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1.1 Radiotherapy and medical imaging 

 

Radiotherapy (RT) plays a crucial role in the treatment of numerous cancer types1. In fact in 
Europe, a significant percentage of cancer patients (47%-53% depending on the diagnostic 
tumour stage and the anatomical tumour site of treatment) undergo RT as a main or con-
current treatment modality2. The main goal of RT is to deliver maximum radiation dose to 
the malignant cells of the tumour while minimising the radiation dose to the surrounding 
healthy tissues which are referred to as organs at risk (OARs). This approach gives the high-
est chance of destroying or eliminating the tumour cells, while allowing normal tissues to 
recover and suffer from as little toxicities as possible3.  

Different modalities and doses of RT treatment are chosen depending on the tumour char-
acteristics, such as the TNM stage and anatomic tumour site. For instance, for the head and 
neck RT treatment, studies proposed and compared different RT treatment modalities such 
as the intensity modulated radiation therapy (IMRT) and Volumetric Modulated Arc therapy 
(VMAT)4–6. Curative RT is intended to cure and eliminate a significant large amount of the 
malignant cancer cells, while palliative RT aims to alleviate pain and delay the tumour 
growth7.  

Linear accelerators (LINACs) are the devices most commonly used for the delivery of exter-
nal beam radiotherapy (EBRT) where the radiation source is located externally to the pa-
tient's body during treatment. LINACs have been used in RT since the 1950s8. The LINAC 
produces particle beams consisting of photons and electrons with a range from 4 to 25 Meg-
aVolts (MV). Some superficial tumours are being treated using X-ray tubes but tumours that 
are located deeper in the organs require more energetic beams produced by LINACs.  

Relatively novel techniques such as proton RT are also introduced for clinical purposes. Pro-
ton therapy's greatest advantage over conventional RT is its accuracy and its ability to spare 
healthy tissues. Conventional X-rays are made of photons that pass through the body and 
deposit a considerable amount of energy to the tumour target and the surrounding healthy 
tissue. Proton particles have a particular physical property called the Bragg peak9. They are 
able to deposit less amount of energy on their way to the tumour target and the surround-
ing tissues beyond it. This property allows to confine the radiation dose to the tumour and 
radically decreases the risk of radiation induced toxicities to the healthy tissues. 

The proton particles originate from the ion source, where hydrogen atoms are separated 
into electrons and protons. The protons are injected into a machine called cyclotron where 
they are accelerated. Acquiring high velocity, the protons are sent through an energy selec-
tion system and a degrader that adjust their energy. The proton beam “transport” system  
conducts the proton particles with the correct trajectory and energy. Finally, the proton 
beam arrives in the treatment room using a gantry that revolves 360 degrees around the 
patient for the delivery of the beam. 

The RT workflow pipeline can be divided in four parts: (i) diagnosis, (ii) treatment planning, 
(iii) treatment delivery and (iv) follow-up (figure 1.1). During diagnosis, imaging is mainly 
used to determine the stage (TNM classification), location and the size of the tumour. Fur-
thermore, there is an important amount of demographic baseline information that has to 

https://www.zotero.org/google-docs/?oBEQWO
https://www.zotero.org/google-docs/?G9q8LH
https://www.zotero.org/google-docs/?ebqATj
https://www.zotero.org/google-docs/?SYGYkX
https://www.zotero.org/google-docs/?oA1gwR
https://www.zotero.org/google-docs/?AJlotW
https://www.zotero.org/google-docs/?Tngu0D
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be taken into account for the selection of the appropriate treatment that will most benefit 
the patient. Demographic characteristics such as the age or the past medical history of pa-
tients influence the treatment selection decision. For instance, minority and aged (cancer) 
patients have an increased risk of undertreatment and underestimation of pain10,11. Usually, 
depending on the treatment protocol and the fractionation schema (the daily RT dose de-
livery), the time period between the first diagnostic imaging scan and the end of RT treat-
ment of a patient differs depending on the treatment, the tumour location and the fraction-
ation schedule selected according to the hospitals’ treatment protocols12. 

The RT treatment planning procedure is a crucial component of the therapeutic process of 
patients. Each patient’s case is being analysed in a multidisciplinary team meeting where 
the tumour pathology and staging are determined. Moreover, decisions are taken regarding 
the RT treatment intent (palliative or radical) and RT treatment modality (e.g. photons, pro-
tons, electrons or brachytherapy), the dose prescription and fractionation regime from the 
radiation oncologists. In most cases Computed Tomography (CT) scans are preferred for the 
treatment planning procedure as they provide an electron density map which is necessary 
for the RT dose calculation in the treatment planning system (TPS) software. In the TPS, the 
anatomical tumour target(s) is (are) delineated as well as with the different OARs in the 
treatment planning scans for the dose calculation and plan simulation.  

In the past years, the introduction of AI algorithms enabled the automatic delineation of 
several anatomical structures as well as the implementation of automated treatment plan-
ning13. Moreover, the quality assurance (QA) tests for the efficient execution and delivery 
of a RT treatment planning include the audit of several technical and physical parameters. 
For instance, the RT dose prescription labelling, physical parameters, treatment scheduling, 
patients’ set-up instructions and dose volume histogram (DVH) parameters12,14 are being 
checked. Specifically for the DVH parameters, due to the high complexity of the RT treat-
ment planning procedure and the goal of achieving as much as possible dose sparing to the 
OARs, significant efforts have been made for automated-individualised QA using 
knowledge-based DVH predictions15.  

Furthermore, during the treatment planning verification phase, the RT treatment plan cal-
culated in the TPS undergoes QA checks before its delivery by the treatment machines (LIN-
ACs). These QA checks usually include phantoms, which are devices used for the calibration 
of the delivery machines verifying and ensuring that there are no dosimetric differences 
between the TPS calculated plan and the delivered one to the patients16. Moreover statisti-
cal metrics such as the gamma index (GI)/ gamma (γ) pass rate in the pretreatment patient 
plan verification are used for the quantitative evaluation of dose distribution to the patients 
before their treatment. Finally, during the follow up stage, medical images are acquired af-
ter the end of the treatment for tumour monitoring purposes. Specifically, the follow up 
stage is important for identification of a recurrent tumour or a tumour spread in other an-
atomical sites. 

 

https://www.zotero.org/google-docs/?3TTY5P
https://www.zotero.org/google-docs/?lYXine
https://www.zotero.org/google-docs/?76iLxe
https://www.zotero.org/google-docs/?Kxpz78
https://www.zotero.org/google-docs/?o5pxAV
https://www.zotero.org/google-docs/?H68e6w
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Figure 1.1: Synopsis of the four components of the RT workflow. Starting with the diagnosis 
of the disease on the left and the treatment planning procedure using various imaging mo-
dalities depending on the anatomical tumour site that has to be treated. Subsequently, the 
treatment delivery follows where the treatment plan is “transferred” from the TPS to the 
LINAC after passing the quality assurance (QA) tests. Finally, in the follow up phase, the 
treatment efficacy is verified in terms of tumour elimination after the end of the RT course 
using different imaging modalities. 

Medical imaging is tightly connected with each of the four components of the RT workflow. 
Different imaging modalities are being used for the diagnostic, treatment planning and fol-
low-up purposes. The most common imaging modalities used for diagnostic and treatment 
planning purposes are CT, Magnetic Resonance Imaging (MRI) and Positron Emission To-
mography (PET) (figure 1.2). Mainly CT scans are used for treatment planning due to the 
electron density maps which are necessary for the dose calculation, while a small amount 
of radiation dose is given to the patient. MRI is mainly used for the better representation of 
the soft tissues having the advantage of not delivering radiation dose to the patients. Pa-
tients with paramagnetic objects in their body cannot be scanned with MRI according to the 
safety protocols of MRI due to the strength of the magnetic field. PET or PET/CT imaging is 
used mainly for the better visualisation/inspection of the targets that are not well visualised 
by CT or MRI. The low resolution due to the imaging noise of PET scans constitutes a disad-
vantage. 
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Figure 1.2: Overview of the three main imaging modalities used for diagnostic and treat-
ment planning purposes in RT specifying the different advantages (+ green colour) and dis-
advantages (- red colour) of each imaging modality. The scans included in the figure are part 
of the following publicly available imaging collections stored in xnat.bmia.nl. Specifically, 
the CT scan is part of the STW_STRATEGY_MAASTRO_LUNG1 collection17, the MRI scan is 
part of the WORC imaging collection18 and the PET scan is available through the 
STW_STRATEGY_MULTIDELINEATION imaging collection19. 

 

1.2 Artificial intelligence applications in Radiotherapy 
 

During the last years, significant technological advances in the field of computer science  
introduced the implementation of Artificial Intelligence (AI) in different disciplines. RT is one 
of the disciplines in medicine where AI techniques have started to manifest their potential. 
AI can be defined as the ability of machines to demonstrate and display actions that usually 
are performed by humans20. These actions include problem-solving, decision making, learn-
ing and classification tasks. The emerging need to improve the quality of each part of the 
RT workflow as well as the RT-based patient outcomes have stimulated the introduction of 
AI techniques in RT. In addition, the fact that RT is an information technology (IT) driven 
discipline in medicine, makes AI somewhat easier to introduce in RT. 

Taking into account that a plethora of RT routine clinical tasks include time-consuming and 
labour-intensive tasks such as the delineation of the different OARs during the RT treatment 
planning phase or the LINAC QA checks before the execution of treatment plans, AI appli-
cations can potentially play a significant role in the field. Machine learning (ML) and deep 

https://www.zotero.org/google-docs/?lqwN7g
https://www.zotero.org/google-docs/?YPMQAU
https://www.zotero.org/google-docs/?3VmVPM
https://www.zotero.org/google-docs/?F8eYYa
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learning (DL) applications as branches of AI can substantially improve the quality and accu-
racy of treatment delivery as a supporting tool to RT professionals such as radiation oncol-
ogists, medical physicists and radiation technologists (RTTs)21.  

ML can be defined as the branch of AI that has the ability to perform tasks by learning from 
data using computational power without being explicitly programmed22. DL is a branch of 
ML and can be defined as a group of algorithms or methods that is used for supervised and 
unsupervised learning based on artificial neural networks (ANNs)23. For supervised learning 
tasks, DL translates data into representations similar to principal components deriving lay-
ered structures, while for unsupervised learning, generative adversarial networks (GANs) 
and autoencoders are the main components for the generation of synthetic data based on 
different datasets24. Applications such as the automatic delineation of the different ana-
tomical targets 25,26 or DL-based automated treatment planning27 have been proven to im-
prove the RT process and in some cases to have better performance than humans28. Prog-
nostic modelling and classification tasks are some of the applications of ML in RT imple-
mented using mathematical models and algorithms. 

 

1.3 Radiomics  
 

The integration of AI and ML techniques in RT, in combination with the vast amount of multi-
modality imaging data resulted in the start of a new era in RT. Specifically, the information 
provided visually from medical images can be enriched with quantitative information of the 
tumour, extracted from the pixel information in the medical images. This information is 
known as imaging features and can potentially reveal significant information regarding the 
tumour phenotype. In combination with ML techniques, it can compose an ML-based image 
analysis framework towards patients' personalised treatment approach. This framework 
that transforms diagnostic or treatment planning patients’ scans into a mineable knowledge 
is known as “radiomics”29. 

The concept of radiomics has as its main components the identification and quantification 
of tumour characteristics and statistical modelling, aiming to adapt and personalise pa-
tients’ treatment in terms of treatment planning, outcome prediction, treatment response 
and decision-making. Radiomics was first introduced in 201230 as a new concept and cur-
rently constitutes an active research discipline in the field of radiation oncology and RT. The 
radiomics pipeline includes four main stages. (i) Imaging of the patient, (ii) region of interest 
(ROI) delineation, (iii) imaging features extraction and (iv) statistical analysis/modelling (fig-
ure 1.3). Each of these stages has different technical characteristics. Radiomics have been 
applied to different imaging modalities such as CT31, PET32 or MRI33, with manual and semi-
automatic ROI delineation34, with the latter having promising results in terms of the robust-
ness of radiomics features using AI-based semi-automatic algorithms35, while the statistical 
analysis can be adjusted and differs depending on the feature selection method or the pre-
dicted outcome. It should be highlighted that a significant amount of radiomics studies have 
been applied on CT images due to their high availability in RT departments for treatment 
planning purposes. Furthermore, limitations such as the plethora of different MRI scanning 

https://www.zotero.org/google-docs/?enEX3y
https://www.zotero.org/google-docs/?oiaYT7
https://www.zotero.org/google-docs/?27EBkJ
https://www.zotero.org/google-docs/?j1m7hY
https://www.zotero.org/google-docs/?U6ieyD
https://www.zotero.org/google-docs/?Mvo3IU
https://www.zotero.org/google-docs/?1ux0yX
https://www.zotero.org/google-docs/?F8Ka1Q
https://www.zotero.org/google-docs/?6sUhIL
https://www.zotero.org/google-docs/?DqkZ84
https://www.zotero.org/google-docs/?xBpZnT
https://www.zotero.org/google-docs/?ghbiKB
https://www.zotero.org/google-docs/?eI5cV2
https://www.zotero.org/google-docs/?dg61tn


17 
 

protocols and the technical limitations of PET imaging (ie. low resolution and noise) influ-
ence the reproducibility of radiomics models based on these two imaging modalities36,37.

 

https://www.zotero.org/google-docs/?8SeI4a
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Figure 1.3: The four different steps of the radiomics pipeline. The first step includes the 
imaging of the patients. Different imaging modalities during the different phases of the RT 
workflow can be used in radiomics depending on the scope of the radiomics study. Sec-
ondly, the ROI delineation takes place. The delineation can be done manually or automati-
cally using AI algorithms. The third radiomics step includes the imaging features extraction 
using the 3D ROI representation. The extraction can be done using various open source or 
licensed software. Last, the imaging features extracted are often combined with other types 
of data and used as an input for statistical analysis and prediction modelling. 

 

One of the most important and promising aspects of the radiomics concept is the possibility 
to acquire information regarding the tumour phenotype using quantitative imaging fea-
tures. This information cannot be easily observed and acquired by the human eye of radiol-
ogists or radiation oncologists38. It is worth highlighting that the imaging features included 
in a radiomics study can be enriched with other feature types such as clinical data from the 
electronic health record (EHR) systems containing demographic, treatment response and 
follow-up information.The combination and inclusion of imaging and clinical (or other fea-
ture types) in the statistical analysis of the radiomics workflow may contribute to the ro-
bustness of the radiomics statistical output29.  Similarly, AI plays a significant role in the 
radiomics framework via the ML algorithms used in statistical model building39,40. Hence, AI 
can be considered one of the key components of the transformation of the patients scans 
into mineable knowledge towards personalised patient care without the need for human 
observation. 

Currently, the oxymoron fact with the radiomics-based prediction models is that they are 
not yet introduced in a clinical environment, despite the high amount of radiomics publica-
tions in the literature. In the last decade, several studies investigated the potential of radi-
omics in different imaging modalities, having as a starting point the publication of Aerts et 
al.31  in 2014 that introduced the potential value of radiomics in survival prognosis of lung 
and head and neck patients. 

In a later stage, radiomics literature focused on several applications such as the classifica-
tion of malignant tissues for diagnostic purposes41, the “virtual”  biopsy approach combining 
radiomics and genomics data (ie.“radiogenomics”) 42 and the investigation of the scanners 
variability influence on radiomics features values using phantoms43. Although there were 
significant efforts of the radiomics community, the incorporation of radiomics models in the 
clinical routine of RT professionals is still an unmet milestone due to significant barriers. 
Specifically, some of the characteristic barriers are the inconsistencies in the delineations 
of the imaging input data, absence of standardisation of the imaging features extraction 
and computation pipeline and the difficulties regarding radiomics-based models exchange 
between different centres, hampering the reproducibility of radiomics research. 

In this thesis, in chapter 2, the main pitfalls of the radiomics pipeline will be identified as 
well as the key points for the standardisation and reproducibility of the radiomics frame-
work. A main component in this chapter will focus on data sharing and data interoperability 
among radiomics researchers. 

 

https://www.zotero.org/google-docs/?rMzFaO
https://www.zotero.org/google-docs/?LyvFuI
https://www.zotero.org/google-docs/?8mqCzd
https://www.zotero.org/google-docs/?G9MdVB
https://www.zotero.org/google-docs/?ggNOA1
https://www.zotero.org/google-docs/?ZYR3Ph
https://www.zotero.org/google-docs/?UOmIXX
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1.4 Artificial Intelligence-based quality assurance in radiotherapy 
 

Quality assurance (QA) checks in RT are part of the  daily routine undertaken by medical 
physicists and RTTs of RT departments. These QA checks are performed during all the stages 
of the RT workflow and constitute a time-consuming and labour intensive procedure. They 
occupy a significant portion of machines downtime and part of the clinical routine day of RT 
professionals44. The three main categories of QA checks are (i) QA of delivery machines and 
medical equipment, (ii) QA of patients treatment plans and (iii) QA checks for errors detec-
tion before the execution of the treatment plan. All these QA checks categories require spe-
cial equipment or analytics such as QA phantoms, radiochromic dosimetry films and gamma 
(γ) pass rate statistical analysis.  

To reach the ultimate goal to reduce the number of and time needed for QA checks in RT, 
such as replacing a patient’s treatment plan QA with an automated test predicted by a ML 
algorithm, the RT professionals community should have validated and robust tools in their 
hands45. During the past years, several studies introduced various ML algorithms for QA 
checks having as a main goal to reduce the QA workload of the RT professionals. Specifically, 
they focused on the investigation of the prediction of gamma (γ) index pass rate for the 
patient's specific treatment plan verification using different ML algorithms including convo-
lutional neural networks (CNNs)46,47, Poisson regression48, Random forest49 and support vec-
tor classifiers50(p). Moreover, ML algorithms were used for the prediction of errors regarding 
the position of multileaf collimators into TPS computations using random forest and regres-
sion algorithms 51,52(p).  

Another promising ML concept regarding the treatment plan verification was introduced by 
Luk et al.53 using Bayesian networks. This Bayesian networks approach proposed a proba-
bilistic model for the early detection of RT treatment planning errors using simulated errors 
concerning LINAC mechanical, patient positioning and general treatment planning errors. 
The transparency of Bayesian networks based on the network query possibility, that gives 
the flexibility to explain the different decisions made via the different connections of the 
network, makes Bayesian networks a strong candidate of a ML algorithm that has the po-
tential to support clinical aids in RT regarding the early detection of RT treatment planning 
errors. 

However, despite the fact that the introduction of ML in QA checks has the potential to 
eliminate the human effort and time needed, there are still a lot of steps to be done for the 
introduction of this novel technology into the daily clinical routine of RT professionals. The 
reasons behind this hesitant introduction of the above mentioned ML techniques are mainly 
connected to the high and advanced data or computer science skills required for the devel-
opment of these technologies. Specifically, it is a common phenomenon that a significant 
percentage of RT professionals in Europe such as the medical physicists lack AI knowledge 
while a high percentage of them recognise its significance and added value in the clinical 
routine procedures54. Moreover, the introduction and implementation of these novel tech-
niques by the RT professionals is accompanied by the “black-box” approach as the under-
standing and functionalities of AI algorithms is quite problematic.  
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In chapter 7 of this thesis, we externally validated a Bayesian network approach developed 
in the University of Washington Medical Centre for the early detection of RT treatment plan 
errors using an external validation dataset of Maastro Clinic in the Netherlands. 

1.5 “Big-data” and prognostic modelling in radiotherapy-the need for validation 
 

As discussed in the previous section, the new era of AI in the RT QA procedures requires the 
acquisition and curation of large scale datasets55. Likewise, the implementation of AI tech-
niques in RT requires the acquisition and use of a high amount of data for training and vali-
dation purposes. As mentioned, diagnostic and planning images in combination with de-
mographics or baseline clinical characteristics and patients’ records are used for the deter-
mination of the treatment strategy from the multidisciplinary group (MDT) of radiation, 
medical and surgical oncologists.This amount of data is stored digitally for every patient 
across the different departments involved in the cancer treatment of each hospital such as 
the RT, medical oncology, radiology, nuclear medicine or surgery department. Moreover, 
these data are stored in different EHR systems and imaging archives such as the  picture 
archiving and communication system (PACS) in different formats (.txt, .doc , .pdf, JPEG, DI-
COM)56. An overview of the different data types of each different stage of the RT workflow 
is shown in figure 1.4. 

 

Figure 1.4: An overview of the multisource data of each stage of the RT workflow. Different 
imaging or data from different department’s reports are “produced” in every stage. These 
multisource data are stored in different sources such as EHR systems, PACS and TPS data-
bases. 

A recent study estimated that the number of cancer patients worldwide was 19.3 million 
(GLOBOCAN 2020)57. In terms of data volume a minimum of 0,1 GBs of data is generated 
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per patient56. This vast amount of data, which is also referred as “Big-data”, has the poten-
tial to transform the radiation oncology landscape with their responsible and appropriate 
exploitation adding a significant contribution towards personalised data-driven RT. Yet, this 
enormous amount of data cannot be processed fully manually by humans.  

Therefore, there is a need to develop ML algorithms that can translate this data into mean-
ingful knowledge that could potentially support the RT professionals in their routine opera-
tions. RT outcomes prediction modelling, automated delineation of OARs, automated treat-
ment planning, imaging guidance RT and the quality assurance (QA) checks of RT delivery 
devices constitute some of the applications that can potentially benefit from this new era 
of data-driven RT58. 

Nonetheless, the meaningful translation of these data into knowledge that can improve or 
support the decision making process in RT is more than a time consuming and labour inten-
sive procedure. RT data come from different sources such as TPS, radiology/RT reports and 
imaging data and are stored in different archive systems. Moreover, the different data are 
labelled and registered with hospitals’ specific languages and terminologies which leads to 
an interoperability issue. Furthermore, multicentric data exchange constitutes a prerequi-
site for responsible and reproducible RT research. Especially for RT data-based prediction 
modelling studies, external validation based on the TRIPOD statement, is a crucial step be-
fore the clinical implementation of a model59. Nevertheless, there are some barriers that 
make RT data exchange between different centres problematic. These barriers are usually 
related to the privacy and data security regulations of each hospital or data “owner” as RT 
data holds patients' sensitive personal information. 

Prognostic modelling has as its main objective the improvement and the introduction of 
personalised treatment approaches in RT via the development and implementation of 
mathematical 

models and algorithms. These algorithms can potentially calculate the risk or the probability 
of a specific outcome or toxicities rates during the RT treatment or the prediction of survival 
of a specific patient's cohort with a specific disease. For instance, one of the applications of 
these prognostic algorithms is used in the Netherlands is the model based approach 
(MBA).With this approach, ML algorithms predict and evaluate the patients who might ben-
efit from proton or photon RT comparing normal tissue complication probabilities (NTCP) 
rates60. 

The oxymoron fact with the AI prognostic algorithms is that their construction and applica-
tion is not a complicated procedure but on the contrary, their (external) validation can be 
problematic due to various factors. For example, different patient characteristics, different 
scanning protocols and different treatment fractionation schedules across different centres 
are some of the factors that make the generalisation, reproducibility and therefore clinical 
implementation of these AI-based prognostic models challenging. During the past years in-
itiatives for standardised prediction models reporting guidelines have been demonstrated 
such as the Transparent reporting of a multivariable prediction model for individual prog-
nosis or diagnosis (TRIPOD)61 having as a goal the full evaluation of prediction models. None-
theless, the fully transparent and adequate report and description of prediction models is 
not achievable due to barriers within RT. Despite the high and emerging need of validation 
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of  the novel field of AI-based prediction models in RT, data sharing complications such as 
legal or ethical administration protocols, absence of an adequate amount of data validation 
cohorts and technical issues such as code and software not being publicly available are some 
of the barriers that make it difficult. 

On the other hand, taking into account the multiple imaging modalities and EHR systems or 
data archives, we can conclude that there is a multi-source data production in the RT work-
flow. This amount of data is usually stored in different formats with missing data items as it 
is challenging to have them structured in a standardised format and make them available 
for research or clinical purposes. This has a negative impact in the reproducibility of RT find-
ings as the RT data are not usually interoperable and reusable from internal and external 
users. In addition, the privacy and ethical regulations due to the privacy-sensitive RT data 
contribute to the above-mentioned problem of data interoperability and reusability. Sum-
ming up, there is an emerging need for a standardised data acquisition-management frame-
work within RT that enables responsible and interoperable data use and re-use. 

 

1.6 The introduction and implementation of the FAIR data principles in radiotherapy 
 

Taking into account the rapid developments of the AI and ML techniques accompanied with 
the “big-data” era, the RT landscape changes. The RT community should re-orientate its 
principles regarding the use of this valuable information from the patients data and the 
implementation of these novel technologies. One of the approaches that should be taken 
into account by the RT research and clinical community is the usage of data according to 
the Findable, Accessible, Interoperable and Reusable (FAIR) data principles (figure 1.5)62. 
These principles have the potential to transform the data into a machine-readable format 
assisting humans on data searching and processing, applying AI or ML algorithms on them 
and exchanging them via interoperable standards and terminologies. 

In the RT field, the FAIR principles constitute a prerequisite standard format for federated 
learning studies. In chapters 4 and 5 of this thesis the FAIR principles are applied to radi-
omics publicly available datasets and distributed radiomics-based survival models studies 
between two different hospitals without the exchange of patients data towards achieving 
the goal of interoperable and reusable prognostic models. Moreover, in this thesis the cre-
ation of a FAIR data model approach is presented for the standardisation of the Dutch pro-
ton therapy data registry. 
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Figure 1.5: Brief description of each FAIR data principle. In this thesis, in chapter 8 we will 
analyse further the implementation of the FAIR principles in the RT domain, proposing a 
collaboration framework of all the RT professionals that can accelerate the FAIR data con-
cept in RT. 

As mentioned, one of the main and challenging goals of FAIR data infrastructures is the 
interoperability of research findings so that several users can reuse and develop further 
knowledge. Technically, this can be achieved by the use of universal and publicly available 
vocabularies or terminologies that describe concisely and efficiently the several data items 
used in a RT database or a prognostic model. Specifically, the introduction of ontologies in 
the field of RT enables the interoperability required for a FAIR data model providing signifi-
cant semantic domain knowledge. Ontologies can be defined as computer-compatible 
knowledge terminologies that “demand” relationships between the different data ele-
ments. Recently,the domain of ontologies has been introduced the field of radiation oncol-
ogy by the ontologies focused working group of the American Association of Physicists in 
Medicine (AAPM) having as a main goal the introduction of ontologies in the RT community 
providing a sufficient usage and construction guide and underlining the main concepts of 
them63. 

The introduction of the previously mentioned AI techniques, including the introduction of 
the FAIR data principles in the modern data management plan introduces a new era in the 
RT professionals. An era where different professional disciplines such as computer scien-
tists, data scientists and medical physicists need to collaborate with each other to supple-
ment each other's lack of knowledge. Currently, there are initiatives in the RT community 
such as the working group in AI  from the European Federation of Organisations For Medical 
Physics (EFOMP) where there is a discussion regarding the update of educational curricula 
of medical physicists and RTTs with integration of basic AI concepts of AI. Moreover, collab-
orations between the different RT stakeholders are emerging for the formation of a com-
mon vision regarding the future of the data-driven RT landscape. Figure 1.6 represents the 
common RT data workflow from the data storage systems to the final research or clinical 
data-driven output indicating the importance of the FAIR data principles. 

https://www.zotero.org/google-docs/?Tkfj1b


24 
 

 

Figure 1.6: Overview of the typical RT data workflow. Multisource data are stored in differ-
ent archive systems. Different extraction mechanisms in combination with the necessary 
legal actions make the data available to the different RT stakeholders for different purposes. 
The FAIR data principles stress mainly the interoperability and reusability aspect of the re-
sults output making it findable and accessible to the different stakeholders of RT as they are 
identified in chapter 8 of the thesis. 

1.7 Thesis structure  
 

The four main components of the thesis can be separated in (i) the introduction and imple-
mentation of the radiomics concept in RT (ii) the prediction modelling using “Big-data” in 
RT (iii) the application of AI techniques for QA in RT and the (iv) introduction of the FAIR 
data principles in RT. The structure of the thesis is as follows: Chapter 2 presents the radi-
omics concept in the radiation oncology landscape and its pitfalls and uncertainties, provid-
ing a roadmap for the standardisation of the radiomics workflow according to the Image 
Biomarker Standardisation Initiative (IBSI)64. Furthermore, the steps for the clinical integra-
tion of the radiomics concept are described. Chapter 3 provides a publicly available dataset 
of phantoms scanned in three different RT centres, having as a goal the reproducibility of 
radiomics studies. Chapter 4 introduces the FAIR data principles with publicly available ra-
diomics datasets. The main goal of this chapter is to underline the importance of transpar-
ent radiomics research using publicly available datasets while using the FAIR principles to 
integrate multisource data. In chapter 5, the FAIR data principles constitute a prerequisite 
format  for distributed learning radiomics-based prediction modelling using a federated in-
frastructure. Chapter 6 describes the external validation of ML-based RT prediction models 
evaluating NTCP models related to dysphagia using an external validation cohort of patients 
candidates for proton therapy in the Netherlands.  Chapter 7  introduces the QA of RT treat-
ment planning using AI algorithms and specifically bayesian networks underlining also the 
emerging need for external validation. Furthermore, chapter 8 provides a vision on how the 
RT community can integrate and implement the FAIR data principles in clinical and research 
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studies providing an overview of action items for the RT stakeholders. Finally, in chapter 9 
and 10 technical implementations of the FAIR principles are presented with semantic mod-
els created for the Dutch proton patients cancer registry purposes. 
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Abstract  
During the last decade radiation oncology became one of the most data-driven medical spe-
cialties due to the rapid development of computational methods and artificial intelligence 
(AI) in medical imaging domain. The radiomics concept has converted medical images into 
minable data associated with clinical events used for personalized medicine. In this chapter 
we will present an overview of the fundamental principles of the radiomics pipeline as well 
as with a roadmap for responsible and reliable radiomics research studies. Furthermore, 
the major uncertainties and pitfalls of the radiomics pipeline are outlined with the most up-
to-date solutions and recommendations of the Imaging Biomarker Standardization Initiative 
(IBSI) for responsible radiomics. Finally, we discuss the potential translation of radiomics 
into the clinic via the commissioning of radiomics models and the comparison between the 
operational excellence and the prediction outcome of the models. 
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2.1 Introduction  
 

Medical imaging is routinely used for screening, monitoring, diagnostic and treatment pur-
poses in the management of cancer1. Multimodality images contain a variety of significant 
information about the tumor characteristics. Traditionally, medical images have been ana-
lyzed visually. However, visual observation is time consuming and makes reliable elucida-
tion of all the potential information embedded into an image difficult. Computers can ad-
dress this challenge and have the potential to automate the task of extracting all infor-
mation from medical images2. In fact, progress  in data mining and machine learning (ML) 
have changed the way in which many radiologists observe medical images, where the in-
crease in computational power has enabled the observation and extraction of high-dimen-
sional quantitative features from medical images3.These features can be used by research-
ers and clinicians to answer crucial clinical questions regarding tumor phenotypes, as well 
as the diagnosis and treatment of patients. Overall, the concept of the automated extrac-
tion of quantitative imaging features is known as “radiomics”. 

The term radiomics can be more specifically defined as the high-throughput computerized 
extraction of quantitative features from medical images such as Computed Tomography 
(CT), Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). These 
features can be used for outcome prediction modelling and mainly are extracted from the 
Region of Interest (ROI) contour, such as the Gross Tumor Volume (GTV) represented in the 
medical images using various imaging modalities, The radiomics workflow was first  de-
scribed in 2012 by Lambin et al.2 and Kumar et al.4The first comprehensive proof-of-concept 
study in radiomics is considered to be the one by Aerts et al.5 in 2014, in which the authors 
described a radiomics approach to model overall survival of lung and head and neck patients 
using CT images. Since then, the number of publications  of radiomics studies has grown 
exponentially as it is shown in figure 2.1. 

 

https://www.zotero.org/google-docs/?bxPDzV
https://www.zotero.org/google-docs/?nEWoxC
https://www.zotero.org/google-docs/?WciVtX
https://www.zotero.org/google-docs/?VEZrfs
https://www.zotero.org/google-docs/?W7Iyca
https://www.zotero.org/google-docs/?aY82M3
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Figure 2.1: The growth of radiomics publications since 2012 (PubMed). 

The purpose of this chapter is to provide an overview of radiomics in radiation oncology, by 
describing the ML applications and how they can be implemented in the hospital. Further-
more, this chapter will present the fundamental steps that should be followed by research-
ers working in the field of radiomics, in line with the recommendations of the Image Bi-
omarker Standardization Initiative (IBSI)6,7. Following the integration  of ML techniques in 
the radiomics field, the crucial challenge has now become the introduction and implemen-
tation of radiomics applications into the clinical environment. With this in mind, the poten-
tial barriers that need to be overcome for the clinical translation or radiomics will be dis-
cussed as well as with future recommendations for the general acceptance and commis-
sioning of radiomics. 

