. Next we look at the incoming arcs of
u and outgoing arcs of v (all others remain the same). As the size of
the job assigned to slot u increases there could be a new incoming arc
from slots with smaller jobs. Let (w, u) be such an arc. Then either
slot w is on the same machine as v or (w, v) was an arc with weight 1
before the swap. The former case implies that d(w) = d(v) = d(u) + 1
and in the latter case d(u) = d(v) − 1 ≤ d(w). In both cases we have
that d(u) ≤ d(w) + 1 which satisfies the property above. Next consider
the new outgoing arcs of v. Let (v, w) be such an arc. Then the size
of the job assigned to w is larger than the job assigned to v which was
originally assigned to u. So, either u and w are on the same machine
and d(w) = d(u) = d(v) − 1 or (u,w) was an arc of weight 1 in the
original graph and d(w) ≤ d(u) + 1 = d(v).

59

Chapter 2. Additive approximation schemes for load balancing on
identical machines

Lemma 2.20. The second stage of the local search terminates after at most
O(n3) swaps.

Proof. Let j1, . . . , jn be the jobs in J in decreasing order of size. We
claim that the potential

n∑
i=1

i · d(ji)

increases with every swap. Let jk and jh be the jobs that were swapped
and assume that k < h, i.e. pjk > pjh . This implies that the arc from
the slot of jh to jk was deleted and new arcs were constructed as de-
scribed above. Let d and d′ be the distances before and after the swaps,
respectively. Based on Lemma 2.19 we have that d′(ji) ≥ d(ji) for all
i /∈ {h, k}, d′(jh) ≥ d(jk) and d′(jk) ≥ d(jh). Furthermore, we know
d(jk) > d(jh). From this it follows that

kd′(jk) + hd′(jh) ≥ kd(jh) + hd(jk)

= kd(jh) + (h− k) · d(jk) + kd(jk)

> kd(jh) + (h− k) · d(jh) + kd(jk)

= hd(jh) + kd(jk)

This concludes the proof.

60

Chapter 3

Makespan minimization on identical
parallel machines with machine conflicts

3.1 Introduction
In practice, scheduling problems on parallel machines appear with
various additional restrictions on the machine environment. One such
restriction plays a role whenever jobs need to be pre- and/or post-
processed on a common server before and after being processed on
one of the parallel machines. This arises in manufacturing and or lo-
gistical processes in which machines are served by a single robot or
automated guided vehicle which is responsible for loading and un-
loading machines and can only serve one machine at a time [72, 93].
Another example where machines are served by a common server is
where jobs must be moved into and out furnaces before and after heat-
ing processes [172].

This chapter is adapted from: M. Buchem, L. Kleist, and D. Schmidt genannt Wald-
schmidt. “Scheduling with Machine Conflicts”. In: CoRR abs/2102.08231 (2021).
The joint work has been accepted for publication in the Proceedings of International
Workshop on Approximation and Online Algorithms 2022 (WAOA 2022). The results
will also appear in the doctoral thesis of Daniel Schmidt genannt Waldschmidt.

61

Chapter 3. Makespan minimization on identical parallel machines
with machine conflicts

In this chapter, we consider a natural generalization of the parallel ma-
chine scheduling with a single common server introduced by Hall et
al. [72] and Kravchenko and Werner [103] by relaxing the assumption
that only one one of the machines can access the server at a time. We do
so by extending this problem with the notion of machine conflicts. We
say that a pair of machines cannot be served simultaneously if the two
machines are in conflict with each other. Conflicts of this type occur in
environments with spatial limitations or resource restrictions regard-
ing the server. In the following, we give a formal definition. We then
proceed to give an overview of related work and the contributions of
this chapter.

Problem Definition. An instance of SCHEDULINGWITHMACHINECON-
FLICTS (SMC) is defined by a set of jobs J (with n := |J |) and a set of
machinesM (with m := |M|) with a conflict graph G = (M, E) where
a pair of machines i, i′ ∈ M is said to be in conflict with each other
if and only if {i, i′} ∈ E. Each job is associated with three process-
ing components: a pre-processing time

↼

bj , a processing time pj and a
post-processing time

⇀

bj . The pre- and post-processing of jobs is done
externally on a single server and the processing of jobs is done on one
of the parallel machines. We also refer to the pre- and post-processing
time of a job as its first and second blocking time. The total duration of
a job is referred to as its system time and defined as qj =

↼

bj + pj +
⇀

bj .
The order of the three job components must be maintained and jobs
may not be interrupted at any point, i.e., a feasible schedule must be
non-preemptive. Furthermore, a schedule Π must be conflict free:

• For each point in time, every machine processes at most one job,

• for every edge {i, i′} ∈ E and two jobs j, j′ ∈ J assigned to
machines i and i′, respectively, the intervals of the blocking times
of j and j′ do not overlap interiorly in time. In other words, for
every edge {i, i′} ∈ E the server pre- or post-processes at most
one job assigned to one of the two machines at the same time.

62

Given a schedule Π the completion time of a job is defined as the time
at which the server has finished post-processing this job. The goal is
to find a conflict free schedule of minimum makespan, i.e., the max-
imum completion time of all jobs. We denote the optimal makespan
by OPT. SMC is a generalization of the classical problem of makespan
minimization on parallel machines in two ways: the introduction of
pre- and post-processing and the introduction of a conflict graph. More
specifically, makespan minimization on identical parallel machines is
a special case of SMC where either

↼

bj =
⇀

bj = 0 for all jobs or E = ∅.

Related Work. Parallel machine scheduling with a common server was in-
troduced by Hall et al. [72] and Kravchenko and Werner [103]. In its
original setting, jobs must be processed non-preemptively with a sin-
gle server being responsible for pre-processing of jobs. Moreover, the
server can only process one job at a time. Specifically, this problem
is equivalent to SMC where G is a complete graph and

⇀

bj = 0 for all
jobs j. Since this problem is a generalization of the classical makespan
minimization problem on identical parallel machines, it is known to
be weaklyNP-hard for a fixed number of machines and stronglyNP-
hard for an arbitrary number of machines [59].

To investigate the computational complexity of the parallel machine
scheduling problem with a common server, multiple special cases have
been considered. Hall et al. [72] take a closer look at the special case of
unit serving times (

↼

bj = 1 ∀j) on two identical parallel machines and
show that it is weakly NP-hard. Furthermore, they also show that the
special case with identical serving times (

↼

bj =
↼

b ∀j) is strongly NP-
hard even on two identical parallel machines [72]. Kravchenko and
Werner [103] prove that the case with unit serving times is strongly
NP-hard when the number of machines is arbitrary. Brucker et al. [21]
show that the special case with identical processing times (pj = p ∀j)
is weakly NP-hard even for a fixed number of machines.

From an algorithmic point-of-view multiple special cases have been
considered as well. Kravchenko and Werner [103] introduce a pseudo-
polynomial time algorithm for the case of

↼

bj = 1∀j and m = 2. Ab-

63

Chapter 3. Makespan minimization on identical parallel machines
with machine conflicts

dekhodaee and Wirth [1] develop an exact polynomial time algorithm
for the special case where for any pair of jobs j and j′ we have pj ≤ sj′ .
Furthermore, the special case with unit processing times, i.e., pj = 1∀j,
can be solved in linear time [72]. Xie et al. [172] extend this model to
a single server responsible for both pre- and post-processing of jobs.
This problem is equivalent to SMC with Km as the conflict graph. They
show that if preemption is allowed between the processing and post-
processing of jobs the longest processing time rule introduced by Gra-
ham [62] yields an approximation guarantee of 3/2 − 1/2m. Jiang
et al. [93] consider this problem on two machines in the fully non-
preemptive setting and derive approximation guarantees of 12/7 and
4/3 for list scheduling and the longest processing time rule, respec-
tively.

Other scheduling models which take into account external pre- and/or
post-processing of jobs are the master-slave scheduling problem intro-
duced by Kern and Nawijn [99] and termed by Sahni [141] and schedul-
ing with segmented self-suspension with a single self-suspension segment
introduced by Rajkumar et al. [136]. In the master-slave scheduling
problem a job consists of three components: two processing segments
which must be executed in the right order on a master machine and
one intermediate segment for which a sufficient amount of slave ma-
chines is available. The aim is to minimize the makespan. In schedul-
ing with segmented self-suspension a job consists of two computation
segments and a suspension interval. The second computation seg-
ment of a job can only start after the length of the suspension interval
has passed since the completion of the first computation segment. An
overview of the relation between the two problems and approximation
algorithms for special cases were shown by Chen et al. [30].

64

Machine conflicts were considered by Chrobak et al. [35] for the on-
line problem of buffer minimization in a multiprocessor environment.
Here, conflicting processors are not allowed to process jobs at the same
time. The problem is shown not to admit any non-trivial approxima-
tion guarantees for general conflict graphs in the offline setting [35]. In
the online setting, approximation algorithms for various special graph
classes have been developed [35, 81].

The notion of conflicts in parallel machine scheduling has been consid-
ered in terms of job conflicts with two types of restrictions:

• conflicting jobs are not allowed to be scheduled on the same ma-
chine (JC-INTRA), or

• conflicting jobs are not allowed to be scheduled concurrently on
different machines (JC-INTER).

Bodlaender and Jansen [17] show that JC-INTRA is NP-hard even for
unit time jobs on bipartite conflict graphs. For bipartite graphs and
graphs with bounded treewidth, Bodlaender et al. [19] develop ap-
proximation algorithms. Das and Wiese [39] consider JC-INTRA where
the conflict graph is a collection of cliques and introduce a PTAS.

Different types of problems fall under the classification of JC-INTER:
mutual exclusion scheduling problem (MES), scheduling with conflicts
and scheduling with agreements where an agreement graph is the com-
plement of a conflict graph. In mutual exclusion scheduling (MES),
unit processing jobs have to be scheduled on identical parallel ma-
chines such that two conflicting jobs may not be scheduled concur-
rently. Baker and Coffman [11] showed that MES is NP-hard for gen-
eral graphs and even for m = 3 with unit processing time jobs. The
computational complexity of MES has been further investigated for
various graph classes, see, e.g, [11, 16, 18, 168, 57, 74]. In the case of
bipartite graphs, for example, MES remainsNP-hard [18], while it be-
comes polynomial time solvable for a fixed number of machines [11,
18, 74]. Even et al. [54] consider JC-INTER for non unit jobs on two

65

Chapter 3. Makespan minimization on identical parallel machines
with machine conflicts

machines with few job types. They develop an approximation algo-
rithm when pj ∈ {1, 2, 3} and show that the problem is APX-hard
when pj ∈ {1, 2, 3, 4} even for bipartite conflict graphs [54]. For com-
plements of bipartite graphs, Bendraouche and Boudhar [15] showed
NP-hardness with few job types. Mohabeddine and Boudhar [121]
showed that JC-INTER is NP-hard on complements of trees and solv-
able in polynomial time for complements of caterpillars or cycles.

Our Contributions. In this chapter, we mainly focus on the special
case of SMC with unit jobs (

↼

bj = pj =
⇀

bj = 1∀j), denoted by SMC-
UNIT, and its generalization with identical jobs (

↼

bj =
↼

b , pj = p,
⇀

bj =
⇀

b
∀j) which we denote by SMC-ID.

In Section 3.2, we introduce some preliminary notions and graph theo-
retical concepts used in the remainder of the chapter. In Section 3.3 we
use these concepts to establish a relationship between SMC-UNIT and
finding a maximum induced bipartite subgraph of the conflict graph.
Based on this connection, we derive an inapproximability result for
SMC-UNIT on general conflict graphs. Complementary, we develop
exact and approximation algorithms for different special graph classes.
In Section 3.4.1 we develop approximation algorithms for graph classes
for which a maximum induced bipartite subgraph or an approxima-
tion of it can be found in polynomial time. In Section 3.4.2 we present
exact polynomial time algorithms for various special graph families.
Most prominently, we present a polynomial time algorithm when the
conflict graph is bipartite. Additionally, we show that the problem
can be solved in polynomial time on complete conflict graphs. In Sec-
tion 3.5, we turn our attention towards the more general case of SMC-ID

and generalize the approximation algorithms developed in Section 3.4.1.

3.2 Preliminary Notions

In the following, we formally define the concepts of maximum indepen-
dent sets and maximum induced bipartite subgraphs. These are later used
to construct schedules as well as deriving a lower bound on the opti-
mal makespan.

66

A maximum independent set of a graph G is a subset of the vertices such
that there is no edge between any two vertices in the subset. More
formally, a maximum independent set is defined as follows.

Definition 3.1 ((Maximum) independent set). Let G = (V,E) be a graph.
A set of vertices I1 ⊆ V is an independent set if for any pair of vertices u, v
we have that {u, v} /∈ E. An independent set of maximum cardinality is re-
ferred to as a maximum independent set and we denote by α1(G) the size of a
maximum independent set of G.

Similarly, a maximum induced bipartite subgraph of G is an induced sub-
graph whose vertex set consists of two disjoint independent sets.

Definition 3.2 ((Maximum) induced bipartite subgraph). Let G = (V,E)
be a graph. Two disjoint independent sets of vertices I1, I2 ⊆ V form an in-
duced bipartite subgraph of G. We say that I1 and I2 form a maximum in-
duced bipartite subgraph if the cardinality of their union is maximized. We
denote by α2(G) the size of a maximum induced bipartite subgraph of G.

We use the concepts of maximum independent sets and maximum in-
duced bipartite subgraphs to define a class of subschedules which we
later use for both algorithmic purposes as well as proving the inap-
proximability for SMC-UNIT on general conflict graphs.

Definition 3.3 (1-Pattern). Consider an instance I of SMC-UNIT and let
G = (V,E) be a conflict graph. Let I1 be an independent set of G. A partial
schedule of length 3 starting at time t is called a 1-pattern on I1 if on each
machine i ∈ I1, there is one job starting at time t. If I1 is a maximum
independent set, we refer to the corresponding 1-pattern as an A-pattern.

Definition 3.4 (2-Pattern). Consider an instance I of SMC-UNIT and let
G = (V,E) be a conflict graph. Let I1, I2 be the vertex sets of an induced
bipartite subgraph of G. A partial schedule of length 4 starting at time t is
called a 2-pattern on I1 and I2 if on each machine i ∈ I1, there is one job
starting at time t and on each machine i ∈ I2 there is one job starting at time
t + 1. If I1 and I2 form a maximum induced bipartite subgraph, we refer to
the corresponding 1-pattern as a B-pattern.

67

Chapter 3. Makespan minimization on identical parallel machines
with machine conflicts

A visualization of A- and B-patterns is given in Figure 3.2.1. Here,
machines are represented by vertices of the conflict graph and the pat-
terns are depicted as Gantt charts over time. In Figure 3.2.1b, the pre-
and post-processing time of a job is visualized in dark gray and the
processing time in light gray.

(a) Example of a conflict graph for 5 machines: maximum independent set
(middle) and maximum induced bipartite subgraph (right).

(b) A-Pattern on maximum independent set I1 (middle) and B-pattern using
vertex set of maximum induced bipartite subgraph (right).

Figure 3.2.1: Example of maximum independent set and maximum induced
bipartite subgraphs and corresponding 1- and 2-Patterns.

3.3 Unit Jobs: Inapproximability for general
conflict graphs

In the following, we prove an inapproximability result by establishing
a relation between SMC-UNIT and the problem of finding a maximum
induced bipartite subgraph. More formally, we show the following
result.

Theorem 3.5. For any ε > 0, there exists no O(m1−ε)-approximation for
SMC-UNIT on general conflict graphs, unless P = NP .

68

To prove this result, we first derive a lower bound on the optimal
makespan for SMC-UNIT. To this end, we derive a lower bound on any
feasible schedule by establishing a connection between a conflict free
schedule for SMC-UNIT and an induced bipartite subgraph of the con-
flict graph. More specifically, given a contlict-free schedule Π, we ex-
tract an induced bipartite subgraph of G such that the makespan of Π
is bounded from below by a function of n and the size of the extracted
induced bipartite subgraph. Here, we make use that for unit jobs we
can restrict ourselves to schedules with integer starting times.

Lemma 3.6. Let Π be a feasible schedule of an instance of SMC-UNIT with
conflict graph G. Then, we can extract an induced bipartite subgraph of G of
size βΠ

2 in time O(n) such that the makespan of Π is bounded from below as

∥Π∥≥ 3 · ⌈n/βΠ
2 ⌉.

Proof. Let Π be a feasible schedule of an instance of SMC-UNIT with
conflict graph G. Let t ∈ Z and consider the interval [t, t + 3). We
first show that for any such interval, the machines starting a job in this
interval form an induced bipartite subgraph of G. Denote byMi the
machines starting a job at time t+ i for i = 0, 1, 2. Clearly, no machine
can start 2 jobs in this interval and, hence, the setsM0,M1 andM2 are
disjoint. Furthermore, the sets M0 and M2 form an independent set
since the post-processing time of jobs on machines M0 fully overlap
with the pre-processing time of jobs on machines M2. Since the ma-
chines inM1 form an independent set as well, we have thatM0,M1

andM2 form the vertex set of an induced bipartite subgraph (see Fig-
ure 3.3.1). Using this argument for all such intervals for any t ∈ Z,
we define βΠ

2 as the largest of the induced bipartite subgraphs we can
extract over all intervals. As the makespan of any schedule is at most
3n, this can be done in time O(n).

69

Chapter 3. Makespan minimization on identical parallel machines
with machine conflicts

t t+ 1 t+ 2 t+ 3

M0

M1

M2

Figure 3.3.1: Visualization of upper bound of jobs starting in interval [t, t+3).

It remains to be shown that we can bound the makespan of Π as a
function of n and βΠ

2 . Hereto, we divide Π into intervals of length 3
starting at time 0. By the argument above, at most βΠ

2 jobs start in
each interval. This means that the number of necessary intervals of
length 3 to process all jobs is at least ⌊n/βΠ

2 ⌋. Moreover, if βΠ
2 does not

divide n, at least one job of length 3 starts after time 3⌊n/βΠ
2 ⌋. Therefore,

∥Π∥≥ 3 · ⌈n/βΠ
2 ⌉.

As for any feasible schedule Π the size of the extracted induced bi-
partite subgraph is at most the size of a maximum induced bipar-
tite subgraph in G, the following lower bound holds for the optimal
makespan.

Corollary 3.7. Let Π be a feasible schedule of an instance of SMC-UNIT

with conflict graph G. Then, the optimal makespan for scheduling n jobs is
bounded from below by

OPT ≥ 3n

α2(G)
.

Using Lemma 3.6 and Corollary 3.7, we prove Theorem 3.5.

70

Proof of Theorem 3.5. Consider an instance of SMC-UNIT with n jobs and
conflict graph G such that α2(G) ≥ n. Suppose for the sake of contra-
diction that for some κ > 0 and some ε > 0 there exists a polyno-
mial time algorithm ALG with multiplicative approximation guaran-
tee κm1−ε. Then we know that the makespan of ALG is bounded from
above by

∥Π∥≤ (κm1−ε) ·OPT.

Furthermore, by Lemma 3.6 we know that

∥Π∥≥ 3
n

βΠ
2

,

where βΠ
2 is the induced bipartite subgraph extracted from Π. More-

over, constructing a schedule containing only B-patterns on a maxi-
mum induced bipartite subgraph of G gives an upper bound on the
optimal makespan of

OPT ≤ 4

⌈
n

α2(G)

⌉
≤ 8

n

α2(G)
,

where the second inequality follows from α2(G) ≥ n. Combining these
bounds yields

βΠ
2 ≥

3n

∥Π∥
≥ 3n

κm1−ε ·OPT
≥ 1

κm1−ε
· 3
8
· α2(G).

As βΠ
2 can be computed in time O(n), this yields a polynomial time

O(mε−1)-approximation algorithm for the problem of finding a maxi-
mum induced bipartite subgraph contradicting [75, 116, 174].

3.4 Unit Jobs: Exact and approximation algorithms
for special cases

Motivated by the inapproximability result for SMC-UNIT for general
conflict graphs, we closer investigate special graph classes.

71

Chapter 3. Makespan minimization on identical parallel machines
with machine conflicts

In the following, we first show how to utilize B-patterns (2-patterns)
to translate maximum (approximate) induced bipartite subgraphs into
exact (approximation) algorithms for SMC-UNIT (Section 3.4.1). We
then turn our attention towards finding exact polynomial time algo-
rithms for specific graph classes (Section 3.4.2).

3.4.1 From (maximum) induced bipartite subgraphs to
(near)-optimal schedules

Whereas the inapproximability result holds for general graph classes,
we now show that if the maximum induced bipartite subgraph of a
conflict graph is given, then constructing a schedule using only B-
patterns on this maximum induced bipartite subgraph leads to a sched-
ule with a constant multiplicative approximation guarantee. Thus, this
implies a polynomial time approximation algorithm for any conflict
graph class for which we can find a maximum induced bipartite sub-
graph in polynomial time.

Theorem 3.8. Consider an instance of SMC-UNIT with n jobs on a conflict
graph G. Let I1 and I2 be the vertex sets of a maximum induced bipartite
subgraph of G. Then we can find a schedule Π in polynomial time such that

∥Π∥≤ 4

3
OPT.

Proof. We construct Π by using only B−patterns on I1 and I2 (and pos-
sibly deleting some of the last jobs to ensure that exactly n jobs are
processed). This yields a makespan of at most

∥Π∥≤ 4

⌈
n

α2(G)

⌉
.

Then, by Lemma 3.7 it follows that

∥Π∥≤ 4

3
3

⌈
n

α2(G)

⌉
≤ 4

3
OPT.

72

Similarly, we can derive a polynomial time approximation algorithm
for SMC-UNIT for graph classes for which a polynomial time approx-
imation algorithm for finding the maximum induced bipartite sub-
graph exists.

Theorem 3.9. Consider an instance of SMC-UNIT with n jobs on a conflict
graph G. Let I1 and I2 be the vertex sets of an approximate induced bipartite
subgraph of G with size β2(G) ≥ γα2(G), where γ < 1. Then we can
construct a schedule Π in polynomial time such that

∥Π∥≤ 8

3γ
OPT.

Proof. In order to construct Π, we use 2-patterns on I1 and I2. Note
that in the final 2-pattern it might be necessary to delete some jobs
such that the correct number of jobs is processed. The makespan of Π
is then bounded from above by

∥Π∥≤ 4

⌈
n

β2(G)

⌉
.

To obtain the approximation guarantee we must distinguish two cases.
First, if n ≤ β2(G) (and n ≤ α2(G)), then

∥Π∥≤ 4

3
· 3 ≤ 4

3
OPT.

Otherwise, if n > β2(G) then we have that⌈
n

β2(G)

⌉
≤ 2

n

β2(G)
≤ 2

γ

n

α2(G)
.

Hence, this yields the following upper bound on the makespan of Π:

∥Π∥≤ 4

3

2

γ

3n

α2(G)
≤ 8

3γ
OPT.

73

Chapter 3. Makespan minimization on identical parallel machines
with machine conflicts

3.4.2 Unit Jobs: Exact algorithms for special graph classes

In the following, we improve upon the approximation algorithms pre-
sented in the previous subsection and develop exact polynomial time
algorithms for two special graph classes: complete graphs and bipartite
graphs.

SMC-UNIT with complete conflict graphs

Complete conflict graphs are of special interest since SMC with com-
plete conflict graphs is equivalent to the problem of scheduling on
identical parallel machines with a single server responsible for pre-
and post-processing introduced by Xie et al. [172] and Jiang et al. [93].
We show that for SMC-UNIT on complete conflict graphs there exists
an optimal schedule using only two distinct machines. Hence, SMC-
UNIT on a complete conflict graph is equivalent to SMC-UNIT with a
single edge as a conflict graph.

Lemma 3.10. Consider an instance of SMC-UNIT with n jobs, m ≥ 2 ma-
chines and a complete graph Km as a conflict graph. An optimal schedule can
be computed in time O(log n) and it coincides with an optimal schedule with
respect to conflict graph K2 of makespan 4⌊n/2⌋+ 3(n mod 2).

Proof. Let Π be a feasible schedule for SMC-UNIT with n jobs, m ≥ 2
machines and a complete graph Km as a conflict graph. We will first
refine the lower bound of Lemma 3.7. To this end, consider some time
t ≥ 0 and letMi be the set of machines starting a job at time t + i for
i = 0, 1, 2, 3. Then, as the conflict graph is complete we know that each
of these sets is at most of size 1. Furthermore, ifM0 ̸= ∅, thenM2 =
∅ as otherwise the post-processing time of the job starting at time 0
overlaps with the pre-processing time of the job starting at time 2. The
reverse holds if M2 ̸= ∅ and, therefore, |M0 ∪ M2|≤ 1. Following
a similar idea, the same can be shown for M1 and M3. Thus, in an
interval of length 4 at most 2 jobs start, yielding a lower bound of

OPT ≥ 4
⌊n
2

⌋
+ 3(n mod 2).

74

We now argue that constructing a schedule Π consisting only of B-
patterns and (possibly) one final A-pattern matches this lower bound.
If n mod 2 = 0, we need exactly n/2B-patterns to process all jobs and
if n mod 2 = 0 one additional job is processed on either of the two
machines starting at time 4⌊n/2⌋. Hence, Π has a makespan of

4
⌊n
2

⌋
+ 3(n mod 2).

Thus, an optimal schedule can be found in time O(log n).

SMC-UNIT with bipartite conflict graphs

Bipartite conflict graphs are of special interest for SMC-UNIT since for
any conflict graph and a feasible schedule the set of machines process-
ing a job at the same time form (at most) an induced bipartite subgraph
of the conflict graph. Therefore, optimal schedules on bipartite conflict
graphs offer insights into local optimality criteria for schedules on gen-
eral graph classes.

Observation 3.11. Consider an instance SMC-UNIT on a graph G and a
feasible schedule Π. At any point in time t, the set of machines that are busy
processing a job form the vertex set of an induced bipartite subgraph of G.

Observe that the approximation algorithms underlying Theorems 3.8
and 3.9 follow the idea of using (maximum) induced bipartite sub-
graphs as well and use a near optimal schedule on these subgraphs.
Therefore, an improvement for bipartite graphs may open up possibil-
ities for improvement on other graph classes.

75

Chapter 3. Makespan minimization on identical parallel machines
with machine conflicts

In the following, we develop a polynomial time algorithm for SMC-
UNIT on bipartite conflict graphs. This algorithm is based on a divide-
and-conquer technique by exploiting structural properties of optimal
schedules on subgraphs of the conflict graph. Therefore, we must first
make a small excursion to stars.

A star is a complete bipartite graph Sℓ := K1,ℓ on ℓ+1 ≥ 2 vertices. For
ℓ ≥ 2, Sℓ has a unique center and ℓ leaves. When ℓ = 1, we can freely
choose any of the two vertices to be the center. We next show that
optimal schedules on stars consist of A- and B-patterns as defined in
Section 3.2. Note that we relax the notation in the sense that we do not
specify the set(s) used for the A- or B-pattern but refer to the patterns
being scheduled on the star. Furthermore, we define an AB-schedule
on a graph G as a schedule consisting of A- and B-patterns only. An
example of an AB-schedule is shown in Figure 3.4.1a. Note that an AB-
schedule may process more jobs than necessary which can be fixed by
deleting some jobs and forming at most one incomplete pattern using
not all machines necessary.

A B

(a) An AB-schedule on S3 consisting
of one A-pattern followed by one B-
pattern.

(b) Optimal schedule on a tree
with 7 machines and 22 jobs with
makespan 12.

Figure 3.4.1: AB-schedules.

We next show, that for any star we can restrict ourselves to AB-schedules
to find an optimal schedule for SMC-UNIT.

Lemma 3.12. For any instance of SMC-UNIT with G = Sℓ for ℓ = m − 1,
there exists an AB-schedule that is optimal.

76

Proof. For S1 the statement follows from Lemma 3.10. Consider a star
Sℓ with ℓ ≥ 2 and let Π∗ be an optimal schedule. We now construct
an AB-schedule Π with the same makespan. First, let i be the leaf that
is assigned the maximum number of jobs. Copying this schedule for
all other leaves does not increase the makespan and yields a schedule
Π where all leaves follow the same subschedule. Note that this pro-
cess may increase the number of jobs scheduled which can be fixed by
deleting the additional jobs. Finally, for each group of jobs scheduled
on the leaves two cases remain. Either a job j being processed on the
center of the star overlaps with this block of jobs or not. In the first
case, we have a B-pattern. In the second case we have an A-pattern.
Thus, Π is an optimal schedule and an AB-schedule.

The existence of an optimal AB-schedule enables us to solve SMC-UNIT

on stars in polynomial time.

Lemma 3.13. For any instance of SMC-UNIT on a star Sℓ and n jobs, an
optimal schedule can be computed in time linear in log n and |S|.

Proof. To prove this statement, we make a case distinction on ℓ.

Case 1. Let ℓ ≤ 2. In this case, there exists an optimal AB-schedule
which uses at most 2 A-patterns since any 3 A-patterns processing 3ℓ
jobs in time 9 can be replaced with 2 B-patterns scheduling 2ℓ+ 2 ≥ 3ℓ
jobs in time 8. Therefore, an optimal AB-schedule can be found by
enumerating over the three possibilities using k A-patterns with k =
0, 1, 2 and computing the necessary amount of B-patterns needed to
process at least n jobs in total.

Case 2. Let ℓ ≥ 3. In this case, there exists an optimal AB-schedule
which uses at most 2 B-patterns since any 3 B-patterns processing 3ℓ+3
jobs in time 12 can be replaced with 4 A-patterns scheduling 4ℓ ≥ 3ℓ+3
jobs in time 12. Therefore, an optimal AB-schedule can be found by
enumerating over the three possibilities using k B-patterns with k =
0, 1, 2 and computing the necessary amount of A-patterns needed to
process at least n jobs in total.

77

Chapter 3. Makespan minimization on identical parallel machines
with machine conflicts

While we can restrict ourselves to AB-schedules when considering stars
as conflict graphs, this restriction does not hold for all bipartite graphs.
In fact, we cannot generalize this statement even to trees as seen in Fig-
ure 3.4.1b. However, an interesting observation regarding the optimal
schedule in Figure 3.4.1b is that it is comprised of two AB-schedules on
the top star and bottom star obtained when deleting the gray edge con-
necting the two stars. This insight (in combination with the optimality
of AB-schedules on stars) is the foundation of our divide-and-conquer
algorithm.

The key idea of the next step towards our polynomial time algorithm is
to derive a structural property of optimal schedules on bipartite graphs
based on a spanning subgraph H of G for which optimal AB-schedules
with respect to H are also feasible with respect to G and, therefore,
optimal with respect to G. More specifically, we identify a class of
subgraphs consisting of stars such that the AB-schedules yielding op-
timality on each individual star can be feasibly combined into an opti-
mal schedule on the whole subgraph. To clearly verify this feasibility
we encode it using certain vertex colorings. We now give more formal
definitions of the specific type of subgraph and the vertex colorings.

Definition 3.14 (Star forest of G). Consider a conflict graph G and sub-
graph H . We say that H is a star forest of G if each connected component of
H is a star and H contains all vertices of G.

Based on a star forest of the conflict graph, the idea behind the algo-
rithm is that an optimal schedule on the individual stars can be feasi-
bly patched together such that it is also optimal on G. This is where the
vertex colorings come into play. Intuitively, we want to define specific
vertex subsets of H , such that specific sequences of A and B patterns
on the machines corresponding to these vertices can be feasibly sched-
uled in parallel.