 

2.2 Implementation of radiomics in radiation oncology 
 

In this section we will provide an overview of the fundamental radiomics principles in re-
search as well as with the uncertainties and pitfalls of each part of the radiomics pipeline. 
Furthermore, following the IBSI recommendations, we present guidelines for the standard-
ization of radiomics studies. In the last part of this section, the potential of distributed learn-
ing combined with radiomics studies is analysed, with the useful application for the ex-
change and validation of radiomics models. 

2.2.1 Fundamentals of radiomics in research 

● Methodology 
Radiomics studies involve several steps that require the inclusion of different domain ex-
perts, such as radiation oncologists/clinicians, medical physicists and computer/data scien-
tists. The steps of the radiomics workflow include (I) data acquisition, (II) ROI segmentation, 
(III) feature extraction, (IV) model development. A representation of the radiomics work-
flow is shown in the figure 2.2.1. Each of these steps poses different challenges and uncer-
tainties that will be described further in  this  chapter. 

 

https://www.zotero.org/google-docs/?TBawpG
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Figure 2.2.1:Representation of the typical radiomics work containing the data acquisition, 
the ROI segmentation, the feature extraction and the statistical analysis for model develop-
ment. 

● Data acquisition and preparation 
There is a large amount of multi-source data across the different hospitals generated in the 
daily clinical routine that can be used for research studies. A large volume of images isstored 
in the Pictures Archive Communication System (PACS), which can potentially be connected 
with the corresponding clinical data from the patient’s local Electronic Health Record (EHR) 
database. Radiomics have the potential to be a highly-cost effective line of inquiry leading 
to better treatment selection and improved stratification using this amount of data.  

The applications and potential of radiomics have been demonstrated by several studies so 
far8. A wide variety of acquisition settings is used for the different imaging modalities.The 
combination of different vendors, reconstruction algorithms and scanner models across the 
different institutions is more than a usual phenomenon. These differences play a significant 
role in the computation of radiomics features. This impact can be translated into texture as 
the imaging noise level can be affected, resulting in a difference in the classification of the 
ROI and inconsistent results in the statistical analysis of radiomics features9,10. Besides the 
realistic fact that it is impossible to unify the image acquisition settings and techniques, 
efforts should be applied for the standardization of the appropriate pipeline for the devel-
opment of accurate radiomics models derived from images obtained with different proto-
cols. 

Radiomics features are highly dependent on the imaging parameters. The most dependent 
parameters that could affect the radiomics features values and that need to be taken into 
account for every imaging modality are the number of grey levels, pixel or voxel size11 and 
the range of grey level values12. Additionally, in the past years, MRI studies13,14 suggested 
the removal of the signal intensity nonuniformity from the MR images. Several approaches 
and solutions have been proposed for managing these dependencies. Regarding the nor-
malization of the grey level values, a study from Collewet et al.15 suggested the 
±3𝜎 (±3 𝑠𝑖𝑔𝑚𝑎)method which proved to be promising. To deal with the size of pixels, in-
terpolation methods such as linear cubic B-spline interpolation can be used for pixel 
resampling according to Parker et al.16. Besides the fact that several image preprocessing 
methods are integrated in some radiomics platforms which are not publicly available for 
commercial purposes, it should be acknowledged that many open-source softwares such as 
ImageJ or 3DSlicer can handle image data preprocessing methods.  

Data preparation is one of the most important initial steps for radiomics studies as the qual-
ity of the data has an impact in the radiomics feature extraction and the development or 
validation of the radiomics model.  Several conditions such as radiomics features scaling, 
over-sampling, randomization and discretization of the dataset, should be taken into ac-
count before data analysis using ML or AI algorithms. As the radiomics features are ex-
tracted at various scales, feature scaling should be involved in the radiomics pipeline, as 
there is a potential interference with the ML model parameters. In other words, feature 
scaling is the change of the numeric feature values to a common scale without important 
distortions, that is categorized to normalization and standardization. The distribution of the 
data determined by the ML algorithm  is the factor that will designate the feature scaling 

https://www.zotero.org/google-docs/?wZ6taU
https://www.zotero.org/google-docs/?lqF0me
https://www.zotero.org/google-docs/?gDkF2D
https://www.zotero.org/google-docs/?9q7Rye
https://www.zotero.org/google-docs/?Y7oiEB
https://www.zotero.org/google-docs/?hCtxwW
https://www.zotero.org/google-docs/?zaIy6M
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technique.The performance of the ML algorithms is highly correlated with the class balance 
of the datasets. Imbalance can lead to important misleading classification results. One of 
the potential solutions is the resampling of the training dataset used for the model devel-
opment. 

Radiomics researchers need high quality datasets17. Big and standardized radiomics da-
tasets enriched with clinical metadata can accelerate the acceptability of radiomics by the 
clinicians. However, the data collection for the radiomics researchers constitutes a time 
consuming procedure as they need access to the medical images and patients’ clinical data 
warehouse. Furthermore, data exchange between different institutions presents ethical or 
legal issues due to the sensitivity of medical data privacy. Some imaging public repositories 
such as the Cancer Imaging Archive (TCIA)18 and the instance of the Extensible Neuroimag-
ing Archive Toolkit (XNAT-https://xnat.bmia.nl) hosted within the within Dutch national re-
search infrastructure (TraIT, www.ctmm-trait.nl) constitutes a valuable resource for radi-
omics researchers. These abovementioned public imaging repositories provide a variety of 
imaging datasets combined with clinical metadata tables available for radiomics studies.  

● Tumour segmentation (manual-semiautomatic-automatic) 
One of the crucial parts of the radiomics pipeline included in the clinical routine practice of 
radiologists and radiation oncologists is the segmentation of the different ROIs and the sur-
rounding Organs at Risk (OAR). The radiomics feature values are extracted from the volume 
of the ROI we want to analyze computationally. The majority of the studies use the primary 
GTV as a ROI for feature extraction, as their main goal is the development of prediction 
models based on the primary tumor response to the treatment. Other studies presented a 
different approach19–22, stating that the peripheral tissues of the primary GTV could poten-
tially include predictive information regarding distant metastasis or tumor recurrences. 

The manual segmentation of the different ROIs used to be the ”gold standard” during the 
past years in the clinical routine of radiologists and radiation oncologists. This method is 
time consuming for the clinicians, as a detailed observation of each different image slice is 
required. Furthermore, the morphological variations of the tumor region is a factor for in-
ter-observer variability in segmentation, as the different observers may have different ap-
proaches regarding the tumor morphology. These differences can have an impact on the 
radiomics features reproducibility and repeatability23–26. Advances in the field of AI and ra-
diation oncology introduced the semiautomatic27,28 and automatic29 Specifically, Shi et al.27 
used the ATLAAS based30 semi-automatic segmentation method in PET images to externally 
validate a prognostic model for oesophageal cancer patients, while Chen et al.29 used a mul-
tiscale 1-layer deep 3D Convolutional Neural Network (CNN), technique introduced by the 
study of Kamnitsas et al.31. Although the automated segmentation methods have raised the 
interest and the concern of the majority of the clinicians and researchers, there are still a 
lot of steps to achieve a fully automated pipeline for the detection of the tumor volumes in 
medical images32–34. 

● Feature extraction/selection (different features and software) 
Following the data acquisition and image segmentation, a set of imaging features is com-
puted from the delineated volume of the ROI, which is used as an input for the radiomics 
model. In other words, the radiomics feature extraction is the next step of the radiomics 

https://www.zotero.org/google-docs/?a8edOW
https://www.zotero.org/google-docs/?F5le6B
https://xnat.bmia.nl/
http://www.ctmm-trait.nl/
https://www.zotero.org/google-docs/?KMwioT
https://www.zotero.org/google-docs/?IoElns
https://www.zotero.org/google-docs/?liLJFH
https://www.zotero.org/google-docs/?xTjgaZ
https://www.zotero.org/google-docs/?EJkqtR
https://www.zotero.org/google-docs/?PsAqlh
https://www.zotero.org/google-docs/?dcHvhU
https://www.zotero.org/google-docs/?c8siyt
https://www.zotero.org/google-docs/?DrkhcB
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workflow as a connection between the medical images and the clinical parameters is estab-
lished. There are two main categories of radiomics features depending on the way they are 
extracted: the “manually” extracted features from a radiomics feature extraction software, 
known as “traditional” features and the deep learning (DL) features. 

Usually, the delineated ROIs of the medical images are analysed by simple statistics such as 
mean or standard deviation, entropy and kurtosis35. Although these statistical measure-
ments are easily implemented by any computational method, they fail to provide full spatial 
information. For this reason, the radiomics approach is based on more sophisticated and 
mathematically formulae expressed imaging features. The “traditional” manually extracted 
radiomics features contain several feature groups. The first category contains the shape 
features that provide information regarding, for example, the shape, surface-volume-ratio 
and sphericity of the delineated ROI.The second group consists of the first, second and high-
order features composed from the intensity of each voxel of the ROIs36. The distribution of 
the intensity (minimum, median, maximum and entropy) of the ROI segmentation is de-
scribed by the first order features while the second order features present the statistical 
correlation between the voxels or pixels of the ROI such as the textural features. The high-
order feature group represents features that consider relationships between three or more 
voxels or pixels. Several radiomics studies involved wavelet and model based features such 
as fractals in their features extraction pipeline37–39. Furthermore, texture features such as 
the Local Binary Patterns (LBP)40,41 can be included on the third group. An overview of ex-
amples of the different “traditional” radiomics feature groups is presented on the table 
2.2.1 

Table 2.2.1: Example of radiomics features according to different classes 

Feature categories Feature names examples 

Shape Elongation 

 Flatness 

 Volume 

 Sphericity 

 Surface Area 

 Surface to Volume Ratio 

First-order Energy 

 Entropy 

 Interquartile Range 

 Kurtosis 

https://www.zotero.org/google-docs/?sVkXau
https://www.zotero.org/google-docs/?GWJRga
https://www.zotero.org/google-docs/?iqXvQs
https://www.zotero.org/google-docs/?oBWm6T
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As the popularity of DL has increased during the past years in the field of radiation oncology, 
DL algorithms have been developed to select and generate the features for a given task 
within the different layers, without any manual intervention42. A significant example of an 
unsupervised deep neural network is the auto-encoder. The input image is transformed in 
a feature vector using a stacked convolutional architecture of pooling and activation layers. 
As a next step, the feature vector is mapped by the decoder part to the input image space. 
The DL features are defined by the result of the last convolutional layer43–45.  

Recent studies stated the preeminence of DL features to “handcrafted” features46,47.The 
advantageous point of DL features compared to the “traditional” features is based on the 
fact that they are instantly learned from data. For this reason, DL features can be adapted 
to specific properties of a dataset and correlated with clinical more easily.  

● Feature selection-Modeling -The significance of ML 
The reliability, performance and reproducibility of a model is strongly dependent on the 
features included on the model construction process. A big amount of features might lead 
to over-fitted models especially when the number of samples (patients, in the radiomics 
case) is higher than the free parameters (features). The selection of the most suitable-pre-
dictive features is a crucial part that will result in the reduction of the free parameters and 
elimination of the unnecessary features based on the clinical endpoint. There are several 
approaches of feature selection in radiomics studies, but mainly they are categorized in two 
categories: Filtering and embedding48.  

Filtering methods include the evaluation of the features without the involvement of the 
model. The filtering method is separated in two different categories: univariable and multi-
variable methods. With the univariable filter method, the most reproducible features are 
taken into account based on the Chi-squared test for instance. Multivariable methods use 
rankers and selectors of subsets such as the correlation based feature selection. With the 
embedded method, during the modelling procedure a feature subgroup is suggested and 

 10th Percentile 

 90th Percentile 

 Skewness 

Second order Grey Level Non Uniformity 

 Grey Level Variance 

 High Grey Level Emphasis 

 Large Area Low Grey Level Emphasis 

High order Wavelet 

 Autoregressive model 

https://www.zotero.org/google-docs/?fXIZr2
https://www.zotero.org/google-docs/?ItRw3D
https://www.zotero.org/google-docs/?ovFWlM
https://www.zotero.org/google-docs/?lCQGPt
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evaluated. Wrapper methods suggest the generation of the features as a first step and then 
the feature evaluation follows including the model.  

The majority of radiomics studies based on filtering methods use feature reproducibility 
analysis for the evaluation of the features.  This analysis has a goal to reduce the dimen-
sionality and exclude the features with relatively low reproducibility. The most common 
statistical approach for reproducibility analysis that is used from important radiomics stud-
ies5,25,43,49,50 is the intra-class correlation coefficient (ICC)51 which is based on the investiga-
tion of the most reproducible features from the  comparison of different annotations-seg-
mentations of ROIs in radiomics case-from multiple observers. However this method re-
quires the inclusion of radiomics datasets that contain multiple delineations from different 
observers which increases the workload as some of the ROIs need to be segmented multiple 
times. An example of an embedded method of feature selection is the least absolute shrink-
age and selection operator (LASSO) which is for the generation of the selected features and 
the prediction model as an output52–56. 

After the elimination of the extracted features with the feature selection procedure, the 
development of the model will follow by including the mostly ranked reproducible features. 
ML plays a key role in model development. Depending on the availability of the clinical 
metadata that can be combined with the radiomics model and the outcome of the predic-
tion model (e.g. overall survival, toxicity, lymph nodes metastasis etc.), supervised and un-
supervised algorithms can be used. Supervised algorithms require labelled datasets for the 
training of the model including two steps: the training and testing of the model. During the 
training process the selected radiomics features are paired with the clinical metadata, and 
via a pre-defined loss function the correlation between the radiomics 

features and clinical metadata is learned by the model. Supervised algorithms have been 
used for radiomics models development such as the support vector machine (SVM)57, lo-
gistic regression58 and random forest (RF)43. Unsupervised algorithms are used as an alter-
native in the case of unavailability of clinical labels (ie. patients that are not categorized). 
This algorithms category clusters the patients samples into several groups according to the 
similarity level of the different samples which is calculated by a distance measurement. K-
means clustering59, fuzzy clustering60  and consensus clustering61 are examples of some of 
the algorithms used for unsupervised learning. Although the selection of the algorithm for 
the model development is not included in a specific protocol according to the literature, the 
best approach includes multiple experiments taking into account the clinical endpoint that 
a radiomics study investigates. 

The value and reliability of a radiomics model relies on its potential validation. The inde-
pendent external validation of a radiomics model constitutes the basic factor that can trans-
form it in a valuable clinically introduced model. Additionally, radiomics models that are 
prospectively validated increase the robustness of a radiomics study. The receiver operating 
characteristic curve (ROC) is a statistical tool that measures the performance of the models. 
Furthermore, the clinical and potential prognostic power evaluation of the radiomics model 
can be assessed by the area under the curve (AUC), specificity and sensitivity of the model. 
For the complex task of the overall survival prediction, concordance index (C-index) and 
ROC curve can be used for the validation process.Moreover, calibration for survival analysis 

https://www.zotero.org/google-docs/?QjQsfr
https://www.zotero.org/google-docs/?9JpNXf
https://www.zotero.org/google-docs/?dXyydJ
https://www.zotero.org/google-docs/?5gzGYM
https://www.zotero.org/google-docs/?C6VXaZ
https://www.zotero.org/google-docs/?MPV1MQ
https://www.zotero.org/google-docs/?B7M3M2
https://www.zotero.org/google-docs/?nWG8ML
https://www.zotero.org/google-docs/?EdXUEd
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is necessary for the investigation of a potential agreement between a prediction model and 
the clinical outcome62. 

● Challenges of ML 
Each of the steps described on the previous paragraphs is important for the radiomics 
model development and evaluation. Medical imaging analysis with ML techniques requires 
specific expertise.The biggest challenge lies in the fact that ML extracts the correct infor-
mation from the input data under the precondition of the correct preparation of the data. 
The data structure should be understood by the radiomics researcher before any ML tech-
nique should be applied. A potential fault in learning and understanding the data will pro-
duce wrong models with unreliable results. One of the major problems in radiomics models 
is the unbalanced datasets in which some of the clinical outcomes are represented with 
missing values. This imbalance on the dataset could induce a bias on the class that is repre-
sented in the training sample of the radiomics model. As there is an absence of a specific 
protocol-guide for all the steps of the radiomics pipeline, there are numerous uncertainties 
and pitfalls in the implementation of radiomics in research. In the next section we will try 
to map them, and for each step, to propose potential solutions. 

2.2.2 Uncertainties and pitfalls in radiomics  

● Data acquisition during imaging 
As we have discussed in the previous section, the starting point for a reliable and potentially 
externally validated model is the data quality. In the ideal scenario, all the imaging data with 
the clinical metadata used for radiomics studies would be structured, without missing val-
ues and bias and understandable from the researchers and clinicians.The medical scans 
used for radiomics studies are usually acquired using different imaging protocols, imaging 
settings and reconstruction parameters. These differences in the imaging acquisition pro-
cess may result in inconsistencies in the output of the radiomics model63. The influence of 
the various image acquisition parameters on the repeatability (same subject, imaging sys-
tem and imaging acquisition parameters) and reproducibility (same subject, different scan-
ners, reconstruction kernels, slice thickness, etc.) of the extracted radiomics features was 
discussed by the systematic reviews of Traverso et al64. and Larue et al65. 

CT is commonly used for treatment planning purposes in radiotherapy. As the main scope 
of many radiomics studies is the prediction of the overall survival after the treatment 
course, radiotherapy planning CT scans were widely used by several studies. Some of the 
main factors of influence of the radiomics features are the voxel size, slice thickness, expo-
sure and reconstruction kernels according to phantom and patient cohort studies11,12,66–72. 
Several approaches have been suggested for the minimization of the influence of these pa-
rameters to the radiomics features. Pixel size resampling, normalization on the grey level 
and voxel size are techniques that could enhance the robustness of the radiomics fea-
tures11,12.Regarding the multicenter radiomics studies, as it is rarely common to have imag-
ing datasets acquired with the same imaging protocol, scanner and reconstruction algo-
rithms, it is suggested to include phantom dataset studies for the investigation of the pa-
rameters that influence the radiomics features reproducibility73,74. 

PET constitutes an additional source of information for radiomics studies, as several param-
eters have the potential to enrich the biological or volumetric morphology of the tumor. 

https://www.zotero.org/google-docs/?G7mq0d
https://www.zotero.org/google-docs/?14EuGc
https://www.zotero.org/google-docs/?uz6lzJ
https://www.zotero.org/google-docs/?I2t0vb
https://www.zotero.org/google-docs/?L1DhWN
https://www.zotero.org/google-docs/?iZumvi
https://www.zotero.org/google-docs/?A6MB8n
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Several studies investigated the differences of textural features due to the variations in the 
reconstruction algorithms and the number of iterations in PET imaging26,75,76.  

Furthermore, the respiratory motion of the patients suggested to be taken into considera-
tion as a factor that could potentially affect the radiomics features in PET according to the 
studies of Oliver et al.77 and Grootjans et al.78. Moreover, according to the same studies, the 
standardized uptake value (SUV) was found to be an influence factor for the textural fea-
tures. In recent years, several initiatives have tried to standardize the imaging protocols for 
PET79,80 accompanied with recommendations for the development of new biomarkers10,82. 
Despite the fact that these initiatives were a starting point for the standardization discus-
sion of PET imaging protocols, the standardization of PET imaging acquisition is likely to be 
lacking from a multicenter (even an intracenter) perspective. This is in part due to issues 
from the PET scanner variabilities, the injected activity of 18F-fluorodeoxyglucose (18F-FDG), 
the time difference between the injection time and the image acquisition and the CT scan-
ning parameters that are used from the attenuation correction of PET images81–83. Although 
PET imaging is promising for the interrogation of the specific mutations in tumour biology, 
there are limitations and lack of standardization. 

MRI is the most appropriate imaging modality for screening soft anatomical tissues such as 
the brain due to the flexibility of the selection of several pulse sequences for image acqui-
sition. Several phantom and patient studies investigated the impact of the different mag-
netic field strength scanners,different imaging protocols used and scanner manufacturers84–

89. Specifically, the phantom study by Mayerhoefer et al.86 found that the textural features 
were sensitive to variations in the MRI acquisition parameters such as the number of acqui-
sitions (NA), the repetition time (TR), the echo time (ΤΕ) and the sampling bandwidth (SBW). 
Furthermore, according to the above-mentioned study, the reduction of the imaging reso-
lution reduced the sensitivity of the imaging features to the acquisition parameters. Addi-
tionally, researche studies90,91 suggested the approach of intensity normalization for the re-
duction of the differentiations caused by the acquisition parameters for brain scans. The 
influence of the normalization on texture was studied by Collewet et al.15 using co-occur-
rence matrix, run-length matrix, gradient matrix and Harr wavelet energy features.  

● Segmentation 
The component of the radiomics workflow that is crucial for the determination of the ROI 
that will be analyzed is the segmentation method used for the delineation. Recent advances 
in the field of AI resulted in the introduction of the semi-automatic or automatic segmenta-
tion for some OARs. Although this new approach suggested for the clinicians eliminates the 
time consuming procedure of delineating manually the different anatomical structures, 
there is no golden standard for the delineation method used across the different depart-
ments. A study from Velazquez et al.92 investigated the potential of semi-automatic seg-
mentation of NSCLC patients. This study used a 3D slicer algorithm to compare three semi-
automatic contours by three different observers to five manual contours in PET/CT scans. 
The semi-automatic delineations showed less uncertainty than manual delineations. The 
study of Kalpathy-Cramer et al.93 compared three different algorithms for the semi-auto-
matic segmentation of lung nodules. The intra-algorithm results presented less variability 

https://www.zotero.org/google-docs/?t2eLvf
https://www.zotero.org/google-docs/?kA0pkm
https://www.zotero.org/google-docs/?Ot8Kz7
https://www.zotero.org/google-docs/?0zPgad
https://www.zotero.org/google-docs/?L3Rwrn
https://www.zotero.org/google-docs/?aUmeMf
https://www.zotero.org/google-docs/?aUmeMf
https://www.zotero.org/google-docs/?oyRLEE
https://www.zotero.org/google-docs/?XzyXsz
https://www.zotero.org/google-docs/?3Wnqjc
https://www.zotero.org/google-docs/?FbvXxp
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than the inter-algorithm results. This comparison indicated the need of using the same seg-
mentation algorithm for all the time points of a multicenter or intracenter study due to the 
large differences between the segmentation algorithms. 

● Feature extraction - Feature selection algorithms 
In radiomics studies, a large number of features is extracted. Each of these features is ex-
tracted with different image preprocessing methods (eg. filtering/denoising), different ROI 
determination(eg. segmentation methods, 2D/3D) and image interpolation methods (eg. 
nearest-neighbors, b-splines). Specifically for the textural features, there are several param-
eters that are varied such as the design of the texture matrices (eg. number of directions, 
distances, normalization)  and the grey-levels discretization methods (eg. relative, absolute, 
equalization). All of the above parameters result in the significant and difficult task of han-
dling thousands of variables. 

There are various open-source and commercial software applications for radiomics feature 
extraction developed in different programming languages. Each of these applications pro-
vides the extraction of different amounts of features classified in different classes. Some 
examples of open source software tools that can be easily used from the radiomics research 
community are the RaCaT94, ontology-guided radiomics analysis workflow (O-RAW)95, Pyra-
diomics96, LIFEx97 and IBEX98. 

As we described in the previous sections of the chapter, the feature selection procedure is 
an important step for the creation of the final radiomics model. Although there is no proto-
col or standardized guidelines for feature selection in radiomics studies, there is a  rule-of-
thumb to use at least ten times more patients than features for the avoidance of over-fit-
ting.  

 

● Model development  
Radiomics models should be validated. The predictive ability of a model should be evaluated 
with a test model in a different independent external dataset that is preferably available 
after the development of the algorithm for modelling. The importance of model validation 
was illustrated by Zwanenburg et al.99 according to the recommendations of the Transpar-
ent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis(TRI-
POD) statement100. Notwithstanding the significance of the algorithm selection for model 
building, most of the early PET and CT radiomics studies reported from the systematic re-
view by Chalkidou et al.101 performed inappropriate statistical analysis. 

After the description of the above uncertainties in the radiomics workflow, we would like 
to give an overview of potential recommendations-solutions for each step of the workflow 
accompanied with some reference reporting points for radiomics studies. According to the 
study of Deist et al.102 there was not a significant difference between the performance score 
of the different ML classifiers across twelve chemoradiotherapy datasets. This result con-
cludes that the model quality is highly dependent on the quality of the dataset while the 
manipulation of the mathematical learning process has minor importance. Control of the 
image acquisition settings for all the imaging modalities as well as with harmonization tech-
niques, especially for multicentric studies, could be beneficial for the data quality improve-

https://www.zotero.org/google-docs/?4VzCDG
https://www.zotero.org/google-docs/?KMeB9M
https://www.zotero.org/google-docs/?3LwOtq
https://www.zotero.org/google-docs/?Kh0xde
https://www.zotero.org/google-docs/?z17JJ1
https://www.zotero.org/google-docs/?08ifYH
https://www.zotero.org/google-docs/?A9HZ1u
https://www.zotero.org/google-docs/?XlKp8u
https://www.zotero.org/google-docs/?VBymmB
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ment of radiomics studies. Taking into account that the radiomics feature values are sensi-
tive to the variations in the voxel size, interpolation methods should be applied to the im-
ages. Moreover, the detailed description of the feature definitions is suggested for the re-
duction of features redundancy and the increase of features robustness. Furthermore, the 
appropriate statistical analysis regarding the training, validation and test of the model 
should be taken into account. Finally, the contribution of prospective multicenter studies is 
significant as well as with the cautious exploration of DL.  

● IBSI 
A significant progress for the standardization and the harmonization of the radiomics work-
flow steps has been made from the IBSI consortium.  The main goals of the IBSI are: (i) 
provide a standardized workflow for radiomic computations, from image processing to fea-
ture computation; (ii) provide benchmarking tests and associated reference values for radi-
omic computations on medical images; and (iii) provide reporting guidelines for radiomic 
studies. More details about this initiative are provided in the next section. 

2.2.3 Guidelines for the standardization of radiomics computations 

Radiomics research has already shown great promise for supporting clinical decision-mak-
ing. However, the fact that radiomics-based strategies have not yet been translated to rou-
tine practice can be partly attributed to the low reproducibility of most current studies. The 
workflow for computing features is complex and involves many steps, often leading to in-
complete reporting of methodological information (e.g., texture matrix design choices and 
grey-level discretization methods). As a consequence, few radiomics studies in the current 
literature can be reproduced from start to end. 

To accelerate the translation of radiomics methods to the clinical environment, about 70 
scientists from 25 institutions in 8 countries have participated since September 2016 to the 
Image Biomarker Standardisation Initiative (IBSI)6,7 . Figure 2.3.1 presents the standardized 
radiomics workflow defined by the IBSI. The IBSI aims at standardizing both the computa-
tion of features and the image processing steps required before feature extraction. For this 
purpose, a simple digital phantom was designed and used in Phase 1 of the IBSI to stand-
ardize the computation of 174 features from 11 categories: 29 morphological, 2 local inten-
sity, 18 statistical, 23 intensity histogram, 7 intensity-volume histogram, 25 grey level co-
occurrence matrix, 16 grey level run length matrix, 16 grey level size zone matrix, 16 grey 
level distance zone matrix, 5 neighbourhood grey tone difference matrix and 17 neighbour-
hood grey level dependence matrix features. In Phase 2 of the IBSI, a set of CT images from 
a lung cancer patient was used to standardize radiomics image processing steps using 5 
different combinations of parameters including volumetric approaches (2D vs 3D), image 
interpolation, re-segmentation and discretization methods. The initiative has now reached 
completion and benchmark values for Phase 1 and Phase 2 have been defined, along with 
a compliance check spreadsheet created for this purpose. The standardized workflow and 
benchmark values defined by the IBSI could now thus serve as a calibration tool for any 
radiomics software, and compliance with IBSI standards is strongly encouraged for any fu-
ture radiomics study. 

https://www.zotero.org/google-docs/?m731Ok
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Overall, we want to reiterate that the use of standardized computation methods would 
greatly enhance the reproducibility potential of radiomics studies. Furthermore, it is essen-
tial to rely on supplementary material (usually allowed in most journals) to provide exhaus-
tive methodological details, including the comprehensive description of image acquisition 
protocols, sequence of operations, image post-acquisition processing, tumor segmentation, 
image interpolation, image re-segmentation and discretization, formulas for the calculation 
of features, and benchmark calibrations. Table 2.3.1 provides guidelines on feature compu-
tation details to be reported in radiomics studies as defined by the IBSI6,7 and Vallières et 
al103. Ultimately, we envision the use of dedicated ontologies to improve the interoperabil-
ity of radiomics analyses via consistent tagging of features, image processing parameters 
and filters. For example, the Radiomics Ontology (www.bioportal.bioontology.org/ontolo-
gies/RO) could provide a standardized means of reporting radiomics data and methods, and 
would more concisely summarize the implementation details of a given radiomics workflow. 

Finally, some guiding principles already exist to help radiomics scientists to further imple-
ment the responsible research paradigm into their current practice. A concise set of princi-

ples for better scientific data management and stewardship － the “FAIR guiding principles”  

－ has been defined, stating that all research objects should be findable, accessible, interop-

erable, and reusable. Implementation of the FAIR principles within the radiomics field can 
undoubtedly facilitate clinical translation. In terms of the construction of radiomics-based 
prediction models via multivariable analysis, there are two basic requirements. First, all 
methodological details and clinical information must be clearly reported or described to 
facilitate reproducibility and comparison with other studies and meta-analyses. Second, 
models must be tested in sufficiently large patient datasets distinct from development sets 
to statistically demonstrate their efficacy over conventional models (e.g., existing bi-
omarkers, tumor volume, cancer stage, etc.). To allow for optimal reproducibility potential 
and further independent testing, all data, final models and programming code related to a 
given study needs to be made available to the community. Table 2.3.2 provides guidelines 
that can help to evaluate the quality of radiomics studies6,7. 

 

https://www.zotero.org/google-docs/?trwVW0
https://www.zotero.org/google-docs/?Rukgwu
http://www.bioportal.bioontology.org/ontologies/RO
http://www.bioportal.bioontology.org/ontologies/RO
https://www.zotero.org/google-docs/?6903o5
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Figure 2.3.1: Radiomics computation workflow as defined by the IBSI6,7. 

https://www.zotero.org/google-docs/?ZK42WW
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Table 2.3.1: Reporting guidelines on the computation of radiomics features (adapted 
from Zwanenburg et al.6,7 and Vallières et al.103, with permissions from Ibrahim et al.104 

and Avanzo et al.105).  

GENERAL   

   Image acquisition Acquisition protocols and scanner parame-
ters: equipment vendor, reconstruction algo-

rithms and filters, field of view and acquisition 
matrix dimensions, MRI sequence parame-

ters, PET acquisition time and injected dose, 
CT x-ray energy (kVp) and exposure (mAs), 

etc. 

   Volumetric analy-
sis 

Imaging volumes are analyzed as separate im-
ages (2D) or as fully-connected volumes (3D). 

   Workflow struc-
ture 

Sequence of processing steps leading to the 
extraction of features. 

   Software Software type and version of code used for 
the computation of features. 

IMAGE PRE-PRO-
CESSING 

  

   Conversion How data were converted from input images: 
e.g, conversion of PET activity counts to SUV, 
calculation of ADC maps from raw DW-MRI 

signal, etc. 

https://www.zotero.org/google-docs/?5uTpDl
https://www.zotero.org/google-docs/?EVYJGQ
https://www.zotero.org/google-docs/?3wGRuY
https://www.zotero.org/google-docs/?8jspbs
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   Processing Image processing steps taken after image ac-
quisition: e.g., noise filtering, intensity non-
uniformity correction in MRI, partial-volume 

effect corrections, etc. 

ROI SEGMENTA-
TIONa,b 

How regions of interests (ROIs) were deline-
ated in the images: software and/or algo-

rithms used, how many different persons and 
what expertise (specialty, experience), how a 

consensus was obtained if several persons 
carried out the segmentation, in automatic or 

semi-automatic mode, etc. 

INTERPOLATION   

Voxel dimensions Original and interpolated voxel dimensions. 

Image interpola-
tion method 

Method used to interpolate voxels values (e.g, 
linear, cubic, spline, etc.) as well as how origi-

nal and interpolated grids were aligned. 

Intensity rounding Rounding procedures for non-integer interpo-
lated grey levels (if applicable), e.g., rounding 
of Hounsfield units in CT imaging following in-

terpolation. 

ROI interpolation 
method 

Method used to interpolate ROI masks. Defi-
nition of how original and interpolated grids 

were aligned. 
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ROI partial volume Minimum partial volume fraction required to 
include an interpolated ROI mask voxel in the 
interpolated ROI (if applicable): e.g., a mini-
mum partial volume fraction of 0.5 when us-

ing linear interpolation. 

ROI RE-SEGMENTA-
TION 

  

Inclusion/exclu-
sion criteria 

Criteria for inclusion and/or exclusion of 
voxels from the ROI intensity mask (if applica-
ble), e.g., the exclusion of voxels with Houns-
field units values outside a pre-defined range 
inside the ROI intensity mask in CT imaging. 

IMAGE DISCRETIZA-
TION 

  

Discretization 
method 

Method used for discretizing image intensities 
prior to feature extraction: e.g., fixed bin 

number, fixed bin width, histogram equaliza-
tion, etc. 

Discretization pa-
rameters 

Parameters used for image discretization:  the 
number of bins, the bin width and minimal 

value of discretization range, etc. 

FEATURE CALCULA-
TION 
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Features set Description and formulas of all calculated fea-
tures. 

Features parame-
ters 

Settings used for the calculation of features: 
voxel connectivity, with or without merging 
by slice, with or without merging directional 

texture matrices, etc. 

CALIBRATION   

Image processing 
steps 

Specifying which image processing steps 
match the benchmarks of the IBSI. 

Features calcula-
tion 

Specifying which feature calculations match 
the benchmarks of the IBSI. 

a  In order to reduce inter-observer variability, automatic 
and semi-automatic methods are favored.  

b  In multimodal applications (e.g., PET/CT, PET/MRI, etc.) 
ROI definition may involve the propagation of contours be-
tween modalities via co-registration. In that case, the tech-
nical details of the registration should also be provided. 

Table 2.3.2: Quality factors in radiomics studies (adapted from Lambin et al.106 and Val-
lières et al.103, with permissions from Ibrahim et al.104 and Avanzo et al.105). 

IMAGING   

Standardized imaging 
protocols 

Imaging acquisition protocols are well de-
scribed and ideally similar across patients. Al-
ternatively, methodological steps are taken 

towards standardizing them. 

https://www.zotero.org/google-docs/?XQNCiz
https://www.zotero.org/google-docs/?VYef23
https://www.zotero.org/google-docs/?2xI1Ic
https://www.zotero.org/google-docs/?SqReQh


50 
 

Imaging quality assur-
ance 

Methodological steps are taken to only incor-
porate acquired images of sufficient quality. 

Calibration Computation of radiomics features and image 
processing steps match the benchmarks of the 

IBSI. 

EXPERIMENTAL SETUP   

Multi-institu-
tional/external da-

tasets 

Model construction and/or performance eval-
uation is carried out using cohorts from 

different institutions, ideally from different 
parts of the world. 

Registration of pro-
spective study 

Prospective studies provide the highest level 
of evidence supporting the clinical validity and 

usefulness of radiomics models. 

FEATURE SELECTION   

Feature robustness The robustness of features against segmenta-
tion variations and varying imaging settings 

(e.g., noise fluctuations, inter-scanner differ-
ences, etc.) is evaluated. Unreliable features 

are discarded. 

Feature complemen-
tarity 

The inter-correlation of features is evaluated. 
Redundant features are discarded. 
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MODEL ASSESSMENT   

False discovery cor-
rections 

Correction for multiple testing comparisons 
(e.g., Bonferroni or Benjamini- Hochberg) is 

applied in univariate analysis. 

Estimation of model 
performance 

The teaching dataset is separated into training 
and validation set(s) to estimate optimal 

model parameters Example methods include 
bootstrapping, cross-validation, random sub-

sampling, etc. 

Independent testing A testing set distinct from the teaching set is 
used to evaluate the performance of complete 

models (i.e., without retraining and without 
adaptation of cut- off values). The evaluation 
of the performance is unbiased and not used 

to optimize model parameters. 

Performance results 
consistency 

Model performance obtained in the training, 
validation and testing sets is reported. Con-
sistency checks of performance measures 
across the different sets are performed. 

Comparison to con-
ventional metrics 

Performance of radiomics-based models is 
compared against conventional metrics such 
as tumor volume and clinical variables (e.g., 

staging) in order to evaluate the added value 
of radiomics (e.g., by assessing the signifi-
cance of AUC increase calculated with the 

DeLong test). 
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Multivariable  analy-
sis  with  non- radi-

omics variables 

Multivariable analysis integrates variables 
other than radiomics features (e.g., clinical in-
formation, demographic data, panomics, etc.). 

CLINICAL IMPLICA-
TIONS 

  

Biological correlate Assessment of the relationship between mac-
roscopic tumor phenotype(s) described with 
radiomics and the underlying microscopic tu-

mor biology. 

Potential clinical ap-
plication 

The study discusses the current and potential 
application(s) of proposed radiomics-based 

models in the clinical setting. 

MATERIAL AVAILABIL-
ITY 

  

Open data Imaging data, tumor ROI and clinical infor-
mation are made available. 

Open code All software code related to computation of 
features, statistical analysis and machine 

learning, and allowing to exactly reproduce re-
sults, is open source. This code package is ide-

ally shared in the form of easy-to-run orga-
nized scripts pointing to other relevant pieces 
of code, along with useful sets of instructions. 
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Open models Complete models are available, including 
model parameters and cut-off values. 

 

2.2.4 Radiomics and distributed learning infrastructures 

One of the potential solutions for the uncertainties related to radiomics studies can be 
based on the distribution or exchange of the knowledge among the radiomics researchers 
of different centers. Open code, data and models exchange could potentially accelerate the 
introduction of radiomics into the clinical routine for decision making or diagnostic pur-
poses. However, privacy, legal and ethical issues make the multi-center model development 
and validation problematic due to the exchange of patients’ medical scans that contain pri-
vate information. Several public repositories such as the XNAT and TCIA host open access 
datasets for radiomics reproducibility and repeatability studies, nonetheless, the majority 
of data owners stay circumspect about exchanging or sharing datasets that contain patient 
scans in a public repository. Due to the barriers of the above-mentioned issues there is a 
need for the development of a privacy preserving infrastructure that permits data and mod-
els exchange for researchers. 

The Personal Health Train (PHT)107 concept constitutes a novel approach that has as a goal 
to maximise the availability of data for research in a distributed and rapid learning environ-
ment. This aim can be achieved by not transferring the data but transferring the research 
question to the data. This initiative has been successfully applied for the development and 
validation of clinical data models by recent studies108–111. The PHT concept can be applied 
to the radiomics models with the prerequisite of transforming the radiomics features data 
to a Findable, Accessible, Interoperable and Accessible (FAIR) format which was first intro-
duced by Wilkinson et al.112 

The infrastructure that enables the inclusion of radiomics models in the PHT is based in 
three parts. The first step is the harmonization of the definition and classes of the radiomics 
features recommended by the IBSI standards7. This specification relies on the fact that the 
radiomics features can be extracted with a radiomics software application that supports the 
extraction of  different feature classes or different feature names. Secondly, the develop-
ment of the Radiomics Ontology (RO) which is available to the BioPortal113 enabled the se-
mantic description of the radiomics features objects following the Semantic Web Standards, 
as every feature class object is labelled with unique identifiers according to the recommen-
dations of the IBSI. The third part consists of the storage of the radiomics features in Re-
source Description Framework (RDF) format in FAIR data stations across the different insti-
tutes for the exchange of statistical models with “trains”.The overall representation of the 
PHT concept is shown on the figure 2.4.1 

 

https://www.zotero.org/google-docs/?sND5g8
https://www.zotero.org/google-docs/?9YiWJO
https://www.zotero.org/google-docs/?FvGOXi
https://www.zotero.org/google-docs/?gtu8uB
https://www.zotero.org/google-docs/?IEQp3c
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Figure 2.4.1: Representation of the Personal Health Train (PHT) concept across three differ-
ent hospital where FAIR data stations are connected with statistical “trains” for the models 
exchange. 

The recent study of Shi et al.114 used the distributed learning approach with the PHT for the 
two years overall survival radiomics signature model of NSCLC patients using two different 
datasets from the innovative radiomics study of Aerts et al.5. The study succeeded  to learn 
and validate the radiomics signature in two different institutes (Maastro clinic and Radboud 
University Medical Center) in a remote distributed way across the two institutes using the 
Lung1114 as a training dataset and the Radboud’s internally Lung2 set as a validation dataset 
using the Varian Learning Portal (VLP) application. Besides the advantage of the privacy pre-
serving data models exchange by using the PHT infrastructure, the reproducibility and re-
peatability of the radiomics studies is supported by using the publicly available ontologies 
(ie. RO). Moreover, the flexibility of the RDF format enhances the distributed learning even 
in the cases of different data structures across different institutes. In addition, Bogowicz et 
al.116 presented the approach of a distributed learning radiomics model training.This study 
showed comparable centralized and distributed learning results of a radiomics model for 
the prediction of two year overall survival and human papillomavirus (HPV) status, including 
six different head and neck cancer patients’ cohorts of more than 1000 CT scans. 

Reliable and responsible radiomics research requires standardized data collection, evalua-
tion criteria and reporting guidelines. Large-scale data sharing is necessary for the validation 
and full potential that radiomics can present to mature as a clinical discipline. The combina-
tion of radiomics and FAIR data principles can accelerate the clinical translation of radiomics 
only with the development of initiatives and combination of knowledge among the different 
experts and stakeholders of the radiation oncology world. Especially nowadays, we are fac-
ing the new era of AI in radiation oncology where the explosion of medical imaging data 
creates an ideal environment for ML and data science. However, the implementation of 
FAIR data in radiomics and radiation oncology requires strong efforts and initiatives to prove 
the clinical value and  benefit for the clinicians. With our study, we suggest the knowledge 

https://www.zotero.org/google-docs/?Vum9XC
https://www.zotero.org/google-docs/?CXjIth
https://www.zotero.org/google-docs/?Wfx29v
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exchange and the adoption of FAIR-inclusion criteria for a better understanding, represen-
tation and commissioning of the radiomics models. 

2.3 A Practical Roadmap for Radiomics Research in Radiation Oncology 
 

The goal of this section is to synthesize and distill key points from this chapter and provide 
researchers a practical guide of the steps and tools required for a responsible, reliable, and 
reproducible radiomics study. The starting point is the clear definition of the clinical ques-
tion. Furthermore, suggestions and recommendations are provided regarding the next 
steps of the radiomics pipeline such as the data selection, image preprocessing and model 
development. 

2.3.1 Finding the clinical question and hypothesis  

Prior to devoting the substantial resources, time, and labor needed for radiomics projects, 
it is crucial to clearly define the clinical question that one seeks to answer and the unmet 
need that radiomics could address in the particular clinical situation. Ideally, one should 
envision that successful use of the radiomics model will result in improvement of patient 
care and medical decision-making. Beyond this, the following must be defined: 

- Is this a suitable problem for radiomics? 
- There are several areas in which radiomics may be appropriate, including: 

deciphering underlying pathologic or molecular features of tumors, pre-
dicting clinical endpoints (survival, progression, tumor response), host-tu-
mor interface (e.g. immune infiltration, necrosis, edema), predicting tox-
icity prediction of radiotherapy plans. Complementary to this question, 
one should ask is radiomics necessary for this? If the current problem is 
already adequately addressed by qualitative or simpler radiographic fea-
tures, one should pause at the need for more complex machine learning 
based approaches. 

- What are the study endpoints? 
- Primary and secondary project endpoints must be clearly defined and ob-

jectively evaluable. For instance, will this model predict a rate of 1-year 
recurrence? A probability of genomic mutation?   

- How will success be defined and measured? 
- Choose your metrics: commonly used values to evaluate radiomic study 

endpoints for classification models are: receiver operating characteristic 
curves (ROC) with area under the curve (AUC), sensitivity (1-false negative 
rate), specificity (1-false positive rate), raw accuracy, F1 score, positive 
predictive value, and negative predictive value. 

- Based on initial classification probabilities, risk-groups can be defined, and 
survival analyses can be performed for clinical endpoints 

- Establish the benchmark performance for the current “standard” 
- Propose an alternate hypothesis for the study model’s performance, and 

calculate the sample size needed to power your study to ensure the pri-
mary endpoint is evaluable. If a benchmark is not available, it may be rea-
sonable to proceed without one, but in this case, it is incumbent on the 
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researcher to defend the level of performance that would be deemed 
“success.” 

- Delineate clinical implementation prior to initiation of research: how does 
use of the model impact decision-making and clinical care? Decrease 
treatment toxicity? Improve patient cure rates? Save time and resources? 
These endpoints can then be evaluated in parallel or subsequent to the 
development phase of the model.  

 

2.3.2. Database selection and curation 

Database selection and curation is one of the most important and labor-intensive parts of 
radiomics research. Data curation, cleaning, and standardization is absolutely crucial to suc-
cessful model building. Several specific questions must be addressed here: 

- Choosing the ideal data source for the project 
Determine the imaging modality or modalities best suited as input data for the 
project, given the clinical context and scientific rationale. The standard diagnostic 
oncologic imaging modalities consist of CT, MRI, and PET (and other radiopharma-
ceutical-based scans). In radiation oncology, simulation-planning scans, RT struc-
ture sets and dose information, and on-treatment image guidance can all be uti-
lized as possible data sources depending on the application.  

- Labeling, annotating, and establishing ground-truth  
Equally important to identifying a robust data source for model input, is developing 
an accurately annotated set of output data for model training. If pathologic infor-
mation is being predicted, quality of pathology review and molecular studies 
should be reviewed. If clinical outcomes are being predicted, clinical record ab-
straction should be conducted in a standardized way, with a dedicated instrument, 
and endpoints, particularly progression endpoints should be clearly defined and 
follow-up times recorded accurately. For retrospective toxicity measurement, 
standardized instruments should be used. Any uncertainty, heterogeneity, or miss-
ing data among annotations should be documented and considered during model 
training. Independent quality checks of data labels should be conducted, if possi-
ble.  

 

2.3.3 Image preprocessing 

Imaging information comes with significant inter- and intra- modality and institutional het-
erogeneity. As the goal of radiomics is to use machine learning to correlate quantified im-
aging features with specific endpoints, great lengths should be taken to both suppress un-
wanted distortions in data and enhance features hypothesized to correlate with the out-
come of interest. Image preprocessing serves to “de-noise” your data and maximize the 
likelihood of identifying valid, biologically-driven radiomic signatures. Specific prepro-
cessing tasks will be project and modality-specific, though these general principles apply: 
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- Choose a platform: most preprocessing can be performed on any modern desktop 
or laptop CPU, and the most popular computing languages for medical image pro-
cessing include Python (with packages such as Pyradiomics (pyradiomics.io), 
MatLab, and R. 

- Image Acquisition: Information regarding scanner model, reconstruction algo-
rithm, pixel resolution, slice thickness, and use of contrast must be obtained. For 
MRI, coil characteristics, sequence characteristics (echo time, repetition time, ac-
celeration, bandwidth) are necessary. Post-acquisition processing algorithms 
should be determined, along with overall scan quality, and artifact due to implants 
or motion. 

- Region of Interest (ROI) Segmentation and Extraction: Generally, radiomics stud-
ies require segmentation of the region of interest within an image. In the context 
of radiation oncology, this is often a tumor or particular organ of interest. Segmen-
tation can be performed manually or with automated processing scripts and/or 
separate machine learning algorithms. Clinical and technical expertise should guide 
the most appropriate way to segment an ROI. For instance, sometimes important 
information may lie outside of the tumor boundaries, in which case inclusion in the 
ROI would be helpful for model development. It is recommended to remove addi-
tional image information outside the ROI. 

- Image Normalization: Once the ROI has been defined, pixel/voxel values must be 
normalized across cases. Image intensity discretization (e.g. binning) should be 
performed. For CT, Hounsfield units should be converted to raw pixel values and 
interpolated to uniform x, y, and z spacing. For MRI, binning to a defined number 
of grey levels is necessary. For PET, standardized uptake values (SUV) should be 
calculated from the DICOM metadata, when available. Skipping any of these steps 
may result in unstable radiomic feature analyses. 

 

2.3.4 Feature selection 

A fundamental requirement for clinical utility of radiomic biomarkers is that their values 
internally consistent and also stable across various testing scenarios. While various methods 
to ensure reproducibility exist, it is recommended to follow the guidelines of the Imagel 
Biomarker Standardization Initiative (IBSI) (ibsi.readthedocs.io). There have been hundreds 
of radiomic features described and an important step in model building is determining 
which, and how many features to use. While as a starting point, it may be feasible to utilize 
all features in a complex machine learning model, often selecting the most important fea-
tures and discarding others can minimize noise, collinearity, and dimensionality, and ulti-
mately improve performance. 

- Filter methods: Filter methods are feature-ranking methods that rank features 
based on their importance and redundancy in model prediction performance. 
These can be univariate and multivariate methods, such as Wilcoxon test, Gini in-
dex, Fisher score, and others. As a rule of thumb, several methods should be ap-
plied on the development dataset to determine the best approach, prior to model 
validation and testing. 
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- Principal component analysis: Principal component analysis reduces dimensional-
ity by creating new combinations of radiomic features that contribute to the most 
prediction variance. 

- Prior knowledge: In some cases, pre-existing literature has described certain radi-
omic features known to correlate with a particular outcome. In these cases, fea-
tures hypothesized to be important should be included a priori. 

 

2.3.5 Machine learning method 

After identifying features which serve as inputs for a model one must decide the most ap-
propriate machine learning technique to employ. We recommend attempting multiple ma-
chine learning methods to best identify the technique is best suited to model the radiomic 
features. As the use of machine learning increases in quantitative image analysis as do the 
number of available machine learning methods. The best technique to employ is not always 
clearly defined, but a few aspects of the data can help to guide the decision process. 

         -Data Set Size: Data set size is likely the largest driver for which machine learning 
technique to use. If the dataset of interest is small (n<100 samples), then we would likely 
recommend first attempting to model your selected features using generalized linear mod-
els. For particularly large datasets, generalized linear models may also be appropriate, but 
more complex machine learning algorithms such as random forest, deep learning, Bayesian 
networks may be better. 

         -Outcome Variable: The nature of your outcome variable will likely help define the 
most appropriate machine learning method to model your radiomic data. Certain machine 
learning algorithms like support vector machines and logistic regression are well suited for 
binary outcomes (for eg.  Presence of tumor). Other machine learning techniques like deep 
learning and random forest are well suited for multi-class classification tasks and those tasks 
which may have class imbalances. 

         -Feature Number: As the number of radiomic features increases, more exotic ma-
chine learning techniques (deep learning, random forest) may be more useful to mitigate 
bias associated with excessive collinearity with similar radiomic features. Generalized linear 
models  techniques may be employed with large amounts of features, however adjustment 
for excessive co-linear features using interaction terms may become cumbersome. If one is 
particularly interested in using a generalized linear model, we recommend using dimension-
ality reduction to reduce the number of correlated features first. 

         -Computational Resources: Certain machine learning methods are computation-
ally expensive and difficult to complete with limited computer resources. Specifically, deep 
learning algorithms often require significant computational resources to train. If one is lim-
ited in their computational resources, generalized linear models and support vector ma-
chines are often more easily employed. 

 

2.3.6 Training, validation, and benchmarking 
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Once a model has been selected, the training process begins. Splitting your data into sepa-
rate training and validation sets (and sometimes a third independent test set) is crucial prior 
to initiating the training process, as to not overfit your model. A portion of your data should 
be set aside and not seen or explored until a final model has been selected from the training 
set. Within the confines of the training set, one can be comfortable tweaking training heu-
ristics, model hyperparameters, feature selection techniques, and even preprocessing steps 
to achieve maximum performance. Once a final model has been developed and selected, 
the model should be locked and saved. Following this, it should be tested blindly on the 
held-out internal validation set. Furthermore, it should be tested on an external validation 
set that represents data from heterogeneous institutions and patient populations. Finally, 
benchmarking should be performed against the current standard of care for the application 
of interest. Depending on the application, this could consist of comparison to human ex-
perts (often radiologists or oncologists), traditional diagnostic criteria, staging systems, or 
clinical factors. 

 

2.3.7 Stability 

After a radiomic model has been developed and validated, continued stability assessment 
is still necessary. Often overlooked following the validation of a model, examination of 
model behavior in different conditions can often lead to more interesting findings for future 
study. We recommend the following post-validation assessments. 

- Feature Importance: Identifying and examining radiomic features of importance 
may help better understand the clinical phenomenon which is being studied. Iso-
lating particular radiomic features which are highly correlated with an outcome of 
interest can help guide further study in the lab and clinic. 

- Generalizability: Testing a model across different patient populations will assure 
generalizability of a proposed radiomic model. Given the proclivity for machine 
learning algorithms to overfit training data and maintain bias present within train-
ing/validation datasets, it is import to continue to test radiomic models across dif-
ferent patient groups. If overfitting does appear when testing the model among a 
different group of patients, regularization techniques may help improve generali-
zability. 

- Stability Testing: Ensuring stability of radiomic features and model predictions 
across patients is important to assure the model is truly modeling the clinical out-
come of interest. Stability can be measured by examining differences in radiomic 
features and model predictions across patients with similar clinical characteristics. 

- Failure Examination: Study of model failures is an important method to character-
ize potential pitfalls in your radiomic model. Specifically, identifying phenotypes of 
patients which a model consistently underperforms is a clinically useful endeavor. 
Examination of failures can identify unique sub-populations of patients which were 
previously unidentified or potentially uncover a bias in the data used to train the 
radiomic model. 
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2.4 Translation of radiomics into the clinic 
 

In this section we will summarize the importance of understanding the relevance of the 
radiomics models for the physicians regarding the machine learning tools used. Interpreta-
bility and validation of the ML radiomics models enhance the introduction of these models 
to the clinical routine combined with their deployment and commissioning. Moreover, the 
importance of the outcome of the radiomics prediction model is compared with the opera-
tional excellence required for the model development. 

2.4.1 Black box vs interpretability 

Radiomic models can be considered “black-box” tools where it is not obvious what proce-
dures are undertaken to generate the output from the inputs; though this does not neces-
sarily have to be the case. This lack of transparency and interpretability can pose a challenge 
with regard to adoption and deployment of such models into routine clinical use from the 
aspects of both 1) if and how a physician will use such a tool as clinical decision support to 
improve patient care/outcomes and 2) what are the normative best practices for efficacious 
and ethical deployment of such tools at the institutional and societal level. The difficulty in 
addressing these challenges are at two levels: 1) regarding the nature of quantitative image 
derived radiomic features and 2) regarding the procedural operation of machine learning 
models.  

With regard to imaging biomarkers, quantitative image derived radiomic features are con-
trasted against qualitative features (or “semantic features). Semantic imaging features typ-
ically have an intuitive interpretation related to pathophysiology (e.g. edema, contrast en-
hancement etc.); whereas quantitative imaging features (e.g. texture, statistics, shape etc.) 
typically do not have obvious interpretation or connection to the underlying biology of the 
disease process117. It has been proposed that as radiomic signatures are further studied and 
validated, meaningfulness, and thereby interpretability, will accrue as correlative associa-
tions with known genomic, cellular and metabolic oncogenic processes are uncovered118,119. 
It is also hoped strengthening connections and combining models with semantic features 
will improve meaningfulness and interpretability119. The validation and translational 
roadmap for such radiomic models is otherwise not dissimilar to that of imaging biomarkers 
generally: assay validation, biological and clinical validation, cost effectiveness assessment, 
and an end goal of large prospective trials17. Having followed a similar path, genomic bi-
omarkers have achieved translational validity and, perhaps, some meaningfulness, to the 
point of routine use by oncologists in the clinical setting (e.g. OncotypeDx); that too despite 
lack of transparency120,121.  This is likely due to the emphasis on empiricism in modern clini-
cal oncology research and practice122–125, radiation oncology practice in particular has had a 
strong tradition of proceeding on such basis126,127. 

Aside from the non-intuitiveness of radiomic features, concerns regarding black-box nature 
of  machine learning algorithms (which are trained rather than specified128) used to develop 
such models remain, particularly with increasing size and complexity (e.g. when convolu-
tional neural networks are used i.e. “deep radiomics”3). It is argued that there is an inherent 
trade-off between model performance and the ability to interrogate and understand the 
model and that this causes a conundrum as prioritizing performance would be at odds with 

https://www.zotero.org/google-docs/?i3KMbI
https://www.zotero.org/google-docs/?EuUIjs
https://www.zotero.org/google-docs/?TuuJRc
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https://www.zotero.org/google-docs/?bCcG1R
https://www.zotero.org/google-docs/?LrYO2Z
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the moral responsibility of a clinician to scrutinize, justify, and demonstrate sound decision-
making129. How can one do so if one is unable to understand the model's working? As has 
been stated in a recent editorial regarding the application of such algorithms in healthcare: 
“[. . .] accuracy is not sufficient to engender trust. An understanding of why decisions are 
made by the algorithm, the rigour of evaluation, the accreditation of the algorithm, and 
when and why errors might occur are all points to consider before any algorithm is used in 
practice”15. An additional aspect to consider is  the fact that in implementation, self-learning 
models are dynamically updated,  are “plastic,” and could propagate errors at scale which 
adds additional complexity to validation, safety, and soundness130. There is the real possi-
bility of harm. The ability to troubleshoot and debug a radiomic/machine learning model's 
implementation is critical. There are evolving efforts to tackle the legal aspects surrounding 
the development and implementation of such models such as liability (malpractice), intel-
lectual property (corporate misincentives toward secrecy via opaque algorithms), and reg-
ulation (FDA, EU, “right to explainability”)130–132. Much work is progressing in outcomes pre-
diction and prognostication using radiomic models in radiation oncology133. As work evolves 
toward impacting various levels of treatment-planning decision making, the stakes will in-
crease and factors relating to interpretability will be of greater concern in deployment. 

Given these issues, the question remains regarding the way forward: “Should machine 
learning models be pushed toward those implementations that are more interpretable, 
more mechanistically modeled, and ultimately aimed at increased understanding, or should 
acceptable models include fundamentally black box algorithms that are practically useful 
but provide little scientific insight?”131 This continues to be a matter of debate. Some argue 
that it is imperative to use the most performant algorithm for patient-care, even if that 
necessitates a trade-off with transparency, and additionally argue that such black box na-
ture is not too different than the black box aspects of conventional medical decision mak-
ing129. However, it has also been argued that such a performance vs. transparency tradeoff 
is not axiomatic (and may not even be evidenced in real world implementations) and that 
given the high stakes with healthcare decisions, interpretability must be prioritized134. There 
is much debate on what makes a model interpretable135,136. Post-hoc “explainability” of a 
model has been posited as a way to address this, e.g. with visualization algorithms137 ;how-
ever, there is skepticism as to the reliability and utility of such an approach and whether it 
will suffice to address the aforementioned issues. In its stead, a rigorous focus on develop-
ing inherently interpretable machine learning algorithms (designed as such from the outset) 
has been suggested. Though more burdensome and challenging (both computationally and 
intellectually), generating such a model that is just as performant as fully black box ones is 
thought to be achievable134. Interpretability remains a goal and subject worthy of further 
elaboration, especially as the foundational infrastructure expectations of the field continue 
to be established. 

As radiomic models find routine clinical implementation and use by physicians, the way such 
models are incorporated into decision-making will likely require iteration and standards 
that enhance trust and transparency. To some extent this will be due to increasing comfort 
with radiomic models over time through empiric clinical use of those with prospective vali-
dation and validation against underlying biology. However, it is likely that legal/ethical im-
plications, institutional/regulatory standards, and stakeholder expectations will demand as 
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much understanding, clarity, and interpretability as reasonably achievable; this area will 
likely continue to evolve in an interdisciplinary fashion. 

2.4.2 Deployment/implementation/commissioning of radiomics models 

As more studies demonstrate the efficacy of radiomics within clinical practice, there is a 
growing focus on implementing and deploying radiomic models within the clinic. Although 
there is no formalized commissioning of clinical radiomic models, there are a considerable 
number of steps which can be taken to assure a candidate radiomic model is fit for clinical 
use. 

-Generalizability Testing: We recommend testing radiomic models in various settings to as-
sure generalizability. Specifically, it is recommended to test across different patient popu-
lations which are representative of the clinical population for which the proposed model 
may be used. We also recommend similar generalizability testing across different imaging 
protocols and scanners. 

-Benchmarking: It is important to identify benchmarking standards of radiomic model per-
formance which can be assessed frequently after the model is deployed. 

-Clinical Impact Measurement: Following implementation, it is necessary to assess the po-
tential impact a radiomic model has on clinical practice. Specifically, this can be achieved by 
retrospective review of clinical decision making prior to implementation and following im-
plementation. Survey studies of clinicians may aid in understanding barriers to implemen-
tation of radiomic models within clinical practice. 

2.4.3 Operational excellence vs outcome prediction  

The introduction of radiomics has established the principles of personalized medicine in ra-
diation oncology. Due to the numerous and continuous efforts of the radiomics research 
community to enhance the reproducibility of radiomics studies and enrich the knowledge, 
new clinically relevant questions have been raised. The main goal of these efforts is the 
operational excellence of radiomics methodology. Taking into account the significance and 
influence of the different parameters that are included on the radiomics pipeline for final 
outcome prediction, we have proposed potential solutions for the standardization of the 
workflow. 

From the patients’ perspective, overall survival constitutes the most common endpoint of 
interest. This specific endpoint depends on tumour features and clinical parameters of the 
patients such as toxicities, demographics and treatment. The complex task of the prognosis 
of overall survival presents higher accuracy in aggressive types of cancer such as glioblas-
toma 138and NSCLC139  while on the contrary the study of Ger et al.140 reported the failure of 
the improvement of prediction of the overall survival of large cohorts of head and neck 
cancer patients. Due to the complexity of the prediction of the abovementioned endpoint, 
several endpoints can be implemented to the clinical routine such as the tumour regression 
or toxicities. 

The cost of the prediction in the clinic constitutes a significant factor for the acceptance and 
implementation of the prognostic models. Generally, the predictive models are designed 
with equal cost of false results. For instance, for head and neck cancer patients the cost of 

https://www.zotero.org/google-docs/?Y3Y1cD
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the false-positive p16 result is significantly higher than potentially would be translated into 
a de-escalation of the treatment when a more aggressive approach is optimal. For this rea-
son, the clinically acceptable accuracy of a model is a crucial factor for the introduction of 
radiomics models into the clinic. In any case, every prognostic model needs reliably labeled 
and quality data for accurate performance regardless of the statistical method or algorithm 
used for the model building102. 

Concluding, the application of models based on radiomics features beyond proof of concept 
needs the cooperation and knowledge exchange of each mutual field by the different ex-
perts. Especially nowadays, we are facing the new era of the demonstration of AI in several 
clinical studies as multisource datasets are used to improve the prediction of patients’ treat-
ment outcomes. The crucial point regarding the generalization and validation of the models 
relies on the usage of different databases consisting of different patients’ demographic de-
tails, as the validation process may present difficulties and limitations. 

 

2.5 Conclusion 
 

In this chapter, we emphasized the fundamental principles that are part  of a radiomics 
pipeline. We gave specific recommendations regarding the standardization of the radiomics 
workflow, with the aim to provide a useful guide for clinicians with a high interest in the 
radiomics field. Furthermore, we presented a roadmap with all the necessary steps that 
should be taken into account to produce more reproducible and reliable radiomics predic-
tion models. Moreover, we described the general approach related to interpretable radi-
omics models, as well as the potential solutions regarding the implementation and commis-
sioning of the models. Although there are significant barriers and challenges regarding the 
acceleration of the introduction of radiomics into the clinic, increasing efforts are made  by 
the radiomics community to enhance the potential of radiomics and AI in radiation oncol-
ogy. The multiple barriers and solutions highlighted in this chapter constitute an oppor-
tunity for knowledge exchange between the different professions involved in the radiomics 
field, which hopefully could lead to a broader acceptance of radiomics by the clinicians. 
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Abstract 
 

Purpose: The aim of this paper is to describe a public open-access (Computed Tomography) 

CT phantoms image set acquired at three centers and collected especially for radiomics re-

producibility research.  The dataset is useful to test radiomics features reproducibility with 

respect to various parameters, such as acquisition settings, scanners and reconstruction al-

gorithms.  

Acquisition and validation methods: Three phantoms were scanned in three independent 

institutions. Images of the following phantoms were acquired: Catphan 700 and COPDGene 

Phantom II (Phantom Laboratory, Greenwich, NY, USA), and the Triple-modality 3D Ab-

dominal Phantom (CIRS, Norfolk, Virginia, USA). Data were collected at three Dutch medical 

centers: MAASTRO Clinic (Maastricht, NL), Radboud University Medical Center (Nijmegen, 

NL), and University Medical Center Groningen (Groningen, NL) with scanners from two dif-

ferent manufacturers Siemens Healthcare and Philips Healthcare. The following acquisition 

parameter were varied in the phantom scans: slice thickness, reconstruction kernels, and 

tube current. 

Data Format and usage notes:  We made the dataset publicly available on the Dutch in-

stance of “Extensible Neuroimaging Archive Toolkit-XNAT” (https://xnat.bmia.nl). The da-

taset is freely available and reusable with attribution (Creative Commons 3.0 license).  

Potential applications: Our goal was to provide a findable, open access, annotated and re-

usable CT phantom dataset for radiomics reproducibility studies. Reproducibility testing and 

harmonization are fundamental requirements for wide generalizability of radiomics-based 

clinical prediction models. It is highly desirable to include only reproducible features into 

models, to be more assured of external validity across hitherto unseen contexts. In this 

view, phantom data from different centers represent a valuable source of information to 

exclude CT radiomics features that may already be unstable with respect to simplified struc-

tures and tightly controlled scan settings. The intended extension of our shared dataset is 

to include other modalities and phantoms with more realistic lesion simulations. 
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3.1 Introduction 
 

Computer-aided analysis of clinical radiological images offers a data-at-large-scale approach 

towards personalized medicine1 wherein tumor phenotype may be inferred using images of 

the entire tumor instead of selective sample biopsies. On the premise that phenotypic var-

iability affects clinical outcome2, medical imaging offers an efficient and non-invasive 

method to determine prognosis. 