78

Definition 3.15 (I, II, III-colorings). Let G be a conflict and H be a star
forest of G. Then, we define I, II, III-colorings as follows:

• A vertex subset A1 is a I-coloring of (G,H) if it is a maximum inde-
pendent set of both G and H .

• Two disjoint vertex subsets A2, B2 form a II-coloring of (G,H), if no
vertex of A2 is adjacent to another vertex from A2 ∪ B2 in G and the
following properties hold: (i) for each S = Sℓ with ℓ ≥ 3, A2 contains
all leaves of S, (ii) for each S = S1, B2 contains both the vertices of
S and (iii) for each S = S2, either A2 contains both leaves of S or B2

contains all vertices of S.

• Two disjoint vertex subsets A3, B3 are a III-coloring of (G,H), if no
vertex of A3 is adjacent to another vertex from A3 ∪ B3 in G and the
following properties hold: (i) for each S = Sℓ with ℓ ≥ 4, A3 contains
all leaves of S, (ii) B3 contains all vertices of each S1 and each S2, and
(iii) for each S = S3, either A3 contains all leaves of S or B3 contains
all vertices of S.

These vertex colorings allow us to combine certain sequences of A- and
B-patterns across all components of a star forest. A I-coloring allows
us to schedule one A-pattern in parallel on all stars using the set S1.
This yields a feasible schedule for G, see Figure 3.4.2 (left). Similarly, a
II-pattern allows us to combine 3 A-patterns on stars whose leaves are
contained in A2 with 2 B-patterns on stars which are fully contained
in B2, see Figure 3.4.2 (middle). Finally, a III-coloring implies a feasi-
ble combination of 4 A-patterns on stars whose leaves are in A3 and 3
B-patterns on stars whose vertex set is fully contained in B3, see Fig-
ure 3.4.2 (right).

We next show how to use the concepts of star forests and I, II, III-
colorings to extend the structural insights on stars to general bipartite
graphs. We do so by showing that an optimal schedule on a star forest
admitting I, II, III-colorings can be changed into a feasible schedule on
the conflict graph without increasing the makespan.

79

Chapter 3. Makespan minimization on identical parallel machines
with machine conflicts

6

9

4

12

9

2

3

1

4

3

9

16

12

12

6

Figure 3.4.2: A graph and a star forest with a I-, II-, and III-coloring and the
corresponding schedules and the number of jobs being processed on each star
for each schedule. Vertices in Ai are colored in red and vertices in Bi in blue.

Lemma 3.16. Consider an instance I of SMC-UNIT with a connected bi-
partite conflict graph G on at least two vertices. Let H be a star forest of G.
Given a I-coloring A1, a II-coloring (A2, B2) and a III-coloring (A3, B3) of
(G,H), an optimal schedule for I can be computed in polynomial time.

Proof. Let OPT be the makespan of an optimal schedule for instance
I of SMC-UNIT on conflict graph G. By Lemma 3.12, there exists an
optimal schedule for the same instance considering the star forest H
as the conflict graph which consists of AB-schedules on the individual
components. We denote this schedule by Π. As H is a subgraph of
G, we have ∥Π∥≤ OPT. In the following, we construct a schedule Π∗

which is feasible with respect to G and whose makespan is equal to the
makespan of Π (and, therefore, Π∗ is an optimal schedule with respect
to G). We construct Π∗ via a case distinction. First, we consider the
case of small optimal makespan values and prove the following claim.

Claim 3.17. If ∥Π∥≤ 20, then there exists an optimal AB-schedule Π∗ on
H that is feasible for G (according to Table 3.4.1).

80

To prove this claim, first observe that ∥Π∥≥ 3 and that there is no AB-
schedule with ∥Π∥= 5. Therefore, we must consider the cases where
∥Π∥∈ [20] \ {1, 2, 5}. We now show that for each of these cases there
exists a combination of sequences of A- and/or B-patterns across all
components of H such that this yields a feasible schedule on G process-
ing at least as many jobs in the same time. We explain this according to
Table 3.4.1. Hereto, we focus on four types of stars in H : S1, S2, S3, Sℓ

with ℓ ≥ 4. For each type of star and every possible makespan |Π| (of
at most 20), the key idea is to choose an AB-schedule which processes
the maximum number of jobs in time ∥Π∥ and is feasible to combine
with the AB-schedules on the other components. To ensure feasibil-
ity, some AB-schedules are modified for S1 and S2 components; these
are marked an asterisk in Table 3.4.1. We now describe the necessary
modifications in more detail.

For S1 components and ∥Π∥≡ 2 (mod 4), we use a sequence of 2 A-
patterns combined with (⌊∥Π∥/4⌋−1) B-patterns instead of a sequence
of ⌊∥Π∥/4⌋ B-patterns. As 2 A-patterns and 1 B-pattern differ in length
2, the modified schedule on each S1 component finishes in time ∥Π∥.
Furthermore, the modified schedule on S1 processes at least as many
jobs as the subschedule of Π on S1 since we replace one B-pattern
scheduling two jobs with two A-patterns scheduling one job each.

For S2 and for ∥Π∥≡ 1 (mod 4), we allow a sequence of 3 A-patterns
and (⌊∥Π∥/4⌋ − 2) B-patterns besides the optimal schedule which uses
⌊∥Π∥/4⌋ B-patterns. More specifically, we replace two B-patterns with
three A-patterns increasing the length of the schedule on S2 by one
leading to a length of ∥Π∥. Furthermore, since both three A-patterns
and two B-patterns contain six jobs, the modified schedule processes
at least as many jobs as the optimal schedule.

81

Chapter 3. Makespan minimization on identical parallel machines
with machine conflicts

∥Π∥ S1 S2 S3 Sℓ, ℓ ≥ 4

1 - - - -
2 - - - -
3 A A A A
4 B B B B
5 - - - -
6 2A* 2A 2A 2A
7 A,B A,B A,B A,B
8 2B 2B 2B 2B
9 2B 3A or 2B* 3A 3A
10 2A,B* 2A,B 2A,B 2A,B
11 A,2B A,2B A,2B A,2B
12 3B 3B 4A or 3B 4A
13 B,2B B,(3A or 2B)* B,3A B,3A
14 2A,2B* 2A,2B 2A,2B 2A,2B
15 A,3B A,3B A,(4A or 3B) A,4A
16 B,3B B,3B B,(4A or 3B) B,4A
17 2B,2B 2B,(3A or 2B)* 2B,3A 2B,3A
18 2A,3B* 2A,3B 2A,(4A or 3B) 2A,4A
19 A,B,3B A,B,3B A,B,(4A or 3B) A,B,4A
20 2B,3B 2B,3B 2B,(4A or 3B) 2B,4A

Table 3.4.1: AB-schedules on the stars of H based on Corollary 3.13 and mod-
ification *. The number before A and B indicates the number of A- and B-
patterns.

We now construct Π∗ by choosing for each component the AB-schedule
corresponding to makespan ∥Π∥ in Table 3.4.1. Then, each single A-
pattern is scheduled on A1 and each individual B-pattern is sched-
uled on the whole set of machines M. A sequence of 3 consecutive
A-patterns is scheduled on A2 in parallel to a sequence of consecutive
2 B-patterns on B2. Similarly, a sequence of 4 consecutive A-patterns is
scheduled on A3 in parallel to a sequence of 3 consecutive B-patterns
on B3. Next, we show that this construction of Π∗ is feasible with re-
spect to G using the definition of the I, II, III-colorings.

82

By definition of A1, scheduling an A-pattern on A1 yields a feasible
schedule with respect to G. This is used for the single A-patterns
used when ∥Π∥∈ {3, 6, 10, 11, 14, 15, 18, 19}. Furthermore, scheduling
a B-pattern on M is feasible since G is bipartite. This is used for
the single B-patterns used if ∥Π∥∈ {4, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20}.
By the II-coloring (A2, B2), we can feasibly combine a sequence of
three A-patterns on A2 with two B-patterns on B2 which is necessary
when ∥Π∥∈ {9, 13, 17}. Finally, the III-coloring (A3, B3) allows us to
combine a sequence of four A-patterns on A3 with a sequence of 3 B-
patterns on B3. This is used if ∥Π∥∈ {12, 15, 16, 18, 19, 20}. We refer to
Figure 3.4.2 for visualizations of the used feasibility arguments. This
proves Claim 3.17.

We now show how to construct Π∗ for larger makespan values.

Claim 3.18. If |Π|≥ 21, there exists an optimal schedule that is com-
prised of blocks of length 12 and one last block of length at most 20.

Observe that we may assume that the difference of the makespans of
any two components of H is at most 3. Suppose towards contradic-
tion, that there exists a pair of components Sa and Sb such that the
makespan of Sa exceeds the makespan of Sb by at least 4. Then, we can
decrease the difference by deleting the last job on Sa and inserting it af-
ter the last job on Sb. As a consequence, the length of the schedule Π on
each component is at least 18 and Π schedules at least four A-patterns
or three B-patterns both of length 12 on each connected component.
Thus, if ∥Π∥≥ 21, we can modify Π by using 4 A-patterns on A3 and
3 B-patterns on B3, yielding a feasible subschedule by definition of a
III-coloring. Repeating this procedure until the remaining makespan
is at most 20, in combination with Claim 3.17, proves Claim 3.18.

Finally, to find Π∗ in polynomial time, we need to compute a schedule
for each possible value r ∈ [20]\{1, 2, 5} by choosing the combinations
obtained in Table 3.4.1 and filling up Π∗ with the necessary number of
blocks of length 12 needed to process all jobs. Then, the schedule with
minimum makespan is an optimal schedule with respect to G.

83

Chapter 3. Makespan minimization on identical parallel machines
with machine conflicts

As a consequence of Lemma 3.16, the remaining puzzle piece to obtain
a polynomial time algorithm to solve SMC-UNIT on bipartite graphs
is to find a star forest H and I, II, III-colorings in polynomial time. In
the following, we present a four phase method to compute such a star
forest and corresponding I,II,III-colorings in four phases.

In the first phase, we find an initial star forest H based on a maximum
independent set and a maximum matching of G. This initial star forest
admits a feasible I-coloring by choosing the maximum independent
set as the leaves of the star forest giving the I-coloring A1. However,
modifications might be necessary to ensure the existence of II- and III-
colorings. These modifications are done in the second and third phase
of the algorithm. In the final phase, all colorings are computed based
on the final star forest.

The modifications of the initial star forest in the second and third phase
of the algorithms are necessary due to the possible existence of so-
called alternating paths in the initial star forest. Intuitively, an alter-
nating path is a connected sequence of star components of H such
that there exists no feasible II- or III-coloring of the stars along this
sequence. More formally, we define alternating paths as follows. In
this definition, Ci ≃ Sℓ indicates that component Ci is a star with ℓ
leaves.

Definition 3.19 (Alternating paths.). Let H = (V,E′) be a star forest of a
bipartite graph G = (V,E). Let C1, . . . , Ck be distinct stars of H and P be a
path in G on the vertices v1, v2 . . . , v2k−1 with the following properties:

• for even i, vi is a leaf of star Ci/2+1

• for odd i, vi is the center of star C(i+1)/2

• edge {vi, vi+1} ∈ E′ if and only if i is even.

We say P is an alternating path of type II if C1 ≃ S1 , Ci ≃ S2 for all
i = 2, . . . , k − 1 and Ck ≃ Sℓ with ℓ ≥ 3. We say P is an alternating path
of type III if C1 ≃ S2 , Ci ≃ S3 for all i = 2, . . . , k − 1 and Ck ≃ Sℓ with
ℓ ≥ 4.

84

.P

..
.

..
.

Figure 3.4.3: Alternating path P of type II. Black edges belong to H , gray
edges to G \H .

.P

..
.

..
.

Figure 3.4.4: Alternating path of type III. Black edges belong to H , gray edges
to G \H .

Figures 3.4.3 and 3.4.4 depict an illustration of alternating paths of type
II and III, respectively (on the left of each figure). The reason why these
alternating paths are problematic is the following. Along an alternat-
ing path of type II, there exists no feasible II-coloring (A2, B2) since B2

must contain all nodes of the first star C1. This implies that for all in-
termediate stars, B2 must contain all vertices. Finally, A2 must contain
the leaves of the final star Ck. Therefore, there exists an adjacent pair
of vertices v2k−3 ∈ B2 (B3) and v2k−2 ∈ A2 (A3). Another option is
to choose all leaves of the intermediate stars to be in A2 leading to an
adjacent pair of vertices v1 ∈ B2 and v2 ∈ A2. For an alternating path
of type III the same issue holds where for any way of coloring the stars
along the path leads to an adjacent pair of vertices in A3 and B3.

However, in both cases we can resolve this issue by removing the al-
ternating path. This can be done by swapping edges along it, i.e., re-
assign the leaves on the path from star Ci to star Ci−1 with i ≥ 2. This
operation is visualized in Figures 3.4.3 and 3.4.4 (right). The second
and third phase of our algorithm are based on this operation. During
these phases it is important that the operation maintains the leaves of
the star forest and, therefore, maintains the I-coloring A1.

Observation 3.20. Let H = (V,E′) be a star forest of G containing an
alternating path P of type II or III. Then, H ′ := (V,E′∆P) is a star forest
with the same set of leaves as H , where ∆ denotes the symmetric difference.

85

Chapter 3. Makespan minimization on identical parallel machines
with machine conflicts

In the second phase, we repeat this procedure until no more alternating
paths of type II exists. Then, in the third phase we do the same for
alternating paths of type III while not creating any new alternating
paths of type II. A detailed description of the first three phases is given
in Algorithm 3.1.

Algorithm 3.1 Computing a star forest and I,II,III-colorings.

1: Input: Connected bipartite graph G = (V,E) with |V |≥ 2.
2: Output: Star forest H and I,II,III-colorings A1, (A2, B2), (A3, B3).

Phase 1 – Initial star forest

3: Compute a maximum matching M and a maximum independent
set I of G.

4: Set V (M) = {u, v ∈ V : {u, v} ∈M}.
5: Set U := V \ I (vertex cover).
6: Set E′ := M and V ′ := V \ V (M).
7: while ∃ v ∈ V ′ do
8: Find u ∈ U such that {u, v} ∈ E.
9: Add {u, v} to E′ and delete v from V ′.

10: end while

Phase 2 – Removing alternating paths of type II

11: while ∃ alternating path P of type II do
12: E′ = E′∆P .
13: end while

Phase 3 – Removing alternating paths of type III

14: while ∃ alternating path P of type III do
15: E′ = E′∆P .
16: end while

86

In the final phase of the algorithm, we compute the I,II,III-colorings
based on the star forest returned after Phases 1-3. To compute the I-
coloring, we choose the maximum independent set of G which corre-
sponds to the set of leaves in H . To construct the II-coloring, we first
add the vertices of all stars with at least three leaves to A2 since for
these stars we want to use a sequence of three A-patterns using their
leaves. Then, we add all vertices of stars with one leaf to B2 to use a
sequence of two B-patterns on these stars. We then consider all stars
with two vertices and add their leaves to A2 if the center is adjacent to
a vertex in A2. Otherwise, we add all vertices of such a star to B2. Fi-
nally, a similar procedure is needed for the III-coloring. Algorithm 3.2
gives a detailed description of the final phase of the algorithm.

Algorithm 3.2 Computing a star forest and I,II,III-colorings (cont’d).

Phase 4 – Computing the colorings

16: H := (V,E′).
17: A1 := I .
18: For each Sℓ in H with ℓ ≥ 3, add leaves of Sℓ to A2.
19: For each S1 in H , add vertices of S1 to B2.
20: while ∃ S2 in H such that its center is adjacent to a vertex of A2 in

G do
21: Add leaves of S2 to A2.
22: end while
23: For each S2 in H with V (S2) ∩A2 = ∅, add vertices of S2 to B2.
24: For each Sℓ in H with ℓ ≥ 4, add leaves of Sℓ to A3.
25: For each Sℓ in H with ℓ ∈ {1, 2}, add vertices of Sℓ to B3.
26: while ∃ some S3 in H such that center v of S3 is adjacent to some

w ∈ A3 in G do
27: Add leaves of S3 to A3.
28: end while
29: For each S3 in H with V (S3) ∩A3 = ∅, add vertices of all S3 to B3.
30: return H,A1, (A2, B2), (A3, B3)

87

Chapter 3. Makespan minimization on identical parallel machines
with machine conflicts

We next show that the four phases terminate in polynomial time and
return a star forest with corresponding feasible I,II,III-colorings.

Lemma 3.21. Algorithms 3.1 and 3.2 compute a star forest H of G and I-,II-
and III- colorings A1, (A2, B2) and (A3, B3) of (G,H), respectively, in time
polynomial in the size of G.

Proof. We prove the statement in three steps. First, we show that the
algorithm is well-defined and that the final star forest H (defined in
line 1 of Algorithm 3.2) is indeed a star forest. To this end, let M be a
maximum matching and I be a maximum independent set of G. Both
M and I can be found in polynomial time via the maximum flow algo-
rithm to compute a maximum matching in bipartite graphs [101, Theo-
rem 10.5]. The complement of a maximum independent set, U := V \I ,
is a minimum vertex cover and by Kőnig’s Theorem [100] we know
that |U |= |M |. More specifically, every edge in the maximum match-
ing M contains exactly one vertex of the vertex cover U and every ver-
tex v ∈ V \ V (M) is not contained in U . Thus, for every v ∈ V ′, there
exists u ∈ U such that {u, v} ∈ E and line 7 of Phase 1 is well-defined.
Furthermore, note that every edge of E′ is incident to exactly one ver-
tex u ∈ U . Hence, every vertex in U is the center of a star (on at least
two vertices). Hence, H = (V,E′) is a star forest after Phase 1. Finally,
by Observation 3.20 modifying the star forest H = (V,E′) in each it-
eration of Phases 2 and 3 results in a new star forest. Thus, the final
subgraph H = (V,E′) is a star forest.

Next, we will show that the whole algorithm runs in polynomial time
in the size of G. First, observe that in each iteration of Phase 2 (Phase 3),
some S1 (S2) receives a new leaf while no new S1 (S2) is created. Hence,
we can bound the number of iterations needed in Phase 2 (Phase 3) by
the number of S1’s (S2’s) before Phase 2 (Phase 3). In each iteration
of Phase 2 (Phase 3) an alternating path of type II (type III) can be
found in polynomial time with a breadth-first-search method starting
from a fixed S1 (S2). Finally, since Phase 4 runs in polynomial time

88

in G as well since the number of stars is polynomial. Thus, the whole
algorithm terminates in polynomial time.

Next, we show that Phase 4 of the algorithm computes feasible I,II,III-
colorings. To this end, we first show that no alternating path of type
II is created in Phase 3. Consider the star forest H = (V,E′) at the
beginning of some iteration of Phase 3 and suppose that H does not
contain an alternating path of type II. Let C1, . . . Ck be the stars of the
alternating path P of type III in H . Now, we construct the new star
forest H ′ and let let C ′

1, . . . C
′
k denote the corresponding stars in H ′,

i.e., the center of C ′
i is equivalent to the center of Ci. Observe that

C ′
i ≃ Ci ≃ S3 for all i ∈ {2, . . . , k − 1}. Moreover, C ′

1 = S3 and C ′
k = Sℓ

for some ℓ ≥ 3. Suppose towards contradiction that H ′ contains an
alternating path P2 of type II. Then, P2 and P must intersect. If this is
not the case, P2 is also contained in H . More specifically, we know that
P2 ends in some star C ′

i with i ∈ {1, . . . , k}. If i > 1, then P2 and P
share the center of C ′

i. Hence, H contains P2 as well. This contradicts
the fact H contains no alternating path of type II. Otherwise, if P2 ends
in C ′

1, then H contains an alternating path of type II which ends in C2

and contains C1 ≃ S2. Again this is a contradiction. Because Phase II
terminates once the star forest contains no alternating path of type II,
this proves that no such path is created in Phase 3. Thus, after Phase 3,
the star forest contains no alternating paths of any kind. We use this
fact now to show that the computed vertex colorings are feasible.

By construction, A1 := I is a maximum independent set of G. Since
the vertex cover U constitutes the centers, we have that A1 is also a
maximum independent set of H . Since this property is maintained in
Phases 2 and 3 (due to Observation 3.20), A1 is a feasible I-coloring.

Regarding the type II-coloring, the algorithm ensures that A2 contains
the leaves of all Sℓ with ℓ ≥ 3 and that B2 contains all vertices of S1.
Therefore, we only have to consider the S2 components of the star for-
est. If possible, the algorithm adds the leaves of S2 components to A2.
This is the case if the center of an S2 component is adjacent to a ver-
tex in A2. All vertices of remaining S2 components are added to B2.

89

Chapter 3. Makespan minimization on identical parallel machines
with machine conflicts

Thus, (A2, B2) fulfills properties (i), (ii) and (iii) of a II-coloring (see
Definition 3.15).

It only remains to be shown that there is no vertex in A2 which is adja-
cent to another vertex in A2∪B2. Since only leaves are added to A2, we
have that A2 ⊂ I and no two vertices in A2 are adjacent to each other
in G. Now, suppose towards contradiction that there exists a pair of
vertices a ∈ A2 and b ∈ B2 such that they are adjacent in G. Denote by
Sa and Sb be the star containing a and b, respectively. By construction
of A2, a is one of the leaves of Sa. Furthermore, we have b ∈ U since,
otherwise, both a and b are in A1 which contradicts the fact that A1 is a
maximum independent set of G. If Sb ≃ S2, the algorithm ensures that
all leaves of Sb are contained in A2, and hence, b /∈ B2. Thus, Sb ≃ S1.
Next, we distinguish based on the size of Sa.

Case 1: If Sa ≃ Sℓ, ℓ ≥ 3, then there exists an alternating path of type II
starting in b and ending in the center of Sa via vertex a, see Figure 3.4.5
(left). This implies a contradiction.

Case 2: If Sa ≃ S2, then there must exist a star Sc with at least 2 leaves
such that one of its leaves is adjacent to a. If Sc has exactly 2 leaves,
there exists another star Sd with a leaf adjacent to the center of Sd,
see Figure 3.4.5 (right). This argument can be repeated, such that the
containment of a ∈ A2 is traced back to a star with at least 3 leaves.
This, however, yields an alternating path of type II starting in b and
ending in this final star. Again, this is a contradiction.

P . . .P

..
.

..
.

b
a

b
a

Figure 3.4.5: If vertices a ∈ A2 and b ∈ B2 are adjacent in G, there exists an
alternating path of type II.

Similar arguments as above can be used to show that (A3, B3) is a feasi-
ble III-coloring or, otherwise, an alternating path of type III exists.

90

Putting all pieces together, Lemmas 3.10, 3.16 and 3.21 lead to a poly-
nomial time algorithm to optimally solve SMC-UNIT on bipartite con-
flict graphs.

Theorem 3.22. SMC-UNIT on bipartite conflict graphs can be solved to op-
timality in polynomial time.

3.5 Generalizations to identical jobs

In this section, we consider SMC with identical jobs, i.e., (
↼

bj =
↼

b , pj = p,
⇀

bj =
⇀

b , ∀j), denoted by SMC-ID. Since SMC-UNIT is a special case of
SMC-ID, the inapproximability derived in Theorem 3.5 holds for SMC-
ID on general conflict graphs. In the following, we generalize the ap-
proximation results shown for SMC-UNIT in Section 3.4.1 to SMC-ID.
Hereto, we distinguish between short blocking times and long blocking
times.

3.5.1 Identical jobs with long blocking times

We refer to long blocking times if max{
↼

b ,
⇀

b} > p. In this setting, it is
not feasible to schedule jobs in parallel on conflicting machines since
the larger of the two blocking times cannot be executed on one machine
in the time interval in which the other machine executes the processing
time of a job. This leads to the following lower bound on the optimal
makespan.

Lemma 3.23. Consider an instance of SMC-ID with long blocking times on a
conflict graph G and n jobs. Let α1(G) be the size of a maximum independent
set of G, then the optimal makespan is at least

OPT ≥ q

⌈
n

α1(G)

⌉
,

where q =
↼

b + p+
⇀

b .

Proof. Consider a half-open interval of length q. Then on each machine
at most one job starts processing in this interval. Furthermore, due to

91

Chapter 3. Makespan minimization on identical parallel machines
with machine conflicts

the long blocking times, all machines starting a job in this interval form
an independent set in G, since for any distinct starting times in this
interval the jobs overlap. Therefore, to process all jobs at least ⌊ n

α1(G)⌋
of these intervals are needed and if α1(G) does not divide n, at least
one more job must start earliest at time ⌊ n

α1(G)⌋.

Based on this lower bound, we can show that if we can find a maxi-
mum independent set of the conflict graph in polynomial time, then
constructing a schedule containing only A-patterns on this maximum
independent set minimizes the makespan.

Lemma 3.24. Consider an instance of SMC-ID with long blocking times,
conflict graph G and n jobs. If a maximum independent set of G of size α1(G)
can be found in polynomial time, then an optimal schedule can be computed
in polynomial time.

Proof. Given a maximum independent set I1 of size α1(G), construct-
ing a schedule Π consisting only of A-patterns on I1 yields a makespan
of

∥Π∥= q

⌈
n

α1(G)

⌉
.

Thus, Π is optimal and can be computed in polynomial time by evenly
distributing jobs over I1.

Similarly, we can translate a polynomial time algorithm computing an
approximate independent set of G into an approximation algorithm
for SMC-ID with long blocking times.

92

Lemma 3.25. Consider an instance of SMC-ID with long blocking times,
conflict graph G and n jobs. If an independent set of G of size β1(G) ≥
1/γα1(G) with γ > 1 can be found in polynomial time, then we can compute
a schedule Π with makespan

∥Π∥≤ ⌈γ⌉OPT.

Proof. Let I1 be the approximate independent set. Let Π be the sched-
ule obtained by evenly distributing jobs over I1, i.e., only using 1-
Patterns on I1. Then,

∥Π∥= q

⌈
n

β1(G)

⌉
≤ q

⌈
γ · n
α1

⌉
≤ q⌈γ⌉ ·

⌈
n

α1

⌉
= ⌈γ⌉ ·OPT.

As Π can be constructed in polynomial time this concludes the proof.

3.5.2 Identical jobs with short blocking times

In the remainder we consider SMC-ID where max{
↼

b ,
⇀

b} ≤ p. In con-
trast to long blocking times, such short blocking times allow for con-
flicting machines to work on jobs in parallel. By symmetry, we focus
on the case where

↼

b ≥
⇀

b . Similar to the case of unit jobs, induced
subgraphs play a special role for this setting.

Definition 3.26 (c-colorable induced subgraph). Let G = (V,E) be a
graph and I1, . . . Ic be a collection of c disjoint independent sets for some
integer value c. Then, I1, . . . , Ic induce a c-colorable subgraph of G. We say
that this is a maximum induced c-colorable subgraph if the cardinality of the
union of I1, . . . Ic is maximized. We denote by αc(G) the size of a maximum
induced c-colorable subgraph.

We first derive a lower bound on the optimal makespan. To this end,
we define two quantities k and λ such that we can prove that in an

93

Chapter 3. Makespan minimization on identical parallel machines
with machine conflicts

interval of length λ at most αk+1(G). Formally, we define k and λ as

k := ⌊p/↼
b⌋ and λ := (k + 1)

↼

b +

{
⇀

b if p/
↼
b ∈ N

0 otherwise.

Defining λ as above is necessary to achieve this bound rather than hav-
ing one additional independent set of machines.

Lemma 3.27. Consider an instance of SMC-ID with short blocking times on
conflict graph G and n jobs. Then, the optimal makespan is at least

OPT ≥ λ ·
⌈

n

αk+1(G)

⌉
,

where αk+1(G) is the size of a maximum induced k + 1-colorable subgraph
and k and λ are as defined above.

Proof. We first show that for either of the two cases, the maximum
number of jobs starting in a half-open interval of length λ is at most
the size of a maximum induced k + 1-colorable subgraph. To this end,
let I = [t, t + λ) be an arbitrary interval. Since I has length λ ≤ q and
is half-open, at most one job starts on each machine within I .

Now we partition the interval as follows. First, we choose an interval
I0 = [t, t+λ− (k+1)

⇀

b]. Note that I0 is of length
⇀

b if p/
↼
b ∈ N and length

0 otherwise. Then, we take k + 1 disjoint, left-closed and right-open
intervals each of length

↼

b denoted by I1, . . . , Ik+1. In both cases, the
length of the intervals I0, . . . , Ik+1 add to λ. Denote by Vℓ the set of
machines starting a job in interval Iℓ. First, note that for each ℓ the jobs
processed on a machine in Vℓ block a point in time arbitrarily close to
the right end of Iℓ. Thus, each Vℓ is an independent set. See Figure 3.5.1
(left) for a visualization. Furthermore, if p/

↼
b /∈ N, then V0 = ∅ since

the interval I0 has length 0. Therefore, in this case the sets V1, . . . Vk+1

induce a k + 1-colorable subgraph of G.

94

It remains to be shown that the same holds when p/
↼
b ∈ N. Hereto, we

show that V0 ∪ Vk+1 is an independent set. Consider a point in time t′

which is arbitrarily close to the right end of the whole interval I . Then,
the post-processing time of a job j processed on a machine V0 starts
in the interval [t + q −

⇀

b , t + q). This implies that part of the post-
processing time of j lies before t+ q and the post-processing time does
not end before t+q. Therefore, the post-processing time of job j blocks
time t′. Additionally, the pre-processing time of any job j′ processed on
a machine in Vk+1 blocks time t′ as well. This argument is visualized in
Figure 3.5.1 (right). Consequently, V0 ∪ Vk+1 and in total k + 1 disjoint
independent sets of machines start jobs in interval I . Thus, also in this
case the number jobs starting in interval I is bounded from above by
αk+1(G).

I0 I1 . . . Ik+1 I0 I1 . . . Ik+1

Figure 3.5.1: Illustration for the proof of Lemma 3.27: (left) two jobs starting
in I1 and (right) a job starting in I0 and a job starting in Ik+1.

To finalize the proof, observe that in either of the two cases we need
at least ⌊n/αk+1(G)⌋ intervals of length λ to process all jobs and if n
mod αk+1(G) > 0 at least one job of length q ≥ λ needs to be processed
on top of these. This concludes the proof.

Next, to generalize the approximation algorithms introduced for SMC-
UNIT in Section 3.4.1, we generalize the idea of 1- and 2-patterns.

Definition 3.28 (c-pattern). Consider an instance of SMC-ID with short
blocking times with conflict graph G. Let c ∈ N≥1 with c ≤ ⌊p/↼

b⌋+ 1 and let
I = (I1, I2, . . . , Ic) be a c-tuple of disjoint independent sets of G. A partial
schedule of length q+(c−1) ·

↼

b starting at time t is called a c-pattern on I if
on each machine i in Ik with k ∈ {1, . . . , c}, there is one job starting at time
t+ (k − 1)

↼

b .

95

Chapter 3. Makespan minimization on identical parallel machines
with machine conflicts

In the remainder, let k = ⌊p/↼
b⌋. First, we show that if we are given

a maximum induced (k + 1)-colorable subgraph, we can translate this
into a polynomial time approximation algorithm for SMC-ID with short
blocking times.

Theorem 3.29. Consider an instance of SMC-ID with short blocking times,
conflict graph G and n jobs. If we can find a maximum induced (k + 1)-
colorable subgraph of G in polynomial time, then we can construct a schedule
Π in polynomial time with approximation guarantee (q+ k

↼

b)/λ, where (q+
k

↼

b)/λ < 2 + 1/(k + 1) < 2.5 and if p/
↼
b ∈ N the approximation guarantee

improves to (q + k
↼

b)/λ < 1 + p/q < 2.

Proof. Let Π be a schedule consisting of ⌈n/αk+1(G)⌉ many (k + 1)-
patterns on the vertex set corresponding to the given maximum in-
duced (k + 1)-colorable subgraph of G. We leave all other machines
idle. Then, Π has makespan

∥Π∥≤ (q + k
↼

b) ·
⌈

n

αk+1

⌉
.

Based on the lower bound of the optimal makespan (Lemma 3.27), we
obtain

∥Π∥
OPT

≤ q + k
↼

b

λ
.

If p/
↼

b ∈ N, this yields an approximation guarantee of

q + p

q
= 1 +

p

q
< 2.

Otherwise, we obtain an approximation guarantee of

(k + 1)
↼

b + p+
⇀

b

(k + 1)
↼

b
= 1 +

p

(k + 1)
↼

b
+

⇀

b

(k + 1)
↼

b
< 2 +

1

k + 1
≤ 2.5.

96

We conclude this chapter, by showing how to use a polynomial time
approximation algorithm for finding an induced k + 1-colorable sub-
graph to obtain a polynomial time approximation algorithm.

Theorem 3.30. Consider an instance of SMC-ID with short blocking times,
conflict graph G and n jobs. If we can find an induced (k + 1)-colorable sub-
graph of G of size βk+1(G) ≥ 1/γαk+1(G) with γ > 1 in polynomial time,
then we can construct a schedule Π in polynomial time with approximation
guarantee 2γ · (q + k

↼

b)/λ, where 2γ · (q + k
↼

b)/λ < 5γ and if p/
↼
b ∈ N, the

approximation guarantee improves to 2γ · (q + k
↼

b /λ) < 4γ.

Proof. Let I be the vertex set of the approximate induced (k+1)-colorable
subgraph. We construct a schedule Π by using ⌈n/βk+1(G)⌉many (k+1)-
patterns on I yielding a makespan of

∥Π∥≤ (q + k
↼

b) ·
⌈

n

βk+1(G)

⌉
.

We now distinguish between n ≤ βk+1(G) and n > βk+1(G). In the
first case we also have that n ≤ αk+1(G). This yields

∥Π∥
OPT

≤
(q + k

↼

b) ·
⌈

n
βk+1(G)

⌉
λ ·

⌈
n

αk+1(G)

⌉ =
(q + k

↼

b)

λ
.

Due to the approximation guarantees derived in Theorem 3.29, we ob-
tain an upper bound on the performance guarantee of 2 if p/

↼
b ∈ N and

2.5 if p/
↼
b /∈ N. If n > βk+1(G), we obtain ⌈n/βk+1(G)⌉ ≤ 2·n/βk+1(G) ≤

2γ · n/αk+1(G). Consequently, it holds that

∥Π∥
OPT

≤
(q + k

↼

b) · 2γ · n
αk+1(G)

λ · n
αk+1(G)

≤ 2γ · (q + k
↼

b)

λ
.

Again, the upper bounds on the performance guarantee of 4γ if p/
↼

b ∈
N and 5γ if p/

↼

b /∈ N follow from Theorem 3.29.

97

Chapter 4

Just-in-time scheduling with quadratic
penalties and unit jobs

4.1 Introduction
Scheduling problems with earliness and tardiness penalties have been
extensively studied being motivated by the Just-in-Time philosophy in-
troduced by Toyota [153] in which jobs are desired to finish as close as
possible to their due date. Starting with the work of Sidney [147] who
considered the task of scheduling jobs on a single machine with penal-
ties if jobs start and complete outside of a pre-determined job specific
interval, scheduling problems with earliness and tardiness penalties
have attracted a lot of research. For an extensive overview we refer to
the surveys in [12, 137].

In this chapter, we consider a scheduling problem with (weighted)
quadratic earliness and tardiness penalties. More specifically, we con-
sider the problem of minimizing the total (weighted) squared devia-
tion problem for jobs with equal processing times.

This chapter is based on joint work with Camiel Koopmans and Tjark Vredeveld.

99

Chapter 4. Just-in-time scheduling with quadratic penalties and unit
jobs

Problem Definition. We are given a setJ of n jobs each of which must
be processed on one of m identical machines. Each job j is associated
with a due date dj and a strictly positive weight wj . We assume that
the time to fully process a job j, pj , is equal for each job, and by scaling
we may assume that pj = 1. Let D = {d1, . . . , dk} denote the set of due
dates where k is the number of distinct due dates. We assume that the
due dates are ordered in increasing value, i.e., d1 < d2 < . . . < dk.

For a feasible schedule σ, denote by Cj(σ) (or just Cj when σ is clear
from the context) the completion time of job j. The objective is given
by WSD(σ) =

∑
j wj(Cj(σ)− dj)

2. The goal is to to find a schedule σ∗

that minimizes WSD(σ∗).

In the three-field notation introduced by Graham et al. [63] (see Chap-
ter 1), this problem can be denoted by P |pj = 1, dj ∈ D|

∑
j wj(Cj −

dj)
2.

Related Work. Various models have been considered in the literature
for scheduling on parallel machines with earliness and tardiness penal-
ties. For an extensive overview we refer to the recent survey by Rolim
and Nagano [137] and the survey by Baker and Scudder [12]. In the
following, we highlight some of the results.

Minimizing the total (or equivalently mean) squared deviation around
a common due date on a single machine was first studied by Bagchi et
al. [9]. They show that in the unrestricted setting where the due date is
sufficiently large as to not impose further restrictions on the schedule,
minimizing the mean squared deviation is equivalent to minimizing
the completion time variance introduced by Merten and Muller [120].
Minimizing the completion time variance on a single machine was
shown to beNP-hard by Kubiak [104] implyingNP-hardness for min-
imizing the mean squared deviation on a single machine. Bagchi et
al. [8] extended the unit weight version they considered in [9] to the
setting in which the earliness penalties have a different weight than
the lateness penalties. In both works, exact approaches are developed
based on enumeration via branching procedures. De et al. [41, 42] as

100

well as Srirangacharyulu and Srinivasan [151, 152] followed up on the
work of Bagchi et al. [8, 9] on minimizing the mean squared deviation
of jobs’ completion times from a common due date by providing alter-
native exact approaches. Eilon and Chowdhurry [49] showed that for
the unit weight case and a single due date an optimal schedule needs
to be V-shaped, that is, the early jobs are scheduled in order of non-
increasing processing times and the late jobs are scheduled in order
of non-decreasing processing times. Alidaee [2] considers the general-
ized problem for a single machine and develops polynomial time al-
gorithm for multiple special cases when job weights are proportional
to processing times.

The majority of the literature focuses on linear earliness and tardi-
ness penalties which are used to penalize the absolute deviation from
a due date. The problem of minimizing the total absolute deviation
from a common due date on a single machine was first considered by
Kanet [95]. In particular, Kanet [95] considers the unrestricted setting
where the due date is at least as large as the sum of the processing
times and develops a polynomial time algorithm based on the idea
of V-shaped schedules which process jobs around the due date with
jobs before the due date being processed in non-increasing order be-
fore the due date and non-decreasing order after the due date [95].
Bagchi et al. [10] extend on this by presenting an algorithm which
finds all optimal schedules in time O(n log n). Sundararaghavan and
Ahmed [154] generalize these algorithms to identical parallel machines
by proving the existence of an optimal schedule which evenly dis-
tributes jobs over machines. Applying the algorithms by Kanet [95] or
Bagchi et al. [10] solves the problem to optimality. Hall and Posner [73]
show that minimizing the total weighted absolute deviation is NP-
hard even in the unrestricted setting on a single machine and present a
dynamic programming algorithm running in pseudo-polynomial time.
Kovalyov and Kubiak [102] develop a fully polynomial time approxi-
mation scheme for this problem. For the restricted setting in which the
common due date is smaller than the sum of the processing times, Hall
et al. [71] and Hoogeveen and van de Velde [84] prove NP-hardness

101

Chapter 4. Just-in-time scheduling with quadratic penalties and unit
jobs

even for the unweighted case on a single machine and present pseudo-
polynomial time algorithms. In this context, Hoogeveen et al. [82] de-
velop a multiplicative 4/3-approximation algorithm. The special case
of unit processing times was considered by Mosheiov and Yovel [123]
who developed a polynomial time exact algorithm to minimize the to-
tal weighted absolute deviation on identical parallel machines. Beyond
a common due date, Hoogeveen and van de Velde [83] consider the
problem with almost equal due dates and present a pseudo polynomial
time algorithm for minimizing the total weighted absolute deviation
around almost equal due dates. Huynh and Tuong [157] generalize
the setting to having k distinct due dates and introduce a polynomial
time algorithm when k is a constant.

Our contribution. We consider various special cases of the considered
problem. In Section 4.2, we focus on the unweighted setting. For this
setting, we derive a structural property which allows us to solve the
problem on m parallel machines by evenly distributing jobs to ma-
chines and solving m individual single machine problems. This yields
an algorithm with running time O (mk + k log k). In Section 4.3, we
turn our attention towards the weighted setting with a single due date.
We show that optimal schedules follow an inverse v-shape and jobs are
again evenly distributed among machines. Based on this we devise an
algorithm to find the optimal solution running time O(n log n) when
the due date is sufficiently large. If, however, the due date is small
and imposes additional constraints on the scheduling decisions, we
can find an optimal solution in time O

(
m2 · 2m · n+ n log n

)
. Finally,

in Section 4.4, we focus on the case with k distinct due dates and a
single machine. When k is a constant, we provide an add-FPTAS with
approximation parameter ρ(I) = wmax = maxj wj .

4.2 Unit weights
We first turn our attention towards the special case of unit weights. In
this setting, an instance can be represented by the k distinct due dates
d1 < . . . < dk and the number of jobs nℓ having due date dℓ. We first
derive structural properties of optimal schedules on identical parallel

102

machines. These lead to the insight that the problem on m machines
can be solved by first distributing jobs evenly among machines and
then solving the problem on each machine individually. We comple-
ment this insight by developing a polynomial time algorithm for the
single machine setting.

4.2.1 Structural properties

Before deriving the needed structural properties, we first make some
necessary observations on optimal schedules. Using a simple exchange
argument we can show that jobs are processed in order of non-decreasing
due dates. This holds even for jobs being processed on different ma-
chines.

Observation 4.1. For any optimal schedule σ∗, it holds that, for every pair
of jobs j ̸= j′:

dj < dj′ =⇒ Cj ≤ Cj′ .

Furthermore, jobs with the same due date are consecutively scheduled
without any idle time between; otherwise decreasing the idle time by
shifting the schedule towards each other decreases the objective.

Observation 4.2. In any optimal schedule σ∗, jobs with the same due date
assigned to the same machine are consecutively scheduled without idle time
between any pair of jobs.

This property leads to the following definition.

Definition 4.3. For a given instance with jobs J , we say that a subset of jobs
B forms a block if in an optimal schedule B must be scheduled consecutively
on the same machine without idle time between any pair of jobs in B.

We next restrict our attention towards the class of so-called balanced
schedules which evenly distribute jobs of each due date among ma-
chines.

103

Chapter 4. Just-in-time scheduling with quadratic penalties and unit
jobs

Definition 4.4. Let σ be a feasible schedule. We say that σ is balanced if for
any due date dℓ, the number of jobs with due date dℓ to be processed on any
machine is either ⌊nℓ

m ⌋ or ⌈nℓ
m ⌉.

It turns out that to find an optimal schedule, we can restrict ourselves
to the class of balanced schedules which is shown in the following
lemma.

Lemma 4.5. There exists an optimal schedule for the unit weight problem on
identical parallel machines among all balanced schedules.

Proof. We prove the statement using a potential function argument.
Let nℓ

i(σ) denote the number of jobs with due date dℓ assigned to ma-
chine i by schedule σ. Let σ∗ be an optimal schedule minimizing

k∑
ℓ=1

m∑
i=1

nℓ
i(σ)

2. (4.1)

Suppose towards contradiction that σ∗ is not balanced. Then we know
that for some due date dℓ there exists a pair of machines i, i′ such that
machine i processes at least two jobs more with due date dℓ than ma-
chine i′ does. Let jf and jl be the first and last job with due date dℓ to be
processed on machine i, respectively. By Observation 4.2 we know that
all jobs processed between these two jobs on machine i have the same
due date. Moreover, by Observation 4.1, we can distinguish between
two cases.

Case 1: If no job with due date dℓ starts processing on machine i′ before
Cjf , we change σ∗ keeping all else the same and exchanging the partial
schedules starting at time Cjf between i and i′. This case is visualized
in Figure 4.2.1.

Case 2: If machine i′ starts processing a job with due date dℓ before
time Cjf , we know that machine i′ has finished processing all jobs with
due date dℓ before time Sjl (see Figure 4.2.2). We exchange the partial
schedule starting at time Sjl between i and i′.

104

Cjf

Figure 4.2.1: Case 1: Late start on machine i′.

Sjl

Figure 4.2.2: Case 2: Early completion on machine i′.

In either case, the completion time does not change for any job and,
thus, σ∗ remains optimal. Furthermore, Equation 4.1 changes by

(nℓ
i(σ

∗)− 1)2 − nℓ
i(σ

∗)2 + (nℓ
i′(σ

∗) + 1)2 − nℓ
i′(σ

∗)2

= 2(nℓ
i′(σ

∗)− nℓ
i(σ

∗)) + 2 < 0,

contradicting the fact that σ∗ initially minimized Equation 4.1.

The previous lemma allows us to restrict ourselves to balanced sched-
ules when finding optimal schedules. However, since the number of
jobs with each distinct due date is not necessarily divisible by m, many
balanced schedules exist. We now present a refined structural property
which allows us to further restrict our attention.

105

Chapter 4. Just-in-time scheduling with quadratic penalties and unit
jobs

To this end, we construct a balanced schedule by first assigning ⌊nℓ/m⌋
jobs with due date dℓ to each machine and then distributing the jobs
that have not been assigned yet over the machines. LetJr = {j1, . . . , jr}
be the set of remaining jobs, where r =

∑k
ℓ=1 nℓ − m⌊nℓ

m ⌋. Assume
w.l.o.g. that the remaining jobs are sorted in non-decreasing order of
due dates. We now show that there exists an optimal balanced sched-
ule which assigns the remaining jobs to machines in an alternating
fashion.

Lemma 4.6. There exists an optimal balanced schedule σ∗, where machine i
processes the remaining jobs in Ji = {ja : 1 ≤ a ≤ r, i ≡ a mod m}, for
i = 1, 2, . . . ,m.

Proof. Suppose towards contradiction that the described schedule σ∗

is not optimal and consider an optimal balanced schedule σ. Let ℓ be
such that the remaining jobs j1, . . . , jℓ are scheduled in σ as in σ∗, but
jℓ+1 is scheduled on machine i, whereas ℓ + 1 mod m = i′ and i′ ̸= i.
Suppose σ maximizes ℓ over all optimal balanced schedules.

We now construct a new schedule σ′ such that jℓ+1 is assigned to ma-
chine i′. To this end, let Jℓ+1(i) denote the set of jobs on machine i with
due date djℓ+1

. Similarly, let Jℓ+1(i) denote the set of jobs on machine
i′ with due date djℓ+1

. Then |Jℓ+1|= |J ′
ℓ+1|+1, as otherwise i′ also has

a remaining job with the same due date and an index re-arrangement
of this job would yield schedule σ′. Based on this, we may distinguish
between two cases:

Case 1: The jobs in J ′
ℓ+1 start processing earlier on machine i′ than

the jobs in Jℓ+1 on machine i. Assume w.l.o.g. that jℓ+1 is the last
scheduled job in Jℓ+1. Then, since |Jℓ+1|= |J ′

ℓ+1|+1, no job in J ′
ℓ+1 is

scheduled at time Sjℓ+1
. Thus, by Property 4.1, also no job with a dif-

ferent due date is scheduled on machine i′ at Sjℓ+1
. Therefore, we can

construct the desired schedule σ′ by swapping the partial schedules
on i and i′ from Sjℓ+1

onward without changing the objective value as
the completion times remain the same for all jobs, contradicting the
maximality of ℓ for σ.

106

Sj`+1

Machine i

Machine i′

J`(i)

J`(i
′)

Figure 4.2.3: Visualization of Case 1.

Case 2: The jobs in J ′
ℓ+1 start processing later on machine i′ than the

jobs in Jℓ+1 on machine i. In this case, we must again distinguish
between two possibilities. Assume w.l.o.g. that jℓ+1 is the first job in
the set Jℓ+1 on machine i.

Case 2a: Suppose that no job j′ is being processed on machine i′ at
Sjℓ+1

on machine i. We swap the partial schedules from Sjℓ+1
onward

between i and i′. Again, we obtain a schedule σ′ which contradicts the
maximality of ℓ for σ.

Machine i

Machine i′

J`(i)

J`(i
′)

Sj`+1

Figure 4.2.4: Visualization of Case 2a.

Case 2b: Suppose that a job j′ is being processed at time Sjℓ+1
on ma-

chine i′.

107

Chapter 4. Just-in-time scheduling with quadratic penalties and unit
jobs

Machine i

Machine i′

J`(i)

J`(i
′)

Sj`+1

Figure 4.2.5: Visualization of Case 2b.

As σ is balanced, there is at most one remaining job with due date dj′

assigned to machine i and i′ each. We now show that both machines
are assigned exactly the same number of jobs with due date dj′ . To
this end, consider jobs jp, js ∈ Jr such that jp is assigned to machine i
where p is the largest index among the remaining jobs assigned to ma-
chine i smaller than ℓ+1 and s is the largest index among the remaining
jobs assigned to i′ smaller than p. By the order of the remaining jobs
we know that djs ≤ djp and, therefore, by Observation 4.1:

dj′ = dj′s =⇒ dj′ = djp .

We now prove that the reverse is also true. Suppose towards contra-
diction that j′ and jp share the same due date, i.e., djp = dj′ and that js
has a different due date, i.e, djs ̸= djp . This implies that machine i pro-
cesses one more job with due date dj′ than machine i′ and completes
processing these jobs before machine i′ does. Suppose that jp is the
first job processed on machine i with due date dj′ . By Observation 4.1,
no job is being processed on machine i′ at time Cjp . Thus, we can ob-
tain the desired schedule σ′ by exchanging the partial schedules from
Cjprev onward. This step is visualized in Figure 4.2.6.

By swapping the partial schedules, we do not increase the objective
while introducing idle time between two jobs with the same due date.
By Observation 4.2, this schedule is not optimal implying that σ∗ is not
optimal. A contradiction.

108

Machine i

Machine i′

J`(i)

J`(i
′)

Cjp

Machine i

Machine i′

Cjp

J`(i
′)

J`(i)

Figure 4.2.6: Visualization of contradiction for Case 2b.

Thus, i and i′ must process equally many jobs with due date dj′ . We
now use this to complete the argument. Again, we must consider Case
2a and Case 2b for the jobs with due date dj′ processed on machines
i and i′. If we are in Case 2a, we swap the partial schedules between
i and i′ from the start time of the first job of this due date onward.
By swapping back the remaining jobs with due date dj′ we have con-
structed σ′; contradicting the maximality of ℓ. If, however, we find
ourselves in Case 2b, we repeat the argument above until eventually
reaching Case 2a. This argument terminates since there are only a finite
number of due dates to consider and we will eventually reach Case 2a
or the first overall job on the two machines and swap the partial sched-
ules or the full schedules. Then, swapping back the remaining jobs to
satisfy the desired order gives σ′ and the contradiction.

109

Chapter 4. Just-in-time scheduling with quadratic penalties and unit
jobs

4.2.2 Finding optimal balanced schedules in polynomial time

By Lemma 4.6, we can restrict ourselves to a balanced schedule which
assigns the remaining jobs to machines in an alternating manner. It
remains to find an optimal schedule for each individual machine once
this assignment is known. We now show how to use the notion of
blocks to find an optimal schedule on a single machine. Towards this,
we first independently compute the optimal starting time t̂ℓ of each
individual block of jobs Bℓ of size nℓ

B with common due date dℓ with
ℓ = 1, . . . , k. By Observation 4.2 we know that in an optimal schedule
each block must be scheduled consecutively without idle time. There-
fore, if block Bℓ starts processing at time t, the sum of squared devia-
tions can be written as

∑n′

j=1(t1 + j − dℓ)
2, which is minimal for

t̂ℓ = max

{
dℓ − nℓ + 1

2
, 0

}
. (4.2)

Given all individual starting times, we must repair potential conflicts
between consecutive blocks which occur, whenever two consecutive
blocks overlap, i.e., t̂ℓ+1 ≤ t̂ℓ + nℓ. To overcome this, we introduce a
block merging technique. Hereto, we consider the blocks in increasing
order of due dates and check whether the optimal starting time of the
current block is overlapping with the previous block. If this is the case,
we merge the two blocks and adjust the optimal starting time of the
new block. For example, when merging blocks B1 and B2with n1 and
n2 jobs, we form a new block B′

1 containing all jobs of B1 and B2 and
starting at time

t̂B′
1
= max

{
n1

n1 + n2
t̂B1 +

n2

n1 + n2
(t̂B2 − na), 0

}
. (4.3)

This starting time is optimal for block B′
1 as it minimizes

n1∑
j=1

(t+ j − d1)
2 +

n2∑
j=1

(t+ n1 + j − d2)
2.

110

We repeat this procedure until we reach the final block. The complete
merging technique is described by Algorithm 4.1. The running time
of the algorithm is split in the initialization and the merging phase.
The initialization consists of computing the original k optimal starting
times which takes O(k) time. During the merging phase, we merge
blocks at most k− 1 times as after this the schedule consists of a single
block and no more merging is possible. Merging two blocks can be
done in time O(1) leading to a total running time of O(k).

Algorithm 4.1 Block merging algorithm on a single machine.

1: Input: Due dates D = {d1, . . . , dk} and number of jobs with each
due date n1, . . . nk.

Phase 1 – Initialization

2: For each block Bℓ compute t̂ℓ with ℓ = 1, . . . , k according to Equa-
tion 4.2.

Phase 2 – Merging

3: for ℓ = 2, 3, . . . , k do
4: while t̂ℓ−1 + nℓ−1 > t̂ℓ do
5: Merge blocks Bℓ and Bℓ−1 into block Bℓ.
6: Update t̂ℓ according to Equation 4.3.
7: Delete block Bℓ−1.
8: end while
9: end for

10: return Remaining blocks with updated starting times.

The merging technique on a single machine leads to the following re-
sult with an additional running time due to the sorting of due dates.

Theorem 4.7. An optimal schedule for minimizing the total unweighted
squared deviation can be found in O(k log k) time on a single machine and
O(mk + k log k) time on m identical machines.

111

Chapter 4. Just-in-time scheduling with quadratic penalties and unit
jobs

4.3 Single common due date and general weights
In this section, we consider the special case of a single common due
date (k = 1) and general job weights. Following the literature, we
distinguish between the unrestricted (d ≥ (⌈n/m⌉+ 1) /2) and the re-
stricted setting (d < (⌈n/m⌉+ 1) /2). We derive structural properties
of optimal schedules on identical parallel machines in both settings.

Observe that when considering two jobs we want the job with higher
weight to finish closer to the due date even if they are assigned to dif-
ferent machines. To formalize this idea, we introduce the class of in-
verse v-shaped schedules.

Definition 4.8. Let σ be a feasible schedule. We say that σ is an inverse
v-shaped schedule if for any pair of jobs j, j′ it holds that

(Cj − d)2 > (Cj′ − d)2 =⇒ wj ≤ wj′ .

We now show that any optimal schedule must be inverse v-shaped.

Lemma 4.9. For the problem with a single due date, in the identical par-
allel machine environment, any optimal schedule σ∗ is an inverse v-shaped
schedule.

Proof. Let σ∗ be an optimal schedule and suppose for the sake of con-
tradiction it is not inverse v-shaped. Then, there exists a pair of jobs
j, j′ ∈ J such that

(Cj − d)2 > (Cj′ − d)2 and wj > wj′ .

Then, we can construct an alternative schedule σ′ by swapping jobs j
and j′. The change in the objective function is

WSD(σ′)−WSD(σ∗) =
(
wj − wj′

) (
(Cj′ − d)2 − (Cj − d)2

)
< 0.

This contradicts the optimality of σ∗. Therefore, any optimal schedule
must be inverse v-shaped.

112

Following the idea of the unit weight case considered in Section 4.2,
we prove that there exists an optimal schedule with a balanced assign-
ment.

Lemma 4.10. For the problem with a single due date, in the identical parallel
machine environment, any optimal schedule σ∗ is balanced.

Proof. Let σ∗ be an optimal schedule and suppose towards contradic-
tion that σ∗ is not balanced. This implies that there exists a pair of ma-
chines i and i′ such that i processes at least two jobs more than machine
i′. As jobs are scheduled as a consecutive job per machine without idle
time this implies that the length of the block on machine i is at least the
length of the block on i′ plus 2. Let Sj1 , Sj′1

be the start time of the first
job on machine i and i′, respectively and Cj2 , Sj′

2′
be the completion

time of the last job on machine i and i′, respectively. Then, one of the
following must hold:

Sj1 ≤ Sj′1
− 1,

Cj2 ≥ Cj′2
+ 1.

Hence, we can either move the first or last job on machine i to machine
i′ which decreases the difference in the number of jobs by 1. Further-
more, due to this modification of the schedule, the optimal starting
time of the block of jobs on machine i′ and i change, which leads to a
decrease in the objective value. If the first job on machine i′ starts at
time 0, then Cj2 > Cj′2

+ 1 and moving j2 to machine i′ also leads to a
decrease of the objective. This contradicts the optimality of σ∗.

In the restricted setting, we prove that a more specific balanced sched-
ule ensures optimality. Hereto, letMearly andMlate denote the set of
machines where the job that finishes closest to the due date finishes
early or late, respectively.

Lemma 4.11. An optimal schedule σ∗ and integers 0 ≤ ℓ1, ℓ2 ≤ m exist,
such that the first ℓ1 machines inMearly, and the last ℓ2 machines inMlate

process ⌊d⌋ jobs before d, and all other machines process ⌊d⌋ − 1 job before d.

113

Chapter 4. Just-in-time scheduling with quadratic penalties and unit
jobs

Proof. Let σ∗ be an optimal schedule. By Lemma 4.10 we know that σ∗

is balanced, and hence, the number of jobs processed on each machine
differs by at most 1. Furthermore, observe that every machine must
finish at least ⌊d⌋ − 1 many jobs before d as otherwise we may move
the last job to the front and decrease the objective value.

ConsiderMearly andMlate as defined earlier and assume that each set
is ordered in non-decreasing order of the absolute difference between
the due date and the completion time of the job finishing closest to the
due date. Let ℓ1 be the number of machines finishing ⌊d⌋ jobs before
the deadline. Suppose towards contradiction that there exists a pair of
machines i, i′ such that i completes ⌊d⌋ jobs before the deadline and i′

completes ⌊d⌋ − 1 jobs before the deadline and ϵi′ < ϵi where ϵi (ϵi′)
is defined as the difference between the due date and the completion
time of the job finishing closest to the due date on machine i (i′). Let j
and j′ be the jobs completing closest to the deadline on machine i and
i′. Since machine i schedules ⌊d⌋ jobs before d and machine i′ schedules
⌊d⌋ − 1 jobs before d we know that the first job on machine i′ starts at
time

d− ϵi′ − ⌊d⌋+ 1,

and the first job on machine i completes at time

d− ϵi − ⌊d⌋+ 1.

Since ϵi′ < ϵi, scheduling the first job on machine i on machine i′ in-
stead decreases the squared deviation from the due date for this job
while keeping all other jobs the same. This contradicts the assumption
that σ∗ is optimal and implies that the ℓ1 machines finishing ⌊d⌋ before
the deadline must be those with the smallest ϵi values.

Using an analogous argument we can show the same forMlate.

Finally, we show that given an assignment of jobs to machines, the
optimal schedule on an individual machine can be computed in poly-
nomial time.

114

Lemma 4.12. Let σ be a feasible schedule in the identical machine environ-
ment. Consider machine i and let J (i) be the set of jobs assigned to i. Then,
the optimal order of jobs and starting time of the first job can be found in
polynomial time.

Proof. To prove this lemma we must distinguish between the unre-
stricted and restricted setting for this single machine.

First, consider the unrestricted setting where d ≥ n(i)+1
2 with n(i) =

|J (i)|. In an optimal schedule, J (i) must be scheduled without any
idle time and the job completing closest to the due date satisfies |Cj −
d|≤ 1

2 . Furthermore, by Lemma 4.9 we know that this job is the highest
weight job all jobs assigned to machine i. Assume w.l.o.gṫhat this job
finishes after the due date and has completion time d + ϵ for some
0 ≤ ϵ ≤ 1

2 . Then, we can find the optimal sequence of jobs in time
O(n log n) by iteratively assigning jobs to the position closest to the
due date. Finally, we need to find the starting time of this consecutive
block of jobs. Assume that jobs are now indexed as 1, . . . , n(i) and that
the block starts processing at time t, then the sum of weighted squared
deviations is

n(i)∑
j=1

wj(t+ j − d)2.

This is minimal for the starting time

t̂ =

∑n
a=1wja(d− a)∑n

a=1wja

= d−
∑n

a=1wjaa∑n
a=1wja

.

For the restricted setting, where d < n(i)+1
2 , we must distinguish be-

tween four cases. The highest weight job may either finish before or
after the due date and ⌊d⌋ or ⌊d⌋ − 1 many jobs finish before the due
date. For each of these four cases, we can compute an optimal schedule
in time O(n log n) by Lemma 4.9 and finding the optimal starting time.
Then, taking the best among these yields an optimal solution.

115

Chapter 4. Just-in-time scheduling with quadratic penalties and unit
jobs

We now use these structural properties and the algorithm for a single
machine to find optimal schedules in the identical parallel machine
environment. Again, we distinguish between the unrestricted and the
restricted setting.

For the unrestricted setting, we show that the approach for a single ma-
chine given in Lemma 4.12 can be generalised to the identical parallel
machine environment by assuming that machines are sorted in non-
decreasing order by the absolute difference of the completion time of
the job finishing closest to the due date and the due date and applying
Lemma 4.9.

Theorem 4.13. An optimal schedule σ∗ for the unconstrained problem, in
the identical parallel machine environment, can be found in O(n log n) time.

Proof. In order to prove this result we proceed similar to the proof of
Lemma 4.12. First, observe that on each machine i the job closest to
the due date completes at time d + ϵi. We may assume that none of
these jobs complete early such that 0 ≤ ϵi ≤ 1

2 ; otherwise, we may
again mirror the schedule around the due date. Since the machines are
identical, we may assume that 0 ≤ ϵ1 ≤ ϵ2 ≤ . . . ≤ ϵm. By Lemma 4.9
this again implies that we only need to sort jobs in non-increasing or-
der of weights and assign jobs greedily to the position that is closest
to the due date. This results in an assignment of jobs to machines in
O(n log n) time.

Applying the algorithm underlying Lemma 4.12 we can compute the
optimal starting times for the machines in time O(m).

For the restricted problem, finding an optimal assignment of jobs to
machines is a bit more challenging. Hereto, we use Lemma 4.11 to
restrict the number of different schedules that need to be considered.

Theorem 4.14. An optimal schedule σ∗ for the constrained problem, in the
identical parallel machine environment, can be found inO(m2 · 2m · n+ n log n)
time.