This approach has immense potential to support clinical decision-making in the personal-

ized medicine paradigm3, i.e. which would be a superior choice of treatment for a given 

person. Studies in the active field of image-derived markers (i.e. “radiomics”) strongly sug-

gest that tomographic images do indeed embed more prognostic information than may be 

seen by an unassisted human eye4–8. In order to be widely generalizable and have meaning-

ful clinical use, it is essential that reproducibility of features can be tested in phantoms9-10, 

in addition to validating models in human subjects across different settings and multiple 

independent institutions 11–13. 

Studies have shown that feature reproducibility may be affected by differences in image 

acquisition parameters, such as slice thickness and reconstruction algorithm14–17. Since clin-

ical image acquisition protocols are one of the major sources of variation among different 

hospitals, phantoms allow testing, comparison and harmonization of radiomics features in 

similar vein to diagnostic imaging quality assurance. We hypothesize that even simplified 

phantoms allow us to test for radiomic features that may already become unstable even 

under tightly constrained conditions. 

In this data publication, we offer Computed Tomography (CT) scans of simple phantoms 

across three Dutch academic medical centres for open access. We chose to start with CT 

since this modality is readily available in many centres and is a workhorse imaging modality 

for radiotherapy intervention planning. In many clinics, CT scanners are mature technology 

with well-established protocols for calibration, quality assurance and routine maintenance. 

 

3.2 Acquisition and Validation methods 
 

3.2.1 Phantoms 

Catphan 700 

To obtain a baseline for overall CT scanner performance, we scanned a Catphan 700 phan-

tom (Phantom Laboratory, Greenwich, NY, USA) that had been designed specifically for rou-

tine quality assurance on CT scanners. It is only suitable for use in CT, and contains test 

modules for contrast, geometric accuracy and spatial resolution 18-19. 

COPDGene Phantom II 
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The COPDGene phantom II (Phantom Laboratory, Greenwich, NY, USA) was designed for 

thoracic CT quality assurance in prospective clinical trials (specifically asthma and chronic 

obstructive pulmonary disorder) with guidance from the Quantitative Image Biomarker Al-

liance Technical Committee. We used the CCT162 version, which included the standard ver-

sion CTP698 with two additional supports and acrylic end-plates for stabilization of the 

phantom during the scanning. An outer polyurethane ring simulated tissue attenuation 

while an internal oval body (15 cm x 25 cm) simulated lung attenuation. The inner oval held 

a number of cylindrical cavities for foam, acrylic and water20-21, as well as a number of in-

ternal structures simulating different-sized bronchi. 

 

Triple modality 3D Abdominal Phantom 

A 3D multimodality Abdominal Phantom (CIRS, Norfolk, Virginia, USA) measuring 26 cm x 

12.5 cm x 19 cm22 was designed to be used for liver biopsy training under guidance by CT, 

magnetic resonance imaging or ultrasonography. We scanned Model 057A that simulated 

the abdomen of a small adult. The materials encased within the phantom represented liver, 

the portal vein, kidneys, bottom of lung, the abdominal aorta, the vena cava, lumbar spine 

and the six lowest ribs. 

3.2.2 Image acquisition 

The images used in our study were acquired using three different CT scanners at independ-

ent Dutch centres: MAASTRO Clinic (Maastricht), Radboud University Medical Center (Nij-

megen), and University Medical Center Groningen (Groningen). The standard clinical oper-

ating procedures for thoracic and abdominal radiotherapy planning CT scans at each of the 

three centers were used to generate a baseline scan of each phantom. These baseline pa-

rameters are stated in Table 1A and 1B, for the Phantom Laboratory and CIRS phantoms, 

respectively. 

We subsequently applied perturbations to imaging settings of the baseline scan. We ad-

justed the following parameters strictly one at a time and saved each scan: slice thickness 

(1mm, 3mm and 5mm), reconstruction kernels (between 3 and 5 settings depending on the 

scanner) and current-exposure product (50 mAs, 150 mAs and 300 mAs). The individual set-

ting for each scan is given in Table 2A and 2B, for the Phantom Laboratory and CIRS phan-

toms, respectively. 

3.2.3 Image annotations 

CatPhan700 images were only used for image quality assessment of the baseline scans be-

tween participating centres, therefore no annotations were added to the scans. 

Regions of interest (ROIs) on the COPDGene and Abdominal phantoms were manually de-

lineated in MIRADA DBx (version 1.2.0.59, Mirada Medical, Oxford, United Kingdom).  In the 

COPD phantom, we delineated four distinct spherical ROIs within two of the insert cavities. 

In the multimodality phantom, we delineated two different ROIs corresponding to two of 
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the simulated liver lesions, one large and one small (as shown in Figure 1). The delineations 

were performed by one medical physicist at MAASTRO Clinic. All images and annotations 

were then exported as DICOM (Digital Imaging and Communications in Medicine)-RT(Radi-

otherapy) objects. 

3.2.4 Data format and usage notes 

Our scans are made open access via an instance of the Extensible Neuroimaging Archive 
Toolkit (XNAT) hosted within Dutch national research infrastructure (TraIT, www.ctmm-
trait.nl)23. XNAT is an open source platform for imaging-based research and clinical investi-
gations, which manages access to different datasets compartmentalized into separate pro-
jects (i.e. collections). Within each collection, XNAT permits browsing of individual cases. 
The platform supports direct uploading of DICOM images and DICOM-RT objects (plan, 
structure set and dose grid) with http file transfer24. Studies in XNAT can be queried and 
retrieved by means of an API (Application Programming Interface) in the Python program-
ming language by installing the xnat library (https://pypi.org/project/xnat/). 

The Phantom Laboratory images have been uploaded to the XNAT collection STW-STRAT-
EGY-Phantom_Series1 : (https://xnat.bmia.nl/data/projects/stwstrategyps1). 

The CIRS multimodality Abdominal Phantom images have been uploaded to the SNAT col-
lection STW-STRATEGY-Phantom_Series2 : (https://xnat.bmia.nl/data/projects/stwstrate-
gyps2). 

In each of the above collections, the subject identifier matches exactly the names shown in 
the leftmost column of Tables 2A and 2B. DICOM-formatted images and the annotations as 
DICOM-RTStruct objects are nested under the subject level. A python script for downloading 
an entire collection is available here: (https://github.com/PetrosKalendralis/Download-
XNAT-collections-script). 

 

3.3 Discussion 
 

We have made publically available multi-center phantom CT scans to support investigations 
in radiomics repeatability and reproducibility, specifically to identify features that may be 
unstable with respect to image acquisition settings in simplified geometry.  

Radiomics reproducibility may be investigated as a function of: scanner manufacturer/scan-
ner type, slice thicknesses, tube current (i.e. signal to noise ratio), and reconstruction algo-
rithms. We invite the radiomics community to utilise our dataset for research by extracting 
radiomics features with their own processing pipelines and comparing the results with other 
investigators.  We also invite the community to contact us in order to share the results of 
their computations. For the next steps, we intend to host the computed features set from 
the open source library pyradiomics v2 (https://github.com/Radiomics/pyradiomics)25 as 
well as the associated DICOM image metadata on a public open access website (www.radi-
omics.org). 

http://www.ctmm-trait.nl/
http://www.ctmm-trait.nl/
https://pypi.org/project/xnat/
https://xnat.bmia.nl/data/projects/stwstrategyps1
https://xnat.bmia.nl/data/projects/stwstrategyps2
https://xnat.bmia.nl/data/projects/stwstrategyps2
https://github.com/PetrosKalendralis/Download-XNAT-collections-script
https://github.com/PetrosKalendralis/Download-XNAT-collections-script
https://github.com/Radiomics/pyradiomics
http://www.radiomics.org/
http://www.radiomics.org/
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This is a fundamental step towards improving benchmarking and standardization of the ra-
diomics field of study. This is in support of valuable harmonization projects such as the IBSI 
(International Biomarker Standardization Initiative)26. The features and metadata will be 
made available as linked Resource Descriptor Format (RDF) objects labelled with a dedi-
cated radiomic-specific semantic web ontology [https://bioportal.bioontology.org/ontolo-
gies/RO], such that the data can be queried through the SPARQL language. To assist the 
radiomics community with data sharing, a standard tabular template and conversion script 
to RDF will also be provided at www.radiomics.org. 

A number of key limitations in the data must be noted at the present time. First, as explicitly 
declared by the phantom manufacturers, the phantoms used in this study had not been 
designed with the specific aim of simulating standard radiomic features. It is not presently 
not fully understood exactly what should be used as a canonical set of imaging features. 

Secondly, we posit that the so-called “test lesions” within the current phantoms represent 
over-simplified geometries and relatively uniformly-dense material. Complex texture pat-
terns and shape features are not well represented in such simple phantoms. However, these 
phantoms do present a preliminary opportunity for investigating reproducibility of radiomic 
features, thus we may be able to test for certain features that already unstable in simplified 
conditions. We would assert that a feature that is not reproducible in such a constrained 
setting might be unlikely to be highly reproducible in multi-institutional human studies. To 
improve on the current situation, the data set might be expanded by scans of more phan-
toms that contain more realistic tumor-mimicking inserts. These may prove to be more suit-
able for selecting stable features for inclusion in radiomics investigations. 

Lastly, while we have started with CT as the most commonly available imaging modality in 
our field, we intend to expand this collection to include PET (Positron Emission Tomography) 
and MRI (Magnetic Resonance Imaging).  

In addition to making available multi-center and multimodality phantoms for radiomics re-
producibility studies, future work in this field should make publicly accessible DICOM 
metadata and image pre-processing steps, so as to make radiomics studies as FAIR (Finda-
ble, Accessible, Interoperable, Reusable) as possible. To this end, image metadata needs to 
be linked to the features using publicly available Semantic DICOM (SEDI) ontology27 and the 
Radiomics ontology needs to extended to cover image pre-processing.  

 

3.4 Conclusion 
 

We offer a publicly accessible multi-center CT phantom dataset with carefully controlled 
image acquisition parameters to support reproducibility research in the field of radiomics. 
The dataset is hosted in a well-established and publicly funded XNAT instance. The data is 
shared under a Creative Commons Attribution 3.0 License (free to browse, download and 
use at no cost for scientific and educational purposes). The dataset is offered to the radi-
omics community to compare simple features extracted with different software pipelines 
as well as to identify features that may not be stable with respect to image acquisition con-
ditions even under highly simplified conditions. Our unique contribution to the field is to 

https://bioportal.bioontology.org/ontologies/RO
https://bioportal.bioontology.org/ontologies/RO
http://www.radiomics.org/
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investigate the robustness of each radiomics feature with respect to different scanning ac-
quisition parameters. 
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3.6 Supplementary material 
 

 

CATPHAN 700/ COPDGENE PHANTOM II BASELINE SCAN PARAMETERS 
PARAMETERS DICOM tags MAASTRO 

Clinic 
(MAAS) 

Radboud Uni-
versity Medical 
Center (RADB) 

University Medi-
cal Center Gro-
ningen (UMCG) 

MANUFAC-
TURER 

(0008,0070) Siemens Phillips Siemens 

MODEL (0008,1090) Biograph 
40 

Brilliance Big 
Bore 

Biograph 64 

SOFTWARE 
VERSION 

(0018,1020) syngo CT 
2006A 

3.6.6 VG60A 

SLICE THICK-
NESS (MM) 

(0018, 0050) 3 3 3 

TUBE VOLT-
AGE (KV) 

(0018, 0060) 120 120 80 

RECONSTRUC-
TION DIAME-
TER (MM) 

(0018, 1100) 500 255 239 

TUBE CUR-
RENT (MA) 

(0018, 1151) 39 134 149 

EXPOSURE 
(MAS) 

(0018, 1152) 24 124 53 

CONVOLU-
TION KERNEL 

(0018, 1210) B31f B I30f 

ROWS (0028, 0010) 512 1024 512 
COLUMNS (0028, 0011) 512 1024 512 
PIXEL SPACING (0028, 0030) 0.98 0.25 0.46 
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BITS STORED (0028, 0101) 12 12 12 
HIGH BIT (0028, 0102) 11 11 11 
RESCALE OFF-
SET 

(0028, 1052) -1024 -1024 -1024 

RESCALE 
SLOPE 

(0028, 1053) 1 1 1 

Table 1A. CT scanner details and image acquisition parameters for baseline scans of the 
Catphan700 and COPDGene Phantom II in each of the participating clinics. 

 

TRIPLE MODALITY 3D ABDOMINAL PHANTOM BASELINE SCAN PARAMETERS 
PARAMETERS DICOM tags MAASTRO 

Clinic 
(MAAS) 

Radboud Uni-
versity Medical 
Center (RADB) 

University Medi-
cal Center Gro-
ningen (UMCG) 

MANUFAC-
TURER 

(0008,0070) Siemens Phillips Siemens 

MODEL (0008,1090) Biograph 
40 

Brilliance Big 
Bore 

Biograph 64 

SOFTWARE 
VERSION 

(0018,1020) syngo CT 
2006A 

3.6.6 VG60A 

MANUFAC-
TURER 

(0008,0070) Siemens Phillips Siemens 

TUBE VOLT-
AGE (KV) 

(0018, 0060) 120 120 80 

RECONSTRUC-
TION DIAME-
TER (MM) 

(0018, 1100) 500 255 239 

TUBE CUR-
RENT (MA) 

(0018, 1151) 118 190 18 

EXPOSURE 
(MAS) 

(0018, 1152) 73 175 9 

CONVOLU-
TION KERNEL 

(0018, 1210) B30f B I30f 

ROWS (0028, 0010) 512 512 512 
COLUMNS (0028, 0011) 512 512 512 
PIXEL SPACING (0028, 0030) 0.98 0.75 0.59 
BITS STORED (0028, 0101) 12 12 12 
HIGH BIT (0028, 0102) 11 11 11 
RESCALE OFF-
SET 

(0028, 1052) -1024 -1024 -1024 

RESCALE 
SLOPE 

(0028, 1053) 1 1 1 

Table 1B. CT scanner details and image acquisition parameters for baseline scans of the 
multimodality CIRS Abdominal Phantom in each of the participating clinics. 
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COLLECTION : SERIES 1 – CATPHAN 700 AND COPD II INDIVIDUAL SUBJECT SCAN SET-
TINGS 

SUBJECT Institution Slice 
thickness 
(mm) 

Volt-
age 
(kvp) 

Current 
(mA) 

Expo-
sure 
(mAs) 

Convolu-
tion ker-
nel 

CATPHAN-01-
MAAS 

MAASTRO 3 120 39 24 B31f 

CATPHAN-01-
RADB 

Radboud 3 120 134 124 B 

CATPHAN-01-
UMCG 

Groningen 3 80 165.5 58.5 I30f 

COPD-001-
MAAS 

MAASTRO 3 120 130 80.5 B31f 

COPD-001-
RADB 

Radboud 3 120 210 194 B 

COPD-001-
UMCG 

Groningen 3 120 191 68 I30f 

COPD-002-
MAAS 

MAASTRO 1 120 112.5 69.5 B31f 

COPD-002-
RADB 

Radboud 1 120 210 194 B 

COPD-002-
UMCG 

Groningen 1 120 205 73 I30f 

COPD-003-
MAAS 

MAASTRO 5 120 106.5 66 B31f 

COPD-003-
RADB 

Radboud 5 120 210 194 B 

COPD-003-
UMCG 

Groningen 5 120 195 69 I30f 

COPD-004-
MAAS 

MAASTRO 3 120 91 56 B31f 

COPD-004-
RADB 

Radboud 3 120 54 50 B 

COPD-004-
UMCG 

Groningen 3 120 140 50 I30f 

COPD-005-
MAAS 

MAASTRO 3 120 80 50 B31f 

COPD-005-
RADB 

Radboud 3 120 108 100 B 

COPD-005-
UMCG 

Groningen 3 120 280 100 I30f 

COPD-006-
MAAS 

MAASTRO 3 120 130 80.5 B41f 
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COPD-006-
RADB 

Radboud 3 120 325 300 B 

COPD-006-
UMCG 

Groningen 3 120 660 300 I30f 

COPD-007-
MAAS 

MAASTRO 3 120 130 80.5 B41f 

COPD-007-
RADB 

Radboud 3 120 210 194 A 

COPD-007-
UMCG 

Groningen 3 100 230 104 I40f 

COPD-008-
MAAS 

MAASTRO 3 120 130 80.5 B75f 

COPD-008-
RADB 

Radboud 3 120 210 194 C 

COPD-008-
UMCG 

Groningen 3 100 231 104 I44f 

COPD-009-
MAAS 

MAASTRO 3 120 130 80.5 B60f 

COPD-009-
RADB 

Radboud 3 120 210 194 E 

COPD-009-
UMCG 

Groningen 3 100 236 107 I49f 

COPD-010-
MAAS 

MAASTRO 3 120 130 80.5 B80f 

COPD-010-
RADB 

Radboud 3 120 210 194 L 

COPD-010-
UMCG 

Groningen 3 100 232 105 I50f 

COPD-011-
UMCG 

Groningen 3 100 238 108 I70f 

COPD-012-
UMCG 

Groningen 3 100 236 107 B30f 

Table 2A. The individual scan settings for the Catphan 700 and COPD II phantoms from the 
participating different Dutch clinics. 
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COLLECTION : SERIES 2 – CIRS MULTIMODALITY PHANTOM INDIVIDUAL SUBJECT SCAN SETTINGS 

SUBJECT Institution Slice thick-
ness (mm) 

Volt-
age 
(kvp) 

Current 
(mA) 

Expo-
sure 
(mAs) 

Convolu-
tion kernel 

CIRS-AB-001-
MAAS 

MAASTRO 
3 120 118 73 B30f 

CIRS-AB-001-RADB Radboud 3 120 190 175 B 
CIRS-AB-001-
UMCG 

Groningen 
3 100 100 50 I30f 

CIRS-AB-002-
MAAS 

MAASTRO 
1 120 133 83 B30f 

CIRS-AB-002-RADB Radboud 1 120 190 175 B 
CIRS-AB-002-
UMCG 

Groningen 
1 100 95 47 I30f 

CIRS-AB-003-
MAAS 

MAASTRO 
5 120 136 85 B30f 

CIRS-AB-003-RADB Radboud 5 120 190 175 B 
CIRS-AB-003-
UMCG 

Groningen 
5 100 98 49 I30f 

CIRS-AB-004A-
UMCG 

Groningen 
3 120 100 50 I30f 

CIRS-AB-004B-
UMCG 

Groningen 
3 120 100 50 I30f 

CIRS-AB-004-
MAAS 

MAASTRO 
3 120 141 88 B30f 

CIRS-AB-004-RADB Radboud 3 120 54 50 B 
CIRS-AB-005A-
UMCG 

Groningen 
3 120 200 100 I30f 

CIRS-AB-005B-
UMCG 

Groningen 
3 120 200 100 I30f 

CIRS-AB-005-
MAAS 

MAASTRO 
1 120 137 85 B30f 

CIRS-AB-005-RADB Radboud 3 120 108 100 B 
CIRS-AB-006-
MAAS 

MAASTRO 
5 120 137.5 85.5 B30f 

CIRS-AB-006-RADB Radboud 3 120 325 300 B 
CIRS-AB-006-
UMCG 

Groningen 
3 120 600 300 I30f 

CIRS-AB-007-RADB Radboud 3 120 190 175 A 
CIRS-AB-007-
UMCG 

Groningen 
3 100 98 49 I40f 

CIRS-AB-008-RADB Radboud 3 120 190 175 C 
CIRS-AB-008-
UMCG 

Groningen 
3 100 98 49 I44f 
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CIRS-AB-009-RADB Radboud 3 120 190 175 D 
CIRS-AB-009-
UMCG 

Groningen 
3 100 96 48 I49f 

CIRS-AB-010-
UMCG 

Groningen 
3 100 97 48 I50f 

CIRS-AB-011-
UMCG 

Groningen 
3 100 98 49 I70f 

CIRS-AB-012-
UMCG 

Groningen 
3 100 97 48 B30f 

 

Table 2B. The individual settings of the Triple modality 3D abdominal phantoms from the 
three participating Dutch clinics. 

 

 

Figure 1. The delineated spherical ROIs within two of the inserts cavities for the COPD and 
Triple modality 3D abdominal phantoms are presented in the figure 1A and 1B respectively.  
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Abstract 

Purpose: One of the most frequently cited radiomics investigations showed that features 
automatically extracted from routine clinical images could be used in prognostic modelling. 
These images have been made publicly accessible via The Cancer Imaging Archive. There 
have been numerous requests for additional explanatory metadata on the following da-
tasets – RIDER, Interobserver, Lung1 and Head-Neck1. To support repeatability, reproduci-
bility, generalizability and transparency in radiomics research, we publish the subjects’ clin-
ical data, extracted radiomics features and Digital Imaging and Communications in Medicine 
(DICOM) headers of these four datasets with descriptive metadata, in order to be more 
compliant with findable, accessible, interoperable and re-usable (FAIR) data management 
principles. 

Acquisition and validation methods: Overall survival time intervals were updated using a 
national citizens registry after internal ethics board approval. Spatial offsets of the Primary 
Gross Tumor Volume (GTV) regions of interest (ROIs) associated with the Lung1 CT series 
were improved on The Cancer Imaging Archive (TCIA). GTV radiomics features were ex-
tracted using the open-source ontology-guided radiomics workflow (O-RAW). We reshaped 
the output of O-RAW to map features and extraction settings to the latest version of Radi-
omics Ontology, so as to be consistent with the Image Biomarker Standardization Initiative 
(IBSI). DICOM metadata was extracted using a research version of Semantic DICOM (SO-
HARD, GmbH, Fuerth; Germany). Subjects’ clinical data was described with metadata using 
the Radiation Oncology Ontology. All of the above were published in Resource Descriptor 
Format (RDF), i.e. triples. Example SPARQL queries are shared with the reader to use on the 
online triples archive, which are intended to illustrate how to exploit this data submission. 

Data format: The accumulated RDF data is publicly accessible through a SPARQL endpoint 
where the triples are archived. The endpoint is remotely queried through a graph database 
web application at http://sparql.cancerdata.org. SPARQL queries are intrinsically federated, 
such that we can efficiently cross-reference clinical, DICOM and radiomics data within a sin-
gle query, while being agnostic to the original data format and coding system. The federated 
queries work in the same way even if the RDF data were partitioned across multiple servers 
and dispersed physical locations. 

Potential applications: The public availability of these data resources is intended to support 
radiomics features replication, repeatability and reproducibility studies by the academic 
community. The example SPARQL queries may be freely used and modified by readers de-
pending on their research question. Data interoperability and reusability is supported by 
referencing existing public ontologies. The RDF data is readily findable and accessible 
through the aforementioned link. Scripts used to create the RDF are made available at a 
code repository linked to this submission : https://gitlab.com/UM-CDS/FAIR-compli-
ant_clinical_radiomics_and_DICOM_metadata. 

 

http://sparql.cancerdata.org/
https://gitlab.com/UM-CDS/FAIR-compliant_clinical_radiomics_and_DICOM_metadata
https://gitlab.com/UM-CDS/FAIR-compliant_clinical_radiomics_and_DICOM_metadata
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4.1 Introduction 
 

Clinical radiological imaging, such as computed tomography (CT), is a mainstay modality for 
diagnosis, screening, intervention planning and follow-up for cancer patients worldwide1. 
Radiomics refers to high throughput automated characterization of the tumor phenotype 
by analyzing quantitative features derived from a radiological image2. Aerts et al. showed 
that CT radiomics features by themselves could contain information that is potentially prog-
nostic of overall survival in non-small cell lung (NSCLC) and head-and-neck (HN) cancer3. The 
radiomics hypothesis is that computationally-derived features extract more information 
than can be processed by an unaided human eye, and therefore offers up new image bi-
omarkers to speed up the research of personalized medicine. Radiomics has the potential 
to be a highly cost-effective option for retrospective observational clinical studies, since it 
can process routinely-collected clinical radiological images residing in institutional archives. 
There remain significant challenges in regards to developing generalizable models that are 
based on reproducible and repeatable radiomics signatures4–7. Recent studies have sug-
gested that harmonization of radiomics features across multiple institutions and different 
scanner parameters may be needed to realize its full potential8–11. 

CT images for some frequently-cited studies3,12, in the Digital Imaging and Communications 
in Medicine (DICOM) format, have been made available via The Cancer Imaging Archive 
(TCIA)12–16. The DICOM standard incorporates metadata about image acquisition settings 
and it extends to regions-of-interest delineations (i.e. Radiotherapy Structure Set, or 
RTSTRUCT), but many non-radiology researchers remain unfamiliar with this conjoined 
data-metadata format. Pixel-data only formats such as Neuroimaging Informatics Technol-
ogy Initiative (NIfTI) and Nearly-Raw Raster Data (NRRD) may be more intuitive for direct 
computation, but these have been stripped of imaging metadata. Imaging metadata is the 
essential context to understand why radiomics features from different scanners may or may 
not be reproducible17–20. Software libraries are available that easily change from DICOM to 
NIfTI/NRRD21, but in keeping with FAIR (Findable, Accessible, Interoperable and Reusable) 
data stewardship principles22, the imaging metadata needs to be preserved in such a way 
that links to the source images and post-acquisition analyses will be retained. 

A similar argument holds for patients’ clinical metadata and extracted radiomics features. 
Publishing tables of values as open access data does not by itself comply with FAIR princi-
ples, because there may be no metadata that richly describe what the data fields are, what 
its contents signify and how it relates to other data. The point of FAIR principles is not only 
humans should grasp enough context about the data to use it meaningfully, but that the 
data must be made amenable for machine algorithms to automatically search and process, 
even on a massive global scale. 

 
Consider an example specific to radiomics. For a given feature, it is essential to describe 
how this feature is uniquely defined, which radiomics software (and version) was used to 
extract it and what (if any) digital image pre-processing had been applied prior to extraction. 
Semantic ontologies23 were developed in order to add descriptive metadata and hierar-
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chical relationships on top of the data. Ontologies make explicit the formal meaning of con-
cepts within its proscribed domain and the essential relationships between its set of con-
cepts. The present work re-uses the Radiation Oncology Ontology (ROO)24, Semantic DICOM 
ontology (SeDI)25 and the Radiomics Ontology (RO)26. These ontologies themselves re-use 
existing terminologies and thesauri, such as the Image Biomarker Standardization Initiative 
(IBSI)27, National Cancer Institute Thesaurus (NCIT)28, the Units Of Measurement Ontology 
(UO)29, and the DICOM data dictionary30, to identify its concepts. 

Other advantages of ontologies include knowledge representation and the support for au-
tomated logical inferencing. A hierarchical structure is abstracted as directed acyclic graphs, 
wherein concepts and relationships are represented as vertices and edges of the graph, re-
spectively. Any graph, regardless of complexity, can be written out in full as a series of ma-
chine-readable sentences consisting of strictly three pieces; subject (start vertex) – predi-
cate (edge) – object (end vertex). Such “triples” are the basis of the Resource Descriptor 
Format (RDF) that is a type of universal data storage format on the World Wide Web. Ma-
chine-based data mining and inferencing tasks are thus feasible in a highly efficient manner, 
being simplified to a “pattern matching” problem. 

The objective of this open data submission is to stimulate studies into repeatability, repro-
ducibility, replication and re-usability of radiomics features from multiple datasets. The core 
collection being made publicly available here consists of (i) improvements to the four clinical 
imaging datasets described in the seminal radiomics publication by Aerts et al.3 (ii) extracted 
radiomics features described in line with IBSI recommendations27,31 and (iii) updates to the 
subject clinical data associated with the aforementioned image collections. 

 

4.2 Acquisition and validation methods 
 

4.2A Description of the dataset 

The metadata published in this submission links to four image collections, available under a 
Creative Commons license (Attribution-NonCommercial Unported; CC BY-NC 3.012), in DI-
COM format on TCIA and has been previously investigated by Aerts et al.3. These collections 
are described in detail elsewhere; a brief recapitulation is given in Table 1. 

In each of these collections, primary Gross Tumor Volumes (GTVs) had been delineated by 
experienced radiation oncologists; regions of interest (ROIs) are included in the TCIA collec-
tions as RTSTRUCT and SEGMENTATION objects. In the original TCIA submission, some ROIs 
were vertically displaced due to the how treatment couch offsets were being reported by 
legacy radiotherapy treatment planning software – these have now been corrected. 

Clinical data have been extracted from patients’ electronic medical records and, where ap-
plicable, survival intervals from commencement of radiotherapy treatment till date of death 
or loss to follow-up were updated using a national registry after internal review board ap-
proval. The clinical data has been made available with the imaging collections on TCIA. 
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Table 1. Overall representation of the datasets previously investigated by Aerts et al3. The 
name of each dataset is accompanied with a URL of the TCIA collection and a brief summary 
of the dataset.  

Collection Description 

RIDER Lung CT 
(link) 

This collection was prepared by Zhao et al.12 to evaluate the varia-
bility of tumor unidimensional, bidimensional, and volumetric meas-
urements across “test-retest” CT scans taken at an internal of about 
15 minutes (e.g.  a “coffee break”) with the same image acquisition 
settings. This has been re-used for radiomics repeatability and seg-
mentation studies. The associated ROIs denoted GTVp_test_man 
and GTVp_retest_man refer to manual delineations in the test and 
retest series, respectively. The ROIs denoted GTVp_test_auto and 
GTVp_retest_auto were initially generated by a semi-automated 
segmentation algorithm32 in the test and retest series, respectively, 
and manually edited. 

NSCLC-Radi-
omics-Interob-

server1 
(link) 

This collection consists of radiotherapy dosimetry planning CT scans 
of 22 NSCLC subjects treated by conventionally fractionated exter-
nal beam radiotherapy at a single Dutch center. The ROIs denoted 
were manually drawn by 5 experts working independently. The 
same procedure was repeated after an initial delineation by the 
above mentioned semi-automatic segmentation algorithm. 

NSCLC-Radi-
omics 
(link) 

This collection consists of radiotherapy dosimetry planning CT scans 
of 422 NSCLC subjects treated by conventionally fractionated 
(chemo)-radiotherapy at a single Dutch center. The ROI called GTV-
1 denotes the primary tumor. 

Head-Neck-Ra-
diomics-HN1 

(link) 

This collection consists of radiotherapy dosimetry planning CT scans 
of 137 subjects with either laryngeal or oropharyngeal cancer 
treated by conventionally fractionated (chemo)-radiotherapy at a 
single Dutch center. The ROI called GTV-1 denotes the primary tu-
mor. 

 

 

4.2B Data format and usage notes 

The workflow of the conversion of clinical data, DICOM metadata and radiomics features to 
RDF triples is represented in Figure 1. 

 

 

https://wiki.cancerimagingarchive.net/display/Public/RIDER+Lung+CT
https://wiki.cancerimagingarchive.net/display/Public/NSCLC-Radiomics-Interobserver1
https://wiki.cancerimagingarchive.net/display/Public/NSCLC-Radiomics
https://wiki.cancerimagingarchive.net/display/Public/Head-Neck-Radiomics-HN1
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Figure 1. Representation of the conversion of the clinical data, DICOM headers and radi-
omics features to RDF. The procedures are outlined in the text in sections 2B2, 2B3 and 2B4. 
The RDF triples can be queried from a publicly accessible endpoint using the SPARQL lan-
guage. 

4.2B2 Clinical metadata as RDF 

Clinical tables (in CSV format) from TCIA were imported as standard relational databases 
(e.g. in PostGreSQL33 and then converted into RDF triples using a serializing scripting lan-
guage such as R2RML34. R2RML allows the expression of an arbitrary relational database as 
an equivalent graph data object using a suitable target ontology (in this case, the ROO) 
which can be controlled by specifying a mapping file. The values of, and relationships be-
tween, the clinical data concepts were mapped onto a graph structure. A visual representa-
tion of an example ROO graph has been given by Traverso et al.24 .The graph was exported 
as RDF triples and archived on a publicly query-able SPARQL endpoint. The mapping files 
used for the RDF triples acquisition in this particular data submission are made available for 
the reader on a public GitLab repository https://gitlab.com/UM-CDS/FAIR-compliant_clini-
cal_radiomics_and_DICOM_metadata. 

4.2B3 DICOM metadata as RDF 

The DICOM headers present in the abovementioned TCIA image collections were processed 
into graph objects using SeDI as the target ontology. A research-only version of the Semantic 
DICOM conversion service of SOHARD GmbH (Fuerth, Germany) was used to automatically 
extract the headers from DICOM files and subsequently export these as RDF triples to the 
same aforementioned SPARQL endpoint. This semantic representation of imaging metadata 
supports cross-referenced queries of DICOM tags against radiomics features for use in re-
peatability and reproducibility studies35. 

4.2B4. Radiomics metadata as RDF 

https://gitlab.com/UM-CDS/FAIR-compliant_clinical_radiomics_and_DICOM_metadata
https://gitlab.com/UM-CDS/FAIR-compliant_clinical_radiomics_and_DICOM_metadata
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The radiomics feature values of the primary GTV in the abovementioned image collections 
were extracted using the Ontology-Guided Radiomics Analysis Workflow (O-RAW)36, a PyRa-
diomics37 -based FAIR-ification tool. Acquisition of the radiomics RDF triples required a two-
stage process. The results of a radiomics extraction software application (in our case O-
RAW, but the same holds for other software) must first be transferred into a set of inter-
related tables needed for the IBSI. For this submission, we prepared a python script to fill 
these tables more efficiently; this is provided as an example for the reader on the repository 
https://gitlab.com/UM-CDS/FAIR-compliant_clinical_radiomics_and_DICOM_metadata. 
Details of radiomics ontology development and its integration with the IBSI exceed the 
scope of this data article, but will be covered in detail in a separate publication38. Radiomics 
RDF triples were saved to the same aforementioned SPARQL endpoint. 

4.2C SPARQL public endpoint  

The SPARQL query language is used to interrogate the clinical, DICOM and radiomics triples 
that are archived in RDF as a publicly accessible internet resource referred to by the Univer-
sal Resource Locator (URL), http://sparql.cancerdata.org/. The RDF triples are maintained 
in a persistent online graph database through a Blazegraph39 software application, which 
also supplies a user interface through which remote SPARQL queries may be entered. A 
public query may be executed as follows : after accessing the above URL, the Namespaces 
tab is selected and “Nat_Com_Collections_final” database is set to use. Queries may then 
be typed by hand or copy-pasted in the Query tab.  

4.2D Example SPARQL queries 

The first hypothetical example we consider is a researcher who wishes to get the data for a 
univariate model for overall survival in the Lung1 collection, such as Welch et al.40, using a 
single radiomics feature that is known by its IBSI text label “Fmorph.vol”. We have set up 
the example query in Text Box 1. In brief, a SPARQL query consists of  : 

i. Shorthand prefixes for namespaces referring to data, schema, syntax and on-
tologies that are needed; 

ii. SELECT and FILTER commands that allow us to shape the contents to be re-
turned; and, 

iii. a sequence of pattern matching rules that allow us to link patients to radiomics 
features and overall survival outcome. 

The contents of Text Box 1 may be copied and pasted into the query window of Blazegraph 
(http://sparql.cancerdata.org/#query). Note that a patient study identifier links both the 
radiomics and clinical triples, such that we can query into both domains and cross-reference 
them within a single SPARQL query. The result of this example query that is limited (for 
display purposes) to 10 subjects can be seen in Figure 2. 

As another purely radiomics-based example, we may examine if distinct radiomics intensity 
discretization algorithms had been used during the extraction of a radiomics feature. If one 
were to execute the example query in Text Box 2, it would be seen that the specific radi-
omics feature labelled as RO:Y1RO41 had been computed with 12 unique feature extraction 
settings, but only three discretization settings were used, all of which employed a fixed bin 
size (FBS) method. 

https://gitlab.com/UM-CDS/FAIR-compliant_clinical_radiomics_and_DICOM_metadata
http://sparql.cancerdata.org/
http://sparql.cancerdata.org/#query
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In our final example, we bring elements of the previous examples together into a single 
SPARQL query that cross-references DICOM, radiomics and clinical follow-up. In the exam-
ple provided in Text Box 3, we index the imaging modality (CT) with its Series Instance UID 
and Slice Thickness to the subset of morphological (ROI-dependent) radiomics features that 
were computed for the Lung1 dataset, along with the corresponding survival time and sur-
vival status. 

 

prefix rr: <http://www.w3.org/ns/r2rml#> 

prefix ex: <http://example.com/ns#> 

prefix sty: <http://purl.bioontology.org/ontology/STY/> 

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

prefix xsd: <http://www.w3.org/2001/XMLSchema#> 

prefix ncit: <http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#> 

prefix roo: <http://www.cancerdata.org/roo/> 

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

prefix uo: <http://purl.obolibrary.org/obo/UO_> 

prefix ro: <http://www.radiomics.org/RO/> 

 

SELECT ?patientID ?Fmorph_vol ?Funits ?deathStatus ?time ?Tunits 

WHERE { 

  ?patient a ncit:C16960.   #locate objects that are patients (unique ID is 

C16960 in the NCIT 

  ?patient roo:P100042 ?patientID.  #match patients to a literal value which will 

be a research study ID 

  ?patient ro:P00088  ?featureObj. #match the patients to the corresponding ob-

jects in the radiomics domain 

   

  ?featureObj roo:100042 ?Fmorph_vol; roo:100027 ?Funits FILTER con-

tains(str(?featureObj), "Fmorph.vol"). 

     #return only features called "Fmorph.vol" according to 

IBSI terminology 

     #retrieve a metadata label indicating if the feature has 

any associated physical units 

   

  ?patient roo:P100254 ?death.   #locate patients that has a clinical 

"finding" for death by any cause 

  ?death roo:P100042 ?deathStatus.  #retrieve the literal value 

for the clinical finding as a death status 

  ?patient roo:has ?survivaldayssinceRT. #retrieve the overall survival time 

object 
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  ?survivaldayssinceRT rdf:type ncit:C125201; roo:P100042 ?time; roo:P100027 

?Tunits. 

     #obtain the value of the survival time interval 

     #retrieve a metadata label indicating the time interval 

physical units 

   

  FILTER regex(?patientID, "^LUNG1"). 

#purely for the example, we only consider the patients in the LUNG1 col-

lection 

} 

LIMIT 10 #purely for the example, we have limited the number of rows of output 

to 10 

Text box 1. Example of a SPARQL query for matching a radiomics feature called 

“Fmorph.vol”  in the IBSI terminology to the overall survival status and survival time of the 

patients in the LUNG1 collection. Purely for illustrative purposes, we limited the rows of 

output to 10. The result of the query is shown in Figure 2.  

 

Figure 2. The result of ten patients’ cases of the example query given in Text Box 1. We can 
see the research study IDs of patients from the public TCIA collections, the value of a radi-
omics feature, the value of the survival time and the vital status of each patient. Addition-
ally, we have displayed the units of the radiomics feature (if any, in this case it is cubic mil-
limetres) and the survival time (days). 

prefix rr: <http://www.w3.org/ns/r2rml#> 

prefix ex: <http://example.com/ns#> 

prefix map: <http://mapping.local/> 

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

prefix xsd: <http://www.w3.org/2001/XMLSchema#> 

prefix ncit: <http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#> 

prefix roo: <http://www.cancerdata.org/roo/> 

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

prefix ro: <http://www.radiomics.org/RO/> 
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SELECT DISTINCT ?paramspace ?discretisationparam ?discretisationAlgorithm 

WHERE{ 

  ?patient a ncit:C16960. 

  ?patient roo:P100042 ?patientID. 

  ?patient ro:P00088 ?featureObj. 

   

  ?featureObj rdf:type ro:Y1RO. 

  #the Radiomics Ontology defines "ro:Y1RO" as a grey-level size zone matrix tex-

tural feature, specifically grey-level nonuniformity normalized 

  # i.e. https://bioportal.bioontology.org/ontologies/RO/?p=classes&concep-

tid=http%3A%2F%2Fwww.radiomics.org%2FRO%2FY1RO 

  #the same feature is called Fszm.glnu.norm according to the IBSI terminology. 

   

  ?featureObj ro:P00578 ?paramspace.    #obtain the feature 

parameter space 

  ?paramspace ro:P00009 ?discretisationparam. #for each feature parameter 

space, what intensity discretization algorithm was used 

  ?discretisationparam ro:P0295212521 ?discretisationAlgorithm. 

           

   #for a given discretization settings, what type of algo-

rithm was used  

   

  FILTER regex(?patientID, "^HN1067").   #purely for this ex-

ample, we arbitrarily selected one subject to examine 

} 

Text box 2. Example of a SPARQL query for examining the different intensity discretization 
algorithm (i.e. histogram binning) for textural radiomics feature for a single arbitrarily se-
lected subject in the Head-Neck1 collection.  

prefix rr: <http://www.w3.org/ns/r2rml#> 

prefix ex: <http://example.com/ns#> 

prefix sty: <http://purl.bioontology.org/ontology/STY/> 

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

prefix xsd: <http://www.w3.org/2001/XMLSchema#> 

prefix ncit: <http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#> 

prefix roo: <http://www.cancerdata.org/roo/> 

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

prefix ro: <http://www.radiomics.org/RO/> 

PREFIX sedi: <http://semantic-dicom.org/dcm#> 

PREFIX seq: <http://semantic-dicom.org/seq#> 

prefix owl: <http://www.w3.org/2002/07/owl#> 
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SELECT DISTINCT ?patientID ?seriesUID ?modality ?sliceThickness ?featureObj 

?Fvalue ?time  ?deathStatus 

WHERE { 

    ?patient rdf:type ncit:C16960. 

    ?patient roo:P100042 ?patientID FILTER regex(?patientID, "^LUNG1-"). 

    ?patientSedi sedi:ATT00100020 ?patientID. #the patient research ID is used to 

link across to the DICOM headers 

     

    # Get DICOM study (linked to this patient) 

    ?patientSedi sedi:hasStudy ?study. 

    ?study sedi:ATT0020000D ?studyUID. 

    OPTIONAL { ?study sedi:ATT00081030 ?studyDesc. } 

 

    # Get the DICOM series (linked to this study) 

    ?study sedi:containsSeries ?series. 

    ?series sedi:ATT0020000E ?seriesUID; 

            sedi:ATT00080060 ?modality FILTER regex(?modality, "^CT$"). 

    OPTIONAL { ?series sedi:ATT0008103E ?seriesDesc. } 

   

   # Get the radiomics features defined as grey-level size zone matrix non-uni-

formity normalized 

   #(linked to this patient) 

    ?patient ro:P00088 ?featureObj. 

 ?featureObj ro:P00578 ?paramspace; roo:100042 ?Fvalue FILTER re-

gex(str(?paramspace), "FeatureParameterSpace_1$"). 

   

    ?patient roo:P100254 ?death. 

    ?death roo:P100042 ?deathStatus. 

    ?patient roo:has ?survivaldayssinceRT. 

    ?survivaldayssinceRT rdf:type ncit:C125201; roo:P100042 ?time. 

   

    # Get image objects (image objects or RTStruct objects) 

    ?series ?contains ?image. 

    FILTER (?contains IN (sedi:containsImage, sedi:containsStructureSet)). 

    ?image sedi:ATT00080018 ?sopInstanceUID. 

   ?image sedi:ATT00180050 ?sliceThickness. 

     

   # Additional series info (not always available in every combination) 

    ?equipmentObj sedi:isEquipmentOf ?series. 

    OPTIONAL { ?equipmentObj sedi:ATT00080070 ?manufacturer } 

    OPTIONAL { ?equipmentObj sedi:ATT00081090 ?model }     



99 
 

} LIMIT 100 

Text box 3. Example of a SPARQL query for directly cross-referencing DICOM headers, radi-

omics features and survival outcome into a single query. The result of the query is shown in 

Figure 3. 

 

Figure 3. A partial snapshot of the example query given in Text Box 3. Given as a result of 
the query are : the subject research ID, the CT series instance unique identifier (UID), the 
imaging modality and the slice thickness. Each of these are associated with 13 distinct mor-
phological feature concepts (in column featureObj) and the numerical value of each radi-
omics feature (in column Fvalue). The DICOM and radiomics data are cross-referenced to 
the vital status and survival time interval as per the example in Text Box 1. 

4.3 Discussion 
 

4.3.1 Advantage of using ontologies and storing data on the World Wide Web 

Patients’ data and specifically demographics or clinical details play a crucial role in predic-
tion modelling studies. Transparent and reproducible radiomics research requires availabil-
ity of data and metadata associated with a particular study. In the case of prediction mod-
elling, these tend to be source images and the clinical outcomes, for example, survival status 
and survival time interval. 

One of the ways to render data FAIR and easily available to be queried remotely over well-
established World Wide Web technology is to archive them as RDF data on a persistent 
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online SPARQL endpoint. This requires existing domain ontologies in order to unambigu-
ously define concepts, and relationships between concepts, by mapping them to standard-
ized terminology. The use of publicly defined ontologies and machine-readable lexicons 
overcome the potential barriers of human language understanding and unknown data en-
codings. The ontologies further apply some level of knowledge representation that follows 
in the tracks of human logic and inferencing, such that we can use machine-based queries 
to discover and process data, without having to first develop extensive knowledge of the 
relational database structure of the original data. Lastly, we were able to exploit the intrin-
sically federated pattern-matching nature of SPARQL queries to show how to efficiently 
cross-reference data from across the clinical, DICOM header and radiomics domains. 

4.3.2 Potential applications 

By making this data available on the SPARQL endpoint, we offer a version of the combined 
DICOM data, clinical information and radiomics features in a manner that is in closer align-
ment with FAIR data principles. In this way, we hope to facilitate the investigation of radi-
omics reproducibility research across different institutions, each of which may speak differ-
ent human languages, use different imaging protocols and extract radiomics features in sub-
tly different ways. The queries demonstrated here work in the same way even if this RDF 
data had been partitioned over multiple databases, irrespective of its geographical location. 

As has been shown in other publications, the proposed methodology here can be used pro-
spectively for exchanging radiomics prediction models for training or validation, in accord-
ance with a paradigm known as distributed (or equivalently, federated) machine learning42–

44. 

We have provided examples of SPARQL queries, primarily as a form of guidance notes on 
how to use this data submission. We would encourage the academic community to adjust 
them according to their own questions and potentially utilize this methodology for multi-
center studies. The reusability of the datasets is strongly supported by the usage of publicly 
available ontologies, such that the reader is able to look up the ontologies online to search 
for concepts of interest to them. We have also shared mapping files and RDF conversion 
scripts on a public code repository, that can also be re-used in future. 

4.3.3 Limitations of the present submission 

One of the major and potentially time-consuming tasks on the way to publishing the RDF 
data is the mapping of data fields and data values. We have tried to streamline the process 
in the current submission by preparing mapping files as templates and, wherever possible, 
using scripting to control serialization applications such as R2RML. However, it is acknowl-
edged that there is no single universally “correct” mapping to a given target ontology. It is 
likely that persons working independently could apply the same ontologies but produce 
quite different (and potentially incompatible) knowledge representations. In the analogy of 
graphs, there is no single unique graph to represent a given dataset; it is possible to derive 
many different such graphs that are still logically plausible. In semantic data circles, this is 
well-known as the “open-world” paradigm that is commonly expressed as “anyone can say 
anything about anything”. 
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The solution of such a problem is not up to any one piece of investigation nor any one data 
scientist. As with all conventions and normative standards in healthcare, convergence grad-
ually emerges over time through numerous cycles of usage, refinement and dissemination. 
Our methodology and RDF database is therefore not static, so it is intended to be improved 
and refined together with developing methodology over time. 

4.3.4 Possibilities for future development 

The question of comparing and then reconciling different data graphs is an ongoing and 
active line of research in data science. These so-called shape expressions do not fall within 
the present scope of submission, but could lead to promising opportunities for improve-
ment. This potentially makes it possible to query data graphs independently of the norms 
assumed by its publisher. 

There is also strong research activity towards stricter standardization of data collection and 
top-down imposition of knowledge representation. Unlike the approach used in this work, 
where we the first had the data and then cast it towards a target ontology, the top-down 
approach requires data elements and a data structure to be rigidly defined first of all before 
the data is collected. This would be very useful for mapping prospective data, but it is less 
clear how such rigid standards should be applied to legacy data and retrospective studies. 

Research is currently in progress towards a modular mapping process, where mappings for 
generic information that is common for many disease types (e.g. patient demographics) can 
be rigidly defined and re-used often. At the opposite end, highly study-specific mappings 
may need to be more dynamic or performed on an ad hoc basis. Modular and piece-wise 
reusable mappings for closely related disease types may significantly reduce the overall RDF 
preparation time, however at time of writing such a modular process was not yet ready. 

4.4 Conclusion 
 

We have updated and improved four imaging datasets on TCIA. We converted and pub-
lished clinical data, radiomics features and DICOM headers as online RDF from these four 
datasets using ontologies and standard web technology. These RDF triples are stored in a 
public endpoint giving an opportunity to the radiomics community to query these datasets 
using the SPARQL language. We have demonstrated the realizability of this approach of 
making the combined data available as FAIR data, in order to incentivize multicenter re-
search into reproducibility of radiomics features across multiple datasets. 
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Abstract 
Prediction modelling with radiomics is a rapidly developing research topic that requires ac-
cess to vast amounts of imaging data. Methods that work on decentralized data are urgently 
needed, because of concerns about patient privacy. Previously published computed tomog-
raphy medical image sets with gross tumour volume (GTV) outlines for non-small cell lung 
cancer have been updated with extended follow-up. In a previous study, these were re-
ferred to as Lung1 (n = 421) and Lung2 (n = 221). The Lung1 dataset is made publicly acces-
sible via The Cancer Imaging Archive (TCIA; https://www.cancerimagingarchive.net). We 
performed a decentralized multi-centre study to develop a radiomic signature (hereafter 
“ZS2019”) in one institution and validated the performance in an independent institution, 
without the need for data exchange and compared this to an analysis where all data was 
centralized. The performance of ZS2019 for 2-year overall survival validated in distributed 
radiomics was not statistically different from the centralized validation (AUC 0.61 vs 0.61; p 
= 0.52). Although slightly different in terms of data and methods, no statistically significant 
difference in performance was observed between the new signature and previous work (c-
index 0.58 vs 0.65; p = 0.37). Our objective was not the development of a new signature 
with the best performance, but to suggest an approach for distributed radiomics. Therefore, 
we used a similar method as an earlier study. We foresee that the Lung1 dataset can be 
further re-used for testing radiomic models and investigating feature reproducibility. 
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5.1 Introduction 
 

Images from radiological examinations are presently one of the largest underutilized re-
sources in healthcare “big data”1. Radiomics refers to computerized extraction of quantita-
tive image metrics, known as “features”. In 2014, Aerts et al.2 showed that radiological fea-
tures from Computed Tomography (CT) scans might encode additional information about 
phenotypic differences between tumours that lie beyond the grasp of the unaided human 
eye. The hypothesis is that multifactorial prediction models incorporating selected radiomic 
features may better inform individually personalized treatment strategies3-6. Radiomic data 
have now been investigated in CT7-9, magnetic resonance imaging (MRI)10,11 and positron 
emission tomography (PET)12,13.  

The availability of commercial and open source software for radiomic feature extraction has 
made this line of inquiry accessible to a large number of investigators14-17. However, multi-
institutional development and validation of radiomic-assisted prediction models is slowed 
down due to privacy concerns about sharing of individual patients’ medical images. Signifi-
cant efforts are under way to make image sets used in radiomic investigations openly ac-
cessible via centralized repositories such as The Cancer Imaging Archive (TCIA; 
https://www.cancerimagingarchive.net)18, however, many data owners remain cautious 
about sharing individual patient images publicly online. 

A privacy-preserving distributed learning infrastructure based on World Wide Web Consor-
tium “Semantic Web” data sharing standards19,20, known as Personal Health Train (PHT; 
https://vimeo.com/143245835)21 has been successfully used to develop and validate mod-
els on non-image clinical data22-24. To extend the PHT approach to radiomics, we first need 
to publish our radiomic features in a manner that is Findable, Accessible, Interoperable and 
Re-useable (FAIR)25. We have developed a pragmatic and extensible Radiomics Ontology 
(RO)26 that is publicly accessible via NCBO BioPortal (https://bioportal.bioontology.org/on-
tologies/RO). With the RO, we can describe over 430 class objects and 60 predicates be-
tween objects to publish radiomic features (with some relationships and dependencies) ac-
cording to Semantic Web standards. The class objects include unique feature identifiers that 
are aligned with the Image Biomarker Standardization Initiative (IBSI)27.  

In this article, we show that the PHT infrastructure supports exchange of cross-institutional 
radiomic-based clinical data without material transfer of individual-level patient clinical 
data or images. Our primary objective was to show that external validation of a radiomic 
signature can be done with entirely decentralized data. 

The specific use case was to learn a radiomic signature “ZS2019” for non-small cell lung 
cancer (NSCLC) overall survival at one institution and validate it at a remote institution in a 
distributed fashion. We included two of the NSCLC subject cohorts used by Aerts et al.2, 
however, with independently reviewed annotations (tumour delineations) and extended 
follow-up times for overall survival. We did not select new radiomic features, and instead 
used the four features corresponding to those described previously in the original publica-
tion, but using a different software implementation (see materials and methods). The first 
of these datasets (hereafter referred to as “Lung1”) was generated at Maastricht University, 
which was used exclusively for model training, thus obtaining coefficients for a four-feature 

https://www.cancerimagingarchive.net/
https://vimeo.com/143245835
https://bioportal.bioontology.org/ontologies/RO
https://bioportal.bioontology.org/ontologies/RO
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signature in ZS2019. The second of these datasets (hereafter “Lung2”) was generated at 
Radboud University remains in a private hospital collection that could not be shared publicly 
for privacy reasons; Lung2 was used exclusively for model validation.  

Table 1. The clinical case-comparison for the training cohort (Lung1) and the validation co-
hort (Lung2). The abbreviations are: (GTV) is Gross Tumour Volume delineated on the radi-
otherapy treatment planning computed tomography image, (Clinical T) is the tumour stag-
ing, (Clinical N) is the node staging and (Clinical M) is the metastasis staging, respectively, 
according to the TNM tumour classification system. 

 Lung1 

(n=421) 

Lung2 

(n=221) 

Median age (range) at diagnosis in years 68.5 (34-92) 66.0 (36-87) 

Median GTV size (range) in cm3 39 (0-660) 88 (1-860) 

Clinical T stage 

Less than 3 

3 or greater 

Unknown 

 

249 (59%) 

171 (41%) 

1 (0%) 

 

119 (54%) 

85 (38%) 

17 (8%) 

Clinical N stage 

0 

1 

2 or greater 

Unknown 

 

170 (40%) 

22 (5%) 

229 (55%) 

0 (0%) 

 

49 (22%) 

16 (7%) 

137 (62%) 

19 (9%) 

Clinical M stage 

0 

1 or greater 

 

416 (99%) 

5 (1%) 

 

200 (90%) 

21 (10%) 

Histology 

Adenocarcinoma 

Large-cell 

Squamous cell carcinoma 

Other, or not otherwise specified 

Unknown 

 

51 (12%) 

143 (34%) 

152 (36%) 

63 (15%) 

12 (3%) 

 

64 (29%) 

22 (10%) 

82 (37%) 

47 (21%) 

6 (3%) 
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Outcomes 

Median follow-up in days 

Median survival time in days 

2-year overall survival rate 

 

546 

478 

40% 

 

595 

500 

41% 

 

5.2 Results 
 

Cohort summary information was exchanged through private discussion between the col-
laborating investigators, prior to performing this study. This was to confirm that general 
characteristics were comparable between the updated cohorts. This is shown in Table 1. 
None of the information contained in Table 1 was used in the model. There was a slightly 
higher proportion of patients with metastatic disease in Lung2 (10% vs 1%) compared to 
Lung1. The most common histology types in Lung1 were large-cell and squamous-cell carci-
nomas, whereas adenocarcinoma and squamous-cell carcinoma were most common in 
Lung2. The median follow-up time, the median survival time and the overall 2-year survival 
rate were similar in both cohorts. 

We evaluated ZS2019 for 2-year overall survival using multivariable logistic regression. The 
area under the receiver operating characteristic curve (AUC) discrimination metric was 0.61 
(95% confidence interval: 0.54 to 0.69) in the Lung2 validation cohort. 
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Figure 1. The performance of radiomic signature ZS2019 according to Kaplan-Meier survival 

analysis. The signature was developed in Lung1 (MAASTRO; black line) and then distribut-

edly validated in Lung2 (Radboudumc; red line). The upper and lower survival curves were 

split according to the median of the Cox regression linear predictor from the Lung1 data, 

and applied to both Lung1 and Lung2 data. The Harrell concordance index in the test cohort 

was 0.58, the log-rank test yielded a p-value of 0.09 and the Wilcoxon test gave p-value < 

0.0001. 

 

Distributed learning code for Cox regression in MATLAB (MATLAB 2016a, Mathworks, Natick 

MA, USA) was deployed via the PHT infrastructure connecting MAASTRO Clinic and Radbou-

dumc. We retrieved anonymous event timepoints and thus compiled Kaplan-Meier curves 

for overall survival in each of the training and validation cohorts (in Figure 1). Within each 

cohort, the subjects were stratified into two risk groups, based on the median of the risk 

score distribution in Lung1.  Stratification of survival curves by ZS2019 in the validation co-

hort was quantified via a Harrell Concordance Index (HCI) of 0.58, and a 95% confidence 

interval from 0.51 to 0.65. The discrimination was statistically significantly different from 

random (p < 0.0001) based on a bootstrapped Wilcoxon estimation. We performed the 

same bootstrapped Wilcoxon estimation between the mean HCI of model ZS2019 (0.58) 

and the HCI previously published by Aerts et al (0.65)2, and found no evidence of significant 

divergence (p = 0.37). 

We confirmed that the same ZS2019 result was obtained when trained centrally on Lung1 

and validated in Lung2. The analysis is given in a Python v3.6 JuPyter notebook that is made 

publicly available (https://gitlab.com/UM-CDS/distributedradiomics). The central data ap-

proach yielded a HCI of 0.58 with a 95% confidence interval estimated by bootstrap sam-

pling to be 0.53 to 0.64. 

5.3 Discussion 
 

In this paper, a model (ZS2019) derived from radiomic features and overall survival locally 
within one institution was able to be exchanged interoperably with an external institution, 
without mandating any transfer of either images, feature values or clinical outcomes at the 
individual subject level. This is an essential and unique contribution to radiomic investiga-
tions, because we hereby demonstrate the concept for carrying out multi-centre radiomic 
studies with fully decentralized data. The results obtained with decentralized data were the 
same as if all the data had been brought into the same location. However, the unique ad-
vantage of our approach is that no one party needs to risk breaking patient confidentiality 
by exposing the original data to another party. Each institutional data owner retains com-
plete control over their privacy-sensitive patient data, and decides what they wish to share 
for a collaborative project. 

https://gitlab.com/UM-CDS/distributedradiomics
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We foresee that public access to the updated Lung1 dataset, accessible together with open 
source radiomics software code, encourages re-use of the data for validating models, inves-
tigating radiomic feature generalizability and deep-learning for image analysis. 

To learn effectively across institutions, it is essential that the investigation should be led by 
clinical experts. Our approach does not bypass the need for human experts to communicate 
extensively before commencing a study, in order to establish consensus on: (i) what is the 
clinical question to be addressed, (ii) relevant inclusion and exclusion criteria, (iii) which 
datasets are appropriate for answering the question and (iv) how to define the radiomic 
features and outcome concepts. 

With respect to handling errors and discrepancies for a distributed radiomics study, it is 
essential that each data owner takes responsibility for curation and quality assurance of the 
data, such that it conforms to the agreed consensus. Where errors are detected, it is only 
the owners of the data that are able to review, contextualize and correct their own data. 

In this study, both sites used the same feature extraction software, PyRadiomics. We re-
tained the step of attaching metadata to the features using the Radiomics Ontology so that, 
in future, sites might be able to use different software but can still understand each other 
because features having the same metadata labels from this ontology will be unambigu-
ously defined as being semantically identical. Besides applying an ontology, this also re-
quires the different Radiomics feature extraction software to use the (exact) same feature 
calculation method. 

The approach of making data FAIR using semantic ontologies has the benefit of allowing 
each data owner to keep their own native language and annotation conventions in the orig-
inal data. No syntactic harmonization of the data below the level of the FAIR station needs 
to be enforced, and no data code-books need to be exchanged. The only prerequisite here 
is that partnering institutions must follow their consensus agreement to label the compara-
ble outcomes and equivalent radiomic features with the same unique identifier from the 
same domain ontology. 

To develop ZS2019, we attempted to follow, as closely as possible, the approach adopted 
in the original publication. The HCI and AUC results we reported above were built using 
radiomic features that might not be optimal for the updated datasets, because we chose to 
use the four features with names corresponding to those described previously in the sup-
plementary material of the prior study28. Development of an optimal radiomic signature for 
NSCLC overall survival would require a detailed re-examination of features and feature se-
lection in the updated datasets, which is not the primary objective of the present study. 

The PHT approach utilises existing data to answer key questions in personalised healthcare, 
preventive medicine and value-based healthcare. PHT is one of a number of innovative ap-
proaches (DataSHIELD29 and WebDISCO30) where the research question is coded as ma-
chine-learning algorithms sent to wherever data may reside, instead of centralising all of 
the data at one location. This is achieved by (i) creating FAIR data stations, (ii) creating 
“trains” containing the research question as a machine-learning algorithm and (iii) estab-
lishing “tracks” to regulate the trains and securely transmit them to data stations. The PHT 
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is thus a “privacy-by-design” architecture, since it enables controlled access to heterogene-
ous data sources for clinical research. This respects data protection and personal privacy 
regulations, and requires active engagement of data owners in the process. 

We used Semantic Web standards to make radiomic features and outcome data available 
as FAIR stations in keeping with our trains metaphor. This included locally storing radiomic 
features and outcome states in Resource Description Format (RDF), and allowing semantic 
interoperability using a combination of the Radiomics Ontology and Radiation Oncology On-
tology. The benefit of Semantic Web is to make distributed learning possible even if the 
underlying implementation of data extraction and storage differs between sites. The RDF 
standard makes it unnecessary to first know the internal structural organization of a remote 
database in order to successfully execute a local data retrieval query. Furthermore, as the 
diversity and complexity of the data within the FAIR stations increases in the future, an RDF 
triple store approach is sufficiently flexible to describe arbitrarily complex concepts without 
the need to redesign the database. 

Use of the Varian Learning Portal (VLP; Varian Medical Systems, Palo Alto, USA) was of ben-
efit for distributed radiomics, because the software had already implemented the essential 
technical overheads (logging, messaging and internet security) required for such distributed 
studies. This included underlying legal agreements between the parties and Varian, that 
makes distributed radiomics more scalable since one does need to revisit these common 
aspects above for each project. The VLP system had no effect on the mathematical results 
of our study because it was purely a way for us to securely transmit learning algorithms and 
trained models. Alternatives to VLP such as DataSHIELD (http://www.datashield.ac.uk)29, 
WebDisco (https://omictools.com/webdisco-tool)30 and ppDLI  (https://distributedlearn-
ing.ai/blog) may also be used for distributed radiomics. The differences between the pre-
sent study and the original study may be traced to : (i) the original Matlab code is commer-
cial confidential and not available to the authors, so we used PyRadiomics developed by 
Aerts et al.2 as a practical alternative and (ii) we tried our best to replicate the original 
method using the documented steps in the original manuscript, but we also improved the 
survival follow-up such that many right-censored events were now confirmed deaths. 

 

5.4 Conclusion 
 

This study demonstrates the proof of concept for multi-centre distributed radiomics inves-
tigation without exchanging individual-level data or medical images using the PHT infra-
structure. The results showed that the proposed decentralized approach achieved the 
identical results as the fully centralized approach. Moreover, we performed a radiomics 
study where data was stored in the FAIR station at the institute rather than publishing as 
open-source. Finally, the work of this study may be used as the basis for other types of ra-
diomics studies such as binary classification or regression, not only limiting to survival 
analysis.  

5.5 Methods 
 

http://www.datashield.ac.uk/
https://omictools.com/webdisco-tool
https://distributedlearning.ai/blog/
https://distributedlearning.ai/blog/
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Patients 

Subjects in this replication study were from the same cohorts of non-small cell lung cancer 
(NSCLC) patients previously treated with (chemo-)radiotherapy at MAASTRO Clinic (MAAS-
TRO) and Radboud University Medical Centre (Radboudumc). These were previously la-
belled by Aerts et al.2 as cohorts “Lung1” and “Lung2”, respectively, and the same nomen-
clature is followed in this study. The Lung1 cohort (n = 421) was used only for fitting of 
model coefficients, and Lung2 (n = 221) was exclusively used for external validation. 

Tumour delineations 

Radiotherapy treatment planning DICOM CT images and physician-delineated primary 
NSCLC tumours as RT structure sets were used. From 422 available, 34 cases were found to 
have a reference frame translation between the image and delineation due to incorrect 
coding of the treatment couch height offset in the planning system; these have been recti-
fied for the TCIA collection. Only 1 patient was post-operative radiotherapy, so this case was 
excluded from any further analysis, leading to 421 eligible cases in Lung1 for model training. 

 
   

Figure 2. A schematic diagram explaining the primary methodology for survival analysis used 
in this study. Details have been provided in the text. Briefly, radiomics features were ex-
tracted locally by each institution and then labelled with the radiomics ontology. We then 
trained a Cox regression model on Lung1 (MAASTRO) and then validated on Lung2 (Radbou-
dumc) by distributing the learning algorithm through the Varian Learning Portal (VLP). Only 
the event coordinates required to plot a Kaplan-Meier survival curve was returned to MAAS-
TRO, without any identifiable patient-level data. 

 

In the Lung2 cohort, there were initially 267 subjects available. A check against delineation 
criteria found 221 eligible primary tumours for radiomic analysis. The other 46 patients had 
either gross tumour volumes including lymph nodes, or were cases with neoadjuvant treat-
ment or had no primary tumour in the list of structures. 