116

Proof. Let Mearly and Mlate be the set of machines such that the job
finishing closest to the deadline finishes early or late, respectively. For
each machine we need to guess whether it is inMearly orMlate. This
gives a total of O(2m) guesses. Furthermore, by Lemma 4.11 we know
it suffices to guess two values l1 and l2 such that the first l1 machines
ofMearly and the first l2 machines ofMlate finish ⌊d⌋ jobs before the
deadline and all other machines finish ⌊d⌋− 1 jobs before the deadline.
For each guess of the sets Mearly and Mlate this gives O(m2) many
guesses. Hence, we need to consider O(m2 × 2m) different schedules.

For each such schedule we proceed similar to the unconstrained set-
ting, however, with a small difference. Again, we know that the closest
job to the due date on machine i completes at time d + ϵi with |ϵi|≤ 1

2 .
Furthermore, ϵi ≥ 0 for all i ∈ Mlate and ϵi < 0 for all i ∈ Mearly. As-
suming that the ϵ values are sorted in non-decreasing order in each set
we may greedily assign jobs to machines following a inverse v-shaped
pattern by Lemma 4.9 which can be done in O(n log n). Finding the
optimal starting time on each machine concludes the proof.

4.4 The single machine problem with a constant
number of distinct due dates

In this section, we consider the single machine problem with a con-
stant number of distinct due dates and general weights. The results
presented in the previous section for a single due date, depend on the
insight that jobs of the same due date form consecutive blocks which
is not necessarily the case when multiple due dates are considered as
the following example shows.

EXAMPLE 4.1: EXAMPLE WITH NECESSARY IDLE TIME

Consider an instance with seven jobs with

• d1 = d2 = 7 and d3 = d4 = d5 = d6 = d7 = 5,

• w1 = w2 = w3 = 1 and w4 = w5 = w6 = w7 = ϵ.

117

Chapter 4. Just-in-time scheduling with quadratic penalties and unit
jobs

Figure 4.4.1 shows an optimal schedule when ϵ approaches zero.

d = 5 d′ = 7

1 23 7456

Figure 4.4.1: Optimal schedule for example with idle time

For the setting with a constant number of distinct due dates, we present
a polynomial time additive approximation scheme with ρ(I) = wmax =
maxj wj . To this end, we use the fact that once the starting times of a
schedule are fixed, we can find the best schedule satisfying these start-
ing times in polynomial time by solving an assignment problem. This
has been used in the setting of absolute earliness and tardiness penal-
ties [157]. Based on this, the idea is to limit the number of starting times
of the blocks as well as their lengths. In order to do so, we use the fol-
lowing observation on the maximum number of idle periods between
consecutive blocks. This follows from the fact we have at most k dis-
tinct blocks as otherwise shifting two blocks together would improve
the objective.

Observation 4.15. For any optimal schedule σ∗, there will be at most k − 1
idle periods.

In the following, we assume that ϵ ≤ 1 and 1/ϵ is integral. We set
α = ϵ

2n2 and we restrict ourselves to starting times that are multiples
of α.

Lemma 4.16. Consider an optimal schedule σ∗ with total cost WSD(σ∗).
Let σ′ be obtained from σ∗ by rounding up the starting times to the nearest
integer multiple of α. Then

WSD(σ′) ≤WSD(σ) + ϵwmax.

118

Proof. By our assumption on ϵ, we know that 1 is an integral multiple
of α. Therefore, it can be easily verified that by rounding up to the
nearest multiple of α, the schedule remains feasible.

The increase of the contribution of a single job j, due to increasing the
completion time of this job by a value 0 ≤ α′ < α, can be bounded by

((Cj + α′)− dj)
2 = (Cj − dj)

2 + 2(Cj − dj)α
′ + (α′)2

≤ (Cj − dj)
2 + (n+ k − 1)α′ + α′

≤ (Cj − dj)
2 + 2nα′ ≤ (Cj − dj)

2 + 2nα,

(4.4)

where the first inequality uses Corollary 4.15 to argue that between dj
and the processing of job j there are at most k − 1 idle periods. Any
idle period between dj and the processing of job j needs to have length
less than 1 as otherwise job j can be scheduled closer to its due date.
Hence, the cost of σ′ can be bounded by

WSD(σ′) ≤WSD(σ)+2nα
∑
j

wj ≤ 2n2αwmax = WSD(σ)+ϵwmax.

We close this chapter by devising our additive polynomial time ap-
proximation scheme.

Theorem 4.17. For any ϵ > 0, a schedule σϵ can be found with cost at most
ϵwmax higher than the cost of an optimal schedule σ∗ in time O

(
n4k+2

ϵk

)
.

Proof. We can guess the starting times of the jobs, by guess the follow-
ing values.

• s: The overall starting time of the schedule,

• nℓ: The number of jobs scheduled in consecutive block ℓ with
1 ≤ ℓ ≤ k, and

• qℓ: The length of idle period between block ℓ and block ℓ−1 with
2 ≤ ℓ ≤ k.

119

Chapter 4. Just-in-time scheduling with quadratic penalties and unit
jobs

Since, the first job in a schedule must start in the interval [d1 − n, d1]
the number of different choices of s is bounded by O(n/α). For the
number of jobs scheduled in each block, there are

(
n+k−1
k−1

)
∈ O(nk−1)

possibilities. For the length of each idle period, we need to consider
O(nα) as the distance between two due dates is of order O(n); otherwise
the problem can be split into two sub-problems such that the optimal
schedules on these sub-problems do not overlap. This gives a total
number of guesses of O

(
n2k−1

αk

)
. Finally, for each guess we compute

the optimal assignment of n jobs to n starting times using an algorithm
for the balanced assignment problem running in time O(n3) [105]. By
definition of α this implies a total running time of O

(
n4k+2

ϵk

)
.

120

Chapter 5

Theoretical and empirical analysis of
stochastic online scheduling policies on

uniform machines

5.1 Introduction
The previous chapters dealt with different scheduling problems on
parallel machines in the absence of any type of uncertainty. In this
chapter, we consider the problem of minimizing the total weighted
completion time on uniform related machines in the stochastic online
setting. In the three-field notation (see Chapter 1), this problem is de-
noted by Q||

∑
j wjCj or Q|rj |

∑
j wjCj depending on whether or not

all jobs are available for processing right from the start. In both cases
this problem is well known to be NP-hard since the identical parallel
machine environment is a special case of the uniform machine envi-
ronment where all machine speeds are the same [22]. Applications of
this problem appear in manufacturing, computing and compiler opti-
mization, see e.g [27, 29].

This chapter is adapted from: M. Buchem and T. Vredeveld. “Performance analysis
of fixed assignment policies for stochastic online scheduling on uniform parallel
machines”. In: Computers & Operations Research 125 (2021)

121

Chapter 5. Theoretical and empirical analysis of stochastic online
scheduling policies on uniform machines

Problem definition. We are given a set of jobs J = {1, . . . , n} which
we want to schedule non-preemptively on m machines. Each machine
i operates at speed si and can process at most one job at a time. For
each job j we are given an associated processing requirement Pj , which
is a random variable. We assume that all processing requirements are
stochastically independent. Moreover, we use the convention to de-
note the random variable for the processing requirement by Pj and a
realization of this random variable by the lowercase pj . The time it
takes to process a specific job j on machine i is given by Pj/si. In addi-
tion to the processing requirement, every job j is given a non-negative
weight wj indicating its importance and a release date rj before which
job j may not be processed. If for every j we have that rj = 0, we say
that we have trivial release dates; otherwise, we say that the problem
has non-trivial release dates. The information on the processing times
of the jobs implies a value ∆ which is an upper bound on the squared
coefficient of variation:

var[Pj]

E[Pj]2
≤ ∆ ∀j ∈ J .

Given an instance and a stochastic online scheduling (SOS) policy, let
Cj denote the completion time of job j. Note that Cj is a random vari-
able. For an SOS policy Π and an instance I, we denote by Π(I) the
random variable indicating the total weighted completion time of Π on
instance I. The expected value of this is given by E [Π(I)]. The aim is
to find an SOS policy minimizing E [Π(I)]. In this chapter, we are par-
ticularly interested in the class of fixed assignment policies in which jobs
are first assigned to machines and then single machine SOS policies are
used for each specific machine.

122

Related work. The problem of minimizing total weighted completion
time on parallel machines has been extensively studied in the schedul-
ing literature in both the stochastic scheduling and stochastic online
scheduling model.

Rothkopf [138] shows that the WSEPT-rule, the stochastic variant of
Smith’s rule [150], is optimal for a single machine. Kämpke [94] ex-
tends this result by showing optimality of the WSEPT-rule for identi-
cal and uniform parallel machine when job processing times follow ex-
ponential distributions and jobs admit agreeable weights, i.e., we can
sort jobs such that wj/E [Pj] ≥ wk/E [Pk] also implies that wj ≥ wk.
Möhring et al. [122] derive a performance guarantee of 1 + (m−1)(∆+1)

2m
for WSEPT on identical parallel machines with trivial release dates.
This result is based on a linear programming relaxation which is also
used to other obtain list scheduling policies with performance guaran-
tees of 3 − 1

m + max{1, m−1
m ∆} with release dates, and 1 + (m−1)(∆+1)

2m
in the case without release dates [122]. The linear programming relax-
ation underlying these results is a generalization of a relaxation used to
obtain lower bounds and approximation algorithms in the determin-
istic setting (see e.g. [70, 144, 145, 135]). Later, Jäger and Skutella [88]
generalized the Kawaguchi-Kyan lower bound [98] to the stochastic
setting proving that the the performance guarantee of WSEPT is 1 +
1
2(
√
2 − 1)(∆ + 1), matching the performance guarantee of the WSPT-

rule in the deterministic setting [98]. Many other policies have been in-
troduced for the identical parallel machine environment. Schulz [143]
develops a randomized rounding technique based on the methods de-
veloped by Correa and Wagner [37] in the deterministic setting for
non-trivial release dates. This technique yields an approximation guar-
antee of 2 + ∆. For a long time the research on stochastic scheduling
to minimize total weighted completion time focused on the setting of
identical parallel machines. Skutella et al. [149] considered the set-
ting of unrelated machines and presented an adaptation of the time-
indexed linear programming relaxation and a randomized rounding
technique for the stochastic setting. This approach leads to an approx-
imation guarantee of 3

2 + ∆
2 + ϵ- and a 2 + ∆+ ϵ-approximation in the

123

Chapter 5. Theoretical and empirical analysis of stochastic online
scheduling policies on uniform machines

case without and with release dates, respectively, where ϵ denotes the
loss of optimality caused by using a sub-optimal solution of the time-
indexed linear program as a basis for the randomized algorithm.

The stochastic online scheduling model as considered in this chapter
was introduced by Megow et al. [118] and Chou et al. [34]. Megow et
al. [118] introduce fixed assignment policies for identical parallel ma-
chines. In the online-list model they yield the same approximation
guarantee as the WSEPT-rule. In the online-time model, they make
use of the α-Shift WSEPT-rule which attains a (2 + δ)-competitive ra-
tio for so-called δ-NBUE distributions on a single machine. This rule
is used to obtain an approximation guarantee of 1 + max{1 + δ

α , α +

δ+ (m−1)(∆+1)
2m } for identical parallel machines. The policies presented

in [118] are generalizations of the policies presented in [117] for deter-
ministic online scheduling problems. The asymptotic optimality of the
WSEPT-rule has been shown by Chou et al. [34] for a single machine
and by Gu and Lu [64] for uniform parallel machines. Furthermore,
the techniques used by Schulz [143] in the stochastic offline setting is
extended to the online setting by Schulz [146] yielding a competitive
ratio of 2.309 + 1.309∆ in the online-time model. Gupta et al. [67, 65]
take a closer look at the power of greedy SOS policies for unrelated
parallel machines. In the online-list model, they obtain an approxima-
tion guarantee of 4+2∆. For the online-time model, the approximation
guarantee is ρ = (7.216+3.608∆)h(∆), where h(∆) = 1+

√
∆/2 < 3/2

for ∆ < 1 and, when ∆ ≥ 1, h(∆) = 1 + ∆/(∆ + 1) < 2 [65]. Recently,
Jäger [87] introduced different policies improving upon this approxi-
mation guarantee for different cases of ∆. Balseiro et al. [13] consider
fixed assignment policies for the unrelated as well as uniform paral-
lel machine environment using convex quadratic relaxations similar
to the one used in [148] and linear relaxations as used in [122, 158].
Zhang et al. [173] introduce a random assignment policy in the setting
of unrelated machines and show that it is asymptotically optimal for
uniform parallel machines.

124

Next to the analysis of the performance of specific SOS policies an
interesting research avenue has been concerned with deriving lower
bounds on the performance guarantee of SOS policies. Since determin-
istic processing times are a special case of stochastic processing times,
the lower bound of 1.309 shown by Vestjens [165] also holds for SOS
policies. Megow et al. [118] derive a lower bound for fixed assign-
ment policies in the identical parallel machine environment. Skutella
et al. [149] show that if the performance guarantee of a fixed assign-
ment policy depends on ∆ only, then it must be at least ∆

2 and at most
3+∆
2 . Eberle et al. [47] prove that even in the stochastic offline setting

the more general class of index policies does not allow for distribution-
independent approximation guarantees.

Contributions and Outline. The main contribution of this chapter is
the theoretical and computational analysis of the performance of fixed
assignment policies for a special case of uniform parallel machines. In
particular, we consider the special case in which the machine speeds
can be one of two values with si ∈ {1, s} (s > 1). In the remainder
of this chapter we define this case more specifically as s1 = . . . sk =
s > 1 and sk+1 = . . . = sm = 1 for some integer k. This special
case has been frequently considered in the literature. In [32, 33, 111,
113] the case is considered with k = 1 for makespan minimization.
Liu and Yang [114] consider this case with the objective of minimizing
total completion time. Dolgui et al. [46] and Leung et al. [110] consider
the setting for general k with the aim to minimize makespan and total
weighted completion time, respectively. Liu and Liu [113] consider the
special case where k = m− 1.

Before turning our attention to the SOS policies, we present some lower
bounds used in the analysis of the policies in Section 5.2.

Then, in Section 5.3, we consider fixed assignment policies for the online-
list as well as the online-time model. For the online-list model, we
show that the greedy approach by by Megow et al. [118] can be gen-
eralized to uniform related machines by taking into account machine
speeds in the greedy assignment of jobs to machines. For this adapted

125

Chapter 5. Theoretical and empirical analysis of stochastic online
scheduling policies on uniform machines

policy, we derive a performance guarantee of ρ = m
k

[
1 + (m−1)(∆+1)

2m

]
and show that it is asymptotically optimal when when weights and ex-
pected processing times are bounded from above and below by some
constants. For the online-time model, we again consider a fixed as-
signment policy similar to the one introduced by Megow et al. [118]
and adjust it taking some ingredients introduced by Gupta et al. [67].
We prove that this policy obtains an approximation guarantee of ρ =

6m
k + (m−1)(∆−1)

k .

Finally, in Section 5.4 we present a computational analysis of the pre-
sented policies and lower bounds for different classes of processing
time distributions.

5.2 Lower bounds based on linear programming

In order to analyze the performance of SOS policies, lower bounds
on the expected value of an optimal stochastic scheduling policy are
needed. Many different techniques have been used in the literature to
derive lower bounds such as linear programming relaxations or con-
vex quadratic programming relaxation. In this chapter we make partic-
ular use of two lower bounds based on linear programming relaxations
in which job completion times are used as natural date variables.

Before introducing the considered lower bounds, we define the notion
of priority sets. These are based on the optimality of the WSEPT-rule
on a single machine with trivial release dates [138]. For a given job j,
H(j) contains the jobs of higher priority according to the WSEPT-rule
for a single machine and L(j) contains the jobs of lower priority. Note
that, in case of equal priority, H(j) contains the jobs that arrived before
j, i.e., jobs with lower index. Formally, the priority sets are defined
as:

H(j) =

{
k ∈ J

∣∣∣ wk

E[Pk]
>

wj

E[Pj]

}
∪
{
k ≤ j

∣∣∣ wk

E[Pk]
=

wj

E[Pj]

}
,

L(j) = J \H(j).

(5.1)

126

Both lower bounds are based on linear programming relaxations with
job completion times as variables for which the feasible region can be
described using supermodular set functions. Relaxations of this form
were used in the deterministic setting for different machine environ-
ments (see e.g. [70, 144, 145, 135]). An optimal solution to such a relax-
ation can be found using Edmond’s greedy algorithm [48].

Based on this idea, Balseiro et al. [13] derive a lower bound for the
uniform parallel machine environment.

Lemma 5.1 (Following from Proposition 5.2 in [13]). Let I be an instance
of the stochastic online scheduling problem to minimize total weighted com-
pletion time on uniform parallel machines with k fast machines. Then, the
following lower bound on the expected objective value of an optimal policy
OPT holds:

E[OPT (I)] ≥ 1

S

n∑
j=1

wj

∑
k∈H(j)

E[Pk]

−
[(

1

2
+

1

2S
− 1

s

)
+

∆

2

(
1− 1

S

)] n∑
j=1

wjE[Pj],

where S = ks+m− k is the sum of the machine speeds.

An alternative lower bound can be derived from the lower bound for
identical parallel machines introduced by Möhring et al. [122]. By set-
ting all machine speeds equal to the maximum machine speed, the
bound in [122] leads to the following lower bound for the uniform par-
allel machine environment.

Lemma 5.2 (Lower bound based on fast identical machines). Let I be
an instance of the stochastic online scheduling problem to minimize total
weighted completion time on uniform parallel machines with machine speeds
si ∈ {1, s}. Then, the following lower bound on the expected objective value
of an optimal policy OPT holds:

E[OPT (I)] ≥ 1

ms

n∑
j=1

wj

∑
k∈H(j)

E[Pk]−
(∆− 1)(m− 1)

2ms

∑
j

wjE[Pj].

127

Chapter 5. Theoretical and empirical analysis of stochastic online
scheduling policies on uniform machines

5.3 SOS polices via speed-scaling
In this section, we present SOS policies for the online-list and online-
time model. The policies are based on the policies introduced by Megow
et al. [118] and generalized for the unrelated machine setting by Gupta
et al. [68]. In the remainder of this section we let j → i denote that job
j is assigned to machine i. Furthermore, let ij denote the machine that
job j is assigned to. Finally, we assume that jobs are presented to the
scheduler in order of increasing index.

5.3.1 The online-list model

In the online-list model, Megow et al. [118] introduced the MinIncrease-
policy for identical parallel machines. Here, we generalize this policy
to the setting of uniform parallel machines by taking into account ma-
chine speeds when assigning jobs to machines.

The key idea is to assign jobs to machines greedily and apply the WSEPT-
rule to each individual machine. Algorithm 5.1 gives a detailed de-
scription of the SpeedScaled-MinIncrease (sMI) policy.

Algorithm 5.1 SpeedScaled-MinIncrease (sMI)
Each time a job j is presented to the scheduler, it is assigned to the
machine ij = argmin{z(j, i) : 1 ≤ i ≤ m}, where z(j, i) is defined as

z(j, i) =
1

si

wj

∑
k∈H(j)
k<j,k→i

E[Pk] + E[Pj]
∑

k∈L(j)
k<j,k→i

wk + wjE[Pj]

 (5.2)

Once all jobs are assigned to machines, the jobs on each machine are
sequenced according to the WSEPT-rule.

128

In order to derive the performance guarantee of the sMI-policy, we first
show that the expected objective value is well defined in terms of the
increase functions applied in the assignment of jobs.

Lemma 5.3. Let E[sMI(I)] be the expected objective value of the sMI-policy.
Then, E[sMI(I)] =

∑
j z(j, ij).

Proof. Since the WSEPT-rule is applied to to each machine and jobs are
assigned independent of the realization of processing times, we have:

E[sMI(I)] =
∑
j

wjE[Cj]

=
∑
j

wj

∑
k∈H(j),k→ij

E[Pk]

sij

=
∑
j

wj

 ∑
k∈H(j)

k<j,k→ij

E[Pk]

sij
+

∑
k∈H(j)

k>j,k→ij

E[Pk]

sij
+

E[Pj]

sij

 .

(5.3)

Applying a simple index rearrangement yields:

∑
j

wj

∑
k∈H(j)

k→k<j,ij

E[Pk]

sij
=

∑
j

E[Pj]

sij

∑
k∈L(j)

k→k<j,ij

wk. (5.4)

Based on this index rearrangement (5.3) gives:

E[sMI(I)] =
∑
j

wj

 ∑
k∈H(j)

k<j,k→ij

E[Pk]

sij
+

∑
k∈H(j)

k>j,k→ij

E[Pk]

sij
+

E[Pj]

sij

=
∑
j

1

sij

wj

∑
k∈H(j)

k<j,k→ij

E[Pk] + E[Pj]
∑

k∈L(j)
k<j,k→ij

wk + wjE[Pj]

=
∑
j

z(j, ij).

129

Chapter 5. Theoretical and empirical analysis of stochastic online
scheduling policies on uniform machines

Using Lemma 5.3, we can prove the performance guarantee of the sMI-
policy in the Online-List model.

Theorem 5.4. Consider the stochastic online scheduling problem on uniform
parallel machines without release dates and machine speeds s1 = ... = sk > 1
and sk+1 = . . . = sm = 1. Then, the sMI-policy yields a performance
guarantee ρ, where

ρ =
m

k

[
1 +

(m− 1)(∆ + 1)

2m

]
.

Proof. Consider some job j and let ij be the machine to which the sMI-
policy assigns j to, then

z(j, ij) ≤ z(j, i) ∀i ∈ {1, ...,m}.

Multiplying each of these inequalities by si and summing over all i
yields

S · z(j, ij) =
∑
i

siz(j, ij) ≤
∑
i

siz(j, i).

By the definition of z(j, i) we have

S · z(j, ij) ≤
∑
i

siz(j, i)

≤wj

∑
k∈H(j),k<j

E[Pk] + E[Pj]
∑

k∈L(j),k<j

wk +mwjE[Pj]

=wj

∑
k∈H(j),k≤j

E[Pk] + E[Pj]
∑

k∈L(j),k<j

wk + (m− 1)wjE[Pj].

Next, by dividing by S and summing over all jobs together with the
index rearrangement of (5.4), we obtain

E[sMI(I)] =
∑
j

z(j, ij) ≤
1

S

∑
j

wj

∑
k∈H(j)

E[Pk] +
(m− 1)

S

∑
j

wjE[Pj].

(5.5)

130

Finally, we use the simple lower bound E[OPT (I)] ≥
∑

j wj
E[Pj]

s and
the lower bound of Lemma 5.2 to obtain:

E[sMI(I)] ≤ 1

S

∑
j

wj

∑
k∈H(j)

E[Pk] +
m− 1

S

∑
j

wjE[Pj]

≤ ms

S

 1

ms

∑
j

wj

∑
k∈H(j)

E[Pk]−
(m− 1)(∆− 1)

2ms

∑
j

wjE[Pj]

+
(m− 1)(∆− 1)

2ms

∑
j

wjE[Pj]

+
(m− 1)s

S
E[OPT (I)]

≤ ms

S

[
E[OPT (I) +

(m− 1)(∆− 1)

2m
E[OPT (I)]

]
+
(m− 1)s

S
E[OPT (I)]

≤ ms

S
E[OPT (I)] +

(∆ + 1)(m− 1)s

2S
E[OPT (I)].

As the sum of speeds is defined as S = ks+m− k, we have:

E[sMI(I)] ≤ms

S
E[OPT (I)] +

(∆ + 1)(m− 1)s

2S
E[OPT (I)]

=
ms

ks+m− k
E[OPT (I)] +

(∆ + 1)(m− 1)s

2(ks+m− k)
E[OPT (I)]

<
m

k
E[OPT (I)] +

(∆ + 1)(m− 1)

2k
E[OPT (I)].

Corollary 5.5. Consider the stochastic online scheduling problem on uni-
form parallel machines without release dates with k = m − 1 fast machines.
Then, the sMI-policy yields a performance guarantee ρ, where

ρ =
3

2
+

1

m− 1
+

∆

2
.

Next, we show that the sMI-policy is asymptotically optimal. This re-
sult holds even for general machine speeds.

131

Chapter 5. Theoretical and empirical analysis of stochastic online
scheduling policies on uniform machines

Theorem 5.6. Suppose w ≤ wj ≤ w, p ≤ E[Pj] ≤ p holds for all jobs
j for some constants w, w, p and p. Then, the sMI-policy is asymptotically
optimal, i.e.,

E[sMI(I)]− E[OPT (I)]

E[OPT (I)]

n→∞−−−→ 0.

Proof. Let

f(s, k) =

(
1

2
+

1

2S
− 1

s

)
+

∆

2

(
1− 1

S

)
with S = ks+m− k. Applying the lower bound of Balseiro et al. [13]
(see Lemma 5.1) and using (5.5) we can bound the expected value of
the sMI-policy by

E[sMI(I)] ≤ 1

S

∑
j

wj

∑
k∈H(j)

E[Pk] +
m− 1

S

∑
j

wjE[Pj]

≤ E[OPT (I)] + f(s, k)
∑
j

wjE[Pj] +
m− 1

S

∑
j

wjE[Pj].

From this it follows that the relative error compared to the expected
objective value of an optimal policy is bounded from above as follows:

E[sMI(I)]− E[OPT (I)]

E[OPT (I)]
≤ f(s, k) ·

∑
j wjE[Pj]

E[OPT (I)]
.

To obtain the asymptotic result, we need to bound the ratio between∑
j wjE[Pj] and E[OPT (I)]. The assumptions that wj ≤ w and E[Pj] ≤

p can be used to obtain an upper bound on the sum of weighted ex-
pected processing times∑

j

wjE[Pj] ≤
∑
j

wp ≤ nwp.

132

On the other hand, we use the assumptions that wj ≥ w and E[Pj] ≥ p
to obtain a lower bound for E[OPT (I)]

n∑
j=1

wj

∑
k∈H(j)

E[Pk] ≥
n∑

j=1

w
∑

k∈H(j)

p ≥ n(n+ 1)

2
wp.

These bounds in combination with the lower bound on E[OPT (I)] in
Lemma 5.1 yield the following bound:∑

j wjE[Pj]

E[OPT (I)
≤

∑
j wjE[Pj]

1
S

∑n
j=1 wj

∑
k∈H(j) E[Pk]− f(s, k)

∑
j wjE[Pj]

≤ 1

1
S

∑n
j=1 wj

∑
k∈H(j) E[Pk]∑

j wjE[Pj]
− f(s, k)

≤ 1

1
S

n(n+1)
2 wp

nwp − f(s, k)

=
1

1
S

(n+1)wp

2wp − f(s, k)

n→∞−−−−→ 0.

Here, the limit is due to the fact that
wp

wp is constant and S, s and ∆ are
independent of n. Hence, we have that

f(s, k) ·
∑

j wjE[Pj]

E[OPT (I)]

n→∞−−−−→ 0.

5.3.2 The online-time model

In this section, we consider the online-time model where jobs with
non-trivial release dates are presented to the scheduler. For this model,
we again develop a fixed assignment policy based on a random as-
signment of jobs to machines similar to the policy studied in [118] for
the identical parallel machine environment. Hereto, we make use of a
speed-weighted probability of assigning a job to a machine instead of
a uniform probability. For each individual machine, we use a shifted
variant of the WSEPT-rule following ideas of an earlier version of the

133

Chapter 5. Theoretical and empirical analysis of stochastic online
scheduling policies on uniform machines

policy of Gupta et al. [68]. The idea behind this shifted rule is to intro-
duce unforced idle time, i.e., intervals in which machines do not pro-
cess jobs even though some jobs are available for processing. While
this additional idle time seems counterintuitive, it is necessary to ob-
tain an upper bound on the expected completion time of a job under
the considered policy as can be seen in the example in Remark 2 of Sec-
tion 6 in [66]. Recently, Gupta et al. [67] presented a different way of
introducing unforced idleness. However, this requires keeping track of
a solution to a deterministic scheduling problem and complicates the
description of the SOS policy, whereas our analysis does not benefit
from the more recent description of the policy. Our policy for uniform
parallel machines is described in Algorithm 5.2. We refer to this policy
as the QRandom policy.

Algorithm 5.2 QRandom-policy

Every time a job j is presented to the scheduler at its release date rj ,
it is assigned to machine i with probability σi =

si
S .

Once a job is assigned to a machine, a modified release date for this
job is computed as r̂j = max{rj , E[Pj]

si
}.

Whenever a machine i falls idle at time t, we consider the set of jobs
assigned to i such that r̂j ≤ t. Among these jobs, let job k be the job
of highest priority, i.e., wk

E[Pk]
>

wj

E[Pj]
or wk

E[Pk]
=

wj

E[Pj]
and k < j for all

j ̸= k also assigned to i. The policy then inserts an additional forced
idleness of E[Pk]

si
before starting job k.

In order to prove the performance guarantee of the QRandom-policy,
we make use of the following bound on the expected completion time
of a job given that it is assigned to a specific machine. This bound is
based on Lemma 5 in [68] which gives a similar bound for unrelated
machines.

134

Lemma 5.7. Under the QRandom policy, if a job j is assigned to machine i,
then the expected completion time of j given j → i is bounded as follows:

E[CQ
j |j → i] ≤4max

{
rj ,

E[Pj]

si

}
+ 2

∑
k→i,k∈H(j)

E[Pk]

si

≤4rj + 4
E[Pj]

si
+ 2

∑
k→i,k∈H(j)

E[Pk]

si
.

Based on this lemma, the following performance guarantee can be de-
rived for the QRandom policy.

Theorem 5.8. Consider the stochastic online scheduling problem on uniform
parallel machines with release dates with k fast machines with speed s and
m − k slow machines with speed 1. Then, the QRandom policy yields a per-
formance guarantee ρ, where

ρ = 6
m

k
+

(m− 1)(∆− 1)

k
.

Proof. First of all, based on Lemma 5.7, we know that the conditional
expected completion time of job j is bounded from above. Taking into
consideration the probabilities with which a job is assigned to a ma-
chine, the unconditional expected completion time under the QRandom
policy yields:

E[CQ
j] =

∑
i

σiE[Cj |j → i]

≤4
∑
i

si
S
rj + 4

∑
i

si
S

E[Pj]

si
+ 2

∑
i

si
S

 ∑
k→i,k∈H(j)

E[Pk]

si

≤4rj + 4

ms

S

E[Pj]

s
+

2

S

∑
k∈H(j)

E[Pk].

135

Chapter 5. Theoretical and empirical analysis of stochastic online
scheduling policies on uniform machines

Here, the first inequality follows from the bound in Lemma 5.7 and the
second inequality follows from the fact that

∑
i
1
S = m/S that in the

last part of the upper bound the machine individual speed is cancelled
out. Further simplifying the upper bound yields:

E[CQ
j] ≤4

(
rj +

ms

ks+m− k

E[Pj]

s

)
+

2

ks+m− k

∑
k∈H(j)

E[Pk]

≤4
[
rj +

m

k

E[Pj]

s

]
+

2m

k

1

ms

∑
k∈H(j)

E[Pk]

≤4m
k

(
rj +

E[Pj]

s

)
+

2m

k

1

ms

∑
k∈H(j)

E[Pk].

Let E[Q(I)] =
∑

j wjE[CQ
j] be the expected objective of the QRandom-

policy. Then, we can use the bound on the expected completion times
above and the lower bound on the optimal solution in Lemma 5.2 to
derive the performance guarantee of the QRandom-policy:

E[Q(I)] ≤4m
k

∑
j

wj

(
rj +

E[Pj]

s

)
+ 2

m

k

1

ms

∑
j

wj

∑
k∈H(j)

E[Pk]

≤4m
k
E[OPT (I)] + 2

m

k

 1

ms

∑
j

wj

∑
k∈H(j)

E[Pk]

− (m− 1)(∆− 1)

2ms

∑
j

wjE[Pj] +
(m− 1)(∆− 1)

2ms

∑
j

wjE[Pj]

≤4m

k
E[OPT (I)] +

2m

k

[
E[OPT (I)] +

(m− 1)(∆− 1)

2m
E[OPT (I)]

]
≤6m

k
E[OPT (I)] +

(m− 1)(∆− 1)

k
E[OPT (I)].

From the first to the second inequality we use the fact that E[OPT (I)] ≥∑
j wj

(
rj +

E[Pj]
s

)
and from the second to third we use the lower bound

based on fast identical machines and E[OPT (I)] ≤
∑

j wj
E[Pj]

s .

136

Corollary 5.9. Consider the stochastic online scheduling problem on uni-
form parallel machines with release dates with m−1 fast machines with speed
s and 1 slow machine with speed 1. Then, the QRandom policy yields a per-
formance guarantee ρ, where

ρ = 5 +∆+
6

m− 1
.

5.4 Computational study

In this section, we present the results of a computational study of both
the policies presented in the previous section as well as the two lower
bounds used in the theoretical analysis. In order to obtain valuable
insights a large set of scenarios is considered for the special case with
k = m− 1.

For the lower bounds, the main goal is to analyse how they compare to
each other in different scenarios and to be able to choose the most ad-
equate lower bound when calculating the experimental performance
of the policies. For the policies, the goal is to analyse the realized per-
formance in various settings and see how this compares to the theo-
retically derived performance guarantees as well as verifying how the
asymptotic behaviour of the sMI-policy is visible in practice.

5.4.1 Lower bound analysis

In practice, we want to choose the most accurate lower bound of the
expected objective value of an optimal stochastic scheduling policy
to accurately estimate the realized performance guarantees of consid-
ered policies. Therefore, we need to choose the largest available bower
bound. In the following, we assess the two lower bounds used in the
derivation of the theoretical performance guarantees in practice. In or-
der to compare the two lower bounds, we analyze their behavior with
respect to three parameters: number of machines, number of jobs and
the speed of the fast machines. In particular, we are interested in an-
swering the following questions:

137

Chapter 5. Theoretical and empirical analysis of stochastic online
scheduling policies on uniform machines

L.1 What is the magnitude of the effect the number of machines, the
number of jobs and the speed of the fast machines have on the
quality of the lower bounds?

L.2 How do the two theoretical lower bounds compare to each other
in practice?

We consider multiple scenarios based on the above mentioned param-
eters. To this end, we make use of randomly generated instances using
the values shown in Table 5.4.1. For each scenario, given by a combi-
nation of parameters, we calculate the lower bounds for 250 randomly
generated instances and compute the ratio of the lower bounds over
the simple benchmark bound. Finally, we calculate the average ratio
for every scenario and compare the ratios for the two lower bounds.

Parameter Values
m 2,5,10
n 10,20,50,100,200,500,1000
s 2,3,4,5,6,7,8,9

Table 5.4.1: Parameter choice for lower bound analysis.

Although, the bound on the squared coefficient of variation, ∆, has an
impact on the lower bounds as well, we only focus on instances expo-
nential distributions with ∆ = 1. Under this assumption, the lower
bounds presented in Lemmas 5.1 and 5.2 give the following bounds,
respectively:

1

ks+m− k

n∑
j=1

wj

∑
k∈H(j)

E[Pk]− (1− 1

s
)

n∑
j=1

wjE[Pj], (5.6)

1

ms

n∑
j=1

wj

∑
k∈H(j)

E[Pk]. (5.7)

138

Hereafter, we refer to the lower bounds in Lemmas 5.1 and 5.2 as
Uniform-Bound and Fast-Bound, respectively. Note that for exponen-
tially distributed processing times, the Fast-bound is solely given by
the expected objective value of the WSEPT-rule applied to a single ma-
chine running at speed ms.

In order to evaluate the lower bounds, we use a simple lower bound
as a benchmark which is given by

1

s

∑
j

wjE[Pj].

Based on this benchmark bound, we obtain the following ratios for the
Uniform-bound and Fast-bound, respectively:

s

ks+m− k

∑n
j=1wj

∑
k∈H(j)E[Pk]∑n

j=1wjE[Pj]
− (s− 1), (5.8)

1

m

∑n
j=1wj

∑
k∈H(j)E[Pk]∑n

j=1wjE[Pj]
. (5.9)

The results of the lower bound study can be found in Tables 5.4.2 -
5.4.4. Towards answering Question L.1, we first take a look at the two
lower bounds individually. In Tables 5.4.2a - 5.4.4a, the computational
results for the Uniform-bound are presented. First of all, one can ob-
serve that the quality of the lower bound highly depends on each of
the three parameters. The Uniform-bound shows to be more accu-
rate for larger instances, i.e., the ratio compared to the simple bound
grows as n grows larger. With respect to m and s, one can observe that
with a growing number of machines or a larger maximum speed, the
Uniform-bound becomes weaker when being compared to the simple
bound. Most striking is the observation that for large values of m and
s and small instances the lower bound becomes negative. This is the
case since the right part of (5.8) becomes large for larger values of s
whereas the left part is small for instances with few jobs. Therefore,
the Uniform-bound (and its ratio compared to the benchmark bound)

139

Chapter 5. Theoretical and empirical analysis of stochastic online
scheduling policies on uniform machines

become negative for small instances with large values of s. This effect
becomes larger for scenarios with many machines since the factor of
the first part of (5.8) becomes smaller.

For the Fast-bound (see Tables 5.4.2b - 5.4.4b) we can also observe that
its quality compared to the simple bound increases when the number
of jobs increase. Again, this is to be expected since the ratio in (5.8) in-
creases as the instance size increases. Similarly, to the Uniform-bound,
we can observe that the number of machines has a negative impact on
the quality of the Fast-bound. This is due to the factor of 1/m in (5.8).
For the machine speeds, however, the Fast-bound remains relatively
stable for any number of jobs and machines. This is due to the ratio of
the Fast-bound and the benchmark bound being independent of s.

n
s

2 3 4 5 6 7 8 9

10 1.235 0.446 −0.331 −1.228 −2.203 −3.091 −4.067 −5.043
20 2.964 2.512 1.728 0.978 0.156 −0.790 −1.691 −2.658
50 8.263 8.418 8.167 7.587 6.854 6.118 5.384 4.503

100 17.061 18.299 18.780 18.675 18.149 17.720 17.022 16.412

200 34.735 38.242 39.877 40.534 40.933 40.972 40.616 40.219

500 87.549 97.553 103.111 106.847 108.888 110.153 111.251 111.652

1000 175.897 196.729 209.065 216.585 222.248 226.321 228.655 230.527

(a) Uniform-bound.

n
s

2 3 4 5 6 7 8 9

10 1.676 1.631 1.668 1.663 1.632 1.662 1.650 1.643

20 2.973 3.008 2.955 2.987 3.008 2.977 2.986 2.968

50 6.947 6.946 6.979 6.952 6.915 6.925 6.966 6.946

100 13.546 13.533 13.613 13.605 13.503 13.554 13.512 13.562

200 26.802 26.828 26.798 26.721 26.794 26.841 26.784 26.788

500 66.412 66.369 66.319 66.508 66.434 66.373 66.516 66.473

1000 132.673 132.486 132.540 132.351 132.561 132.755 132.556 132.515

(b) Fast-bound.

Table 5.4.2: Lower bound ratios compared to simple bound for m = 2.

140

n
s

2 3 4 5 6 7 8 9

10 −0.255 −1.228 −2.220 −3.211 −4.209 −5.198 −6.211 −7.201
20 0.327 −0.630 −1.601 −2.583 −3.572 −4.553 −5.549 −6.562
50 2.087 1.197 0.250 −0.693 −1.639 −2.640 −3.637 −4.650
100 5.030 4.258 3.387 2.471 1.487 0.530 −0.403 −1.407
200 10.908 10.378 9.574 8.738 7.824 6.921 5.963 5.002

500 28.550 28.674 28.218 27.652 26.894 26.040 25.213 24.348

1000 58.051 59.199 59.357 59.103 58.583 57.919 57.200 56.506

(a) Uniform-bound.

n
s

2 3 4 5 6 7 8 9

10 0.671 0.669 0.663 0.663 0.659 0.664 0.651 0.657

20 1.195 1.187 1.189 1.190 1.190 1.199 1.197 1.182

50 2.779 2.771 2.763 2.778 2.801 2.784 2.774 2.755

100 5.427 5.424 5.429 5.436 5.406 5.410 5.442 5.421

200 10.717 10.728 10.688 10.700 10.686 10.706 10.694 10.690

500 26.595 26.584 26.535 26.588 26.579 26.548 26.576 26.597

1000 53.146 53.039 53.003 53.007 52.985 52.961 52.965 53.038

(b) Fast-bound.

Table 5.4.3: Lower bound ratios compared to simple bound for m = 5.

n
s

2 3 4 5 6 7 8 9

10 −0.654 −1.645 −2.647 −3.637 −4.640 −5.636 −6.638 −7.638
20 −0.369 −1.362 −2.361 −3.358 −4.347 −5.344 −6.343 −7.349
50 0.463 −0.513 −1.493 −2.499 −3.488 −4.480 −5.479 −6.476
100 1.855 0.904 −0.074 −1.042 −2.047 −3.041 −4.023 −5.016
200 4.653 3.743 2.776 1.841 0.845 −0.151 −1.125 −2.125
500 12.999 12.247 11.378 10.438 9.501 8.515 7.559 6.609

1000 26.872 26.391 25.658 24.844 23.889 22.991 22.032 21.083

(a) Uniform-bound.

n
s

2 3 4 5 6 7 8 9

10 0.329 0.331 0.327 0.334 0.330 0.333 0.331 0.330

20 0.600 0.595 0.591 0.591 0.599 0.600 0.599 0.593

50 1.390 1.388 1.394 1.381 1.386 1.390 1.388 1.388

100 2.712 2.711 2.707 2.721 2.707 2.705 2.717 2.719

200 5.370 5.360 5.343 5.374 5.358 5.348 5.361 5.353

500 13.299 13.297 13.299 13.283 13.293 13.271 13.285 13.311

1000 26.478 26.498 26.509 26.536 26.481 26.506 26.492 26.498

(b) Fast-bound.

Table 5.4.4: Lower bound ratios compared to simple bound for m = 10.

141

Chapter 5. Theoretical and empirical analysis of stochastic online
scheduling policies on uniform machines

To finalize the analysis of the computational results for the lower bounds
we consider Question L.2. We can observe that the Uniform-bound is
less accurate for smaller instances due to the observations made above.
For larger instances, the Uniform-bound is preferable compared to the
Fast-bound. The difference between the two becomes smaller for large
values of m since in these scenarios we have to speed up relatively
fewer machines for the Fast-Bound. Overall, none of the two bounds
clearly dominates the other for the considered special case. As ∆, keep-
ing all other parameters the same, has a negative effect on both lower
bounds in theory, we expect it to have a similar effect on the Uniform-
bound as s and on the Fast-bound as m.

5.4.2 Policy analysis

To evaluate the policies introduced in Section 5.3 from an empirical
point-of-view, we construct a simulation study to compare the realized
performance guarantees to the theoretical performance guarantees for
different scenarios. The computational study aims to answer the fol-
lowing questions:

P.1 How does the realized performance of the policies compare to
the theoretical performance guarantee?

P.2 What is the magnitude of the effect the number of machines, the
number of jobs, the speed of the fast machines and the degree of
variation of the processing times have on the performance guar-
antee of the policies in practice?

In order to obtain a sufficient collection of scenarios to answer these
questions, different parameters are considered. These parameters in-
clude: the number of jobs, the number of machines, the speed of the
fast machines and the upper bound on the squared coefficient of varia-
tion, ∆. For n, m and s we select the same values as for the analysis of
the lower bounds (see Table 5.4.1). Again, we restrict ourselves to the
special case with m−1 fast machines. To analyse the effect of the degree
of variation, we consider different classes processing time distributions
with different values of ∆. First, we consider exponential distributions

142

with ∆ = 1 and for each job j a random value µj ∈ {1, 2, ..., 50} is
generated such that E[Pj] = µj . Secondly, we consider discrete uni-
form random variables. For each job j we generate a value µj such
that Pj ∼ Uniform(0, 2µj), E[Pj] = µj and ∆ = 1

3 . In order to
analyse the effect of ∆ on the performance of the policies we choose
log-normal distributions as another family of distributions. Trietsch et
al. [156] showed that both in theory and practice the log-normal distri-
bution has many features that appropriately model processing times
in both machine and activity scheduling. Among these features are
non-negativity and the possibility to easily test distributions with high
coefficients of variation. We choose log-normal distributions are with
Pj ∼ Lognormal(µj , σ

2) where σ2 = ln 11 for every job j. This gives
a bound on the squared coefficient of variation of ∆ = eσ

2 − 1 = 10.
For each scenario, we implement the policies for 50 different instances
and compute the expected objective value. Based on this, the real-
ized performance guarantee is calculated by using the maximum of
the Uniform-bound, the Fast-bound and the aforementioned simple
bound. Furthermore, for the QRandom-policy, we use an adapted ver-
sion of the algorithm in [122, 158] to compute a lower bound taking
into account non-trivial release dates (see Appendix 5.A).

In the following, we present some of the simulation results for both
policies. For each class of processing time distributions, we show the
results for m = 2 and varying machine speeds and number of jobs as
well as the results for s = 5 and varying number of machines and jobs.
The complete results can be found in the Appendix (see Tables 5.B.1 -
5.B.18).

Simulation results for sMI policy. The results of the selected scenar-
ios for the sMI-policy can be seen in Figures 5.4.1a - 5.4.3b. For the
special case with m− 1 fast machines the performance guarantee is

3

2
+

1

m− 1
+

∆

2

143

Chapter 5. Theoretical and empirical analysis of stochastic online
scheduling policies on uniform machines

First of all, regarding Question P.1 we can observe that for each family
of processing time distributions the realized performance guarantee is
smaller than the theoretical performance guarantee. Furthermore, all
figures show the asymptotic optimality of the sMI-policy as the real-
ized performance guarantee tends to 1 as the number of jobs increases.
With respect to Question P.2, we can see that the machine speeds seem
to have a small impact on the performance of the sMI-policy. Finally,
the performance guarantee is larger for larger values of ∆ which is
in line with the expected impact of ∆ based on the theoretical perfor-
mance guarantee. This impact diminishes for larger instances.

The most striking observation is that for large values of m, s or ∆
the expected behavior of the performance guarantee is observed only
for larger instances. Specifically, the performance guarantee first in-
creases with the number of jobs. An example of this can be seen in
Figure 5.4.1b, where the performance guarantee for m = 10 increases
up to n = 50. This coincides with the behavior of the lower bounds
observed earlier. As Table 5.4.4b shows, the simple bound is chosen
for instances with less than 50 jobs, possibly causing the observed be-
havior as the simple bound can be accurate for smaller instances.

0 200 400 600 800 1,000

1

1.2

1.4

1.6

1.8

2

Number of Jobs

Pe
rf

or
m

an
ce

gu
ar

an
te

e

s = 9
s = 8
s = 7
s = 6
s = 5
s = 4
s = 3
s = 2

(a) m = 2 and varying s.

0 200 400 600 800 1,000

1

1.2

1.4

1.6

1.8

Number of Jobs

m = 10
m = 5
m = 2

(b) s = 5 and varying m.

Figure 5.4.1: Performance of sMI-policy with exponential distributions.

144

0 200 400 600 800 1,000

1

1.2

1.4

1.6

1.8

Number of Jobs

Pe
rf

or
m

an
ce

gu
ar

an
te

e

s = 9
s = 8
s = 7
s = 6
s = 5
s = 4
s = 3
s = 2

(a) m = 2 and varying s.

0 200 400 600 800 1,000

1

1.2

1.4

1.6

Number of Jobs

m = 10
m = 5
m = 2

(b) s = 5 and varying m.

Figure 5.4.2: Performance of sMI-policy for uniformly distributed processing
times.

0 200 400 600 800 1,000

1

2

3

4

5

6

Number of Jobs

Pe
rf

or
m

an
ce

gu
ar

an
te

e

s = 9
s = 8
s = 7
s = 6
s = 5
s = 4
s = 3
s = 2

(a) m = 2 and varying s.

0 200 400 600 800 1,000

1

2

3

4

5

Number of Jobs

m = 10
m = 5
m = 2

(b) s = 5 and varying m.

Figure 5.4.3: Performance of sMI-policy for log-normally distributed process-
ing times.

145

Chapter 5. Theoretical and empirical analysis of stochastic online
scheduling policies on uniform machines

Simulation results for QRandom-policy. In Figures 5.4.4 - 5.4.6, the
selected results of the computational study of the QRandom-policy are
shown. Recall, that the theoretical performance guarantee for the spe-
cial case with m− 1 fast machines considered is

ρ = 5 +∆+
6

m− 1
.

With respect to Question P.1, we can observe that the realized perfor-
mance guarantee is significantly smaller for each group of scenarios.
In fact, the realized performance guarantee is not more than 5 for each
of the selected scenarios while the theoretical performance guarantee
above is strictly larger than 5. Furthermore, we can observe an asymp-
totic behavior of the realized performance guarantee since the perfor-
mance guarantee decreases as the instance size increases and remains
relatively stable for very large instances. Regarding Question P.2 we
can see that ∆ has an impact on the realized performance. However,
this impact is not as large as expected. When comparing the results
in Figures 5.4.4a and 5.4.6a the difference between the realized per-
formance guarantees is much smaller than 9 which is the theoretical
difference between settings with exponentially distributed processing
times with ∆ = 1 and log-normally distributed processing times with
∆ = 10. Regarding the machine speeds, we can again observe that the
performance is slightly worse for larger values of s than for smaller
values. Similarly, the realized performance guarantee increases with
the number of machines which is not in line with the theoretical perfor-
mance guarantee. The most striking observation is again the policy’s
performance for smaller instances with many machines. Again this can
be explained with the observations made in the computational study
of the lower bounds.

146

0 200 400 600 800 1,000

1.5

2

2.5

3

Number of Jobs

Pe
rf

or
m

an
ce

gu
ar

an
te

e

s = 9
s = 8
s = 7
s = 6
s = 5
s = 4
s = 3
s = 2

(a) m = 2 and varying s.

0 200 400 600 800 1,000

1.5

2

2.5

3

Number of Jobs

m = 10
m = 5
m = 2

(b) s = 5 and varying m.

Figure 5.4.4: Performance of QRandom-policy for exponentially distributed
processing times.

0 200 400 600 800 1,000

1

1.2

1.4

1.6

1.8

Number of Jobs

Pe
rf

or
m

an
ce

gu
ar

an
te

e

s = 9
s = 8
s = 7
s = 6
s = 5
s = 4
s = 3
s = 2

(a) m = 2 and varying s.

0 200 400 600 800 1,000

1

1.2

1.4

1.6

Number of Jobs

m = 10
m = 5
m = 2

(b) s = 5 and varying m.

Figure 5.4.5: Performance of QRandom-policy for uniformly distributed pro-
cessing times.

147

Chapter 5. Theoretical and empirical analysis of stochastic online
scheduling policies on uniform machines

0 200 400 600 800 1,000

1

2

3

4

Number of Jobs

Pe
rf

or
m

an
ce

gu
ar

an
te

e

s = 9
s = 8
s = 7
s = 6
s = 5
s = 4
s = 3
s = 2

(a) m = 2 and varying s.

0 200 400 600 800 1,000

2

3

4

Number of Jobs

m = 10
m = 5
m = 2

(b) s = 5 and varying m.

Figure 5.4.6: Performance of QRandom-policy for log-normally distributed
processing times.

148

Appendix

5.A Improved lower bound for online-time model

In order to strengthen the lower bound given in Lemma 5.2, Möhring
et al. [122] (see also Uetz [158]) introduce the following linear program-
ming relaxation:

minimize
n∑

j=1

wj E[Cj]

subject to
∑
j∈A

E[pj]E[Cj] ≥ f(A), ∀A ⊆ J

E[Cj] ≥ ℓj ∀j ∈ J

(5.10)

Here, ℓj can be any natural lower bound on the expected processing
time. In our case, ℓj = rj +

E[Pj]
s . Furthermore, the set function f(A) is

defined as

f(A) =
1

2ms

∑
j∈A

E[pj]

2

+
∑
j∈A

E[pj]
2

−(m− 1)(∆ + 1)

2ms

∑
j∈A

E[pj]
2.

Following along the same lines as Möhring et al. [122] (see also Uetz [158]),
this linear programming relaxation is optimized for

E[Cj] =
f ℓ({1, ..., j})− f ℓ({1, ..., j − 1})

E[pj]
s

for j = 1, ..., n,

where f ℓ(A) are auxilliary set functions defined as follows:

f ℓ(A) =
∑
j∈A

E[pj]

s
ℓj +max

B⊆A

f(B)−
∑
j∈B

E[pj]

s
ℓj

 A ⊆ J.

The second part of f ℓ(A) is denoted as gℓ(B). To compute f ℓ(A) it is
necessary to solve the maximization problem of gℓ over any ground

149

Chapter 5. Theoretical and empirical analysis of stochastic online
scheduling policies on uniform machines

set A. To this end, Möhring et al. [122] show that the maximization
problem of gℓ over a ground set A can be solved by first ordering the
jobs in non-decreasing order of (∆−1)(m−1)

2m E[pj]/s + ℓj . If this order
is assumed to given by 1, ..., |A|, then the set maximizing gℓ(B) must
be one of the nested sets, i.e., A∗ ∈ {∅, {1}, ..., {1, ..., |A|}}. Hence, this
can be done in time O(n log n). Based on this result, they present a
polynomial-time algorithm to find f ℓ(1, . . . , j) for every j = 1, . . . , n.

Algorithm 5.3 Efficiently computing f ℓ({1, ..., j}) for all j = 1, ..., n

Input:∆,m, s and E [Pj] , ℓj for all j = 1, ..., n
Output: f ℓ({1, ..., j}) for all j = 1, ..., n
Initialization: List L← ∅,

∑
1 ← 0

for j = 1, ..., n do∑
1 ←

∑
1+E[Pj]/sℓj

Insert j into L according to non-decreasing values
(m−1)(∆−1)

2m
E[Pj]/s + ℓj

Initialize
∑

2 ← 0, g ← 0, gmax ← 0
for k = 1, ..., j in the order given by list L do

g ← g + E[Pk]/s
(

1
m

∑
2+

1
m

E[Pk]/s− ℓk − (m−1)(∆−1)
2m

E[Pk]/s
)

if g > gmax then
gmax ← g

end if∑
2 ←

∑
2+E[Pk]/s

end for
end for

150

5.B Complete results of computational study

n
s

2 3 4 5 6 7 8 9

10 1.574 1.742 1.823 1.879 1.923 1.948 1.964 1.973

20 1.448 1.626 1.727 1.793 1.834 1.865 1.888 1.908

50 1.165 1.274 1.417 1.585 1.739 1.800 1.828 1.848

100 1.079 1.129 1.179 1.234 1.295 1.360 1.426 1.509

200 1.038 1.062 1.084 1.108 1.131 1.156 1.181 1.208

500 1.015 1.024 1.033 1.041 1.049 1.057 1.066 1.074

1000 1.008 1.012 1.016 1.020 1.024 1.028 1.032 1.036

Table 5.B.1: Performance of sMI-policy with exponentially distributed process-
ing times and m = 2.

n
s

2 3 4 5 6 7 8 9

10 1.277 1.290 1.308 1.296 1.309 1.301 1.292 1.317

20 1.550 1.579 1.590 1.616 1.622 1.626 1.614 1.624

50 1.287 1.328 1.350 1.366 1.373 1.378 1.381 1.385

100 1.199 1.242 1.263 1.277 1.286 1.292 1.296 1.301

200 1.134 1.197 1.219 1.233 1.242 1.249 1.254 1.258

500 1.051 1.085 1.122 1.161 1.202 1.224 1.229 1.233

1000 1.025 1.041 1.058 1.075 1.093 1.111 1.130 1.149

Table 5.B.2: Performance of sMI-policy with exponentially distributed process-
ing times and m = 5.

n
s

2 3 4 5 6 7 8 9

10 1.009 1.008 1.008 1.009 1.008 1.009 1.011 1.008

20 1.216 1.228 1.217 1.227 1.236 1.226 1.234 1.229

50 1.436 1.462 1.468 1.477 1.477 1.480 1.480 1.486

100 1.242 1.260 1.272 1.275 1.279 1.282 1.286 1.286

200 1.146 1.165 1.175 1.180 1.184 1.186 1.188 1.189

500 1.089 1.108 1.117 1.123 1.127 1.130 1.132 1.134

1000 1.055 1.089 1.099 1.105 1.109 1.112 1.114 1.116

Table 5.B.3: Performance of sMI-policy with exponentially distributed process-
ing times and m = 10.

151

Chapter 5. Theoretical and empirical analysis of stochastic online
scheduling policies on uniform machines

n
s

2 3 4 5 6 7 8 9

10 1.418 1.585 1.673 1.721 1.749 1.786 1.801 1.806

20 1.246 1.452 1.633 1.697 1.740 1.769 1.801 1.814

50 1.092 1.157 1.225 1.290 1.364 1.448 1.549 1.658

100 1.046 1.075 1.102 1.133 1.160 1.189 1.224 1.254

200 1.022 1.036 1.049 1.062 1.075 1.088 1.102 1.115

500 1.009 1.014 1.019 1.024 1.029 1.034 1.039 1.043

1000 1.004 1.007 1.010 1.012 1.014 1.017 1.019 1.021

Table 5.B.4: Performance of sMI-policy with uniformly distributed processing
times and m = 2.

n
s

2 3 4 5 6 7 8 9

10 1.310 1.348 1.345 1.327 1.345 1.337 1.335 1.338

20 1.250 1.284 1.303 1.315 1.317 1.322 1.318 1.319

50 1.167 1.207 1.228 1.239 1.249 1.254 1.258 1.261

100 1.137 1.179 1.202 1.215 1.224 1.230 1.235 1.239

200 1.067 1.120 1.177 1.202 1.211 1.218 1.223 1.227

500 1.026 1.046 1.066 1.086 1.107 1.130 1.152 1.176

1000 1.013 1.022 1.032 1.041 1.051 1.061 1.071 1.082

Table 5.B.5: Performance of sMI-policy with uniformly distributed processing
times and m = 5.

n
s

2 3 4 5 6 7 8 9

10 1.019 1.015 1.016 1.012 1.014 1.015 1.016 1.018

20 1.268 1.273 1.269 1.275 1.276 1.284 1.268 1.274

50 1.168 1.186 1.194 1.201 1.201 1.202 1.203 1.204

100 1.111 1.129 1.138 1.143 1.147 1.149 1.150 1.152

200 1.081 1.100 1.109 1.114 1.118 1.121 1.123 1.124

500 1.056 1.082 1.092 1.097 1.101 1.104 1.106 1.108

1000 1.027 1.049 1.071 1.092 1.096 1.099 1.101 1.103

Table 5.B.6: Performance of sMI-policy with uniformly distributed processing
times and m = 10.

152

n
s

2 3 4 5 6 7 8 9

10 2.574 2.923 3.014 3.116 3.204 3.245 3.257 3.313

20 4.310 4.754 5.101 5.207 5.400 5.491 5.578 5.578

50 2.055 2.314 2.472 2.562 2.630 2.683 2.716 2.752

100 1.629 1.827 1.951 2.036 2.088 2.127 2.161 2.185

200 1.254 1.449 1.691 1.835 1.885 1.925 1.954 1.978

500 1.090 1.142 1.200 1.263 1.332 1.409 1.497 1.592

1000 1.043 1.067 1.092 1.117 1.143 1.170 1.200 1.231

Table 5.B.7: Performance of sMI-policy with log-normally distributed process-
ing times and m = 2.

n
s

2 3 4 5 6 7 8 9

10 1.300 1.297 1.321 1.306 1.309 1.326 1.301 1.287

20 1.837 1.874 1.921 1.915 1.915 1.909 1.921 1.950

50 3.525 3.687 3.818 3.812 3.764 3.840 3.810 3.891

100 3.574 3.795 3.821 3.779 3.885 3.986 3.866 3.960

200 1.738 1.807 1.843 1.863 1.873 1.887 1.891 1.892

500 1.305 1.353 1.380 1.397 1.408 1.416 1.421 1.426

1000 1.190 1.247 1.271 1.286 1.296 1.304 1.309 1.314

Table 5.B.8: Performance of sMI-policy with log-normally distributed process-
ing times and m = 5.

n
s

2 3 4 5 6 7 8 9

10 1.009 1.010 1.009 1.012 1.009 1.010 1.009 1.010

20 1.231 1.231 1.232 1.224 1.226 1.226 1.239 1.234

50 2.003 2.020 2.023 2.053 2.058 2.040 2.034 2.066

100 3.322 3.443 3.439 3.449 3.475 3.475 3.495 3.497

200 4.779 4.829 4.919 4.840 4.881 4.853 4.926 4.832

500 1.565 1.590 1.607 1.616 1.622 1.628 1.627 1.632

1000 1.263 1.286 1.297 1.304 1.308 1.313 1.314 1.317

Table 5.B.9: Performance of sMI-policy with log-normally distributed process-
ing times and m = 10.

153

Chapter 5. Theoretical and empirical analysis of stochastic online
scheduling policies on uniform machines

n
s

2 3 4 5 6 7 8 9

10 2.727 2.966 3.025 2.854 2.775 2.679 2.465 2.568

20 1.941 2.343 2.714 2.780 2.981 2.997 2.984 2.973

50 1.680 1.814 2.027 2.204 2.265 2.325 2.343 2.419

100 1.487 1.719 1.852 1.917 1.975 2.040 2.093 2.105

200 1.446 1.626 1.759 1.845 1.904 1.943 1.973 1.983

500 1.429 1.617 1.720 1.791 1.830 1.888 1.913 1.928

1000 1.426 1.606 1.711 1.786 1.821 1.865 1.886 1.924

Table 5.B.10: Performance of QRandom-policy with exponentially distributed
processing times and m = 2.

n
s

2 3 4 5 6 7 8 9

10 2.382 2.365 2.222 2.285 2.222 2.122 2.174 2.118

20 2.781 2.678 2.375 2.345 2.371 2.247 2.146 2.213

50 1.870 1.993 2.253 2.342 2.546 2.645 2.553 2.546

100 1.482 1.556 1.673 1.738 1.816 1.875 1.928 2.030

200 1.303 1.390 1.418 1.439 1.488 1.523 1.570 1.564

500 1.214 1.269 1.305 1.317 1.347 1.351 1.360 1.371

1000 1.193 1.241 1.268 1.289 1.299 1.316 1.323 1.317

Table 5.B.11: Performance of QRandom-policy with exponentially distributed
processing times and m = 5.

n
s

2 3 4 5 6 7 8 9

10 2.277 2.132 2.201 2.029 2.017 2.164 1.965 2.059

20 2.397 2.232 2.155 2.069 2.091 2.059 2.102 2.151

50 2.646 2.715 2.467 2.341 2.332 2.179 2.173 2.073

100 1.757 1.945 2.117 2.302 2.464 2.553 2.446 2.360

200 1.410 1.479 1.561 1.594 1.681 1.763 1.836 1.891

500 1.218 1.253 1.275 1.297 1.328 1.340 1.364 1.378

1000 1.168 1.190 1.201 1.219 1.233 1.233 1.240 1.259

Table 5.B.12: Performance of QRandom-policy with exponentially distributed
processing times and m = 10.