Outcomes 

Updated follow-up intervals in early 2018 with recent dates of death were obtained with 
ethics board permission from the Dutch citizens registry. As expected, the number of regis-
tered deaths in Lung1 and Lung2 had increased significantly since the original publication. 
The time intervals from date of first radiotherapy fraction to date of either registered death 
or last known survival were updated in both Lung1 and Lung2. 
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Data processing 

The study steps are shown schematically in Figure 2 for MAASTRO and Radboudumc. The 
core of the radiomic feature extraction process utilizes free and open-source PyRadiomics15 
(v1.3) libraries. Software wrapper extensions collectively known as O-RAW 
(https://gitlab.com/UM-CDS/o-raw) were used to convert DICOM objects into numerical ar-
rays as inputs for PyRadiomics; these were based on the SimpleITK (v1.0.1)31 toolkit. 

The original MATLAB scripts used by Aerts et al. were not accessible to the current authors. 
The open source PyRadiomics was developed independently of this MATLAB code, and was 
based on the original study from Aerts et al. The PyRadiomics community has documented 
and standardized the feature calculation formulae (https://pyradiomics.readthedocs.io) 

The image pre-processing methodology was the same as in the original publication2; an ex-
traction intensity bin width was set at 25 Hounsfield Units with no image resampling and no 
image intensity normalization. The coif1 wavelet package from the pywavelets library 
(v0.5.2, https://github.com/PyWavelets/pywt) was used to generate wavelet features with 
a starting bin edge of 0. All of these settings are the default in PyRadiomics. 

For the development of ZS2019 we did not select new radiomic features, and instead used 
the four features with names corresponding to those described previously in the supple-
mentary material28 that accompanied the original publication: 

i. energy from the intensity histogram feature class, which estimates the overall den-
sity of the region of interest, 

ii. compactness from the morphological feature class, which describes the volume of 
the object relative to that of a perfect sphere, 

iii. grey level run-length matrix (GLRLM) non-uniformity from the textural feature 
class, which is a measure of intensity heterogeneity averaged over 13 different directions in 
a 3D matrix of values, and 

iv. wavelet-filtered (HLH) GLRLM non-uniformity, which was the same as (iii) after ap-
plying a wavelet decomposition filter over the original image. 

 

In our work, the feature “compactness” had been deprecated in PyRadiomics, so we derived 
the mathematical equivalent of compactness by taking the cube of the shape feature “sphe-
ricity” (see formulae in Table A of Supplementary Materials).  

Semantic web ontologies 

Semantic Web technologies and ontologies play a key role in distributed learning by ena-
bling semantic interoperability between data from multi-centres. In this study, radiomic fea-
tures and clinical data were defined by a Radiomics Ontology v1.3 (https://bioportal.bioon-
tology.org/ontologies/RO) and a Radiation Oncology Ontology32 , respectively.  

https://gitlab.com/UM-CDS/o-raw
https://github.com/PyWavelets/
https://github.com/PyWavelets/pywt
https://bioportal.bioontology.org/ontologies/RO
https://bioportal.bioontology.org/ontologies/RO
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We elected to use the published open access Radiomics Ontology, that identifies radiomic 
features via a globally persistent unique identifier and allows us to attach important de-
pendencies, such as digital image pre-processing steps, directly to each given feature. 
Though radiomic features definitions have been defined by previous investigators, our con-
tention is that human-readable labels alone may not always be easily extensible to define 
dependencies such as software versions, image pre-processing steps and mathematical im-
plementation of the feature. For example, to avoid conflation between features labelled 
“entropy”, the IBSI distinguishes between Intensity Histogram Entropy (unique ID = TLU2) 
and the textural feature Joint Entropy (unique ID = TU9B). The Radiomic Ontology allows 
extensible and adaptable declaration of radiomic feature provenance by publishing it as a 
data graph object. Therefore, independent researchers (in the aforementioned example) 
who have computed Joint Entropy may use the SPARQL federated query language20 on fea-
ture graphs to also probe for similarities in imaging setting, pre-processing methods, and 
suchlike. We hypothesise that the data graph based approach is more scalable than pairwise 
cross-referencing of multiple dictionaries of feature definitions. 

Distributed approach 

The VLP distributed learning architecture has been described in deep detail elsewhere22-24 . 
In brief, VLP consists of (i) a global web-based clinical learning environment that spans 
across any number of participating institutes for a given learning project, and (ii) a local 
connector application that runs exclusively inside the IT firewall of each institute. The for-
mer coordinates access permission, asynchronous messaging, web security and site privacy 
protocols across the learning network, while the latter hosts a local FAIR data repository. 
Radiomic feature values were hosted in the respective VLP local connector application 
(v2.0.1) as RDF. 

Authenticated and verified (e.g. encrypted digital signature) machine learning packages are 
distributed via the global part of VLP, then picked up and executed on the RDF data via the 
local connector part. Only the statistical summary result of the computation, not any iden-
tifiable patient data, is thereafter passed back to the instigator via the global VLP part. Any 
process that had executed within local firewalls remain permanently quarantined from the 
global part.  

Model training 

The Lung1 radiomic feature values were log-transformed and then scaled to z-scores. A mul-
tivariable Cox proportional hazards model for overall survival (with removal of right cen-
sored subjects not yet deceased) was then fitted using all of the available subjects in the 
training cohort. The median risk score in the training cohort was recorded and thus used to 
stratify the training population into two risk groups. The fitted Cox model coefficients, the 
median risk score and the z-score transformations from the training cohort were packaged 
as self-contained validation application, which was then transmitted via VLP to Radbou-
dumc.  

At Radboudumc, the application queried the local RDF repository for the radiomic features, 
then applied the same log-transform of raw feature values and the same z-score scaling as 
had been executed on Lung1. For each available validation subject in Lung2, the risk score 
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was computed and stratified according to the median risk score of Lung1. A flat table of 
individual timepoints and death/censor events was sent back via VLP to MAASTRO. 

Cox model evaluation 

Anonymous timepoints for Kaplan-Meier survival curves33 were retrieved over the PHT in-
frastructure. Risk scores were stratified into two strata according to the median value in the 
Lung1 population. A Harrell concordance index (HCI)34 implemented using the python life-
lines package (v0.14.4) was used to quantify discrimination performance using the retrieved 
timepoints. The log-rank method35 was used to calculate a chi-squared test statistic and p-
value for the significance of the discrimination. To assess if the survival model had any value 
beyond random discrimination (null hypothesis: c-index = 0.5), we used a two-sided Wil-
coxon test with a bootstrap approach on 100 repeated sub-samples of 100 patients per 
repetition from Lung2. 

 

 

 

2-year overall survival 

A multivariable logistic regression model for 2-year overall survival was developed on Lung1 
then validated on Lung2 using the aforementioned four features. The area under the curve 
of the receiver operating characteristic was used to assess the discrimination. The bootstrap 
method (1000 times) was used to estimate a 95% confidence interval around the mean AUC. 

 

 

Code availability 

The code used in this study is made publicly available on the Maastricht University Clinical 
Data Science (UM-CDS) GitLab repository (https://gitlab.com/UM-CDS/distributedradi-
omics). The code repository has the following organization: 

a. D2RQ folder: contains the raw feature value to RDF mapping (D2RQ) script and the 
SPARQL query used to retrieve the local data into the local VLP connector application. 

b. VLP folder: contains the MATLAB codes submitted by the user into VLP, which then 
transmits it to the participating site for model validation and analysis. 

c. Analysis Centralized Learning folder: contains the Jupyter notebook from Radbou-
dumc for model development and evaluation on the aggregated datasets. 

 

5.6 Data Availability 
 

The Lung1 images, primary tumour delineations (from Method: tumour delineations) and 
clinical outcomes with updated follow-up (from Method: outcomes) has been approved for 

https://gitlab.com/UM-CDS/distributedradiomics
https://gitlab.com/UM-CDS/distributedradiomics
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open access publication, and is curated as the collection called “NSCLC-Radiomics” via The 
Cancer Imaging Archive (TCIA) (https://wiki.cancerimagingarchive.net/display/Pub-
lic/NSCLC-Radiomics). The clinical data for Lung1 that support the findings of this study are 
also available in TCIA with the data identifier 
(http://doi.org/10.7937/K9/TCIA.2015.PF0M9REI). Further information regarding the 
Lung1 data may be obtained from the authors responsible, A Dekker (email: andre.dek-
ker@maastro.nl; address: Doctor Tanslaan 12, 6229 ET; Maastricht, The Netherlands; 
phone: +31 88 445 5600) and L Wee (email: leonard.wee@maastro.nl; address: Doctor 
Tanslaan 12, 6229 ET; Maastricht, The Netherlands; phone: +31 88 445 5600) 

The Lung2 datasest that support the findings of this study are available by request from the 
authors R Monshouwer (email: rene.monshouwer@radboudumc.nl; address: Radboud uni-
versity medical center, Department of Radiation Oncology, Geert Grooteplein 32, 6525 GA, 
Nijmegen, The Netherlands; phone: +31 24 361 4515) and J Bussink (email: jan.bus-
sink@radboudumc.nl; address: Radboud university medical center, Department of Radia-
tion Oncology, Geert Grooteplein 32, 6525 GA, Nijmegen, The Netherlands; phone: +31 24 
361 4515). This part of data are not publicly available due to the data containing information 
that could compromise research participant privacy. 
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The open-access Radiomics Ontology (RO) is published via the National Center for Biomed-
ical Ontology (NCBO) ontology registry. It is available to download in a range of formats 
from the following URL: https://bioportal.bioontology.org/ontologies/RO. As a domain on-
tology, the RO defines histogram-based, morphology-based and texture-based radiomic 
features, including (since v.1.6, 08 November 2018) all feature entities presented in the 
International Biomarker Standardization Initiative. The ontology also defines software 
properties, digital imaging filter operations and feature extraction settings, together with 
relational predicates to link these to each feature entity. 
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Abstract 
Purpose/Background: We externally validated the Normal Tissue Complication Probability 

(NTCP) Grade ≥ 2 at 6months dysphagia model for head and neck cancer patients included 

in the Dutch National Indication Protocol for Proton Therapy (NIPP) using an independent 

patient cohort treated with (chemo)radiotherapy in MAASTRO clinic. 

Materials/Methods: We used 277 head and neck cancer patients treated with (chemo)ra-

diotherapy in MAASTRO clinic between 2019-2021. For the evaluation of the model discrim-

ination we used statistics metrics such as the sensitivity, specificity and the area under the 

receiver operating characteristic (ROC) curve.  

After validation we evaluated if the NTCP model can be improved using a closed testing 

procedure (CTP). Specifically, we used calibration curves to graphically assess the  i) Original 

model, ii) Recalibration in the large, iii) Recalibration and iv) Model revision).  

The code used for the implementation of CTP and the creation of calibration curves was 

written in the statistical analysis software RStudio. 

Results: The performance of the original NTCP model for dysphagia grade ≥ 2 at 6 months 

was good in the independent cohort of MAASTRO clinic (AUC=0.80) but according to its 

calibration curve it was underestimating the risk of the head and neck patients to develop 

dysphagia. Therefore, we implemented the CTP. The CTP indicated that the model had to 

be updated and selected a revised model with updated predictor coefficients as an updated 

model. The revised model had also a satisfactory discrimination in MAASTRO’s cohort  

(AUC=0.83) with an improved calibration of predicted and observed NTCP values. 

Conclusion: The validation of the NIPP NTCP model for dysphagia Grade ≥ 2  was successful 

in our independent validation cohort but can be improved using the CTP. Future steps in-

clude the participation of more independent radiotherapy centres for the validation of the 

NIPP NTCP models through a federated learning approach of the personal health train (PHT) 

infrastructure.  
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6.1 Introduction 
 

Head and neck cancer (HNC) constitutes one of the most common cancer types worldwide. 

It is estimated that over 400.000 deaths are caused by HNC malignancies annually1. In Eu-

rope specifically, HNC accounts for 4 percent of the cancer incidence with more than 60.000 

deaths annually 2. Radiotherapy (RT) is one of the main treatment modalities for HNC cancer 

and is generally prescribed alone or in combination with surgery and/or chemotherapy. 

During the last years, several novel photon-based RT techniques have been implemented in 

clinical practice such as intensity-modulated radiation therapy (IMRT) and the Volumetric 

Modulated Arc Therapy (VMAT). The main goal of these RT techniques is to deliver the op-

timal radiation dose to the treatment target while minimising the radiation dose to the 

nearby healthy tissues and organs at risk (OARs) and therefore reducing acute and late ra-

diation-induced toxicities3. This is especially relevant to HNC patients due to the close prox-

imity of several important organs within a small area of the body. 

In addition, proton-based RT is used increasingly in clinical practice to treat HNC due to its 

potential to further reduce the dose delivered to healthy normal tissues and OARs com-

pared to photon-based treatments. Proton particles have a particular physical property 

called “Bragg peak”4 where they deposit the maximum amount of their energy in the end 

of their “pathway” to the anatomical tumour target with a very low radiation dose after this 

peak. Therefore, PT techniques such as the Intensity-Modulated Proton Therapy (IMPT) can 

potentially benefit HNC patients treated for palliative or curative purposes5.  

This benefit is mainly based on the improvement of the local tumour control and the dose 

sparing of the normal tissues reducing early and late toxicities after PT such as dysphagia. 

This is one of the main RT-induced complications in HNC patients and is characterised by 

difficulty in the swallowing process in the bolus from the oral cavity to the stomach. Dys-

phagia can greatly reduce quality of life and cause other late RT induced late effects such as 

nutritional implications and feeding tube dependence6. 

In the Netherlands it is estimated that approximately 2000 HNC patients are treated with 

RT annually7. The first Proton therapy (PT) treatments took place in the Netherlands in 2018 

and currently more than 2000 patients have been treated collectively by the three PT cen-

tres of the country (MAASTRO clinic in Maastricht, University Medical Centre of Groningen 

(UMCG) and the Holland Proton Therapy Centre (PTC) in Delft). Before the start of the first 

PT treatments, a systematic effort was initiated to develop data-driven selection and quali-

fication of patients that will benefit most from PT called the “model-based approach” 

(MBA)8. The MBA works by using machine learning (ML), a subdivision of artificial intelli-

gence, to compare different normal tissue complication probability (NTCP) profiles between 

the most optimal photon and proton RT treatment plans. These insights then enable clini-

cians to select those patients for PT that will have a clinical benefit in terms of reduced 

radiation-induced toxicity rates after the RT treatment translated in the difference between 

the proton and photon NTCP profiles estimation (ΔNTCP). 

https://www.zotero.org/google-docs/?foHksa
https://www.zotero.org/google-docs/?hCkzBl
https://www.zotero.org/google-docs/?HGYDpF
https://www.zotero.org/google-docs/?OfSWAD
https://www.zotero.org/google-docs/?ARcvFQ
https://www.zotero.org/google-docs/?anCYeg
https://www.zotero.org/google-docs/?fLEdi3
https://www.zotero.org/google-docs/?guP1MV


123 
 

 

The different dose parameters of the different OARs as well as other clinical variables such 

as the baseline toxicity scores according to Patient Reported Outcome (PROMs) question-

naires or physician-rated scores (CTC-AE) or the tumour location are included in these NTCP 

profiles. The first National Indication Protocol for Proton therapy (NIPP) was clinically im-

plemented in University Medical Centre Groningen (UMCG) in  the Netherlands in 20197. 

The NIPP, approved by the National Health Care Institute (Zorginstituut Nederland; ZIN) in 

the Netherlands, is the official patient selection mechanism for treatment with PT in the 

Netherlands. As a result, treatment of patients selected by the NIPP MBA is fully reimbursed 

by Dutch healthcare insurance.  

However, to continue the support and ensure accurate selection via the MBA, standardised 

registration of high quality patient data is required. The ProTRAIT initiative (PROton Therapy 

ReseArch regIsTry)9 was initiated in 2019 in the Dutch PT centres. The ProTRAIT goal is to 

systematically register patients data from different tumour groups including demographic 

data10 that can support the MBA. Furthemore, the data are transformed in a FAIR data11 

format in each participating PT centre so that the different NTCP statistical profiles can be 

validated in a privacy preserving manner using the Personal Health Train (PHT) infrastruc-

ture12. In this study, we aimed to assess the accuracy and robustness of part of the current 

NIPP13 MBA. To this end, we validated the logistic regression-based NTCP model for Dys-

phagia grade ≥ 2 at 6 months (primary setting)  as described by the NIPP7 using data from 

photon and proton-based RT treatment plans of patients treated in the PT centre of MAAS-

TRO clinic in the Netherlands.  

6.2 Materials/Methods 
 

6.2.1 Developed NTCP model 

The NTCP dysphagia logistic regression model as described in the National Protocol for 

model-based selection for PT by Langendijk et al.13. The model’s goal is to predict the NTCP 

values of patient candidates for PT to develop greater than second grade dysphagia six 

months after the end of their RT treatment. Dysphagia was graded by physicians according 

to the Common Toxicity Criteria for Adverse Events version 4.0 (CTCAEv4.0). The model con-

sists of six different predictors, i) the mean radiation delivered dose in Gray (Gy) to the oral 

cavity, ii-iv) the mean radiation delivered dose in Gy to the superior, medium and superior 

pharyngeal constrictor muscle (PCM), v) the baseline dysphagia score in the start of RT and 

vi) the tumour location. The model was developed using 813 patients treated with RT in 

UMCG and it is currently clinically integrated in the Dutch PT centres for the selection of 

patients for PT according to the MBA8,13. The NTCP dysphagia model in the primary setting  

is described in equation 1. 

 

 

https://www.zotero.org/google-docs/?YX5Kin
https://www.zotero.org/google-docs/?1nIQSO
https://www.zotero.org/google-docs/?I0VTCr
https://www.zotero.org/google-docs/?r2H7qc
https://www.zotero.org/google-docs/?j4Zw0F
https://www.zotero.org/google-docs/?FH6G7f
https://www.zotero.org/google-docs/?D7xVTL
https://www.zotero.org/google-docs/?cBMGdx
https://www.zotero.org/google-docs/?UMEuqz
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Equation 1 

 

𝑁𝑇𝐶𝑃 𝑑𝑦𝑠𝑝𝑔ℎ𝑎𝑔𝑖𝑎 𝑖𝑛 𝑠𝑖𝑥 𝑚𝑜𝑛𝑡ℎ𝑠 =
1

1 + 𝑒−𝐿𝑃
 

𝐿𝑃 =  −4.0536 + 𝐷𝑚𝑒𝑎𝑛 𝑂𝑟𝑎𝑙 𝐶𝑎𝑣𝑖𝑡𝑦 ∗ 0.0300 + 𝐷𝑚𝑒𝑎𝑛 𝑆𝑢𝑝𝑒𝑟𝑖𝑜𝑟 𝑃𝐶𝑀 ∗ 0.0236  

𝐷𝑚𝑒𝑎𝑛 𝑀𝑒𝑑𝑖𝑢𝑚  𝑃𝐶𝑀 ∗ 0.0095 + 𝐷𝑚𝑒𝑎𝑛 𝐼𝑛𝑓𝑒𝑟𝑖𝑜𝑟 𝑃𝐶𝑀 ∗ 0.0133

+  𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑑𝑦𝑠𝑝ℎ𝑎𝑔𝑖𝑎 𝑠𝑐𝑜𝑟𝑒  

+𝑇𝑢𝑚𝑜𝑢𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑑𝑦𝑠𝑝ℎ𝑎𝑔𝑖𝑎 𝑠𝑐𝑜𝑟𝑒 = 0.000  𝑓𝑜𝑟 𝑑𝑦𝑠𝑝ℎ𝑎𝑔𝑖𝑎 𝑠𝑐𝑜𝑟𝑒 = 0 − 1 

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑑𝑦𝑠𝑝ℎ𝑎𝑔𝑖𝑎 𝑠𝑐𝑜𝑟𝑒 = 0.9382  𝑓𝑜𝑟 𝑑𝑦𝑠𝑝ℎ𝑎𝑔𝑖𝑎 𝑠𝑐𝑜𝑟𝑒 = 2 

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑑𝑦𝑠𝑝ℎ𝑎𝑔𝑖𝑎 𝑠𝑐𝑜𝑟𝑒 = 1.2900 𝑓𝑜𝑟 𝑑𝑦𝑠𝑝ℎ𝑎𝑔𝑖𝑎 𝑠𝑐𝑜𝑟𝑒 ≥  3  

𝑇𝑢𝑚𝑜𝑢𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 0.000  𝑓𝑜𝑟 𝑜𝑟𝑎𝑙 𝑐𝑎𝑣𝑖𝑡𝑦 𝑡𝑢𝑚𝑜𝑢𝑟𝑠 

𝑇𝑢𝑚𝑜𝑢𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = −0.6281 𝑓𝑜𝑟 𝑝ℎ𝑎𝑟𝑦𝑛𝑥  𝑡𝑢𝑚𝑜𝑢𝑟𝑠 

𝑇𝑢𝑚𝑜𝑢𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = −0.7711  𝑓𝑜𝑟 𝑙𝑎𝑟𝑦𝑛𝑥  𝑡𝑢𝑚𝑜𝑢𝑟𝑠 

𝐴𝑏𝑏𝑟𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠: 𝐿𝑃 = 𝐿𝑖𝑛𝑒𝑎𝑟 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟, 𝐷𝑚𝑒𝑎𝑛 = 𝑚𝑒𝑎𝑛 𝑑𝑜𝑠𝑒,

𝑃𝐶𝑀 =   𝑃ℎ𝑎𝑟𝑦𝑛𝑔𝑒𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑖𝑐𝑡𝑜𝑟 𝑀𝑢𝑠𝑐𝑙𝑒  

6.2.2 External validation cohort 

For the external validation of the NTCP logistic regression model described in equation 1, 

we used an independent dataset of 277 patients treated with primary (chemo-)RT in MAAS-

TRO clinic between 2019 and 2021. The patients were diagnosed with malignancies of the 

pharynx and larynx and were treated using photon (263 patients) and proton-based (14 pa-

tients) RT techniques. The demographic, clinical and OARs dosimetric characteristics are 

presented in Table 1.  

 

 

 

 

 

 

 

 

 



125 
 

 

Table 1: Patients' cohort characteristics (n=277) that was used for the validation of the 

NTCP ≥ 2 grade six months dysphagia model 

Demographic characteristics 

Gender N (%) 

Men 194 (70) 

Women 83 (30) 

Age groups in years N (%) 

≤ 60 years old 90(32.5) 

> 60 years old 187(67.5) 

Clinical characteristics 

Clinical T stage 8th edition N (%) 

T1-T2 122(44) 

T3-T4 142(51.2) 

Tis 2(0.7) 

Tx 11(4.1) 

Clinical N stage 8th edition N (%) 

≤N2 250(90.2) 

≥N3 18(6.5) 

Nx 9(3.3) 

Clinical M stage 8th edition N (%) 

M0 253(91.3) 
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M1 2(0.7) 

Mx 22(8) 

Tumour location N (%) 

Pharynx 188(67.9) 

Larynx 89(32.1) 

Dosimetric characteristics-predictors of the NTCP model for dysphagia grade  ≥ 2 at 6 

months (Gy) 

Dmean oral cavity  24.6 

Dmean PCM superior  36.2 

Dmean PCM medium 41.8 

Dmean PCM inferior 37.6 

Dysphagia  

Baseline dysphagia CTCAEv4.0 N (%) 

< grade 2 233(84.1) 

>= grade 2  44(15.9) 

Six months dysphagia CTCAEv4.0  N (%) 

< grade 2 190(68.5) 

>= grade 2 87(31.5) 

Abbreviations: NTCP= Normal Tissue Complication Probability, Dmean= Mean radiation 

dose, PCM= Pharyngeal Constrictor Muscle, CTCAEv4.0=Common Toxicity Criteria for Ad-

verse Events version 4.0  

6.2.2 Statistical analysis 

We used the closed testing procedure (CTP) as described and implemented by Vergouwe et 

al.14 to validate the NTCP model (equation 1) and to examine whether the model needs  

updating. CTP follows a three levels calibration hierarchy comparing the updated calibrated 

models against the original using likelihood ratio tests by testing the statistical significance 

https://www.zotero.org/google-docs/?UErAOZ
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of them (ie. p value <0.05) . Following the CTP methodology, we examined four different 

logistic regression NTCP models. The first one included the calculation of the NTCP values 

according to the original  ≥2 grade dysphagia model. For the second model, a new intercept 

was estimated for the NTCP model of the equation 1 after setting its coefficient equal to 1 

(“Recalibration in the large”). For the third model, a new updated coefficient of the original 

NTCP model’s linear predictor was estimated (ie. slope) as well as with the intercept of the 

model (“Logistic Recalibration”). For the fourth model, we used the complete set of predic-

tor variables used in the original NTCP model, to estimate their respective coefficients 

(“Model revision/update”).  Table 2 presents all models described above and includes the 

names used to describe the models in the remainder of the manuscript. The code used to 

execute these four aforementioned models was written in the open-source statistical anal-

ysis software tool RStudio15. The selected final model was chosen according to the CTP func-

tion of Vergouwe et al.14. The RStudio-based15 code used for the CTP implementation is 

publicly available in the Github repository (ProTRAIT/CTP_dysphagia_NTCP.R at main · 

MaastrichtU-CDS/ProTRAIT (github.com)) 

 

 

 

6.2.3 Model performance 

For model performance, Brier Scores (scale 0 to 1, with the lower values indicating a higher 

accuracy of the model) were calculated to evaluate the four different models as suggested 

by Steyeberg et al.16. Moreover, we performed a graphical assessment of the calibration of 

the four different models of the CTP to evaluate the correctness of the predicted compared 

to the observed probabilities of the NTCP values. The four different models were graphically 

assessed using the maximum and average difference between the predicted and calibrated 

Table 2:Definition of the different models according to the closed testing proce-

dure (CTP) 

Model 

name Definition Estimated parameters 

Model 0 

Original NTCP ≥2 grade dysphagia 

model. No parameters 

Model 1 Recalibration in the large Intercept 

Model 2 Logistic Recalibration Intercept and slope 

Model 3 Model revision/update Logistic regression coefficients 

https://www.zotero.org/google-docs/?ejld7e
https://www.zotero.org/google-docs/?gq3wuO
https://www.zotero.org/google-docs/?f8dIkp
https://github.com/MaastrichtU-CDS/ProTRAIT/blob/main/CTP_dysphagia_NTCP.R
https://github.com/MaastrichtU-CDS/ProTRAIT/blob/main/CTP_dysphagia_NTCP.R
https://www.zotero.org/google-docs/?cGGClm
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probabilities (Emax and Eavg). For the creation of the calibration curves we used the func-

tion “calPlot2” from the RStudio15 package “ModelGood”17. For the discrimination evalua-

tion of the four different models, the sensitivity, specificity and the area under the receiver-

operating characteristic curve (AUC) were calculated. 

 

6.3 Results 
 

6.3.1 Model performance 

A summary of the validation performance with the independent MAASTRO cohort of the 

four different models developed according to the CTP methodology as well as the different 

calibration metrics are listed in table 3. The original  ≥2 grade dysphagia model (model 0) 

included in the NIPP13 presented acceptable discrimination in the validation dataset 

(AUC=0.80, sensitivity=0.71, specificity=1, operating point=0.50) while the revised model 

with new updated coefficients (model 3) presented excellent discrimination (AUC=0.83, 

sensitivity=0.80, specificity=0.67, operating point=0.50). The ROC curves of the original 

(model 0) and revised (model 3) NTCP model for grade dysphagia are both presented in 

figure 1. The Brier scores also indicated that the accuracy of model 0 was not as high as the 

other calibrated models in the validation cohort. The lowest Brier score was reported for 

model 3 and therefore the highest accuracy was observed. Furthermore, model 0 presented 

the highest difference between the predicted and calibrated probabilities according to the 

average absolute difference in predicted and calibrated probabilities (Eavg). Therefore, ac-

cording to the CTP, a model update was needed for the independent validation model 0 in 

MAASTRO’s head and neck patients cohort as it was underestimating the risk of dysphagia 

≧2nd grade at six months after the end of RT (figure 2). The CTP selected model 3 as the 

ideal updated model. The revised equation belonging to this model (model 3) is displayed 

in equation 2.  

 

 

 

 

 

 

 

 

 

https://www.zotero.org/google-docs/?0nh7es
https://www.zotero.org/google-docs/?eZATDo
https://www.zotero.org/google-docs/?CIFqsq
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Table 3: Performance of the of the original NTCP and the calibrated models in 

MAASTRO's patients cohort (n=386) 

Models 

Original NTCP 

model 

(model 0) 

Re-calibration in 

the large (model 

1) 

Logistic recalibra-

tion (model 2) 

Model revi-

sion/update 

(model 3) 

Performance 

measure 
Discrimination 

AUC (95% CI) 

0.80(0.75-

0.85) 0.80(0.75-0.85 0.80(0.75-0.85 

0.83(0.78-

0.88) 

Sensitivity 0.71 0.76 0.78 0.80 

Specificity 1 0.66 0.63 0.67 

Calibration eval-

uation 
Calibration 

Calibration inter-

cept 0 1.11 1.41 - 

Calibration slope 1 1 1.18  - 

Brier 0.20 0.16 0.16 0.15 

Emax 0.30 0.06 0.08 0.12 

Eavg 0.16 0.02 0.02 0.03 

E90 0.27 0.04 0.03 0.06 

Abbreviations: 95% CI:confidence interval with a 95% confidence level, AUC:the area under 

the receiver-operating characteristic curve, Brier: Brier score (average squared difference 

in predicted and actual probabilities), Emax/E90/Eavg: Maximum/90th quantile, average 

absolute difference in predicted and calibrated probabilities. 

 

 

Equation 2 
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𝑁𝑇𝐶𝑃 𝑑𝑦𝑠𝑝𝑔ℎ𝑎𝑔𝑖𝑎 𝑖𝑛 𝑠𝑖𝑥 𝑚𝑜𝑛𝑡ℎ𝑠 =
1

1 + 𝑒−𝐿𝑃
 

𝐿𝑃 =  −6.9939 + 𝐷𝑚𝑒𝑎𝑛 𝑂𝑟𝑎𝑙 𝐶𝑎𝑣𝑖𝑡𝑦 ∗ 0.0141 + 𝐷𝑚𝑒𝑎𝑛 𝑆𝑢𝑝𝑒𝑟𝑖𝑜𝑟 𝑃𝐶𝑀 ∗ 0.0649 +  

𝐷𝑚𝑒𝑎𝑛 𝑀𝑒𝑑𝑖𝑢𝑚  𝑃𝐶𝑀 ∗ (−0.0118) + 𝐷𝑚𝑒𝑎𝑛 𝐼𝑛𝑓𝑒𝑟𝑖𝑜𝑟 𝑃𝐶𝑀 ∗ 0.0052  

+ 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑑𝑦𝑠𝑝ℎ𝑎𝑔𝑖𝑎 𝑠𝑐𝑜𝑟𝑒 ∗ 2.1734 + 𝑇𝑢𝑚𝑜𝑢𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∗ (−4.7274) 

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑑𝑦𝑠𝑝ℎ𝑎𝑔𝑖𝑎 𝑠𝑐𝑜𝑟𝑒 = 0.000  𝑓𝑜𝑟 𝑑𝑦𝑠𝑝ℎ𝑎𝑔𝑖𝑎 𝑠𝑐𝑜𝑟𝑒 = 0 − 1 

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑑𝑦𝑠𝑝ℎ𝑎𝑔𝑖𝑎 𝑠𝑐𝑜𝑟𝑒 = 0.9382  𝑓𝑜𝑟 𝑑𝑦𝑠𝑝ℎ𝑎𝑔𝑖𝑎 𝑠𝑐𝑜𝑟𝑒 = 2 

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑑𝑦𝑠𝑝ℎ𝑎𝑔𝑖𝑎 𝑠𝑐𝑜𝑟𝑒 = 1.2900 𝑓𝑜𝑟 𝑑𝑦𝑠𝑝ℎ𝑎𝑔𝑖𝑎 𝑠𝑐𝑜𝑟𝑒 ≥  3  

𝑇𝑢𝑚𝑜𝑢𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 0.000  𝑓𝑜𝑟 𝑜𝑟𝑎𝑙 𝑐𝑎𝑣𝑖𝑡𝑦 𝑡𝑢𝑚𝑜𝑢𝑟𝑠 

𝑇𝑢𝑚𝑜𝑢𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = −0.6281 𝑓𝑜𝑟 𝑝ℎ𝑎𝑟𝑦𝑛𝑥  𝑡𝑢𝑚𝑜𝑢𝑟𝑠 

𝑇𝑢𝑚𝑜𝑢𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = −0.7711  𝑓𝑜𝑟 𝑙𝑎𝑟𝑦𝑛𝑥  𝑡𝑢𝑚𝑜𝑢𝑟𝑠 

𝐴𝑏𝑏𝑟𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠: 𝐿𝑃 = 𝐿𝑖𝑛𝑒𝑎𝑟 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟, 𝐷𝑚𝑒𝑎𝑛 = 𝑚𝑒𝑎𝑛 𝑑𝑜𝑠𝑒,

𝑃𝐶𝑀 =   𝑃ℎ𝑎𝑟𝑦𝑛𝑔𝑒𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑖𝑐𝑡𝑜𝑟 𝑀𝑢𝑠𝑐𝑙𝑒  
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Figure 1: ROC curves of the original NTCP ≥ 2 grade six months dysphagia model(model 0)13 

and the revised model (equation 2, model 3) as selected by the CTP, showing good discrim-

inative performance in MAASTRO’s cohort as indicated by the AUC values (>0.75).  