154

n
s

2 3 4 5 6 7 8 9

10 1.417 1.584 1.665 1.719 1.759 1.782 1.792 1.807

20 1.241 1.461 1.631 1.699 1.738 1.771 1.796 1.817

50 1.093 1.157 1.224 1.292 1.368 1.452 1.553 1.662

100 1.046 1.074 1.102 1.131 1.160 1.189 1.223 1.254

200 1.023 1.037 1.050 1.062 1.075 1.089 1.102 1.115

500 1.009 1.014 1.019 1.024 1.029 1.034 1.039 1.043

1000 1.004 1.007 1.010 1.012 1.014 1.017 1.019 1.021

Table 5.B.13: Performance of QRandom-policy with uniformly distributed pro-
cessing times and m = 2.

n
s

2 3 4 5 6 7 8 9

10 1.324 1.334 1.320 1.340 1.348 1.354 1.353 1.334

20 1.251 1.287 1.302 1.307 1.314 1.316 1.318 1.319

50 1.166 1.207 1.228 1.239 1.249 1.254 1.259 1.262

100 1.136 1.180 1.201 1.215 1.223 1.230 1.235 1.239

200 1.067 1.119 1.177 1.202 1.211 1.218 1.223 1.227

500 1.026 1.046 1.066 1.086 1.107 1.130 1.152 1.176

1000 1.013 1.022 1.032 1.042 1.051 1.061 1.071 1.082

Table 5.B.14: Performance of QRandom-policy with uniformly distributed pro-
cessing times and m = 5.

n
s

2 3 4 5 6 7 8 9

10 1.018 1.015 1.016 1.017 1.014 1.015 1.016 1.015

20 1.264 1.275 1.277 1.277 1.277 1.273 1.283 1.274

50 1.169 1.186 1.194 1.200 1.202 1.202 1.205 1.205

100 1.111 1.129 1.138 1.144 1.146 1.148 1.151 1.152

200 1.082 1.099 1.109 1.114 1.118 1.120 1.123 1.124

500 1.055 1.082 1.092 1.098 1.101 1.104 1.106 1.108

1000 1.027 1.049 1.071 1.092 1.096 1.099 1.101 1.103

Table 5.B.15: Performance of QRandom-policy with uniformly distributed pro-
cessing times and m = 10.

155

Chapter 5. Theoretical and empirical analysis of stochastic online
scheduling policies on uniform machines

n
s

2 3 4 5 6 7 8 9

10 3.287 3.209 3.126 3.041 3.069 2.594 2.665 2.372

20 4.450 4.398 4.110 4.092 3.326 3.394 3.098 3.151

50 1.983 2.355 2.491 2.700 2.750 2.799 3.004 3.141

100 1.652 1.898 2.057 2.164 2.226 2.270 2.322 2.419

200 1.509 1.745 1.853 1.921 2.006 1.993 2.067 2.109

500 1.462 1.637 1.744 1.811 1.880 1.914 1.940 1.962

1000 1.432 1.613 1.721 1.794 1.845 1.868 1.921 1.941

Table 5.B.16: Performance of QRandom-policy with log-normally distributed
processing times and m = 2.

n
s

2 3 4 5 6 7 8 9

10 2.470 2.376 2.269 2.318 2.208 2.309 2.221 2.072

20 2.870 2.723 2.552 2.414 2.298 2.238 2.199 2.218

50 4.278 3.664 3.413 3.161 2.928 2.730 2.617 2.468

100 2.712 2.853 3.080 3.187 3.267 3.303 3.398 3.197

200 1.634 1.744 1.766 1.851 1.868 1.923 1.939 2.025

500 1.327 1.378 1.409 1.438 1.459 1.465 1.476 1.494

1000 1.251 1.301 1.323 1.335 1.364 1.352 1.363 1.372

Table 5.B.17: Performance of QRandom-policy with log-normally distributed
processing times and m = 5.

n
s

2 3 4 5 6 7 8 9

10 2.266 2.196 2.059 2.025 2.003 2.014 2.047 2.052

20 2.388 2.272 2.137 2.171 2.101 2.037 1.978 2.068

50 2.980 2.705 2.505 2.448 2.288 2.193 2.211 2.154

100 4.178 3.528 3.249 2.934 2.731 2.623 2.464 2.405

200 2.894 3.159 3.220 3.320 3.535 3.394 3.337 3.130

500 1.488 1.533 1.563 1.576 1.626 1.636 1.659 1.720

1000 1.268 1.293 1.321 1.330 1.341 1.349 1.369 1.376

Table 5.B.18: Performance of QRandom-policy with log-normally distributed
processing times and m = 10.

156

Chapter 6

Optimizing fuel consumption under
uncertainty for a single vessel in inland

waterways

6.1 Introduction
The transportation and logistics industry is a key driver in reaching
sustainability accounting for nearly a quarter of the EU’s greenhouse
gas emissions [51]. Towards the goal of zero-emission transportation
and a reduction of at least 90% by 2050 [52], the European Commis-
sion has identified various areas for action and change [51, 52]. Among
these is the increase of the efficiency of transportation systems as well
as the move towards low-emission transportation modes. Inland wa-
terways have been shown to be one of the most sustainable and CO2-
efficient transport modes per tonne of goods carried [53] and are a nat-
ural tool towards achieving the aforementioned goals.

This chapter has been adapted from: M. Buchem, J. A. P. Golak, and A. Grigoriev.
“Vessel velocity decisions in inland waterway transportation under uncertainty”.
In: European Journal of Operational Research 296 (2022), pp. 669–678

157

Chapter 6. Optimizing fuel consumption under uncertainty for a
single vessel in inland waterways

Besides its advantages, inland waterway transportation faces many
challenges such as the presence of locks forming a crucial bottleneck
for the efficiency and management. Locks are necessary for inland wa-
terways to maintain sufficient water levels for navigation and mov-
ing vessels between river segments of different water levels. In re-
cent years, the possible role of inland waterway transportation and the
challenges faced have sparked a large interest in the theoretical opti-
mization of lock operations from a scheduling point-of-view.

Problem Description and Preliminaries. In this chapter, we take the
perspective of a single vessel facing uncertainty at a lock with the goal
of optimizing the vessel’s fuel consumption by deciding on the vessel’s
velocity and its arrival time at the lock. We consider a waterway split
in two river segments, the upstream and downstream segment. The
waterway contains a single lock with a single chamber of unit capacity,
i.e., the lock can serve one vessel at a time. The vessel we consider,
vessel a, is approaching the lock from the upstream segment while a
second vessel, vessel b, is approaching the lock from the downstream
segment. The vessel for which we can control the velocity is vessel a,
whereas vessel b is outside of our control. A visualization of the setting
is given in Figure 6.1.1.

a

b

U

D

Lu Ld

Figure 6.1.1: Visualization of problem setting.

An instance of the problem is defined as follows. The length of the
waterway is defined by the lengths of the two segments. Let Lu de-
note the length of the upstream segment and, similarly, Ld denote the

158

length of the downstream segment. Furthermore, the lock is charac-
terized by a deterministic lockage time. This is the time it takes the
lock to move a vessel from one of the river segments excluding the
vessel-dependent docking and undocking time. We denote the lock-
age time by P . Moreover, we assume that the lock operates based on
a first-come-first-serve basis with ties being broken in favor of vessel
a. Vessel a is characterized by its deadline D at which it must have
reached the end of the downstream segment and its total docking and
undocking time ηa. For vessel a, the docking and undocking time is de-
terministic and, thus, the total time it takes vessel a to move from the
upstream to the downstream segment is given by τa = P + ηa. Vessel
b is characterized by its fixed and known arrival time at the lock, de-
noted by r, and its total docking and undocking time ηb. In contrast to
the ηa, ηb is not deterministic and subject to uncertainty as the skipper
of vessel a is not aware of the exact nature of vessel b. Therefore, ηb is
given as a random variable and the total processing time of vessel b in
the lock is defined as the random variable τb = P + ηb and τb = ci with
probability pi for i = 1, . . . , n. Finally, for each possible realization of
τb, vessel a is informed at time r+ci if vessel b has exited the lock or not.
The instance is fully defined by the tuple I = (ηa, ηb, P, r,D,Ld, Lu). In
this chapter, we focus on the setting where the probability distribution
underlying ηb is discrete.

The goal is to minimize the total expected fuel consumption needed
by vessel a to cross the complete waterway. The real fuel consumption
per time unit can be approximated as a cubic function of the vessel’s
velocity given vessel specifications ρ [55, 85, 124, 126]. In accordance
with the literature, we define the fuel consumption per time unit as
F t(v) = ρ · v3. In order to travel a distance d at constant velocity v
takes time t = d/v. Therefore, the total fuel consumption required
for travelling distance d at velocity v is F (v, d) = F t(v)t = d · ρ · v2.
Since v ≥ 0 the fuel consumption is convex. Furthermore, we make
the following assumptions:

• The velocity of vessel a can be fully controlled at any point in
time and can be changed instantly.

159

Chapter 6. Optimizing fuel consumption under uncertainty for a
single vessel in inland waterways

• Vessel a’s velocity is subject to minimum and maximum veloci-
ties.

• The lock is positioned to the vessel that arrives first, i.e., arriving
first at the lock implies the possibility of immediate docking into
the lock.

• The ship specifications ρ are equal to 1 such that the fuel con-
sumption functions are F t(v) = v3 and F (v, d) = dv2 expressed
in unit of time and distance, respectively.

• Vessels a and b are said to be in a conflict situation meaning that
at the optimal arrival time of vessel a when ignoring the pres-
ence of vessel b there is a positive probability that the lock is still
processing vessel b.

Remark 6.1. Since the total fuel consumption is convex for non-negative
velocities, once vessel a has left the lock at time t the fuel consumption
on the downstream segment is optimized by a constant velocity

Ld

D − t

yielding a total fuel consumption on the downstream segment of

L3
d

(D − t)2
.

A solution to the problem is defined by a velocity policy for vessel a.
For each point in time t, a velocity policy must choose a velocity for
vessel a. Given the previous remark, we restrict ourselves to velocity
policies choosing a velocity for any moment in time on the upstream
segment. These velocity choices then imply a specific constant veloc-
ity on the downstream segment. We require a velocity policy to be
non-anticipatory such that it must make its decisions only based on
the knowledge available up to time t and all the a-priori distributional
information.

160

This information includes the availability of the lock, denoted by ω(t):

ω(t) =

{
−1, if vessel b has not left the lock at time t;

t− tb, if vessel b has exited the lock at time tb ≤ t.

Recall that we only consider cases in which vessels a and b are in a
conflict with each other. Therefore, ω(t) = −1 for t < r.

Formally, a velocity policy is a decision rule which for any decision mo-
ment t and any realization of ω(t) defines a velocity v(t, ω(t)) for vessel
a. As mentioned before, a velocity policy may only take into account
the full knowledge accumulated up to point t. Furthermore, a velocity
policy must satisfy two conditions to be feasible. The first condition is
that for all t and ω(t), v(t, ω(t)), must satisfy possible imposed mini-
mum and maximum velocities denoted by vmin ≥ 0 and vmax ≥ vmin,
respectively. The second condition is that the velocity policy needs to
ensure that vessel a traverses the full upstream segment and that for
any choice of velocities and realizations of τb, enough time remains for
vessel a to cross the downstream segment. To define this condition, we
need to introduce additional notions.

Let T (v) denote the random arrival time of vessel a at the lock under
velocity policy v(·). The waiting time at the lock for vessel a, denoted
by q(T (v)), is defined as

q(T (v)) =

{
max {r + τb − T (v), 0} , if r < T (v) < r + cn;

0, otherwise.

The waiting time is a random variable as well. For T (v) = ra > r + ci
for some i = 1, . . . , n we have that q(ra) = r + cj − ra with probability
pj for j > i and q(ra) = 0 with probability

∑i
k=1 pk.

Based on these random variables, we can formulate the second condi-
tion as follows: ∫ T (v)

0

v(t, ω(t))dt = Lu,

161

Chapter 6. Optimizing fuel consumption under uncertainty for a
single vessel in inland waterways

T (v) + q(T (v)) + τa ≤ D − Ld

vmax
.

The first constraint ensures that vessel a reaches the lock at time T (v)
and the second constraint ensures that enough time remains to cross
the downward segment while satisfying the maximum velocity.

Finally, we define the total expected fuel consumption of a velocity
policy v. Since the fuel consumption inside the lock is 0, the total fuel
consumption is split in two parts, the consumption on the upstream
and downstream segments as follows:

E

[∫ T (v)

0

v(t, ω(t))3dt+
(Ld

D − T (v)− q(T (v))− τa

)2

Ld

]
.

Thus, finding an optimal velocity policy can be formulated as:

min
v(.)

E

[∫ T (v)

0

v(t, ω(t))3dt+
(Ld

D − T (v)− q(T (v))− τa

)2

Ld

]
(6.1)

s.t. ∫ T (v)

0

v(t, ω(t))dt = Lu (6.2)

T (v) + q(T (v)) + τa ≤ D − Ld

vmax
(6.3)

vmin ≤ v(t, ω(t)) ≤ vmax ∀t ≥ 0 and ω(t) (6.4)

An illustration of the problem is given in the following example.

EXAMPLE 6.1: ILLUSTRATIVE EXAMPLE

Consider an instance defined by the following parameters:

• Waterway: Lu = Ld = 1,

• Vessel a: D = 6 and τa = 1 and

• Vessel b: r = 0 and τb ∼ unif{1, 3}.

162

The presence of vessel b leads to a conflict situation since the
optimal arrival time at the lock of vessel a ignoring the presence
of vessel b is t∗ = 2.5.
A natural velocity policy is to approach the lock with velocity
1
2.5 until time 2 and then update the velocity depending on the
lock’s availability: if the lock is available at time 2 the veloc-
ity remains the same, if the lock is not available the velocity
is changed such that the vessel arrives at the lock at time 3.
This velocity policy yields a total expected fuel consumption of
approximately 0.342. This policy is visualized in Figure 6.1.2,
where each box shows the position at the time of this node and
the velocity chosen at the previous time point. In contrast to
this dynamic approach, not taking into account the uncertainty
and choosing a constant velocity with arrival time 2.5 leads to a
total expected fuel consumption of 0.35. Hence, even a simple
dynamic velocity policy leads to possible fuel savings of approx-
imately 2.3%.

t0 = 0

(0.4, 0.4)

t1 = 1

(1, 0.4)

t∗ = 2.5

(0.8, 0.4)

t2 = 2 (1, 0.2)

t2 = 3

(1, 0.4)

t∗ = 2.5

Figure 6.1.2: Visualization of simple dynamic solution to Example 6.1.

Related work. The optimization of lock operations in inland water-
ways entails three interrelated subproblems: the assignments of ves-
sels to lock chambers, the placement of vessels within a single chamber
and the scheduling of lockage operations [164]. An extensive overview
of the results for these subproblems can be found in [125, 162]. We turn
our attention towards the third subproblem.

163

Chapter 6. Optimizing fuel consumption under uncertainty for a
single vessel in inland waterways

Hermans [77] considers a lock scheduling problem for a single lock and
a single chamber with bidirectional traffic on a waterway and presents
a polynomial time dynamic program to find a feasible schedule subject
to vessel deadlines to cross the waterway. Passchyn et al. [129] present
a polynomial time algorithm to minimize total waiting time of vessels
with known arrival times at the lock for a lock with a single chamber.
In [128], this problem is extended to a single lock with multiple cham-
bers and schedules with zero waiting time at the locks are desired. A
linear time algorithm for a lock with two chambers as well as a dy-
namic program for an arbitrary number of chambers are presented.
Pinson and Spieksma [132] consider the lock scheduling problem in
the online setting and allow for possible lookahead as to find a feasible
schedule with zero total waiting time. Verstichel et al. [163] present a
mathematical programming formulation for the lock scheduling prob-
lem considering multiple chambers and introduce heuristic methods.
The above results focus on scheduling a single lock (with multiple
chambers). In many inland waterways, however, a sequence of lock
is given. Passchyn et al. [127] introduce a mathematical programming
formulation for scheduling multiple locks in a sequence. Passchyn
and Spieksma [130] introduce a batch scheduling problem on iden-
tical parallel machines in a sequence with the aim to minimize total
completion time. They show that the problem is strongly NP-hard
even for two identical parallel machines when all vessels travel in the
same direction. Prandstetter et al. [133] present a heuristic and search
algorithm to minimize total travel times and consider the real world
example of the Danube river. The specific objectives of minimizing
fuel consumption or total emissions have become more present in the
area of lock scheduling in the recent years. Passchyn et al. [126] intro-
duce a mathematical programming formulation of the lock scheduling
problem with the goal to minimize total emissions and investigate the
trade-off between emissions and travel times. Defryn et al. [43] view
the problem from a game-theoretic point-of-view where each vessel
chooses its individual velocity and arrival time at the lock and the goal
is to minimize total fuel consumption.

164

While uncertainty has not yet been considered in inland waterway
management, multiple models with uncertainty are known for mar-
itime shipping. In maritime shipping, container vessels must visit mul-
tiple ports along a route for loading and unloading cargo. These load-
ing and unloading operations can be subject to random fluctuations.
Brouer et al. [20] introduce the vessel schedule recovery problem in
which random service times at ports lead to disruptions. These dis-
ruptions lead to possible changes in the remaining schedule to satisfy
a certain service level. Wang et al. [167] present a non-linear stochastic
programming formulation to find a robust schedule for maritime ship-
ping routes when late arrivals are not allowed. Aydin et al. [7] consider
a dynamic approach to optimize the velocity of a vessel in liner ship-
ping to minimize total fuel consumption. Andersen et al. [4] present
a model for optimizing traffic in the Kiel Canal subject to uncertain
arrival times of vessels at the entrance of the canal. This generalizes
earlier work by Lübbecke et al. [115] in the deterministic setting.

Outline. The remainder of this chapter is structured as follows. In
Section 6.2, we first derive two structural properties of optimal velocity
policies. These properties allow us to derive a recursive formulation
leading to a dynamic program for finding a close-to-optimal velocity
policy. In Section 6.3, we introduce a simple heuristic velocity policy
based on the idea of a fixed arrival time at the lock for vessel a. In
Section 6.4, we conduct a computational study to analyse and compare
the quality of the introduced solution methods based on the efficiency
as well as simplicity of implementation.

165

Chapter 6. Optimizing fuel consumption under uncertainty for a
single vessel in inland waterways

6.2 Optimal and near-optimal dynamic velocity
policies

In this section, we first derive a recursive formulation to find an op-
timal velocity policy based on two observations. Then, we use this
recursive formulation to develop a dynamic program for computing a
near-optimal velocity policy.

First, observe that as soon as the lock becomes available for vessel a,
it is optimal to travel the remaining distance of the upstream segment
with a constant velocity. This is due to the convexity of fuel consump-
tion for non-negative velocities. Additionally, no waiting time is nec-
essary once the lock is available.

Observation 6.2. Let v∗ be an optimal velocity policy. Then, for any time t
at which vessel b has already left the lock, the following holds:

v∗(t, ω(t)) =

{
v∗(t− ω(t), 0), if vessel a has not reached the lock at time t;
0, if vessel a has reached the lock.

(6.5)

This property allows us to reformulate the total expected fuel con-
sumption. Consider a point in time t and let X(t) define the position
of vessel a at time t. Then, for the remaining distance of the upstream
segment the optimal final fuel consumption is defined by

F (X(t)) = min
vmin≤v≤vmax

v2(Lu −X) +
L3
d

(D − (t+ (Lu −X)/v + τa))2
. (6.6)

Note that the optimal constant velocity for a given X(t) can be found
using first order conditions. Let p̃t = 1−

∑
i:r+ci≤t pi be the probability

that the lock is not available at time t and pt be the probability that
the lock is available at time t. Then, due to Observation 6.2, the total

166

expected fuel consumption can be reformulated as

E

[∫ T (v)

0

v(t, ω(t))3dt+
(Ld

D − T (v)− q(T (v))− τ

)2

Ld

]

=

∫ T (v)

0

p̃tv(t,−1)3dt+
∫ T (v)

0

ptF (X(t))dt.

(6.7)

Here, the first part corresponds to the expected fuel consumption be-
fore the lock finishes processing vessel b and the second part represents
the fuel consumption after the lock finishes processing vessel b. This in
combination with the convexity of fuel consumption implies that ve-
locity changes are not optimal unless new information about the status
of the lock is revealed.

Next, we use the fact that the processing time distribution for vessel
b is discrete to restrict the moments in time at which velocity changes
occur. As the fuel consumption is convex, constant velocity is desired
whenever possible [85]. In the time intervals between realizations of
τb, no new information about the lock is revealed and, therefore, any
velocity changes in such an interval can be compensated by using a
constant (average) velocity.

Observation 6.3. Let v∗ be an optimal velocity policy. Then, velocity changes
only occur at time t ∈ {0, r + c1, . . . , r + cn}.

This property of an optimal velocity policy allows us to further refor-
mulate the total expected fuel consumption. To clarify notation, we
reinterpret the decisions of a velocity policy. At decision moment i
(corresponding to time r + ci), the velocity policy chooses a location
X(r+ci+1) at which the vessel will be located at decision moment i+1
if the lock is not available at time r+ci. If, however, the lock is available
a final velocity v(i) is chosen according to (6.6). Since this final cost can
be considered given for any decision moment and possible location, a
velocity policy is uniquely defined by X(r + ci) for i = 1, . . . , n. This
implies that the vessel travels with velocity X(r+c1)/(r+c1) from time

167

Chapter 6. Optimizing fuel consumption under uncertainty for a
single vessel in inland waterways

0 to time r + c1 and with velocity X(r+ci+1)−X(r+ci)
(ci+1−ci)

from time r + ci to
time r + ci+1. Thus, Equation (6.7) can be reformulated as follows∫ T (v)

0
p̃tv(t,−1)3dt+

∫ T (v)

0
ptF (X(t))dt

=
X(r + c1)

3

(r + c1)2

+
n−1∑
i=1

(
p̃r+ci ·

(X(r + ci+1)−X(r + ci))
3

(ci+1 − ci)2
+ pi · F (X(r + ci))

)
+ pn · F (X(r + cn))

(6.8)

Based on this reformulation, we show that an optimal velocity policy
can be found via a recursive method of minimizing the expected total
fuel consumption after time r + ci for all i = n, . . . , 1 for all possible
locations of the vessel at any decision moment and conditionally on
the fact that we must start at position 0 of the upstream segment. To
this end, we split the expected fuel consumption after time r + ci into
two components. First, the expected fuel consumption if the lock is still
processing at time r+ci. Secondly, the expected total fuel consumption
if the lock becomes available at time r + ci. Let gi(X(r + ci)) be the
minimum expected total fuel consumption after time r + ci given that
at that time the vessel is located in position X(r + ci) if the lock has
not been available up to this point in time. Furthermore, define by qi
the probability that the lock finishes moving vessel b after ci time steps
given that it has not finished before. Formally, qi = P (τb = r + ci|τb ≥
r+ci). Note that for time r+cn the probability that the lock is still in the
process of moving vessel b is zero and, therefore, the fuel consumption
only consists of the second component. Consequently, we obtain the
following formulation for the total expected fuel consumption:

gn(X(r + cn)) = pn · F (X(r + cn)). (6.9)

168

For 1 ≤ i ≤ n− 1 we have:

gi(X(r + ci)) = (1− qi) · min
X∈Ai(X(r+ci))

(
(X −X(r + ci))

3

(ci+1 − ci)2
+ gi+1(X)

)
+ qi · F (X(r + ci)).

(6.10)

Here, Ai(·) denotes the feasible set of choices for the velocity policy.
More precisely, Ai(X(r + ci)) = {X|X(r + ci) ≤ X ≤ Lu and vmin ≤
X−X(r+ci)

ci+1−ci
≤ vmax} contains all possible positions at time r+ci+1 given

that at time r + ci the vessel is located at position X(r + ci). As vessel
a starts in position 0, we obtain

g0 = min
X∈A0

{
X3

(r + c1)2
+ g1(X)

}
, (6.11)

with A(0) = {X|0 ≤ X ≤ Lu and vmin ≤ X
r+c1

≤ vmax}.

This recursive expression allows us to find a near-optimal velocity pol-
icy via dynamic programming based on discretization of Ai(·).

169

Chapter 6. Optimizing fuel consumption under uncertainty for a
single vessel in inland waterways

Algorithm 6.1 Dynamic program to find near-optimal velocity policy.

1: Input: I, ε
2: Output: Minimal fuel consumption of traversing the waterway.

Phase 1 – Preliminaries

3: Let K := ⌈Lu/ε⌉
4: Xj = j Lu

K for all j = 0 . . . ,K
5: V is n×K matrix
6: Compute F (Xj(r + ci)) for all j = 0, . . . ,K and all i = 1, . . . , n
7: qi = P (τb = r + ci|τb ≥ r + ci)

Phase 2 – Initialization

8: V (n,Xj) = pn · F (Xj(r + cn)) for all j = 0, . . . ,K

Phase 3 – Recursion

9: for i = n− 1, . . . , 2 do
10: for j = 1, . . . ,K do
11: V (i,Xj) = (1 − qi) minXj′∈A

{
(Xj′−Xj)

3

(ci+1−ci)3
+ V (i+ 1, Xj′)

}
+ qi ·

F (Xj(r + ci))

12: Ai(X(r+ci)) =
{
X|X(r + ci) ≤ X ≤ Lu, vmin ≤ X−X(r+ci)

ci+1−ci
≤ vmax

}
13: end for
14: end for
15: Return: minXj∈A(0)

{
X3

j

(r+c1)2
+ V (2, Xj)

}

Theorem 6.4. Consider an instance I and let OPT(I) be an optimal velocity
policy. Then, for any ϵ > 0, Algorithm 6.1 finds a velocity policy v with total
expected fuel consumption fv(I) such that

fv(I) ≤ (1 + ε)f(OPT(I)),

in time O(nL2
u/ϵ

2).

170

Proof. The running time of the algorithm depends on the running time
to compute the fixed final cost and the initialization and recursion. Let
C denote the time it takes to compute the fixed final cost. Then, the
initialization takes O(CLu/ε) time as K := ⌈Lu/ε⌉. Furthermore, the
recursion computes the minimum over all X ′

j , where j′ = 1, . . . ,K for
all i = 1, . . . , n and Xj , where j = 1, . . . ,K. This amounts to a running
time of O(Cn(Lu/ε)

2. Hence, the total running time of the dynamic
program is in O(CLu/ε+ Cn(Lu/ε)

2) = O(n(Lu/ε)
2).

The approximation guarantee of the dynamic program follows from
convexity of the fuel consumption. Based on discretizing the possible
positions of vessel a, we have that for any i ∈ {0, . . . , n−1} the position
chosen by the dynamic program X deviates from the optimal position
X∗ by at most ε. Hence, |V (X, i) − V (X∗, i)|≤ εV (X∗, i). From this it
follows that the total expected fuel consumption of the velocity policy
found by the dynamic program is at most 1 + ε as large as the total
expected fuel consumption of an optimal velocity policy.

The following illustrates a near-optimal velocity policy for Example 6.1.

EXAMPLE 6.2: NEAR-OPTIMAL VELOCITY POLICY

Recall the instance described in Example 6.1 given by the fol-
lowing parameters:

• Waterway: Lu = Ld = 1,

• Vessel a: D = 6 and τa = 1 and

• Vessel b: r = 0 and τb ∼ unif{1, 3}.

Previously, we considered a natural dynamic velocity policy.
Using Algorithm 6.1 we can find a near-optimal velocity pol-
icy. This is depicted in Figure 6.2.1. This optimal dynamic pol-
icy yields a total fuel consumption of approximately 0.3377 im-
plying fuel savings of 3.5% compared to the fuel consumption

171

Chapter 6. Optimizing fuel consumption under uncertainty for a
single vessel in inland waterways

when the presence of vessel b is ignored and 1.24% compared to
the simple policy.

t0 = 0

(0.37, 0.37)

t1 = 1

(1, 0.4075)

t∗ = 2.5

(0.73, 0.36)

t2 = 2 (1, 0.27)

t2 = 3

(1, 0.423333)

t∗ = 2.5

Figure 6.2.1: Visualization of optimal dynamic solution to Example 6.1.

6.3 Fixed arrival velocity policies
In this section, we introduce a class of simple policies called fixed arrival
policies which choose a constant velocity on both river segments.

Definition 6.5. A velocity policy v is called a fixed arrival policy if for some
vmin ≤ v̂ ≤ vmax we have

v(t, ω(t)) = v̂ for all t and ω(t). (6.12)

The deterministic arrival time at the lock is

T (v) =
Lu

v
.

Note that for a fixed arrival policy to be feasible there must still be
time to cross the downstream segment, i.e., T (v) + q(T (v)) + τa ≤ D−
Ld/vmax, where q(T (v)) is again the waiting time at the lock for vessel
a defined in the previous section.

The total expected fuel consumption of a fixed arrival policy is

L3
u

T (v̂)2
+

n∑
i=0

pi

[(Ld

D − (max{ra, r + ci}+ τa)

)2

Ld

]
. (6.13)

172

The first part is the deterministic fuel consumption on the upstream
segment and the second part is the expected fuel consumption on the
downstream segment.

An optimal fixed arrival policy can be obtained by solving the following
mathematical program.

min
v̂

L3
u

T (v̂)2
+

n∑
i=0

pi

[(Ld

D − (max{T (v̂), r + ci}+ τa)

)2

Ld

]
(6.14)

s.t.

Lu/vmax ≤ T (v̂) < min {D − τa, Lu/vmin} . (6.15)

While finding a closed-form solution is desirable, this again involves
finding roots of a polynomial of degree at least 6 which is, generally,
analytically intractable.

In the following, we illustrate an optimal fixed arrival policy for Ex-
ample 6.1 and compare the obtained expected fuel consumption to the
other considered policies for this example.

EXAMPLE 6.3: OPTIMAL FIXED ARRIVAL POLICY

Recall that the instance is characterized by the following values:

• Waterway: Lu = Ld = 1,

• Vessel a: D = 6 and τa = 1 and

• Vessel b: r = 0 and τb ∼ unif{1, 3}.

A detailed formulation of the total expected fuel consumption
in the fixed arrival setting is (see Figure 6.3.1 for a plot):

f(t) =

1
t2 + 1

3
1

(6−(1+1))2 + 1
3

1
(6−(2+1))2 + 1

3
1

(6−(3+1))2 0 < t < 1;
1
t2 + 1

3
1

(6−(t+1))2 + 1
3

1
(6−(2+1))2 + 1

3
1

(6−(3+1))2 1 ≤ t < 2;
1
t2 + 2

3
1

(6−(t+1))2 + 1
3

1
(6−(3+1))2 2 ≤ t < 3;

1
t2 + 1

(6−(t+1))2 3 ≤ t < 5.

173

Chapter 6. Optimizing fuel consumption under uncertainty for a
single vessel in inland waterways

The optimal fixed arrival policy chooses a deterministic arrival
at the lock at time 2.668 yielding a total expected fuel consump-
tion of

f(2.668) = 0.34.