Abbreviations: ROC = receiver operating characteristic; NTCP = normal-tissue complication 

probability; AUC = area under the curve. 

 

The four different levels of calibration of the i) original (model 0) ii) recalibrated in the large 

(model 1), iii)logistic recalibrated (model 2) and iv) revised models (model 3) can be visually 

assessed in the calibration plots presented in figure 2. The figure shows that model 0 un-

derestimated the risk of dysphagia ≧2nd grade in the time-point of six months after the end 

of the RT treatment. Furthemore, the three calibration levels of models 1,2 and 3 signifi-

cantly improved the agreement between the predicted and observed NTCP risks according 

to figure 2. The individual calibration curves for each calibrated NTCP ≥ 2 grade dysphagia 

model including the non-parametric estimate of the calibration relationship between the 

actual and predicted NTCP values can be found in the supplementary material. 

https://www.zotero.org/google-docs/?kciyae
https://docs.google.com/document/u/0/d/1MQgV9JK66jHPSZ2ay-ijqRAHGkhNEzRddD3vdPn4dUw/edit
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Figure 2: Calibration curves of the different NTCP ≥ 2 grade six months dysphagia models as 

indicated by the CTP ( i) original NTCP model, ii) Re-calibration in the large, iii) Logistic re-

calibration iv) Model revision. 

Abbreviations: NTCP = normal-tissue complication probability; CTP= Closed Testing Proce-

dure 

6.4 Discussion 
 

The innovative methodology of the MBA8 constitutes the main clinically integrated tool in 

the Netherlands for the selection of patients for PT. Multiple logistic regression NTCP mod-

els that predict the radiation-induced toxicity rates of xerostomia and dysphagia for head 

and neck cancer patients are included. However, it is highly important to externally validate 

the above-mentioned NTCP models using independent patients’ cohorts from external cen-

tres and ensure that they can be transferable in other head and neck patients’ cohorts16,18. 

Several factors of model transferability and reproducibility can be taken into consideration 

for external validation studies such as geographical location (location of the hospital/pa-

tients) or methodological (RT treatment protocol used) transferability. To account for all 

these factors we performed an external and independent validation of the NTCP logistic 

regression model for grade ≥ 2 dysphagia withiin six months after the end of RT which is 

https://www.zotero.org/google-docs/?oC32EW
https://www.zotero.org/google-docs/?ErbdX3
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integrated in the NIPP13, in an independent head and neck patients cohort of MAASTRO 

clinic treated with RT.  

 

In this study we followed the methodology of the CTP described by Vergouwe et al.14 to 

evaluate the performance of the model. This approach includes three different levels of 

model recalibration (adjustment of the NTCP model coefficients for the correction of the 

predicted event probabilities/rates). In the original NIPP13 model (model 0) we observed 

moderate calibration as the model underestimated the risk dysphagia and its discrimination 

of the original model in MAASTRO’s cohort was satisfactory (AUC=0.80, sensitivity=0.71 and 

specificity=1.00). After implementing the “Recalibration in the large” (re-estimation of the 

intercept of the original NTCP model (model 0)) in the NTCP ≥  2 grade dysphagia model, 

the calibration curve improved (figure 2). The calibration curves also graphically improved 

after implementing the other two calibration levels of the CTP procedure (recalibration 

(model 2) and model revision (model 3)).  

 

The ideal scenario in the case of the external validation of a prediction model in an inde-

pendent cohort includes its high performance in terms of statistical metrics such as sensi-

tivity, specificity and the area under the ROC curve. According to Van Calster et al.19 this 

high performance can be in other words called “strong calibration” and implies that a model 

is totally correct in the validation dataset. However, according to the same study, the 

“strong calibration” can be unrealistic in real word data. Therefore, the external validation 

of NTCP models in independent cohorts may require a specific adjustment/update mecha-

nism that takes into account the different factors that make the external validation of NTCP 

models unsuccessful 20,21.   

 

The CTP recommends a revised version (model 3) of the original ≥ 2 grade dysphagia NTCP 

model as the ideal update method. Despite our initial goal to externally validate the NTCP 

using an independent patients’ cohort by assessing its transferability, there are some dis-

crepancies between the methods used in this study to assess the performance of the origi-

nal NTCP dysphagia model and the methodologies proposed from other studies19,22. There-

fore some  limitations should be taken into account. First, as stated by the NIPP publication13 

, in the validation datasets of  the original NTCP model multiple imputation was performed 

for the computation of missing values of the logistic regression model predictors. In our 

case, we included only complete cases of and did not perform any imputation method to 

account for missing values. This is possibly one of the reasons that model 0 was not selected 

by the CTP and its performance was not as high as model 3 which was selected by the CTP. 

Secondly, according to Van Calster et al.19 it is recommended that at least 200 events and 

200 non-events are required for the development of flexible calibration curves. In our da-

taset consisting of 277 patients we included 87 patients who developed ≥ 2 grade dysphagia 

https://www.zotero.org/google-docs/?ncx4lp
https://www.zotero.org/google-docs/?crfF1f
https://www.zotero.org/google-docs/?RoH30I
https://www.zotero.org/google-docs/?594jQI
https://www.zotero.org/google-docs/?JiadZI
https://www.zotero.org/google-docs/?zM17w2
https://www.zotero.org/google-docs/?O4Gik1
https://www.zotero.org/google-docs/?llaKMy
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(events) in six months after RT and 190 patients who did not (non-events) for creating and 

assessing graphically the calibration plots of the different levels of calibrations according to 

the CTP. Moreover, according to Van de Bosch et al.22 an external validation of the updated 

model is recommended in the case of a selection of the revised model by the CTP.  In our 

case, the model selected by the CTP (model 3) was not validated by another external and 

independent dataset and so are prone to overfitting and overoptimistic performance. The 

aforementioned reported limitations of our study have to be taken into account in the case 

of a potential independent validation of the revised model by other external centres. There-

fore, we encourage the independent external validation by other RT institutions (inter)na-

tionally of the revised model selected by the CTP for its transferability and generalisability 

assessment.  

 

Another factor that can influence the performance of a NTCP model containing dosimetric 

predictor OARs variables is the delineation method used for the OARs contours. In our study 

we included patients with manual OARs delineations for the dosimetric OARs NTCP predic-

tor variables. The last few years, several studies proposed the implementation of AI-based 

techniques for the automation of the delineation procedure for head and neck cancer pa-

tients23,24. For instance, Deep learning (DL)-based delineations have the potential to estab-

lish a standardised delineations framework for head and neck patients, decreasing the clin-

ical burden25. Interobserver variability among different clinicians for head and neck patients 

is a common phenomenon 26 that can impact the quality of dosimetric data included in a 

prediction model and therefore the performance of it in different independent patients’ 

cohorts. DL assisted delineation is expected to reduce this variability and is recommended 

for future studies.  

 

The CTP was adopted in other European patient cohorts such as the Danish Head and Neck 

Cancer Group (DAHANCA) implementing a similar model to the Dutch NIPP based dysphagia 

model with the inclusion of different OARs dosimetric variables in the NTCP model such as 

the supraglottic larynx27. In the Danish cohort, the NTCP dysphagia model by Christianen et 

al.28 was externally validated using 588 patients of the DAHANCA 19 trial. The CTP selected 

in the Danish case the “recalibration in the large” (re-estimation of the intercept) as the 

best updated model to the external validation Danish dataset used implementing a a five-

fold validation type of the CTP, which was not the case in our study.  

 

The implementation of AI-based techniques in the treatment planning procedure may not 

only reduce the interobserver variability in the delineation procedure for example, but it 

can potentially reduce the time and resources needed for it. For instance, the MBA is based 

on the continuous RT treatment planning comparisons of patients candidates for PT. AI-

based automated procedures such as the automatic OARs delineation or the radiation dose 

https://www.zotero.org/google-docs/?FwdSkv
https://www.zotero.org/google-docs/?kb9TVS
https://www.zotero.org/google-docs/?pTUiv8
https://www.zotero.org/google-docs/?qTHsO8
https://www.zotero.org/google-docs/?jZSFPc
https://www.zotero.org/google-docs/?3yXNaj
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optimisation24,29 can significantly contribute to the acceleration of the MBA and evaluation 

of more patients based on it.  The first experience with the MBA in UMCG for head and neck 

patients as published by Tambas et al.30 indicated also the need for the inclusion of AI tech-

niques in the treatment planning procedure and therefore the planning comparison for the 

MBA, that can potentially reduce the resources needed for it. 

 

As a next step, we aim to implement federated learning techniques adhering to the FAIR 

principles11 for the privacy-preserving external validation of the NIPP NTCP ≥ 2 grade dys-

phagia model13 in the Dutch PT centres. Using the Personal Health Train (PHT) infrastructure 
12 we aim to exchange statistical algorithms that can use the CTP approach in a privacy-

preserving manner (ie. without the exchange of patients data). With this federated ap-

proach we aim to include larger patient cohorts for the development and validation of the 

NIPP13 based NTCP models including patients who are treated with different RT treatment 

protocols for head and neck cancer. 

6.5 Conclusion 
In conclusion, with this study we performed an independent validation of the NTCP ≥  2 

grade dysphagia model (primary setting) which is used in the Netherlands for the selection 

of patients for PT according to the NIPP13. We concluded that the performance of the model 

in the independent and external MAASTRO patient cohort was good. There was still room 

for improvement, however, as the distribution of the observed compared to the predicted 

probabilities of the model according to the calibration plot generated was not ideal. Follow-

ing the CTP methodology, it was indicated that the model should be updated and calibrated. 

We therefore, based on the CTP, selected the revised version of the original model with 

updated intercept and predictor coefficients for further development. The revised version 

of the model had a high discrimination in the internal validation MAASTRO cohort, but an 

additional external and independent validation from other RT centres is needed to further 

evaluate its robustness and transferability. 
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6.6 Supplementary material 
 

For the creation of the calibration curves of the different models presented in table 2 of the 
main text of the study we used the package “val.prob” of the RStudio library “rms”1. In the 
different figures, the dashed curve represents the non-parametic estimate of the calibration 
probabilities between the predicted and observed/actual values. The grey diagonal line pre-
sents the ideal probability distribution (intercept=0 and slope=1). 

 

Table 2:Definition of the different models according to the closed testing procedure 
(CTP) 

Model Definition Estimated parameters 

Model 0 
Original NTCP ≥2 grade dysphagia 
model. No parameters 

Model 1 Recalibration in the large Intercept 

Model 2 Recalibration Intercept and slope 

Model 3 Model revision Logistic regression coefficients 
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Figure S1: The calibration curve of the original NIPP2  NTCP grade ≥ 2  dysphagia model 
(model 0) . As it is shown according to the distribution of the predicted and actual probabil-
ities, model 0 underestimates the risk of the head and neck MAASTRO patients (N=277) to 
develop grade ≥ 2  dysphagia six months after the end of the RT (calibration curve above 
the diagonal line). Abbreviations: Dxy: Somer’s rank correlation, C(ROC): Area Under the 
Curve for discrimination assessment, R2: Nagelkerke-Cox-Snell-Maddala-Magee R-squared 
index, D: discrimination index, U: unreliability index, Q: quality index, Brier: Brier score (av-
erage squared difference in predicted and actual probabilities), Emax/E90/Eavg: Maxi-
mum/90th quantile, average absolute difference in predicted and smoothed calibrated 
probabilities, S:z/S:p the z and two sided p-value of the Spiegelhalter test for calibration 
accuracy. 
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Figure S2: The calibration curve of model 1 (estimation of an updated intercept of model 0) 
. As it is shown, there is an improvement of the distribution of the predicted and actual 
probabilities indicated by the brier score and the average absolute difference in predicted 
and smoothed calibrated probabilities (Eavg). Abbreviations: Dxy: Somer’s rank correlation, 
C(ROC): Area Under the Curve for discrimination assessment, R2: Nagelkerke-Cox-Snell-
Maddala-Magee R-squared index, D: discrimination index, U: unreliability index, Q: quality 
index, Brier: Brier score (average squared difference in predicted and actual probabilities), 
Emax/E90/Eavg: Maximum/90th quantile, average absolute difference in predicted and 
smoothed calibrated probabilities, S:z/S:p the z and two sided p-value of the Spiegelhalter 
test for calibration accuracy. 
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Figure S3: The calibration curve of model 2 (estimation of an updated intercept and slope 
of model 0) . As it is shown, there is an improvement of the distribution of the predicted 
and actual probabilities indicated by the brier score and the average absolute difference in 
predicted and smoothed calibrated probabilities (Eavg)  Abbreviations: Dxy: Somer’s rank 
correlation, C(ROC): Area Under the Curve for discrimination assessment, R2: Nagelkerke-
Cox-Snell-Maddala-Magee R-squared index, D: discrimination index, U: unreliability index, 
Q: quality index, Brier: Brier score (average squared difference in predicted and actual prob-
abilities), Emax/E90/Eavg: Maximum/90th quantile, average absolute difference in pre-
dicted and smoothed calibrated probabilities, S:z/S:p the z and two sided p-value of the 
Spiegelhalter test for calibration accuracy. 
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Figure S4: The calibration curve of model 3 (estimation of an updated intercept and slope 
of model 0) . As it is shown, there is an improvement of the distribution of the predicted 
and actual probabilities indicated by the brier score and the C(ROC).  Abbreviations: Dxy: 
Somer’s rank correlation, C(ROC): Area Under the Curve for discrimination assessment, R2: 
Nagelkerke-Cox-Snell-Maddala-Magee R-squared index, D: discrimination index, U: unrelia-
bility index, Q: quality index, Brier: Brier score (average squared difference in predicted and 
actual probabilities), Emax/E90/Eavg: Maximum/90th quantile, average absolute difference 
in predicted and smoothed calibrated probabilities, S:z/S:p the z and two sided p-value of 
the Spiegelhalter test for calibration accuracy. 
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Abstract 
 

Artificial intelligence (AI) applications have recently been proposed to detect errors in radi-
otherapy plans. External validation of such systems is essential to assess their performance 
and safety before applying them to clinical practice. We collected data from 5,238 patients 
treated at Maastro Clinic, and introduced a range of common radiotherapy plan errors for 
the model to detect. We estimated the model’s discrimination calculating the area under 
the receiver-operating characteristic curve (AUC). We also assessed its clinical usefulness as 
an alert system that could reduce the need for manual checks by calculating the percentage 
of values flagged as errors and the positive predictive value (PPV) for a range of high sensi-
tivities (95% to 99%) and error prevalence. The AUC when considering all variables was 
67.8% (95% CI, 65.6%-69.9%). The AUC varied widely for different types of errors (from 
90.4% for table angle errors to 54.5% for Planning Tumor Volume-PTV dose errors). The 
percentage of flagged values ranged from 84% to 90% for sensitivities between 95% and 
99% and the PPV was only slightly higher than the prevalence of the errors. The model’s 
performance in the external validation was significantly worse than that in its original set-
ting (AUC of 68% versus 89%). Its usefulness as alert system to reduce the need for manual 
checks is questionable due to the low PPV and high percentage of values flagged as potential 
errors to achieve a high sensitivity. We analyzed the apparent limitations of the model and 
we proposed actions to overcome them. 

Keywords—Artificial intelligence, Bayesian network, Radiotherapy, Treatment planning 
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7.1 Introduction 
 

Over the past decades, radiotherapy has constituted a fundamental treatment modality for 
cancer patients along with other treatment options such as surgery, chemotherapy and im-
munotherapy1. Radiotherapy’s cost-effectiveness (5% of the total cost of oncological care)2 
as well as the number of patients that are treated with it (50% of cancer patients)1,3 and its 
potentially curative nature4, stress the need for an accurate treatment plan construction 
and delivery. Recent advancements in the field of artificial intelligence (AI) have contributed 
to a significant progress regarding the automation of the treatment planning process such 
as the automatic delineation of the clinical target volumes (CTV) or organs at risk (OAR)5-6 
and the automatic dosimetric evaluation of treatment planning7. 

Radiotherapy treatment planning is a complex procedure that requires a coordinated team 
effort by an interdisciplinary group that consists of radiation oncologists, medical physicists, 
radiation technologists and dosimetrists. The objective of radiotherapy treatment planning 
is to safely and efficiently  prescribe the optimal dose to the anatomical target volume of 
the patients. Mistakes made during this process can cause serious risks during the treat-
ment planning execution. In the past, several organizations such as the world health organ-
ization (WHO), the American association of physicists in Medicine (AAPM) and the European 
society for therapeutic radiation oncology (ESTRO) have published recommendation guide-
lines for the elimination of the radiotherapy errors8-10. Generally, the radiotherapy treat-
ment plan errors can be subdivided into operational or system errors. For instance, mal-
function of the multileaf collimators (MLCs) system of the linear accelerator (LINAC) in a 
case of intensity modulated radiation therapy (IMRT) or differences between the prescribed 
dose and the dose per radiotherapy fraction due to adjustments of the reference points are 
some of the potential errors. These errors can lead to serious accidents with extremely se-
vere consequences for both patients and clinical professionals11-12.  

Increased automation, supported by AI techniques and combined with human expertise, 
could reduce the time needed for the development and execution of a radiotherapy treat-
ment plan. Furthermore, the implementation of AI methods can potentially contribute to 
the early detection of plan errors and the reduction of the time needed for their detection13-

14. 

Currently, we are entering a new challenging and promising era in radiotherapy where AI 
has started to manifest its potential with several applications. For example, several studies 
introduced automated treatment plan verification for the detection or errors during radio-
therapy15-19. Moreover, with the development of the automated pipelines for the validation 
and quality assurance (QA) of the radiotherapy plans, objections raised regarding their ac-
curacy and implementation such as the requirement of expertise knowledge of the manual 
planning (i.e. human intervention) and reproducibility issues20. 

To address these limitations, Luk et al.21 proposed a model to detect radiotherapy errors 
using an AI-based approach. Their Bayesian network (BN) model can flag anomalies in 29 
variables related to diagnostic, prescription, plan and setup level parameters to assist clini-
cal physicists and clinicians on the time-consuming and error-prone radiotherapy treatment 
planning procedure.  
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Bayesian networks (BNs) are the most popular type of probabilistic graphical models 
(PGMs), which emerged during the 1980s and rose to prominence in the next decade22. 
PGMs use graphs to represent the probabilistic dependencies between the variables in a 
model. Bayesian networks, for example, use directed acyclic graphs (DAGs) where each var-
iable is represented by a node and links between variables imply causality. In addition, the 
conditional probability distribution (CPD) of each variable is defined as a function of its par-
ents in the graph (i.e. the set of nodes that have links pointing at one particular node). The 
structure of the graph of the BN and the CPDs can be either defined based on expert 
knowledge or learnt from data using machine learning algorithms23. Probabilistic reasoning 
in BNs allows for different types of queries, such as the probability distribution of one or 
more target variables given a set of findings (e.g. what is the probability of rain given the 
grass is wet), or the probability of a set of findings (e.g. what is the probability of rain and 
dry grass). A set of such findings is referred to as evidence. The intuitiveness of the proba-
bilistic reasoning in BNs thanks to their graphical structure in contrast to black box algo-
rithms prominent in AI has led to a wide adoption in healthcare24.  

Luk et al.21 defined the DAG based on expert knowledge and learnt the CPDs based on his-
torical data from their institution. Consequently, they showed that they could detect anom-
alies in radiotherapy plans assigning the values of a given radiotherapy plan to the variables 
of the BN and calculating the probability of the evidence, because radiotherapy plans with 
errors will generally result in a lower probability.  

We hypothesized that such a model is clinically relevant and can provide significant added 
value, reducing the need for manual checks and detecting errors that would otherwise could 
go unnoticed. An external validation is an empirical evaluation in a dataset that was not 
used to develop the model and they are essential before considering whether to use a clin-
ical prediction model25. Therefore, we performed an external validation of the model using 
data from Maastro clinic (The Netherlands), with the aim to assess the generalizability of 
the model.  

7.2 Materials and methods 
 

7.2.1 Data acquisition 

We used data from 5238 patients (19054 treatment plans) for this study, collected at the 
Maastro radiation oncology clinic (Maastricht, The Netherlands) between 2012 and 2020. 
The patients were treated with external beam radiotherapy using electrons or photons with 
IMRT and volumetric modulated arc therapy (VMAT) in seven different Truebeam LINACs of 
Varian medical systems. Patients treated with protons were excluded from the dataset as 
the original model by Luk et al.21  did not include them. The radiotherapy elements were 
extracted and collected from the Varian Eclipse (version 11 and 15) treatment planning sys-
tem database and amended with information from the electronic patient dossier (EPD). A 
description of all the variables used as well as with representative examples can be found 
in table 1. 
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Table 1:Description and examples of the Maastro clinic’s variables used 

Diagnostic variables 

Variable name Description States num-
ber 
 

Examples 

Diagnose Anatomic tumor lo-
cation 

226 ”prostaat”, 
”long” 

cT Clinical T stage 29 0,1,1a 

cN Clinical N stage 17 1b,1c,2a 

cM Clinical M stage 8 1,1a,1b 

Prescription variables 

Variable name Description States num-
ber 
 

Examples 

Treatment_ 
Intent 

Treatment Intent 3 ”Radicaal”, ”Palli-
atief” 

NumberOf 
Rxs 

Number of pre-
scriptions 

14 1,2,3 

DosePer 
Fraction 

Dose per fraction 61 2.75,2,4 

PTVDoseRx Total dose 210 15,20,48 

Total 
Fractions 

Fractions 35 4,5,8 

RxRadiationType Radiation Type 7 6X,10X 

Plan/Beam variables 

Variable name Description States num-
ber 
 

Examples 

Plan 
Technique 

Planning technique 5 ”ARC”, 
”STATIC” 

TableAngle Table angle 50 0,10,355 

NumberOf 
Beams 

Number of beams 14 3,4,5 

Wedge Wedge position 1 0,00% 

ControlPoints Control points 714 6,8,10 

SSD Source to surface 
distance 

15478 70.1,72.2,73.6 

Bolus Presence/ 4 N,Y, 
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type of bolus ”MULTI- 
VALUE” 

GantryAngle Gantry angle 1329 103.8,104,104.1 

Collimator 
Angle 

Collimator angle 725 347.5,348.3,354.9 

BeamEnergy Beam energy 6 2,3,4 

Setup variables 

Variable name Description States num-
ber 
 

Examples 

Orientation Patient scan orien-
tation 

2 ”Head First-Su-
pine”, ”HeadFirst-
Decubitus Right” 

CouchLat Lateral couch posi-
tion 

5681 17.1,326.3,-1.70 

CouchLong Longitudio- 
nal couch position 

5743 103.4,108.7,112.9 

CouchVert Vertical couch posi-
tion 

5707 -10.5, -5.4 

Tolerance Setup tolerance ta-
ble 

1 ”Console RUIM” 

 

 

7.2.2 Variable mapping 

The numerical variables of the dataset were mapped to the nearest value in the correspond-
ing variable from of Luk et al. For the categorical variables, such as anatomic tumor location, 
we mapped the values from our dataset to the matching values in the corresponding varia-
ble. If there was more than one matching value (e.g., the variable T_stage contains the val-
ues 1a, 1A, T1a), we selected the one with the highest marginal probability in the model 
(i.e., the most common occurrence in the original training dataset).  

 
7.2.3 Errors 

Reports of errors and near-misses that happened in Maastro clinic (The Netherlands) re-
lated to radiotherapy were collected and validated from the Prevention and Recovery In-
formation System for Monitoring and Analysis (PRISMA) Prisma database26. After the as-
sessment of the 19054 treatment plans of the 5238 patients we encountered 5 radiotherapy 
treatment plan errors reported that were checked manually. One of the errors was related 
to a wrong table angle, two errors were related to an incorrect PTV dose and the remaining 
two errors were related to the usage of the bolus. Since our goal is to replace or support 
these manual and time consuming checks with the introduction of BNs, we simulated errors 
in 3% of the plans following instructions of experts in the area. 
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These errors can be categorized into four main types: patient positioning, prescription level, 
LINAC mechanical and general radiotherapy plan errors. The patient positioning error cate-
gory consisted of the LINAC table rotation errors simulation errors with a values bigger than 
10 degrees. In the category of prescription level errors, differences between the prescribed 
dose to the Planning Tumor Volume (PTV) and the dose per fraction were evaluated. Spe-
cifically, we simulated errors with values bigger than 100cGy planned dose to the PTV on 
VMAT and IMRT plans of 15 and 20 fractions. Errors regarding the LINAC collimator angle 
were simulated and included into the LINAC mechanical errors. In this category, the simu-
lated errors collimator angle values were increased by 10-15 degrees.  Under the category 
of the generic radiotherapy plan errors, we simulated errors for whether the usage of bolus 
or not was included. In table 2 you can find different categories and the description of the 
errors. The selection of the above mentioned simulated errors was based on the reported 
and manually checked errors of the PRISMA database (Table rotation, Incorrect PTV dose 
and Bolus usage) and the suggestions of manually checked errors (Collimator angle) from 
the radiotherapy technologists (RTTs) of Maastro Clinic. 

 

 

 

Table 2: Errors simulation overview 

Errors category Errors description Errors specification 

Patient positioning Table rotation errors Table rotation values bigger 
than 10 degrees from the 
planned value 

Prescription level Prescribed dose to the PTV is 
not equal to the fractionation 

PTV dose values increased by 
values bigger than 100cGy 
for VMAT and IMRT plans 

LINAC mechanical Collimator angle errors Collimator angle values in-
creased by 10-15 degrees 

General radiotherapy 
plan errors 

Bolus usage Bolus involvement to the 
plans that bolus was not pre-
scribed and bolus absence to 
the plans involved the pre-
scription of bolus 

 

7.2.4. Evaluation 

We used the Java API (application programming interface) of Hugin Researcher 7.427 to load 
the network provided by the authors and calculate the relevant probabilities. Following the 
instructions in the original article, for each case we instantiated the variables Anatomic_tu-
mor_loc, T_Stage, M_Stage and N_Stage and Treatment_Intent and calculated the proba-
bilities of the rest of the variables. Each probability P was compared against a threshold T 
that designated whether that parameter should be flagged as correct or as an error. 
Setup_Device variables were excluded, since these were not available in our database.  
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In order to compare the performance of the model reported by its authors with its perfor-
mance in our dataset, we plotted the receiver operating characteristic curve (ROC) and cal-
culated the area under the curve (AUC), which provides an estimate of the discriminative 
power of the model. We plotted the ROC and calculated the AUC of the whole dataset (i.e. 
all variables combined) as well as for each of the variables where we simulated errors: col-
limator angle, table angle, gantry angle, PTV dose, and bolus. We used the ROC and calcu-
lated the AUC and its confidence intervals (CIs) using the R language (version 3.6.1) and the 
‘classifierplots’ package. 

We also performed an analysis to assess the usefulness of the model in a clinic as an alert 
system that helps reduce the need for manual checks.  As such, it would be only of added 
value if it could detect almost all errors (i.e., sensitivity ≥ 95%) with a reasonable positive 
predictive value (PPV, i.e., the probability that an instance flagged as an error is actually an 
error).  Therefore, we undertook scenario analyses to calculate the model’s PPV for differ-
ent sensitivities and different prevalence of errors (since the PPV depends on how fre-
quently errors occur in clinical practice and the prevalence is unknown). We did not assess 
calibration because the model’s output is not meant to be interpreted as a probability.   

The source code of our analysis is available at https://gitlab.com/UM-CDS/projects/ext-val-
bn-rt-plan-qa.  

7.3 Results 
 

Figure 1shows the ROC curve for all the variables used in the external validation. The model 
achieved an AUC of 67.8% (95% CI, 65.6% – 69.9%) when considering all variables together. 

 

https://gitlab.com/UM-CDS/projects/ext-val-bn-rt-plan-qa
https://gitlab.com/UM-CDS/projects/ext-val-bn-rt-plan-qa
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Figure 1: ROC curve for the external validation dataset 

 

 

Table 3 shows the AUCs for the six types of simulated errors. The discriminative perfor-
mance of the model is very high for the table rotation errors (“Table Angle” variable) achiev-
ing an AUC of 90.4% (95% CI, 87.1%-93.5%). For the category of the simulated errors related 
to the bolus, gantry angle and the collimator angle, the model performs worse with AUCs 
of 75.6 % (95% CI, 71.3%-79.9%), 67% (61%-72.7%) and 69.6% (66.3%-73.1%) respectively. 
However, the Bayesian network fails to detect the errors comprising a difference between 
the prescribed dose to the PTV and the dose per fraction, resulting in an AUC of 54.5% 
(49.3%-59.4%). 

Table 3: AUCs for different types of errors 

Type of error Mean 95% CI 

Bolus 75.6 71.3 - 79.9 

Collimator angle 69.6 66.3 - 73.1 

Table angle 90.4 87.1 -  93.5 

PTV dose 54.5 49.3 -  59.4 

Gantry angle 67.0 61.0 -  72.7 

Overall 67.8 65.6 – 69.9 

The results of our analysis regarding the usefulness of the model as an alert system are 

shown in Table 4, which includes the probability threshold at which different levels of high 

sensitivities are achieved and the resulting percentage of values flagged as errors and PPVs. 

According to our analyses, the model would flag as possible errors 84%, 89% and 90% of the 

values in order to detect 95%, 97% and 99% of errors, respectively. This implies that human 

technicians would still need to manually review almost all values to check whether they are 

correct. For these high sensitivity levels, the PPV, or the probability that a value flagged as 

an error is actually an error, was not significantly higher than the error prevalence itself.  

Table 4: Percentage of flagged values and PPV for different combinations of 

sensitivity and prevalence of errors 

Sensitivity Percentage of 

flagged values 

PPV (%) 

Prevalence of errors 

0.1% 1% 3% 

95% 68% 0.14 1.39 4.15 

97% 78% 0.13 1.25 3.73 
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99% 79% 0.13 1.26 3.75 

 

 

 Table 5 includes some of the cases from the external validation dataset where the model 

missed and detected errors. We selected the missed errors from those plans containing 

errors for which the model estimated a probability higher than the median probability in 

the test set for the variable that contained the error. Detected error were selected from 

those plans containing errors for which the model estimated a probability lower than the 

3rd percentile probability in the test set for the variable that contained the error. The anal-

ysis of patterns in the cases where the model succeeded and failed could potentially lead to 

insights to guide re-training and fine-tuning the process in the future. 
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7.4 Discussion 
 

We have performed an external validation of a Bayesian network for error detection in ra-
diotherapy plans described in Luk et al.20 using data routinely collected at Maastro clinic. 
The results show that the model’s performance is significantly deteriorated when using it 
outside of the environment it was developed in. We have also shown that the performance 
of the model varies heavily for different types of errors. We undertook an analysis that 

Table 5: Selection of missed errors (estimated probability higher than the median) 

and detected errors (estimated probability lower than the 3rd percentile) 

Missed errors 

Anatomic tumor 

location 

TNM Stage 

 

Error Er-

rone-

ous 

value 

PROSTA-TE 

GLAND 

T2 

a 

N0 M0 Bolus should be present None 

CERVIX T1 

b1 

N0 M0 Gantry angle should start at 170 182 

SKIN T2 N0 M0 PTV dose should be 4000 

cGy 

3600 

LUNG T1c N0 M0 Table angle should have been 10 0 

HEAD 

/FACE/ NECK 

T1 N0 M0 Radia-tion type should be 10X 6X 

Detected errors 

Anatomic tumor 

location 

TNM Stage 

 

Error  Er-

rone-

ous 

value 

LUNG T4 N3 M1c There should be no bolus *cus-

tom 

BREAST 

FEMALE 

T2 N0 M0 Gantry angle should start at 168 179 

BREAST 

FEMALE 

T4 

d 

N1 M0 PTV dose should be 4500 

cGy 

4005 

PROSTA-TE 

GLAND 

NU- 

LL 

NU- 

LL 

M0 Table angle should have been 0 5 

ABDO-MEN T3 N2 M1 Radia-tion type should be 6X 10X 
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shows that in order to achieve a high sensitivity, the model needs to flag almost all values 
as potential errors, which reduces its usefulness as an alert system. 

The deterioration in the performance of the model in our external validation might be 
caused by differences in radiotherapy practices between the two clinics and limitations in 
the implementation of the original model. For example, the institution from which the data 
to train the model originated uses Elekta’s MOSAIQ oncology information system, while 
Maastro uses Varian’s ARIA (Eclipse treatment planning system). On the other hand, the 
poor performance of the model detecting PTV dose errors could be caused by differences 
in institutional preferences on dose prescriptions and fractionation schedules. For example, 
in our institute hypofractionation (>2 Gy per fraction) is frequently applied in prostate can-
cer patients, while in the original dataset used to train the model, a more conventional 
treatment schedule was used. The model flagging fractionation schedules different to those 
in the original institution as errors is likely to be a consequence of training a model in a 
single institution. However, it is arguable to which extent such models need to be general-
izable (e.g. able to accept different fractionation schedules) and to which extent they should 
be adjusted to the implementing clinic (e.g. to deliberately flag as errors fractionation 
schedules different to the clinic’s) through a commissioning process 28.  