This implies fuel savings of 2.86% compared to the oblivious
approach in which vessel b is ignored. Compared to the near-
optimal velocity policy the fuel consumption is only approxi-
mately 0.68% higher. Hence, for this example even an optimal
fixed arrival policy leads to a significant share of possible fuel
savings.

0 1 2 3 4 5

0

2

4

6

8

10

Arrival time t

To
ta

le
xp

ec
te

d
fu

el
co

ns
um

pt
io

n

Figure 6.3.1: Objective function for the illustrative example.

6.4 Computational Study
We investigate the near-optimal velocity policy as well as the fixed ar-
rival policy from different point-of-views based on a computational
study. In particular, we consider two aspects of the policies: efficiency
and simplicity. The efficiency of a policy is determined by its poten-
tial fuel savings compared to a benchmark policy. The simplicity of a
policy is defined as its possibility of implementation from a practical
point-of-view.

174

In order to assess the efficiency of the policies at hand, we compare
them to the benchmark policy mentioned before which does not take
into account the presence of vessel b and the inherent uncertainty. We
refer to this benchmark policy as a-priori fixed arrival policy. This pol-
icy chooses a fixed arrival time

t∗ =
Lu + Ld

D − τa
Lu.

In order to appropriately compare the total expected fuel consump-
tions, we compute the total expected fuel consumption of t∗ under un-
certainty and use this consumption as a benchmark consumption. Let
v∗dyn and v∗fixed denote the near-optimal velocity policy and optimal
fixed arrival policy, respectively. Then, the efficiency of the policies
is measured by two ratios: (1) the ratio of the total expected fuel con-
sumption of v∗dyn and t∗ and (2) the ratio of the fuel consumption of v∗dyn
and v∗fixed. The first ratio shows the near-optimal possible fuel savings
and the second ratio indicates the share of these achievable with the
optimal fixed arrival time policy. Based on these ratios, we aim to gain
valuable insights answering the following questions regarding the ef-
ficiency of velocity policies:

E.1 What is the magnitude of fuel savings of the optimal dynamic
velocity policy? How do the characteristics of vessel b impact the
possible fuel savings?

E.2 What share of these savings can be achieved by the optimal fixed
arrival policy? How do the characteristics of vessel b impact the
possible fuel savings?

Additionally, we analyse the policies from a more practical point of
view, i.e., from the eye of a skipper operating a vessel. While the
fixed arrival policy is simple to implement for the skipper, the near-
optimal velocity policy may imply frequent velocity changes and is,
therefore, less attractive for skippers. To investigate the trade-off be-
tween simplicity and efficiency we consider the number of necessary

175

Chapter 6. Optimizing fuel consumption under uncertainty for a
single vessel in inland waterways

velocity changes under the near-optimal policy and put this in rela-
tion to the added value in terms of fuel savings by comparing the fuel
consumption of v∗dyn to that of v∗fixed. We aim to answer the following
questions:

S.1 To what extent is the optimal dynamic velocity policy imple-
mentable by skippers? What is the trade-off between fuel savings
and simplicity of the policy for skippers?

S.2 How do the characteristics of vessel b impact the simplicity?

6.4.1 Instance and Scenario parameters

The base setting of our computational study is given by a fixed water-
way with a centrally located lock and a fixed deadline of vessel a:

• Lu = Ld = 20km

• D = 150min

We create different scenarios using the following parameters:

• τa: Lock processing time of vessel a

• r: Arrival time of vessel b at the lock

• τb: Lock processing time of vessel b

For the last parameter, we choose two families of scenarios based on
the type of probability distribution.

First, we consider uniformly distributed τb. Uniform distributions are
both relevant from a practical point of view as well as a theoretical
point of view. From a practical point of view, uniform distributions
can be used offer insights into the effect that the size of the time win-
dows between realizations, i.e., the number of decision points may
have. From a theoretical perspective uniform distributions function as
a benchmark distribution with a small degree of variation. Through-
out the study, we assume that follows a discrete uniform distribution

176

within the interval [20, 40]. Furthermore, we parameterize the distribu-
tion by the number of realizations n. In this setting, we let τa = 30.

The second class of scenarios is based on a truncated geometric distri-
bution underlying τb. This captures real-life lock processing times as
well as theoretical properties such as being memoryless. In this set-
ting, we consider τb to be in the interval [20, 39] based on a truncated
geometric distribution with parameter p ∈ {0.1, 0.2, ..., 0.9}. The pro-
cessing time of vessel a is constant with τa = 29.5. In both classes
of scenarios we choose the arrival time of vessel b at the lock to be
r ∈ [22, 59]. An overview of the scenario parameters is given in Ta-
ble 6.4.1.

τb Parameters τa r

Uniform n ∈ {2, 3, 5, 11, 21} 30 [22, 59]

Geometric p ∈ {0.1, 0.2, ..., 0.9} 29.5 [22, 59]

Table 6.4.1: Scenario parameters.

The optimal arrival times for the benchmark policy in the two scenario
families are

t∗uni =
Lu + Ld

D − τa
Lu = 60

and
t∗geo =

Lu + Ld

D − τa
Lu = 60.25.

6.4.2 Efficiency

In Figure 6.4.1 the fuel consumption ratios of the near-optimal as well
as the fixed arrival policy are plotted for uniformly distributed pro-
cessing times as functions of the arrival time of vessel b at the lock
for different value of n. Here, n = 3 implies that we use realizations
20 + k · 20/(n− 1) for k = 0, . . . , n− 1.

177

Chapter 6. Optimizing fuel consumption under uncertainty for a
single vessel in inland waterways

20 30 40 50 60
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Arrival of vessel b (r)

F
u
el

C
on

su
m
p
ti
on

R
at
io

(a) Fuel consumption ratio of v∗dyn
compared to t∗uni.

20 30 40 50 60
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Arrival of vessel b (r)

F
u
el

C
on

su
m
p
ti
on

R
at
io

n=2
n=3
n=5
n=11
n=21

(b) Fuel consumption ratio of v∗dyn
compared to v∗fixed.

Figure 6.4.1: Fuel consumption ratios for uniformly distributed processing
times for τb.

To answer Question E.1, we turn our attention towards Figure 6.4.1a.
First of all, we can observe that significant fuel changes of more than
9% can be achieved. Secondly, we can observe that for any n, the ra-
tio follows a piece-wise convex function with respect to the arrival of
vessel b. Taking a closer look at this relation, one can conclude that
at any of the points between two convex parts one more realization of
r+ τb moves past t∗uni. Consider Figure 6.4.2 for a more detailed exam-
ple. Here, we can observe that at each point in time where one more
realization of the lock finishing vessel b moves past the optimal arrival
time ignoring vessel b, t∗uni, the fuel consumption ratio transitions into
a new convex piece. Intuitively, this can be explained as follows. Con-
sider, for example the setting with n = 2. In this case, the lock becomes
available at time r+20 or at time r+40 with probability 1/2 each. This
means, that when r ≤ 40 the probability of the lock being available
before time t∗uni is 0.5 and for r > 40 this probability is 0. As t∗uni is
the optimal fixed arrival time without any uncertainty, this is the best
fuel consumption we can reach and arriving at the lock close to this
time is desired if its possible that the lock is available close to this time.
Therefore, in both intervals below and above 40, the fuel consumption
ratio follows a parabolic function.

178

25 30 35 40 45 50 55
40

50

60

70

80

Arrival of vessel b (r)

T
im

e
t∗uni r + τb(2) r + τb(1)

r + τb(0)

25 30 35 40 45 50 55
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Arrival of vessel b (r)

F
u
el

co
n
su
m
p
ti
on

ra
ti
o

Figure 6.4.2: Detailed look at relation between fuel consumption of v∗dyn and
r with uniformly distributed processing times and n = 3.

With respect to Question E.2, Figure 6.4.1b shows the fuel consumption
ratio of the near-optimal velocity policy and the fixed arrival policy.
We can see that for small values of n the dynamic velocity policy leads
to significantly higher fuel savings than the fixed arrival policy. For
larger values of n, however, the fixed arrival policy already covers a
large share of the possible fuel savings. In fact, for n = 11 or n = 21 the
fuel consumption of v∗dyn differs from the fuel consumption of v∗fixed
by less than 1%. Note that as the number of realizations increases the
size of the time intervals between realizations decreases. This implies
that choosing a fixed arrival time is subject to smaller expected waiting
times at the lock and, therefore, the fixed arrival time may account for
uncertainty more accurately in these settings. The relation between
r and the fuel consumption ratio is piece-wise convex as well. This
follows from the same explanation as the relation before.

Next, we take a closer look at the efficiency of the two policies in the
setting where τb following geometric distributions (Figure 6.4.3).

179

Chapter 6. Optimizing fuel consumption under uncertainty for a
single vessel in inland waterways

20 30 40 50 60
0.8

0.85

0.9

0.95

1

Arrival of vessel b (r)

F
u
el

co
n
su
m
p
ti
o
n
ra
ti
o

(a) Fuel consumption ratio of v∗dyn
compared to t∗geo.

20 30 40 50 60
0.995

0.996

0.997

0.998

0.999

1

Arrival of vessel b (r)

F
u
el

C
on

su
m
p
ti
on

R
at
io

p=0.9
p=0.8
p=0.5
p= 0.3
p= 0.2
p=0.1

(b) Fuel consumption ratio of v∗dyn
compared to v∗fixed.

Figure 6.4.3: Fuel consumption ratios for geometrically distributed processing
times for τb.

With respect to Question E.1, we can observe that the fuel consumption
ratio of v∗dyn compared to the benchmark solution follows a smooth re-
lation with respect to r and savings of up to approximately 14% are
possible. Similarly to the fuel savings for scenarios with uniformly
distributed τb, the fuel savings decrease up to some value of r and in-
crease beyond this value. This is again related to the t∗geo, the optimal
arrival time of vessel a at the lock when vessel b is not present. A pe-
culiar observation is that the role of p switches at some value r′. Before
r′ the fuel savings are higher for smaller values of p which imply a
higher degree of uncertainty at the lock. After this point the fuel sav-
ings are higher for larger values of p. This phenomenon can also be
explained with the role of t∗geo. For smaller values of r there is a posi-
tive probability that the lock can be entered by vessel a before t∗geo and
this probability is higher for higher values of p. This implies that a dy-
namic velocity policy will be less likely to significantly deviate from
this arrival time. For high values of r the probability of entering the
lock is higher when p is lower and, therefore, again the added value of
changing velocities decreases.

180

Similar to the results of Figure 6.4.1b for a large number of realizations
of τb, Figure 6.4.3b gives a clear answer to Question E.2. The fuel sav-
ings that are possible by taking into account are nearly fully covered
by the optimal fixed arrival policy v∗fixed. This highlights the power
of such a simple velocity policy in settings where velocity changes
may occur frequently. However, small additional savings can still be
achieved with v∗dyn.

6.4.3 Simplicity

The trade-off between simplicity of the near-optimal velocity policy
and additional fuel savings compared to the optimal fixed arrival pol-
icy is shown in Figures 6.4.4 and 6.4.5 for the scenarios with uniform
and geometric distributions, respectively. Both classes of scenarios
show similar results. First of all, the number of velocity changes de-
creases as the arrival of vessel b at the lock increases. An early arrival of
vessel b at the lock implies that vessel a has more opportunities to enter
the lock around its optimal benchmark arrival. Furthermore, for large
values of r the number of possible realizations of τb such that vessel a
can enter the lock close to time t∗uni or t∗geo decreases and, therefore, it
is desired to reach the lock as soon as possible to avoid larger fuel con-
sumption on the downstream segment. For the uniform distributions
the number of velocity changes depends on the number of realizations
which is also implied by Lemma 6.3. Finally, for the truncated geomet-
ric distribution we can observe that the number of changes decreases
faster for larger values of p. Large values of p indicate a high proba-
bility of the lock finishing early. Therefore, an early arrival at the lock
implies a low negative impact of waiting time on fuel consumption as
high realizations of τb are less likely.

With respect to Question S.2, two observations can be made. For uni-
form distributions with low values of n the additional fuel savings
through v∗dyn can be achieved with few velocity changes which makes
it attractive in practice. For uniform distributions with large n and ge-
ometric distributions, however, velocity changes are very frequent and
only lead to small fuel savings over the optimal fixed arrival policy.

181

Chapter 6. Optimizing fuel consumption under uncertainty for a
single vessel in inland waterways

20 30 40 50 60
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Arrival of vessel b (r)

F
u
el

C
on

su
m
p
ti
on

R
at
io

n=2
n=3
n=5
n=11
n=21

(a) Fuel consumption:
v∗dyn/v

∗
fixed.

20 30 40 50 60

0

5

10

15

20

Arrival of vessel b (r)

N
u
m
b
er

of
ch
an

ge
s

(b) Number of velocity changes
for v∗dyn.

Figure 6.4.4: Simplicity versus Efficiency with uniformly distributed τb.

20 30 40 50 60
0.995

0.996

0.997

0.998

0.999

1

Arrival of vessel b (r)

F
u
el

C
o
n
su
m
p
ti
o
n
R
at
io

p=0.9
p=0.8
p=0.5
p= 0.3
p= 0.2
p=0.1

(a) Fuel consumption:
v∗dyn/v

∗
fixed.

20 30 40 50 60

0

5

10

15

20

Arrival of vessel b (r)

N
u
m
b
er

of
ch
an

ge
s

(b) Number of velocity changes
for v∗dyn.

Figure 6.4.5: Simplicity versus Efficiency with geometrically distributed τb.

To summarize, in settings with more frequent realizations of τb the op-
timal fixed arrival policy covers a significant share of the possible fuel
savings when taking into account uncertainty at the lock. When the
number of realizations of τb is small and the time intervals between
these realizations is large a dynamic velocity policy which can change
velocity is preferable since a fixed arrival policy may lead to large wait-
ing times at the lock. These waiting times lead to an increase in fuel
consumption on the downstream segment of the waterway.

182

Bibliography

[1] A. H. Abdekhodaee and A. Wirth. “Scheduling parallel machines with
a single server: some solvable cases and heuristics”. In: Computers &
Operations Research 29 (2002), pp. 295–315.

[2] B. Alidaee. “Minimizing absolute and squared deviation of comple-
tion times from due dates”. In: Production and Operations Management
3 (1994), pp. 133–147.

[3] N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. “Approximation schemes
for scheduling on parallel machines”. In: Journal of Scheduling 1 (1998),
pp. 55–66.

[4] T. Andersen, J. H. Hove, K. Fagerholt, and F. Meisel. “Scheduling
ships with uncertain arrival times through the Kiel Canal”. In: Mar-
itime Transport Research 2 (2021).

[5] C. Annamalai, C. Kalaitzis, and O. Svensson. “Combinatorial Algo-
rithm for Restricted Max-Min Fair Allocation”. In: ACM Transactions
on Algorithms 13 (2017), 37:1–37:28.

[6] A. Asadpour, U. Feige, and A. Saberi. “Santa claus meets hypergraph
matchings”. In: ACM Transactions on Algorithms 8 (2012), 24:1–24:9.

[7] H. Aydin N.and Lee and S. A. Mansouri. “Speed optimization and
bunkering in liner shipping in the presence of uncertain service times
and time windows at ports”. In: European Journal of Operational Re-
search 259 (2017), pp. 143–154.

[8] U. Bagchi, Y. Chang, and R. Sullivan. “Minimizing absolute and squared
deviations of completion times with different earliness and tardiness
penalties and a common due date”. In: Naval Research Logistics 34
(1987), pp. 739–751.

[9] U. Bagchi, R. Sullivan, and Y. Chang. “Minimizing Mean Squared De-
viation of Completion Times About a Common Due Date”. In: Man-
agement Science 33 (1987), pp. 894–906.

[10] U. Bagchi, R. S. Sullivan, and Y. Chang. “Minimizing mean squared
deviation of completion times about a common due date”. In: Man-
agement Science 33 (1987), pp. 894–906.

183

Bibliography

[11] B. S. Baker and E. G. Coffman Jr. “Mutual exclusion scheduling”. In:
Theoretical Computer Science 162 (1996), pp. 225–243.

[12] K. Baker and G. Scudder. “Sequencing with Earliness and Tardiness
Penalties: A Review”. In: Operations Research 38 (1990), pp. 22–36.

[13] S. R. Balseiro, D. B. Brown, and C. Chen. “Static routing in stochastic
scheduling: Performance guarantees and asymptotic optimality”. In:
Operations Research 66 (2018), pp. 1641–1660.

[14] N. Bansal and M. Sviridenko. “The Santa Claus Problem”. In: Proceed-
ings of the 38th Annual ACM Symposium on Theory of Computing, STOC.
2006, pp. 31–40.

[15] M. Bendraouche and M. Boudhar. “Scheduling jobs on identical ma-
chines with agreement graph”. In: Computers & Operations Research 39
(2012), pp. 382–390.

[16] H. L. Bodlaender and F. V. Fomin. “Equitable colorings of bounded
treewidth graphs”. In: Theoretical Computer Science 349 (2005), pp. 22–
30.

[17] H. L. Bodlaender and K. Jansen. “On the complexity of scheduling
incompatible jobs with unit-times”. In: Proceedings of the International
Symposium on Mathematical Foundations of Computer Science. Springer.
1993, pp. 291–300.

[18] H. L. Bodlaender and K. Jansen. “Restrictions of graph partition prob-
lems. Part I”. In: Theoretical Computer Science 148 (1995), pp. 93–109.

[19] H. L. Bodlaender, K. Jansen, and G. J. Woeginger. “Scheduling with
incompatible jobs”. In: Discrete Applied Mathematics 55 (1994), pp. 219–
232.

[20] B. D. Brouer, J. Dirksen, D. Pisinger, C. E. M. Plum, and B. Vaaben.
“The Vessel Schedule Recovery Problem (VSRP)–A MIP model for
handling disruptions in liner shipping”. In: European Journal of Opera-
tional Research 224 (2013), pp. 362–374.

[21] P. Brucker, C. Dhaenens-Flipo, S. Knust, S. A. Kravchenko, and F.
Werner. “Complexity results for parallel machine problems with a
single server”. In: Journal of Scheduling 5 (2002), pp. 429–457.

[22] J. Bruno, E. G. Coffman Jr., and R. Sethi. “Scheduling independent
tasks to reduce mean finishing time”. In: Communications of the ACM
17 (1974), pp. 382–387.

184

[23] M. Buchem, J. A. P. Golak, and A. Grigoriev. “Vessel velocity decisions
in inland waterway transportation under uncertainty”. In: European
Journal of Operational Research 296 (2022), pp. 669–678.

[24] M. Buchem, L. Kleist, and D. Schmidt genannt Waldschmidt. “Schedul-
ing with Machine Conflicts”. In: CoRR abs/2102.08231 (2021).

[25] M. Buchem, L. Rohwedder, T. Vredeveld, and A. Wiese. “Additive
Approximation Schemes for Load Balancing Problems”. In: 48th Inter-
national Colloquium on Automata, Languages, and Programming (ICALP
2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 2021.

[26] M. Buchem and T. Vredeveld. “Performance analysis of fixed assign-
ment policies for stochastic online scheduling on uniform parallel ma-
chines”. In: Computers & Operations Research 125 (2021).

[27] S. Chakrabarti and S. Muthukrishnan. “Resource scheduling for par-
allel database and scientific applications”. In: Proceedings of the 8th An-
nual ACM Symposium on Parallel Algorithms and Architectures (SPAA).
1996, pp. 329–335.

[28] D. Chakrabarty. “Max-Min Allocation”. In: Encyclopedia of Algorithms.
Ed. by M.-Y. Kao. Boston, MA: Springer US, 2016, pp. 1244–1247.

[29] C. Chekuri, R. Johnson, R. Motwani, B. Natarajan, B. Rau, and M.
Schlansker. “Profile-driven instruction level parallel scheduling with
application to super blocks”. In: Proceedings of the 29th IEEE/ACM In-
ternational Symposium on Microarchitecture. 1996, pp. 58–69.

[30] L. Chen, K. Jansen, and G. Zhang. “On the optimality of exact and ap-
proximation algorithms for scheduling problems”. In: Journal of Com-
puter and System Sciences 96 (2018), pp. 1–32.

[31] S.-W. Cheng and Y. Mao. “Restricted Max-Min Allocation: Approxi-
mation and Integrality Gap”. In: Proceedings of the 46th International
Colloquium on Automata, Languages, and Programming, ICALP. 2019,
38:1–38:13.

[32] T. Cheng, C. Ng, and V. Kotov. “A new algorithm for online uniform
machine scheduling to minimize the makespan”. In: Information Pro-
cessing Letters 99 (2006), pp. 102–105.

[33] Y. Cho and S. Sahni. “Bounds for List Schedules on Uniform Proces-
sors”. In: SIAM Journal on Computing 9 (1980), pp. 91–103.

185

Bibliography

[34] M. C. Chou, H. Liu, M. Queyranne, and D. Simchi-Levi. “On the
asymptotic optimality of a simple on-line algorithm for the stochas-
tic single-machine weighted completion time problem and its exten-
sions”. In: Operations Research 54 (2006), pp. 464–474.

[35] M. Chrobak, J. Csirik, C. Imreh, J. Noga, J. Sgall, and G. J. Woegin-
ger. “The buffer minimization problem for multiprocessor scheduling
with conflicts”. In: International Colloquium on Automata, Languages,
and Programming. Springer. 2001, pp. 862–874.

[36] S. A. Cook. “The Complexity of Theorem-Proving Procedures”. In:
Proceedings of the Third Annual ACM Symposium on Theory of Comput-
ing. STOC ’71. 1971, pp. 151–158.

[37] J. R. Correa and M. R. Wagner. “LP-based online scheduling: from
single to parallel machines”. In: Mathematical Programming 119 (2009),
pp. 109–136.

[38] J. Csirik, H. Kellerer, and G. Woeginger. “The exact LPT-bound for
maximizing the minimum completion time”. In: Operations Research
Letters 11 (1992), pp. 281–287.

[39] S. Das and A. Wiese. “On Minimizing the Makespan When Some Jobs
Cannot Be Assigned on the Same Machine”. In: Proceedings of the 25th
Annual European Symposium on Algorithms. 2017.

[40] S. Davies, T. Rothvoss, and Y. Zhang. “A Tale of Santa Claus, Hyper-
graphs and Matroids”. In: Proceedings of the 2020 ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA. 2020, pp. 2748–2757.

[41] P. De, J. Ghosh, and C. Wells. “A Note on the Minimization of Mean
Squared Deviation of Completion Times About a Common Due Date”.
In: Management Science 35 (1989), pp. 1143–1147.

[42] P. De, J. Ghosh, and C. Wells. “Scheduling about a common due date
with earliness and tardiness penalties”. In: Computers & Operations
Research 17 (1990), pp. 231–241.

[43] C. Defryn, J. A. P. Golak, A. Grigoriev, and V. Timmermans. “Inland
waterway efficiency through skipper collaboration and joint speed
optimization”. In: European Journal of Operational Research 292 (2021),
pp. 276–285.

186

[44] M. A. Dempster, J. K. Lenstra, and A. H. G. Rinnooy Kan. Determin-
istic and Stochastic Scheduling: proceedings of the NATO Advanced Study
and Research Institute on Theoretical Approaches to Schelduling Problems
held in Durham, England, July 6-17, 1981. NATO Advanced Study In-
stitutes Series: Ser. C. Springer Netherlands, 1982.

[45] B. L. Deuermeyer, D. K. Friesen, and M. A. Langston. “Scheduling to
maximize the minimum processor finish time in a multiprocessor sys-
tem”. In: SIAM Journal on Algebraic Discrete Methods 3 (1982), pp. 190–
196.

[46] A. Dolgui, V. Kotov, A. Nekrashevich, and A. Quilliot. “General para-
metric scheme for the online uniform machine scheduling problem
with two different speeds”. In: Information Processing Letters 134 (2018),
pp. 18–23.

[47] F. Eberle, F. Fischer, J. Matuschke, and N. Megow. “On index policies
for stochastic minsum scheduling”. In: Operations Research Letters 47
(2019), pp. 213–218.

[48] J. Edmonds. “Matroids and the greedy algorithm”. In: Mathematical
Programming 1 (1971), pp. 127–136.

[49] S. Eilon and I.G. Chowdhury. “Minimising Waiting Time Variance
in the Single Machine Problem”. In: Management Science 23 (1977),
pp. 567–575.

[50] F. Eisenbrand and G. Shmonin. “Carathéodory bounds for integer
cones”. In: Operations Research Letters 34 (2006), pp. 564–568.

[51] European Commission. A European Strategy for Low-Emission Mobil-
ity. https://eur-lex.europa.eu/resource.html?uri=
cellar:e44d3c21-531e-11e6-89bd-01aa75ed71a1.0002.
02/DOC_1&format=PDF. Accessed 05 May 2022. 2016.

[52] European Commission. The European Green Deal. https://eur-
lex.europa.eu/resource.html?uri=cellar:b828d165-
1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=
PDF. Accessed 05 May 2022. 2019.

[53] European Parliament. Inland waterway transport in the EU. https:
//www.europarl.europa.eu/RegData/etudes/BRIE/2022/
698918/EPRS_BRI(2022)698918_EN.pdf. Accessed 05 May
2022. 2022.

187

https://eur-lex.europa.eu/resource.html?uri=cellar:e44d3c21-531e-11e6-89bd-01aa75ed71a1.0002.02/DOC_1&format=PDF
https://eur-lex.europa.eu/resource.html?uri=cellar:e44d3c21-531e-11e6-89bd-01aa75ed71a1.0002.02/DOC_1&format=PDF
https://eur-lex.europa.eu/resource.html?uri=cellar:e44d3c21-531e-11e6-89bd-01aa75ed71a1.0002.02/DOC_1&format=PDF
https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF
https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF
https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF
https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF
https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/698918/EPRS_BRI(2022)698918_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/698918/EPRS_BRI(2022)698918_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/698918/EPRS_BRI(2022)698918_EN.pdf

Bibliography

[54] G. Even, M. M. Halldórsson, L. Kaplan, and D. Ron. “Scheduling with
conflicts: online and offline algorithms”. In: Journal of Scheduling 12
(2009), pp. 199–224.

[55] K. Fagerholt, G. Laporte, and I. Norstad. “Reducing fuel emissions
by optimizing speed on shipping routes”. In: Journal of the Operational
Research Society 61 (2010), pp. 523–529.

[56] U. Feige. “On allocations that maximize fairness”. In: Proceedings of
the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA.
SIAM, 2008, pp. 287–293.

[57] F. Gardi. “Mutual exclusion scheduling with interval graphs or re-
lated classes, Part I”. In: Discrete Applied Mathematics 157 (2009), pp. 19–
35.

[58] M. R. Garey and D. S. Johnson. ““Strong” NP-completeness results:
motivation, examples, and implications”. In: Journal of the ACM 25
(1978), pp. 499–508.

[59] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman &
Co., 1979.

[60] P. C. Gilmore and R. E. Gomory. “A linear programming approach to
the cutting-stock problem”. In: Operations Research 9 (1961), pp. 849–
859.

[61] R. L. Graham. “Bounds for certain multiprocessing anomalies”. In:
Bell System Technical Journal 45 (1966), pp. 1563–1581.

[62] R. L. Graham. “Bounds on multiprocessing timing anomalies”. In:
SIAM Journal on Applied Mathematics 17 (1969), pp. 416–429.

[63] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan.
“Optimization and approximation in deterministic sequencing and
scheduling: a survey”. In: Annals of Discrete Mathematics 5 (1979), pp. 287–
326.

[64] M. Gu and X. Lu. “Asymptotical optimality of WSEPT for stochas-
tic online scheduling on uniform machines”. In: Annals of Operations
Research 191 (2011), pp. 97–113.

[65] V. Gupta, B. Moseley, M. Uetz, and Q. Xie. “Corrigendum: Greed
works—online algorithms for unrelated machine stochastic schedul-
ing”. In: Mathematics of Operations Research 46 (2021), pp. 1230–1234.

188

[66] V. Gupta, B. Moseley, M. Uetz, and Q. Xie. “Greed Works–Online Al-
gorithms For Unrelated Machine Stochastic Scheduling”. In: Mathe-
matics of Operations Research 45 (2019), pp. 497–516.

[67] V. Gupta, B. Moseley, M. Uetz, and Q. Xie. “Greed works—online al-
gorithms for unrelated machine stochastic scheduling”. In: Mathemat-
ics of Operations Research 45 (2020), pp. 497–516.

[68] V. Gupta, B. Moseley, M. Uetz, and Q. Xie. “Stochastic Online Schedul-
ing on Unrelated Machines”. In: Integer Programming and Combinato-
rial Optimization (IPCO 2017). Ed. by Friedrich Eisenbrand and Jochen
Koenemann. Vol. 10328. Lecture Notes in Computer Science. Water-
loo, ON, Canada: Springer, 2017, pp. 228–240.

[69] B. Haeupler, B. Saha, and A. Srinivasan. “New Constructive Aspects
of the Lovász Local Lemma”. In: Journal of the ACM 58 (2011).

[70] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. “Scheduling to
minimize average completion time: Off-line and on-line approxima-
tion algorithms”. In: Mathematics of Operations Research 22 (1997), pp. 513–
544.

[71] N. G. Hall, W. Kubiak, and S. P. Sethi. “Earliness–tardiness scheduling
problems, II: Deviation of completion times about a restrictive com-
mon due date”. In: Operations Research 39 (1991), pp. 847–856.

[72] N. G. Hall, C. N. Potts, and C. Sriskandarajah. “Parallel machine schedul-
ing with a common server”. In: Discrete Applied Mathematics 102 (2000),
pp. 223–243.

[73] N.G. Hall and M.E. Posner. “Earliness-Tardiness Scheduling Prob-
lems, I: Weighted Deviation of Completion Times about a Common
Due Date”. In: Operations Research 39 (1991), pp. 836–846.

[74] P. Hansen, A. Hertz, and J. Kuplinsky. “Bounded vertex colorings of
graphs”. In: Discrete Mathematics 111 (1993), pp. 305–312.

[75] J. Håstad. “Clique is hard to approximate within 1- ε”. In: Acta Math-
ematica 182 (1999), pp. 105–142.

[76] P. Haxell and T. Szabó. “Improved Integrality Gap in Max-Min Allo-
cation: or Topology at the North Pole”. In: arXiv preprint arXiv:2202.01143
(2022).

[77] J. Hermans. “Optimization of inland shipping”. In: Journal of Schedul-
ing 17 (2014), pp. 305–319.

189

Bibliography

[78] R. Hoberg and T. Rothvoss. “A Logarithmic Additive Integrality Gap
for Bin Packing”. In: Proceedings of the 28th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA. SIAM, 2017, pp. 2616–2625.

[79] D. S. Hochbaum. “Various notions of approximations: Good, better,
best and more”. In: Approximation algorithms for NP-hard problems (1997),
pp. 346–398.

[80] D. S. Hochbaum and D. B. Shmoys. “Using dual approximation algo-
rithms for scheduling problems: Theoretical and practical results”. In:
Journal of the ACM 34 (1987), pp. 144–162.

[81] F. Höhne and R. van Stee. “Buffer minimization with conflicts on a
line”. In: Theoretical Computer Science 876 (2021), pp. 25–33.

[82] J. A. Hoogeveen, H. Oosterhout, and S. L. van de Velde. “New lower
and upper bounds for scheduling around a small common due date”.
In: Operations Research 42 (1994), pp. 102–110.

[83] J. A. Hoogeveen and S. L. van de Velde. “Earliness-tardiness schedul-
ing around almost equal due dates”. In: INFORMS Journal on Comput-
ing 9 (1997), pp. 92–99.

[84] J.A. Hoogeveen and S.L. Van de Velde. “Scheduling around a small
common due date”. In: European Journal of Operational Research 55 (1991),
pp. 237–242.

[85] L. M. Hvattum, I. Norstad, K. Fagerholt, and G. Laporte. “Analysis
of an exact algorithm for the vessel speed optimization problem”. In:
Networks 62 (2013), pp. 132–135.

[86] A. Inoue and Y. Kobayashi. “An Additive Approximation Scheme for
the Nash Social Welfare Maximization with Identical Additive Valu-
ations”. In: arXiv preprint arXiv:2201.01419 (2022).

[87] S. J. Jäger. “Approximation in deterministic and stochastic machine
scheduling”. PhD thesis. TU Berlin, 2021.

[88] S. J. Jäger and M. Skutella. “Generalizing the Kawaguchi-Kyan Bound
to Stochastic Parallel Machine Scheduling”. In: 35th Symposium on
Theoretical Aspects of Computer Science. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, 43:1–43:14.

[89] K. Jansen. “An EPTAS for scheduling jobs on uniform processors: Us-
ing an MILP relaxation with a constant number of integral variables”.
In: SIAM Journal on Discrete Mathematics 24 (2010), pp. 457–485.

190

[90] K. Jansen, K.-M. Klein, and J. Verschae. “Closing the Gap for Makespan
Scheduling via Sparsification Techniques”. In: Mathematics of Opera-
tions Research 45 (2020), pp. 1371–1392.

[91] K. Jansen and L. Rohwedder. “A Quasi-Polynomial Approximation
for the Restricted Assignment Problem”. In: Proceedings of the 19th In-
ternational Conference on Integer Programming and Combinatorial Opti-
mization, IPCO. 2017, pp. 305–316.

[92] K. Jansen and L. Rohwedder. “On the Configuration-LP of the Re-
stricted Assignment Problem”. In: Proceedings of the 28th Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA. 2017, pp. 2670–2678.

[93] Y. Jiang, Q. Zhang, J. Hu, J. Dong, and M. Ji. “Single-server parallel-
machine scheduling with loading and unloading times”. In: Journal of
Combinatorial Optimization 30 (2015), pp. 201–213.

[94] T. Kämpke. “On the optimality of static priority policies in stochastic
scheduling on parallel machines”. In: Journal of Applied Probability 24
(1987), pp. 430–448.

[95] J.J. Kanet. “Minimizing the average deviation of job completion times
about a common due date”. In: Naval Research Logistics Quarterly 28
(1981), pp. 643–651.

[96] N. Karmarkar and R. M. Karp. “An Efficient Approximation Scheme
for the One-Dimensional Bin-Packing Problem”. In: Proceedings of the
23rd Annual Symposium on Foundations of Computer Science, FOCS. IEEE
Computer Society, 1982, pp. 312–320.

[97] R. M. Karp. “Reducibility among combinatorial problems”. In: Com-
plexity of computer computations. Springer, 1972, pp. 85–103.

[98] T. Kawaguchi and S. Kyan. “Worst case bound of an LRF schedule for
the mean weighted flow-time problem”. In: SIAM Journal on Comput-
ing 15 (1986), pp. 1119–1129.

[99] W. Kern and W. N. Nawijn. “Scheduling multi-operation jobs with
time lags on a single machine”. In: Proceedings of the 2nd Twente Work-
shop on Graphs and Combinatorial Optimization. 1991.

[100] D. Kőnig. “Gráfok és Mátrixok”. In: Matematikai és Fizikai Lapok 38
(1931), pp. 116–119.

[101] B. H. Korte and J. Vygen. Combinatorial Optimization. Vol. 6. Springer,
2018.

191

Bibliography

[102] M. Y. Kovalyov and W. Kubiak. “A Fully Polynomial Approximation
Scheme for the Weighted Earliness–Tardiness Problem”. In: Opera-
tions Research 47 (1999), pp. 757–761.

[103] S. A. Kravchenko and F. Werner. “Parallel machine scheduling prob-
lems with a single server”. In: Mathematical and Computer Modelling 26
(1997), pp. 1–11.

[104] W. Kubiak. “Completion time variance minimization on a single ma-
chine is difficult”. In: Operations Research Letters 14 (1993), pp. 49–59.

[105] H. W. Kuhn. “The Hungarian method for the assignment problem”.
In: Naval Research Logistics Quarterly 2 (1955), pp. 83–97.

[106] A. Kurpisz, M. Mastrolilli, C. Mathieu, T. Mömke, V. Verdugo, and
A. Wiese. “Semidefinite and linear programming integrality gaps for
scheduling identical machines”. In: Mathematical Programming 172 (2018),
pp. 231–248.

[107] J. K. Lenstra, D. B. Shmoys, and E. Tardos. “Approximation algo-
rithms for scheduling unrelated parallel machines”. In: Mathematical
Programming 46 (1990), pp. 259–271.

[108] H. W. Lenstra Jr. “Integer programming with a fixed number of vari-
ables”. In: Mathematics of operations research 8 (1983), pp. 538–548.

[109] J. Y. T. Leung. “Bin packing with restricted piece sizes”. In: Information
Processing Letters 31 (1989), pp. 145–149.

[110] J. Y. T. Leung, H. Li, M. Pinedo, and J. Zhang. “Minimizing total
weighted completion time when scheduling orders in a flexible en-
vironment with uniform machines”. In: Information Processing Letters
103 (2007), pp. 119–129.

[111] R. Li and L. Shi. “An on-line algorithm for some uniform processor
scheduling”. In: SIAM Journal on Computing 27 (1998), pp. 414–422.

[112] R. J. Lipton, E. Markakis, E. Mossel, and A. Saberi. “On Approxi-
mately Fair Allocations of Indivisible Goods”. In: Proceedings of the
5th ACM Conference on Electronic Commerce, EC. 2004, pp. 125–131.

[113] J. W. S. Liu and C. L. Liu. “Bounds on scheduling algorithms for het-
erogenous computing systems”. In: Information Processing: Proceedings
of the IFIP congress. 1974.

[114] J. W. S. Liu and A. Yang. “Optimal Scheduling of Independent Tasks
on Heterogeneous Computing Systems”. In: Proceedings of the 1974
Annual Conference - Volume 1. 1974, pp. 38–45.

192

[115] E. Lübbecke, M. E. Lübbecke, and R. H. Möhring. “Ship traffic opti-
mization for the Kiel Canal”. In: Operations Research 67 (2019), pp. 791–
812.

[116] C. Lund and M. Yannakakis. “The approximation of maximum sub-
graph problems”. In: Proceedings of the 20th International Colloquium on
Automata, Languages, and Programming. Springer. 1993, pp. 40–51.

[117] N. Megow and A. S. Schulz. “On-line scheduling to minimize average
completion time revisited”. In: Operations Research Letters 32 (2004),
pp. 485–490.

[118] N. Megow, M. Uetz, and T. Vredeveld. “Models and algorithms for
stochastic online scheduling”. In: Mathematics of Operations Research
31 (2006), pp. 513–525.

[119] Merriam-Webster. Schedule. In: Merriam-Webster’s Collegiate Dictionary.
10th. Springfield, MA, USA: Merriam- Webster Inc., 2001.

[120] A.G. Merten and M. E. Muller. “Variance minimization in single ma-
chine sequencing problems”. In: Management Science 18 (1972), pp. 518–
528.

[121] A. Mohabeddine and M. Boudhar. “New results in two identical ma-
chines scheduling with agreement graphs”. In: Theoretical Computer
Science 779 (2019), pp. 37–46.

[122] R. H. Möhring, A. S. Schulz, and M. Uetz. “Approximation in stochas-
tic scheduling: the power of LP-based priority policies”. In: Journal of
the ACM 46 (1999), pp. 924–942.

[123] G. Mosheiov and U. Yovel. “Minimizing weighted earliness–tardiness
and due-date cost with unit processing-time jobs”. In: European Jour-
nal of Operational Research 172 (2006), pp. 528–544. DOI: https://
doi.org/10.1016/j.ejor.2004.10.021.

[124] I. Norstad, K. Fagerholt, and G. Laporte. “Tramp ship routing and
scheduling with speed optimization”. In: Transportation Research Part
C: Emerging Technologies 19 (2011), pp. 853–865.

[125] W. Passchyn. “Scheduling locks on inland waterways.” PhD thesis.
KU Leuven, 2016.

[126] W. Passchyn, D. Briskorn, and F. C. R. Spieksma. “Mathematical pro-
gramming models for lock scheduling with an emission objective”.
In: European Journal of Operational Research 248 (2016), pp. 802–814.

193

https://doi.org/https://doi.org/10.1016/j.ejor.2004.10.021
https://doi.org/https://doi.org/10.1016/j.ejor.2004.10.021

Bibliography

[127] W. Passchyn, D. Briskorn, and F. C. R. Spieksma. “Mathematical pro-
gramming models for lock scheduling with an emission objective”.
In: European Journal of Operational Research 248 (2016), pp. 802–814.

[128] W. Passchyn, D. Briskorn, and F. C. R. Spieksma. “No-wait scheduling
for locks”. In: INFORMS Journal on Computing 31 (2019), pp. 413–428.

[129] W. Passchyn, S. Coene, D. Briskorn, J. L. Hurink, F. C. R. Spieksma,
and G. vanden Berghe. “The lockmaster’s problem”. In: European Jour-
nal of Operational Research 251 (2016), pp. 432–441.

[130] W. Passchyn and F. C. R. Spieksma. “Scheduling parallel batching ma-
chines in a sequence”. In: Journal of Scheduling 22 (2019), pp. 335–357.

[131] M. L. Pinedo. Scheduling. Heidelberg, Germany: Springer, 2012.

[132] N. Pinson and F. C. R. Spieksma. “Online interval scheduling on two
related machines: the power of lookahead”. In: Journal of Combinatorial
Optimization 38 (2019), pp. 224–253.

[133] M. Prandtstetter, U. Ritzinger, P. Schmidt, and M. Ruthmair. “A vari-
able neighborhood search approach for the interdependent lock schedul-
ing problem”. In: European Conference on Evolutionary Computation in
Combinatorial Optimization. Springer. 2015, pp. 36–47.

[134] K. Pruhs, J. Sgall, and E. Torng. “Online Scheduling”. In: Handbook
of scheduling: Algorithms, models, and performance analysis. Ed. by J.Y.T.
Leung. Chapman and Hall/CRC, Boca Raton, FL,USA, 2004.

[135] M. Queyranne. “Structure of a simple scheduling polyhedron”. In:
Mathematical Programming 58 (1993), pp. 263–285.

[136] R. Rajkumar, L. Sha, and J. P. Lehoczky. “Real-Time Synchronization
Protocols for Multiprocessors.” In: Proceedings of the 9th IEEE Real-
Time Systems Symposium. Vol. 88. 1988, pp. 259–269.

[137] G. A. Rolim and Marcelo S. Nagano. “Structural properties and al-
gorithms for earliness and tardiness scheduling against common due
dates and windows: A review”. In: Computers & Industrial Engineering
149 (2020). Article no. 106803.

[138] M. H. Rothkopf. “Scheduling with random service times”. In: Man-
agement Science 12 (1966), pp. 707–713.

[139] T. Rothvoss. “Better Bin Packing Approximations via Discrepancy
Theory”. In: SIAM Journal on Computing 45 (2016), pp. 930–946.

194

[140] S. K. Sahni. “Algorithms for scheduling independent tasks”. In: Jour-
nal of the ACM 23 (1976), pp. 116–127.

[141] S. K. Sahni. “Scheduling master-slave multiprocessor systems”. In:
IEEE Transactions on Computers 45 (1996), pp. 1195–1199.

[142] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Algo-
rithms and Combinatorics. Heidelberg, Germany: Springer, 2003.

[143] A. S. Schulz. “New Old Algorithms for Stochastic Scheduling”. In:
Algorithms for Optimization with Incomplete Information. Ed. by Susanne
Albers, Rolf H. Möhring, Georg Ch. Pflug, and Rüdiger Schultz. Dagstuhl,
Germany: Internationales Begegnungs- und Forschungszentrum für
Informatik, Schloss Dagstuhl, Germany, 2005.

[144] A. S. Schulz. “Polytopes and scheduling”. PhD thesis. Technische Uni-
versitaet Berlin, 1996.

[145] A. S. Schulz. “Scheduling to minimize total weighted completion time:
Performance guarantees of LP-based heuristics and lower bounds”.
In: International Conference on Integer Programming and Combinatorial
Optimization. Springer. 1996, pp. 301–315.

[146] A. S. Schulz. “Stochastic online scheduling revisited”. In: International
Conference on Combinatorial Optimization and Applications. Springer. 2008,
pp. 448–457.

[147] J.B. Sidney. “Optimal Single-Machine Scheduling with Earliness and
Tardiness Penalties”. In: Operations Research 25 (1977), pp. 62–69.

[148] M. Skutella. “Convex quadratic and semidefinite programming relax-
ations in scheduling”. In: Journal of the ACM 48 (2001), pp. 206–242.

[149] M. Skutella, M. Sviridenko, and M. Uetz. “Unrelated machine schedul-
ing with stochastic processing times”. In: Mathematics of Operations
Research 41 (2016), pp. 851–864.

[150] W. E. Smith. “Various optimizers for single-stage production”. In: Naval
Research Logistics 3 (1956), pp. 59–66.

[151] B. Srirangacharyulu and G. Srinivasan. “An exact algorithm to min-
imize mean squared deviation of job completion times about a com-
mon due date”. In: European Journal on Operational Research 231 (2013),
pp. 547–556.

195

Bibliography

[152] B. Srirangacharyulu and G. Srinivasan. “Minimising mean squared
deviation of job completion times about a common due date in mul-
timachine systems”. In: European Journal of Industrial Engineering 5
(2011), pp. 424–447.

[153] Y. Sugimori, K. Kusunoki, F. Cho, and S. UCHIKAWA. “Toyota pro-
duction system and kanban system materialization of just-in-time and
respect-for-human system”. In: The International Journal of Production
Research 15 (1977), pp. 553–564.

[154] P. S. Sundararaghavan and M. U. Ahmed. “Minimizing the sum of
absolute lateness in single-machine and multimachine scheduling”.
In: Naval Research Logistics Quarterly 31 (1984), pp. 325–333.

[155] O. Svensson. “Santa Claus Schedules Jobs on Unrelated Machines”.
In: SIAM Journal on Computing 41 (2012), pp. 1318–1341.

[156] D. Trietsch, L. Mazmanyan, L. Gevorgyan, and K. R. Baker. “Mod-
eling activity times by the Parkinson distribution with a lognormal
core: Theory and validation”. In: European Journal of Operational Re-
search 216 (2012), pp. 386–396.

[157] N. H. Tuong and A. Soukhal. “Due dates assignment and JIT schedul-
ing with equal-size jobs”. In: European Journal of Operational Research
205 (2010), pp. 280–289.

[158] M. Uetz. “Algorithms for deterministic and stochastic scheduling”.
PhD thesis. TU Berlin, 2001.

[159] P. M. Vaidya. “An algorithm for linear programming which requires
O (((m+ n) n 2+(m+ n) 1.5 n) L) arithmetic operations”. In: Mathemat-
ical Programming 47 (1990), pp. 175–201.

[160] P. M. Vaidya. “Speeding-up linear programming using fast matrix
multiplication”. In: 30th Annual Symposium on Foundations of Computer
Science. IEEE Computer Society. 1989, pp. 332–337.

[161] V.V. Vazirani. Approximation Algorithms. Heidelberg, Germany: Springer,
2001.

[162] J. Verstichel. “The lock scheduling problem”. PhD thesis. KU Leuven,
2013.

[163] J. Verstichel, P. De Causmaecker, and G. Vanden Berghe. “Scheduling
algorithms for the lock scheduling problem”. In: Procedia-Social and
Behavioral Sciences 20 (2011), pp. 806–815.

196

[164] J. Verstichel, P. De Causmaecker, F. C. R. Spieksma, and G. van den
Berghe. “The generalized lock scheduling problem: An exact approach”.
In: Transportation Research Part E: Logistics and Transportation Review 65
(2014), pp. 16–34.

[165] A. P. A. Vestjens. “On-line machine scheduling”. PhD thesis. Technis-
che Universiteit Eindhoven, 1997.

[166] V. G. Vizing. “On an estimate of the chromatic class of a p-graph (in
Russian)”. In: Diskret. Analiz 3 (1964), pp. 25–30.

[167] S. Wang and Q. Meng. “Liner ship route schedule design with sea
contingency time and port time uncertainty”. In: Transportation Re-
search Part B: Methodological 46 (2012), pp. 615–633.

[168] D. de Werra. “Restricted coloring models for timetabling”. In: Discrete
Mathematics 165 (1997), pp. 161–170.

[169] D. P. Williamson and D. B. Shmoys. The Design of Approximation Al-
gorithms. Cambridge, United Kingdom: Cambridge University Press,
2011.

[170] G. J. Woeginger. “A polynomial-time approximation scheme for max-
imizing the minimum machine completion time”. In: Operations Re-
search Letters 20 (1997), pp. 149–154.

[171] G. J. Woeginger. “When does a dynamic programming formulation
guarantee the existence of a fully polynomial time approximation
scheme (FPTAS)?” In: INFORMS Journal on Computing 12 (2000), pp. 57–
74.

[172] X. Xie, Y. Li, H. Zhou, and Y. Zheng. “Scheduling parallel machines
with a single server”. In: Proceedings of 2012 International Conference on
Measurement, Information and Control. Vol. 1. IEEE. 2012, pp. 453–456.

[173] X. Zhang, R. Ma, J. Sun, and Z. B. Zhang. “Randomized selection algo-
rithm for online stochastic unrelated machines scheduling”. In: Jour-
nal of Combinatorial Optimization (2020), forthcoming.

[174] D. Zuckerman. “Linear degree extractors and the inapproximability
of max clique and chromatic number”. In: Proceedings of the 38th an-
nual ACM Symposium on Theory of Computing. 2006, pp. 681–690.

197

Summary and General Discussion

This dissertation entails the theoretical and empirical study of vari-
ous scheduling problems from theory and practice. In Chapters 2-4,
the focus lies on deterministic scheduling problems for which the input is
known and available without any uncertainty. Chapters 5 and 6 study
scheduling problems with uncertainty. In the following we summarize
the findings of each individual chapter and outline the main conclu-
sions.

In Chapter 2, we investigate a family of load balancing problems on
identical parallel machines. As it is unlikely that efficient algorithms
exist which solve these problems to optimality, we aim at polynomial
time algorithms which find solutions of provably good quality. More
precisely, we formalize the concept of additive approximation schemes.
These approximation schemes offer a solution technique with a clear
trade-off between the quality of the solution and the running time
needed to find the solution. The challenge when developing addi-
tive approximation schemes is that standard techniques for multiplica-
tive approximation schemes are not applicable. To overcome this chal-
lenge, we introduce a new relaxation of the considered load balancing
problems. Our additive polynomial time approximation schemes are
based on structural properties which allow us to solve this relaxation
complement with a local search technique which finds a final schedule
whose objective value is provably close to that of the solution to the
relaxation.

The new techniques as well as the concept of additive approximation
schemes offer promising directions for future research such as extend-
ing the techniques to other scheduling problems. Especially consider-
ing problems for which it is known that no multiplicative approxima-
tion scheme exists, the notion of additive approximation schemes may
offer a pathway to non-trivial approximation algorithms.

199

Summary and General Discussion

Chapter 3 investigates a natural extension of the identical parallel ma-
chine environment by combining this problem with the notion of ma-
chine conflicts. These conflicts are relevant when machines are coop-
erating with a single server responsible for pre- and post-processing of
jobs and a pair of conflicting machines may not access the server at the
same time. We establish a close connection between this scheduling
problem and the graph theoretical problem of finding a maximum in-
duced bipartite subgraph when all jobs are identical and pre-processing,
processing and post-processing of any job takes one time unit. This
connection leads to a strong inapproximability result implying that for
general conflict graphs we cannot achieve any non-trivial approxima-
tion guarantees, unlessP = NP . Therefore, we restrict our attention to
special graph classes which are relevant from an applied or theoretical
point of view.

The results in this chapter open up various interesting directions for fu-
ture research. An open question which remains is whether, in general,
the special case with unit jobs can be solved in polynomial time when-
ever a specially structured maximum induced bipartite subgraph can
be computed in polynomial time or whether there exist graph classes
for which this is not possible. If the former is the case, the presented
algorithm for bipartite graphs may be a first step towards a polyno-
mial time algorithm for other graph classes. Furthermore, considering
more general job parameters with simple conflict graph classes poses
an interesting research direction to investigate the quality of classic
scheduling algorithms in this context of machine conflicts. Moreover,
investigating graph classes which capture machine conflicts caused by
spatial proximity such as geometric intersection graphs poses an inter-
esting avenue for future research.

In Chapter 4, we turn our attention towards the problem of minimiz-
ing the total (weighted) squared deviation from job specific due dates.
We focus on the case where all jobs have the same processing time. In
the unweighted setting we devised a polynomial time algorithm based
on the insight that in an optimal schedule jobs are evenly distributed
among machines. In the weighted setting, we developed a polyno-

200

mial time algorithm for a single common due date if the due date is
sufficiently large. If the due date is small, we devised an algorithm
which runs in time exponential in the number of machines. Further-
more, when jobs have distinct due dates we present an additive fully
polynomial time approximation scheme if the number of distinct due
dates is constant.

Multiple interesting questions for future research remain open in the
weighted setting. First of all, settling the complexity for a single com-
mon restrictive due date is of interest. Furthermore, the setting of k dis-
tinct due dates in the weighted version remains interesting since for ab-
solute deviation penalties this can be solved in polynomial time via an
assignment problem. However, this uses the fact that optimal sched-
ules use integral starting times when considering absolute deviation
penalties, which is not true for squared deviation penalties. Hence,
different techniques and insights are needed for this next step.

Chapter 5 entails theoretical and empirical analyses of stochastic on-
line scheduling policies for the problem of minimizing total weighted
expected completion time. In particular, we consider the case where
machines are either fast or slow. We adapt stochastic online schedul-
ing policies which were previously known for the identical and unre-
lated machine environment by taking into account the machine speeds.
From a theoretical perspective, we derive a performance guarantee for
each of the policies in the online-list as well as the online-time model.
In the online-list model, we further prove that the policy is asymptot-
ically optimal. From a practical point of view, we analyse the realized
performance of the policies compared to the theoretical performance.
This analysis shows that the true performance is better than expected
based on the theoretical results. The most striking result of the compu-
tational study is that the two lower bounds used in the theoretical per-
formance analysis of the policies do not yield better lower bounds than
the trivial lower bound of the weighted sum of expected processing
times divided by the speed of the fast machine for small instances.

201

Summary and General Discussion

For future research, considering more general speed models is of inter-
est. Furthermore, it remains an open question whether one can show
that special policies for the uniform parallel machine environment can
yield performance guarantees strictly better than those implied by the
more general setting of unrelated parallel machines even for the spe-
cial case considered in this chapter. This, however, would require new
theoretical lower bounds or a different analysis of the policies.

In Chapter 6 we study a scheduling problem from the perspective of a
single vessel occurring in inland waterway management. We define
the problem of finding an optimal velocity policy for an individual
vessel which faces uncertainty at the lock with the goal of minimizing
the expected fuel consumption for traversing an inland waterway split
into two segments by a single lock between them. To solve this prob-
lem, we first develop a dynamic program to find a near-optimal veloc-
ity policy. In addition, we introduce a simple class of policies based
on the idea of a fixed arrival time at the lock and describe how to find
the best policy among this class. We analyse these two techniques in
a computational study by comparing the fuel consumption of the two
considered policy to a naive policy ignoring the uncertainty at the lock.
The computational study shows, that taking into account uncertainty
is vital and significant fuel savings can be achieved by both policies.
In fact, we show that the simple policy choosing a fixed arrival time
already leads to a significant share of the possible fuel savings due to
a (near-)optimal velocity policy.

Many interesting avenues for future research exist based on the prob-
lem and results in this chapter. First of all, analysing the theoretical
performance of simple velocity policies such as the fixed arrival pol-
icy may be of interest to establish theoretical performance guarantees.
Furthermore, extending the model to more general settings such as a
sequence of multiple locks or multiple vessels approaching the lock
is a next step towards a better understanding and implementation of
inland waterway transportation.

202

Impact Paragraph

This thesis investigates different optimization problems in the field
of scheduling. Scheduling problems model situations in which lim-
ited resources have to be assigned to tasks over time as to minimize
costs, maximize profits, balance workloads among resources or im-
prove the efficiency of the usage of resources. The theory of schedul-
ing is concerned with modelling simplified problems to gain a better
understanding of the intrinsic structures and challenges faced when
solving these problems. The goal is to develop algorithms which solve
problems to optimality in an efficient amount of time. However, many
scheduling problems turn out to be computationally hard such that
we cannot hope to accomplish this goal. To overcome this, we con-
sider approximation algorithms which offer a trade-off by computing
solutions provably close to an optimal solution in an efficient amount
of time. Approximation algorithms for simplified theoretical problems
offer building blocks towards heuristics for applied problems with ad-
ditional practical constraints. Furthermore, approximation algorithms
guarantee that the possible loss compared to an optimal solution is
guaranteed to be bounded from above. This is highly relevant as non-
optimal solutions negatively affect costs, profits, fairness, customer
satisfaction and other standard goals.

In Chapter 2 we investigate load balancing problems on identical par-
allel machines. These problems model situations in which resources
are used most efficiently whenever the workload is distributed fairly.
While most of the approximation algorithms known for these prob-
lems follow the multiplicative approximation paradigm, we formalize
the concept of additive approximation schemes. This concept may help
future research to overcome challenges faced by multiplicative approx-
imation algorithms. From a theoretical perspective, additive approxi-
mation schemes even lead to tighter guarantees when the chosen ap-
proximation parameter is much smaller than the value of the optimal
solution. For practitioners, additive approximation guarantees allow

203

Impact Paragraph

for a quantification of the possible loss compared to an optimal solu-
tion and an economic or social cost analysis of the trade-off between
closeness to the optimal solution and running time.

Chapter 3 extends the concept of machine conflict graphs to model sit-
uations in which machines require access to a server before and after
processing jobs. This server, however, can only be accessed simulta-
neously by machines which are not in conflict with each other. The
results presented in this chapter provide first building blocks towards
a better understanding of such machine environments and may spark
interdisciplinary research between the fields of scheduling and graph
theory. The algorithms can be applied by any decision maker facing a
machine environment with conflicts. The algorithm for bipartite con-
flict graphs and unit jobs can be used as a foundation for heuristics on
other conflict graphs.

In Chapter 4, a just-in-time scheduling problem is investigated. Just-in-
time scheduling is highly relevant in many applications where early
as well as late completion of jobs is undesirable due to high storage
costs, perishable products or customer satisfaction. Quadratic penal-
ties model situations in which small deviations from due dates may
not be desirable but should not be penalized as much as large devia-
tions, e.g., when handling perishable products or aiming for customer
satisfaction. The methods devised in this chapter can be applied in
situations when the duration of all tasks are the same, e.g., in service
industries when all jobs are essentially the same but the importance
and due date is customer specific.

Chapter 5 investigates techniques to cope with uncertainty in schedul-
ing problems. Uncertainty plays a significant role in practice as de-
cision makers in manufacturing or service industries often face un-
certainty or randomness such as the availability or duration of jobs.
Stochastic online scheduling addresses these sources of uncertainty
in order to provide solution techniques to practitioners which accu-
rately cope with the uncertainty underlying the problem. In this chap-
ter, we contribute to this line of research by devising and analysing

204

stochastic online scheduling policies for a problem in the uniform par-
allel machine environment which is relevant in applications such as
manufacturing, computing and compiler optimization. From a practi-
cal perspective, these policies allow decision makers to accurately ad-
dress and solve problems with underlying uncertainties. Furthermore,
the policies can be used as essential building blocks for heuristic tech-
niques taking into account additional practical restrictions as well. As
our computational study shows, the policies can be expected to per-
form better in practice than we proved theoretically. Moreover, from a
theoretical perspective the analysis of the algorithms improves previ-
ous known performance guarantees for some special cases.

In Chapter 6, we introduce a model and solution techniques to ad-
dress one of the key aspects and drivers towards green and sustain-
able transportation in Europe. Inland waterways offer a great oppor-
tunity as one of the most sustainable and CO2-efficient means of trans-
portation of goods. To utilize the full potential of inland waterways,
mathematical optimization models and techniques such as the one in-
troduced in our work are necessary to reach the goal of sustainable lo-
gistics. An important factor that we consider is uncertainty due to dif-
ferent types of vessels, weather and other factors. We introduce multi-
ple techniques for skippers to reduce fuel consumption, emissions and
cost in an uncertain environment leading to a sustainable and efficient
transportation system in an uncertain environment. Most significantly,
we show that even simple techniques which take into account uncer-
tainty strongly outperform techniques which do not take into account
this uncertainty at all. This is relevant for both practitioners and the-
oreticians. For skippers, this provides attractive and applicable meth-
ods to reach significant fuel savings and also underlines the necessity
of such methods in order to reach a sustainable transportation system.
Moreover, from a theoretical perspective this opens up the opportunity
towards further considering these simple types of velocity policies to
investigate the theoretical performance and use them as a foundation
for solution methods to extensions of the considered model.

205

About the author

Moritz Yannik Buchem was born on June 13, 1994 in Düren-Birkesdorf.
In 2013, he received his Abitur from the Gymnasium am Wirteltor in
Düren. Afterwards, he obtained his BSc degree in Econometrics and
Operations Research in 2016, and his MSc degree in Business Research
specializing in Operations Research in 2018, both at Maastricht Uni-
versity. After his studies, he joined the department of Quantitative
Economics at Maastricht University as a PhD student under the su-
pervision of Prof. dr. Tjark Vredeveld and Dr. Tim Oosterwijk. The
findings of the research conducted during his time as a PhD candi-
date are partly published and have been presented at various interna-
tional conferences and workshops. In September 2022, Moritz joined
the Combinatorial Optimization group of the Technische Universität
München as a postdoctoral researcher with Prof. dr. Andreas Wiese.

207

	Acknowledgments
	Introduction
	Scheduling Problems
	Computational Complexity
	Approximation Algorithms
	Outline of Thesis
	Publications

	Additive approximation schemes for load balancing on identical machines
	Introduction
	Additive approximation schemes for arbitrary number of machines
	Improvement for constant number of machines
	Details of second stage of local search procedure: Repairing underloaded machines

	Makespan minimization on identical parallel machines with machine conflicts
	Introduction
	Preliminary Notions
	Unit Jobs: Inapproximability for general conflict graphs
	Unit Jobs: Exact and approximation algorithms for special cases
	Generalizations to identical jobs

	Just-in-time scheduling with quadratic penalties and unit jobs
	Introduction
	Unit weights
	Single common due date and general weights
	The single machine problem with a constant number of distinct due dates

	Theoretical and empirical analysis of stochastic online scheduling policies on uniform machines
	Introduction
	Lower bounds based on linear programming
	SOS polices via speed-scaling
	Computational study
	Improved lower bound for online-time model
	Complete results of computational study

	Optimizing fuel consumption under uncertainty for a single vessel in inland waterways
	Introduction
	Optimal and near-optimal dynamic velocity policies
	Fixed arrival velocity policies
	Computational Study

	Bibliography
	Summary and General Discussion
	Impact Paragraph
	About the author