Another potential source of model performance deterioration are limitations in the model’s 
development. For example, some categorical variables in the model contain redundant val-
ues (e.g. the variable T_Stage contains the values “1a”, “1A” and “T1a”) and numerical var-
iables often contain a high number of values (e.g. more than 200 states). This in turn led to 
conditional probability tables (CPTs) with a high number of parameters, as the number of 
probabilities in a CPT grows exponentially with the number of states in each variable (e.g., 
the CPT for Number_of_Rxs contains more than 20 million probabilities). Since these pa-
rameters need to be estimated from data, the higher the number of parameters, the higher 
the number of samples required to learn these parameters. Options to alleviate the issue 
by reducing the number of values in each variable include removing redundant values, dis-
cretizing numeric variables and grouping values that are similar or equivalent when consid-
ering the task at hand. In addition, the evaluation of the network as proposed by Luk et al.21, 
considers the probability of each plan parameter independently, conditioned on the diag-
nostic variables and the treatment intent. This prevents the model from being able to detect 
erroneous combinations of plan parameters, such as a wrong value for Total_Fraction given 
a particular Dose_Per_Fraction.  

It is worth assessing whether using a single probability threshold to determine whether to 
flag a value as an error or not is ideal.  There is high variance in the number of states or 
categories across different variables and probabilities tend to be lower the higher the num-
ber of states. Therefore, adjusting the threshold per variable to reflect this could lead to 
improved performance. 

There is also room for improvement in the handling of missing data. Many variables contain 
a special value to reflect missing data (e.g. ‘NULL’). This approach has been shown to lead 
to suboptimal results and is unnecessary in this case given that the algorithm used to learn 
the probabilities, the Expected Maximization (EM) algorithm, is especially suited to handle 
missing data29. Moreover, BNs are well capable of dealing with missing data when queried 
for probabilities (i.e., inference). 
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Moreover, the model was trained using data from a single institution. This is a common 
practice, but one that leads to models that often do not generalize well outside of the envi-
ronment in which they were developed. Our results offer yet another example of the im-
portance of using data from multiple sources (e.g. different clinics across the world) when 
training and testing models to achieve generalizability. This is not easy to achieve because 
ethical and legal barriers prevent sharing of privacy-sensitive data. However, the recently 
proposed federated learning paradigm30 and related initiatives such as the Personal Health 
Train31 aim to provide a framework where learning from multiple sites becomes straightfor-
ward. Another barrier to combining data from multiple institutions are the differences in 
the way different institutions encode the data. The FAIR (Findable, Accessible, Interopera-
ble, Reusable) data32 principles establish a series of guidelines to make data interoperable, 
specifically by using publicly available ontologies for the creation of a semantic web model. 
Such ontologies already exist for radiation oncology and radiotherapy33-36. 

Our external validation suffers from a number of limitations. The most important limitation 
is that while the information about the plans used in the validation are real, the errors are 
simulated. As explained in the methods section, after analyzing the database used to log 
misses and near-misses, we only found five errors related to radiotherapy planning. This is 
likely because technicians check every plan manually before and correct it before the plans 
are approved for treatment execution or because some errors go undetected. As a conse-
quence, we were forced to simulate errors. Considering how much the model’s perfor-
mance varies across different types of errors, differences between the simulated and actual 
error distributions could lead to biased overall performance estimates. We mitigated this 
risk by simulating the errors partly based on the errors encountered in the database, and 
partly also by simulating the kind of errors that are manually corrected according to experi-
enced technicians’ feedback. Another limitation of our external validation is that our da-
taset was missing the information about the set-up or immobilization devices (e.g. breast 
board, head-rest) used during radiotherapy. As a consequence, we could not validate the 
performance of the model detecting errors in these variables. Finally, we did not assess the 
model’s ability to detect errors that might have gone unnoticed in the clinic. In principle, by 
sacrificing sensitivity, one could use the model to try to flag a few errors that could other-
wise go unnoticed with high specificity. However, this could be potentially dangerous be-
cause the existence of such a system could give a false sense of security to technicians un-
aware that by sacrificing sensitivity, most errors would go undetected. 

The above mentioned limitations in combination with the different radiotherapy treatment 
planning software between the two clinics (Mosaiq in Washington vs ARIA Eclipse in Maas-
tro) and the LINAC models (Elekta in Washington vs Varian in Maastro) contributed to the 
relatively low performance of the model in the external validation. To further investigate 
the root cause of the low performance of the model in the validation cohort, we aim to 
address the limitations mentioned in the discussion and train the model in Maastro clinic as 
a next step of a future study. 

The findings of our external validation suggest that the model is not yet ready to be useful 
in clinical practice in institutions different to its original. However, we believe that if the 
limitations identified in this external validation are successfully addressed, such a model 
could lead to reduction in cost of radiotherapy planning and increase its safety.  
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7.5 Conclusion 
 

We have performed an external validation of a Bayesian network for error detection in ra-
diotherapy plans proposed by Luk et al. 21, by testing the performance of the model in actual 
plans delivered in Maastro clinic with simulated errors. The results show that the perfor-
mance of the model proposed by Luk et al.21 significantly deteriorated when applied in an 
environment different to the source institution where it was developed (AUC of 65% versus 
89%). The performance of the model varied widely for different types of errors (from 99.5% 
for table angle errors to 39.2% for PTV dose errors). This result shows the importance of 
external validations and the advantages of developing models using data from more than 
one institution. We analyzed the apparent limitations of the model (data preprocessing, 
handling of missing data, model evaluation) and we have proposed actions to overcome 
them. 
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Abstract 
Given the rapid growth of artificial intelligence (AI) applications in radiotherapy and the re-
lated transformations toward the data-driven healthcare domain, this article summarizes 
the need and usage of the FAIR (Findable, Accessible, Interoperable, Reusable) data princi-
ples in radiotherapy. This work introduces the FAIR data concept, presents practical and 
relevant use cases and the future role of the different parties involved. The goal of this ar-
ticle is to provide guidance and potential applications of FAIR to various radiotherapy stake-
holders, focusing on the central role of medical physicists. 

Keywords: Radiotherapy, FAIR data, Artificial Intelligence 
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Numerous data science advancements have been made in the radiotherapy domain, such 
as the extended incorporation of patients’ imaging data for treatment purposes and the 
development of outcome prediction models. These were made possible by including high 
quality data consisting of information of patients, their treatment and follow-up.  

With the rapid introduction of new technologies in radiotherapy, such as artificial intelli-
gence (AI) and machine learning (ML), data driven approaches could influence the way pa-
tients are treated. Image-based, biological, dosimetric and clinical variables can be com-
bined with ML techniques to predict radiotherapy tumor outcomes1-3 and toxicities4. How-
ever, radiotherapy data are highly complex and thus require clear definition-terminologies 
to ensure accessibility and interoperability (i.e. understandable by both machines and hu-
mans). Datasets without detailed, formal, standardized and applicable terminologies that 
enforce relationships within the data elements (i.e. ontologies) cannot be interpreted by 
others without expert knowledge of that specific dataset. As a result, many existing radio-
therapy datasets are not reusable due to the absence of these ontological items.  

This problem stems from barriers in the exchange of health data due to administrative, po-
litical, ethical and technical issues. For instance, inconsistencies in labeling and nomencla-
ture of anatomical structure names in radiotherapy structures sets (RTSTRUCTs) are com-
mon. For example, when validating a published radiomics model, researchers discover a 
variety of label names for the Gross Tumor Volume (GTV), making the correct GTV selection 
problematic.  

Aiming also to overcome problems like these, we need to implement the FAIR (Findable, 
Accessible, Interoperable, Reusable) data principles [5]. With this commentary article we 
would like to present our educational opinion based in our research findings and experience 
with the implementation of the FAIR data principles, rather than giving an exhaustive view 
of the FAIR principles. Furthermore, this manuscript is intended to provide an overview of 
the challenges and opportunities of implementing the FAIR principles in radiotherapy, high-
lighting the medical physicists’ role. It ends with a suggested framework to develop respon-
sible FAIR radiotherapy research. 

FAIR stands for Findable, Accessible, Interoperable and Reusable (Figure 1). Since its first 
publication5 in 2016, the FAIR principles have been adopted by many institutes and research 
organizations worldwide6-7 and applied in a variety of disciplines8-9. 

Findability of data refers to a detailed description of metadata, indexed in a searchable 
source. Each dataset should be assigned a unique and persistent identifier for their une-
quivocal reference and citation. For instance, the publicly available NCSLC-Radiomics da-
taset10 can be cited and referenced with its own unique identifier such as the Uniform Re-
source Identifier (URI).  

Accessible data means that data are readable by both humans and computers with the ap-
propriate authorization.  Data should be stored in a trusted repository with an open proto-
col. Examples of  trusted public repository for radiotherapy datasets case are the Cancer 
Imaging Archive (TCIA)11,the Extensible Neuroimaging Archive Toolkit (XNAT)12 hosted 
within the Dutch national research infrastructure13, Dryad14 and Zenodo15. It is important to 



164 
 

mention that accessible data are not open data without constraint, it means that humans 
and machines may have access to them by respecting clear rules. 

Interoperability refers to the use of formal, universal and broadly applicable languages for 
knowledge sharing and representation, such as public ontologies. Ontologies are terminol-
ogies that give a meaning to the essential relationships between different data concepts. 
Typical examples of these languages are the Radiation Oncology Ontology (ROO)16-17, spe-
cifically designed for the radiotherapy domain, the Radiation Oncology Structures (ROS)18 
ontology and the Biomedical Imaging Methods (FBbi)19 ontology. Similar interoperability-
enhancing initiatives have been and continue to be undertaken by professional societies20. 

For data to be Reusable, researchers need to include detailed documentation and rich 
metadata. Publicly available reports about the acquisition, processing and origin of the data 
combined with a detailed description of technical details such as statistical analysis methods 
in a format of publicly available codes/algorithms, are highly recommended. 

Figure 1: Schematic representation and description of the FAIR data principles. 

 

Despite its advantages, the FAIR approach has not yet been widely adopted in the radio-
therapy domain due to various barriers. First, data preparation is costly, both monetary and 
labor intensive. There is an emerging need for novel IT solutions that bridge the gap be-
tween the need to “FAIRify” data for research purposes and every-day use of Electronic 
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Health Record (EHR) systems, treatment planning systems and medical image storage ar-
chives. The attachment of ontologies for each data element recorded in the EHR systems to  
clearly establish their definition is an example. 

Because each hospital uses various data sources at the same time, there is a vast amount 
of multi-source data that are mostly unstructured and not integrated. Its transformation 
into a valuable source of knowledge is therefore problematic due to the lack of interopera-
bility between the different data sources. This, in combination with the unstructured nature 
of multiple sources, underlies the urgent need to introduce the FAIR data principles. 

Moreover, as the radiotherapy data encrypt “sensitive” personal patients’ information, 
there are ethical and security barriers regarding their use and property. There is an urgent 
need for a higher level of security  that has to be taken into account as it is fundamental to 
ensure that patient data are protected.  The different national regulations of each institute 
for data use decelerate the FAIR concept. Furthermore, the implementation of the FAIR 
data principles in compliance with the mandatory General Data Protection Regulation 
(GDPR)21 is challenging. Specifically, the GDPR21 includes the right of data transfer between 
social networks that prerequisite FAIR data. Contrarily, the GDPR does not allow data shar-
ing between different institutions without a definitive purpose for research or other enter-
prise activities. 

Additionally, the “FAIRification” process requires technical programming skills, which not all 
clinicians are familiar or proficient with. As a consequence, its adoption and implementation 
can be difficult as the short- and long-term return or reward are obscure to many.  

Several other challenges and barriers for the implementation of the FAIR principles that are 
not mentioned in our study are described extensively by (inter)national guidelines such as 
the final report and action plan on FAIR data from the European Commission22, academic 
publications such as the study of Jacobsen et al.23  and non profit organisations initiatives 
like the Go FAIR foundation24. 

The FAIR principles have the potential to tackle the interoperability and reusability issues, 
using publicly available ontologies for radiation oncology and radiotherapy [25] such as the  
ROO [16], [17] and  other semantic technologies26-27, such as the Resource Description 
Framework (RDF)28. Combining these two components results in a semantic data model. 
Semantic models are used to represent relationships between multiple concepts in the 
data. RDF represents the data in something called triples. Triples are composed of a subject 
(“patient”), a predicate (“has biological sex”) and an object(“gender”) that link the relation-
ships between the data items of a dataset. Each of these elements of a triple need to be 
defined by a publicly available ontological identifier.  
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Figure 2 displays the relationship between a patient and their gender in triple form.

 

Figure 2. The triples RDF concept represented for the patient and gender data items, con-
nected with the predicates from the ROO16-17 and NCIT29 ontology codes available in the 
Bioportal30. 

By applying the FAIR principles to radiotherapy data, algorithms can assist the users in pro-
cessing and manipulating data. As a consequence, AI/ML implementation could be facili-
tated in numerous applications with large potentials in sparing resources in time-consuming 
repetitive procedures. A relevant example concerns the automatic delineation of the ana-
tomical structures for treatment planning.  

Furthermore, the implementation and adoption of the FAIR data principles ensure that re-
search results and outputs can be exchanged and shared among different institutions. One 
of the potential applications that FAIR data enable in the radiotherapy domain, is the radi-
otherapy outcomes prediction modelling (exchange and validation) among different insti-
tutes exchanging model's parameters instead of patients’ data31. 

FAIR compliant datasets have the potential to tackle the interoperability issues between the 
researchers. A representative example is the set of collections hosted by the above men-
tioned TCIA provided by Kalendralis et al.32. This study provided the clinical metadata, quan-
titative imaging features and DICOM metadata from four radiotherapy datasets mainly used 
for radiomics studies33-34, in RDF28 format using public ontologies16-17,29. 

Besides the benefits of the establishment of collaborations between different insti-
tutes/clinics, one of the basic and valuable achievements of the FAIR principles for radio-
therapy researchers and clinicians is the increase of the scientific outcome and of its impact 
on the community thanks to the largely improved generalizability and usability of the pub-
lished results: and this is expected to increase the visibility of their work. Of note, publica-
tions associated with FAIR compliant data sharing are cited 69% more frequently35.  

 

The incorrect implementation of the FAIR principles might have significant risks such as the 
“abuse” of data use by private interests. These risks can be prevented by the implementa-
tion of the FAIR principles as the data usage as the FAIR data users can make them accessible 
ensuring  authentication and authorisation steps. 
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The generation of multisource data, with the goal to make advantage of it by reusing the 
data besides the immediate care of the patient, requires the inclusion of different stake-
holders in the radiotherapy domain. It is important to identify and define the different 
stakeholders and their action items, establishing a shared responsibility relationship. 

These stakeholders in the FAIR radiotherapy domain are radiation oncologists, radiologists 
(and other clinicians experts in imaging applications), medical physicists, researchers, radi-
otherapy enterprises (such as EHR or radiotherapy treatment planning systems companies), 
patients, IT personnel and managerial boards.  

High-quality FAIR-compliant data will have a positive impact on the robustness of the clinical 
decisions for the patients with the prerequisite of a shared vision between the stakeholders. 
Our suggestion for their roles and responsibilities are shown in Table 1 

Table 1: Stakeholders of FAIR data in radiotherapy with the action items for them 

Stakeholders Role definition 

Clinicians ●Influence the hospital boards to provide re-
sources/funding 
for the FAIR principles implementation with their clinical 
knowledge 

Medical Physicists ●Data managers 

●Data collection and curation tasks 

●Commissioning of FAIR data tools 

Researchers ●Clinical orientated FAIR research 

●Collaborate with doctors and physicists during data 
curing and conceptualizations of data usage 

Companies in radio-
therapy market 

●FAIR-friendly tools 

●Professionalize FAIR data infrastructure tools 

IT personnel ●Closer collaboration with the clinicians, investigating 
the incorpo- 
 ration of the FAIR principles into the daily practice 

● Adapting/tailoring infrastructures 

Patients ●Understand the benefits of FAIR data 

●Give their consent to use their data 

Hospital board mem-
bers 

●Data governance plan 

●Legal interoperability 

●Resources/funding 
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The definition of valuable clinical questions from the clinicians is crucial for the develop-
ment and implementation of beneficial FAIR data driven decisions into the clinic. Toxicity 
reduction to the organs at risk (OAR) during radiotherapy, improvement of the patients’ 
cure rates, time and resources optimization are some of the interesting endpoints that can 
be evaluated prior to the development of a FAIR data tool in the clinic. Using their clinical 
knowledge, clinicians should take the role of ambassadors to influence the hospital board 
members to invest resources/funding to FAIR data driven clinical decisions for a personal-
ized treatment approach of the patients. 

Medical physicists can be considered as “data managers” as they usually have the database 
privileges and rights to acquire and extract the data in collaboration with the IT experts. 
Their role of facilitator is highly crucial and will be focused on later. Furthermore, they can 
commission new technologies for use in the clinic. As a result, they are typically assigned to 
the labor-intensive task of data curation and selection for patient care. 

Researchers are assigned with the task of presenting the value of FAIR data by executing 
clinically oriented research. In most of the cases they may overlap and collaborate with the 
medical physicists and doctors involved in the process of data curation and conceptualiza-
tions regarding how to use these data for the development of new valuable knowledge.  In 
the field of translational research, the involvement of both clinical and basic researchers 
will contribute a significant value in radiotherapy.  

During the past years, various funding agencies and organizations globally encouraged re-
searchers to submit proposals including the implementation of the FAIR data principles6-7,36. 

A crucial bridge between the research and clinic are the radiotherapy market companies 
that can introduce products and applications related to FAIR data principles. The profes-
sionalization of FAIR data infrastructure tools should in future be included in the portfolios 
of the radiotherapy vendors. FAIR-inclusion criteria for patients cohorts discovery, public 
repositories including radiotherapy outcomes prediction models, annotated applications 
with the visualization/registration of patients characteristics37 and platforms that contain 
different imaging/treatment protocols from different centers are some of the examples of 
FAIR compliant applications that can be adopted by vendors in the radiotherapy market.  

The need for a closer collaboration between the clinicians and IT professionals in the clinic 
is emerging for the introduction of the FAIR principles in daily practice. Important 
knowledge of data structures, data models and clinical databases schemas is held by IT per-
sonnel of the clinics and the implementation of a standardized data acquisition and usage 
plan should be established together with them. Moreover, IT professionals should be as-
signed the role of adapting and tailoring data infrastructures to fit the needs of a particular 
center. 

Additionally, protocols regarding data reuse requests including approval from the institu-
tional review board (IRB) of each institute should include clear steps describing the action 
points that should be taken from the different parties that would like to use patients’ data 
and the further procedures that have to be followed for the acquisition of the data in the 
right format. This should include describing data access principles and protocols for outside 
parties to gain access to the data. Specifically, being informed about the benefits of FAIR 
data, the patients’ role includes the task of giving their consent/approval to use their data. 
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The implementation of the FAIR principles should include leadership of each department 
and data governance policy should be established by such management/board members. 
Data lifecycle and stewardship plans that include the FAIR principles need to be as compul-
sory for research proposals as the data analysis protocol. Furthermore, assessment frame-
works that include the certification of FAIR services provided should be implemented to the 
radiotherapy departments in combination with data science and data stewardship training 
curriculums/programs. Moreover, in the radiotherapy domain we deal with patients’ sensi-
tive information so there is a higher level of security that has to be taken into account as it 
is fundamental to ensure that patient data are protected.  

As it is mentioned above, the medical physicists have the role of facilitator as they have the 
reputation of introducing  and implementing novel technologies such as AI into the clinic. 
Although a leading and active role in the AI field is beneficial for the future career of medical 
physicists, they need to be included in a working group of multi-discipline experts.  Closer 
collaboration with data scientists and computer scientists is more than necessary for the 
safe and sufficient development of AI technologies such as the FAIR concept, enabling ac-
cess to high quality curated datasets needed for AI applications38. For their  effective and 
constructive contribution of the medical physicists to this new emerging field in radiother-
apy advanced data science skills (AI, data analysis, statistics) should be included in their ed-
ucational curriculums and training schemes 38-39.  

In this manuscript, we made an introduction of the FAIR principles presenting the challenges 
and opportunities arising from their implementation to the radiotherapy data. Specific ef-
forts and actions points are summarized and underlined from the stakeholders’ perspective. 
In order to continue providing high quality personalized radiotherapy services, the stake-
holders of the radiotherapy community should develop a close collaboration with each 
other trying to overcome and cover technological barriers. To further support that, it is de-
sirable to include the FAIR data principles related topics in the educational schemes of the 
international medical physicists associations. Medical physics’ new trend is correlated with 
the challenging AI field and the related professions should cope with this including estab-
lishing a clear data governance framework in radiotherapy departments.  
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Abstract 
Cancer registries collect multisource data and provide valuable information that can lead to 
unique research opportunities. In the Netherlands, a registry and model-based approach 
(MBA) are used for the selection of patients that are eligible for proton therapy. We col-
lected baseline characteristics including demographic, clinical, tumour and treatment infor-
mation. These data were transformed into a machine readable format using the FAIR (Find-
able, Accessible, Interoperable, Reusable) data principles and resulted in a knowledge graph 
with baseline characteristics of proton therapy patients. With this approach, we enable the 
possibility of linking external data sources and optimal flexibility to easily adapt the data 
structure of the existing knowledge graph to the needs of the clinic. 
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9.1 Introduction 

Proton therapy has emerged as a novel treatment modality that has the potential to reduce 
toxicity rates and further improve tumour control due to the depth-dose characteristics of 
the proton particle1. Because of scarcity and costs, the Netherlands has initiated the devel-
opment of a model-based approach (MBA) to select those patients for proton therapy that 
will benefit the most2. By comparing the dose difference in the organs at risk (OARs) in delta 
Normal Tissue Complication Probability (ΔNTCP) models for photon and proton plans and 
the resulting 3D radiation dose, the MBA estimates the potential benefit for an individual 
patient.  

To ensure the MBA remains valid, one needs to continuously update and validate these 
ΔNTCP models. In the Netherlands, the ProTRAIT (PROton Therapy ReseArch regIsTry) initi-
ative has set up a national registry that collects real world data from patients previously 
treated with proton or photon radiotherapy. The initiative’s aim is to systematically and 
automatically register these data and its ultimate goals are to minimise radiation-induced 
toxicities in the healthy tissues, to improve quality of life, and to escalate the dose to target 
(tumor) cells.  

In order to fulfill the ProTRAIT initiative’s aim, it is important to develop an architecture that 
can handle the semi-structured nature of radiotherapy data and adheres to the FAIR (Find-
able, Accessible, Interoperable, Reusable) principles. The authors who first published the 
principles point out the need to improve infrastructures to support the reuse of (scholarly) 
data and created guidelines to facilitate this3. Taking into account the semi-structured and 
multisource nature of radiotherapy data (imaging, biological and clinical data), as well as 
the heterogeneous clinical workflows and data analysis pipelines between individual cen-
tres, the implementation of the FAIR principles can enable a standardised framework for 
data management and processing. Furthermore, the accessibility, interoperability and re-
usability aspect of FAIR will enable a quicker external and independent validation of re-
search findings3.  

FAIR data are often collected in a semantic data model and represented in a knowledge 
graph4. Literature defines a (biomedical) knowledge graph as “a resource that integrates 
one or more expert-derived sources of information into a graph where nodes represent 
biomedical entities and edges represent relationships between those entities”5. In biomed-
ical science, knowledge graphs are often built based upon an existing database. In our case, 
the ProTRAIT data registry graph had to be built manually, however inspired by previous 
work on the Radiation Oncology Ontology6. 

Up until this moment the data needed for the ProTRAIT registry are manually collected in 
each individual centre and then entered to a centralised electronic data capture (EDC) sys-
tem.An alternative approach was suggested by Zapletal et al. automating the integration of 
radiotherapy related data items such as the prescribed dose and the Dose Volume Histo-
gram (DVH) parameters7 using an i2b2-based clinical data warehouse. Although the auto-
matic registration of this approach based on the i2b2 standard has the same goal as our 

https://www.zotero.org/google-docs/?8OhLmE
https://www.zotero.org/google-docs/?9QZwHs
https://www.zotero.org/google-docs/?G73VsM
https://www.zotero.org/google-docs/?Qh8Beu
https://www.zotero.org/google-docs/?C3ga7H
https://www.zotero.org/google-docs/?hDlvKS
https://www.zotero.org/google-docs/?0afDGS
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approach, the proton therapy data items and the data model of our case are not fully com-
pliant with the i2b2 standard for instance the i2b2 data model lack many items needed in 
the proTRAIT registry. Furthermore, the approach of Zapletal et al. is based on a relational 
data model, where our approach is based on  a graph-based data model, which enforces 
standardized terminologies and is flexible in addition of concepts and structures and is pref-
erable over a relational model as mentioned by the review of Gamal et al.8.A vital part of 
the upload infrastructure is choosing an interoperable data model; this means choosing a 
data structure. In this paper we present our choice for a domain specific knowledge graph 
that stores relevant observational patient data into an interoperable, machine readable for-
mat. The knowledge graph specification is publicly available (DOI:10.5281/ze-
nodo.50600699) but the data itself is not due to privacy and legal requirements associated 
with patient data; access to these data will be formalized in the near future by the ProTRAIT 
consortium. 

9.2 Methods and Results 
The clinical items listed in the registry and graph were selected by domain experts based on 
established clinical workflows and were subsequently reviewed by the relevant national ex-
pert community: part of the “Nederlandse Vereniging voor Radiotherapie en Oncologie.” - 
the Dutch national association for radiotherapy and oncology. This resulted in a flat data 
model, a list of items with little to no relation between the individual elements. The struc-
ture of this flat data model will be discussed in depth in the next paragraphs. The items in 
this list and others can be found on the Github repository, including the definition and re-
quired data element type (integer, string, date etc.) in .xlsx format. 
 
In our case the construction of the graph and ontology classes was a coordinated effort 
by  medical physicists, physicians and computer scientists. Their combined expertise was 
used to define nodes and edges in the graph. The knowledge graph was modeled using the 
Resource Description Framework (RDF), a World Wide Web Consortium data standard 
(W3C). It is originally designed for metadata but also used for knowledge management ap-
plications5. The RDF format is based on the representation of the data in triples format (Sub-
ject-Predicate-Object, eg. Patient-has Disease-Neoplasm). The structure of the knowledge 
graph was constructed with the patient class at the centre with connections to different 
sections of clinical information, such as the age and biological sex, and information regard-
ing the baseline treatment (eg. date of first radiotherapy course).  
 
The list of clinical items were represented in the R2RML mapping language10 to describe 
the graph structure, and to facilitate the data conversion process. In this graph structure, 
several  publicly available ontologies related to the radiation oncology field, bundled in the 
Radiation Oncology Ontology (ROO)6, were reused. The importance of ontologies specific 
to the radiotherapy domain has been highlighted by several studies such as the publications 
of Phillips et al.11 and Bibault et al.12. The use of ontologies enhances the data interoper-
ability and reusability with a clear definition of the different data classes including 
knowledge representation. 
 
Figure 1 shows the baseline characteristics in our knowledge graph with all the nodes and 
edges designed by domain experts. Moreover, table 1 presents an overview of the data 

https://github.com/ProTraitInfra/Item-lists/tree/main/Lists/Definitieve%20CRF's%20OpenClinica/Generic/Generic%202
https://www.zotero.org/google-docs/?WF8OWG
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items used for the creation of the knowledge graph with their definition and description. 
The different data classes can be grouped in three different categories; (I) baseline charac-
teristics and demographic information, (II) baseline tumour, and (III) radiotherapy planning 
information. In this visualisation of the graph, we present the relation between variables 
connected to a patient that all together make up our generic list. Furthermore, we would 
like to underline that additional data can be linked to this graph easily. The structure of the 
knowledge graph is open source and the R2RML mapping files can be found on 
http://www.protrait.nl (licence: CC-BY). 
 

 
 

Figure 1: Visualisation of the knowledge graph created with the baseline characteristics 
(green) tumour specific variables (orange) and treatment variables (blue) of the patients 
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eligible for proton radiotherapy. For readability purposes we have excluded the predicates 
between the different instances and classes. 
 
 

Table 1: Overview of the different data items used in the knowledge graph with their 
definition and description 

Generic list data 
items 

Definition-description 

Patient Patient that has been diagnosed with cancer 

Identifier Patient identifier 

Age at diagnosis Age at diagnosis of the patient 

Birthyear Birth year of the patient 

Treating centre Particle treating centre 

Referring centre Referring centre 

Date of registration Date of registration (first visit in the radiotherapy department) 

Neoplasm Neoplasm 

Tumour site Tumour site 

Previous cancer Previous cancer 

Re-irridation Re-irridation in the case of a previous cancer 

Date of diagnosis Date of first diagnosis (first pathology) 

Radiotherapy Radiotherapy 

Planning comparison Planning comparison performed 

Date of comparison Date of planning comparison (if it was performed) 

Outcome Outcome of the planning comparison 

Version Version planning comparison (version LIPP* protocol) 

Proton beam radia-
tion therapy 

Proton radiotherapy 

Alcohol use Current alcohol use 

Alcohol units Alcohol units 

Days 
If the patient is a current alcohol user, number of days per month 
where ≥ 1 alcohol unit is consumed  

Marital status Marital status 

Sex Biological sex 

Body weight Body weight 

Kilogram Body weight in Kilograms 

Stature Height 
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Centimeter Height in Centimetres 

Smoking status Smoking status 

Former smoker Former smoker 

Pack year If patient is a current/former smoker, number of pack years 

Current smoker Current smoker 

Former smoker Former smoker 

Time stopped If patient is a past smoker, number of stopped months 

Months Months(unit of Time stopped) 

*LIPP=landelijk indicatie protocol protonen 

 

 

9.3 Discussion  
 

In this study, we developed a knowledge graph to store clinical patient characteristics for 
the proton therapy registry. We chose this data model because of the specific characteris-
tics of the ProTRAIT project. Our knowledge graph was based on the RDF13 data model using 
the R2RML10 mapping language and publicly available ontologies6,11,14as it facilitates the in-
teroperability and reusability of data. 

Proton therapy is a relatively new treatment and its indications and application are likely to 
change when new insights develop. Hence, the data model and structure must be designed 
with flexibility and a transient practical application in mind: as proton therapy gains salience 
in The Netherlands, new clinical applications will appear and there will be a shift in the 
threshold of which patients can undergo treatment because of the limited treatment ca-
pacity. New models are developed to tackle this shift and for this reason, our architecture 
must be able to easily adapt to new data elements and model transformations. The seman-
tic data model is flexible because we can define and add ontology classes and their defini-
tions are shared and accessible to others in line with the FAIR principles, which gained trac-
tion in the radiotherapy world15, while still keeping them backward compatible. The seman-
tic data model was developed with machine readability and thus exchange and interopera-
bility in mind. The flexibility further shows in adding new variables to the data model and 
the cardinality limitations that relational databases have. There is no need to create new 
tables to tackle {one/many}-to-many relations; for instance, additional treatments can exist 
in the same graph as additional instances of the treatment class. Finally, the ease to which 
multiple datasets/data sources can be queried (eg. third parties datasets) in a single unified 
query is an additional point that makes the knowledge graph an advantageous data format 
over a relational database6. 

Knowledge graphs are not mainstream in clinical data capture systems. Indeed, relational 
databases still are widely used for clinical data storage. However, knowledge graphs have 

https://www.zotero.org/google-docs/?es5pIv
https://www.zotero.org/google-docs/?BxvcwN
https://www.zotero.org/google-docs/?WU7T62
https://www.zotero.org/google-docs/?6gqlVh
https://www.zotero.org/google-docs/?DpqaJX
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significant advantages over relational databases, such as flexibility and the ease with which 
semantic data may be enriched. Most important, perhaps, is that the ProTRAIT data model 
stands out in interoperability. As hospitals generally use local syntaxes for data registration, 
their relational databases are not interoperable. 

An alternative to our RDF based ProTRAIT approach could have been the Observational 
Medical Outcomes Partnership (OMOP)16. OMOP is a common data model and technical 
architecture, which works in a similar manner to our FAIR approach initiative to collect ob-
servational data using relational databases. OMOP supports population exchange, but not 
with the flexibility that FAIR or RDF representations have. Semantic integration adds con-
text, uncertainty and detail to the data annotation on a level that OMOP cannot4. Further-
more, OMOP is not designed for handling detailed procedural information in a structured 
and standardized manner. Health Level 7 (HL7) is the clinical standard that describes data 
formats and elements is a relevant standardisation initiative; the latest version, Fast 
Healthcare Interoperability Resources (FHIR), focuses on communication and information 
exchange13. FHIR is designed for electronic health record (EHR) based sharing of data from 
individual patients between institutions and is broadly supported14. However,  since FHIR 
has limited functionality in exchanging population level data we opted for the semantic data 
model. 

If the field of radiation oncology wants to make a quick translation from technological ad-
vancements to patient care improvements it needs a flexible data system. A system that 
can incorporate standardised structured data and common data elements as easily as new 
input. Standardising takes up a lot of time and effort; for the identification of a set of clinical 
and genomic data elements the OSIRIS group needed a year of weekly multidisciplinary 
meetings18. For this reason standardising will always lag behind innovation and research. 
Thus a flexible system that combines both is needed especially in technology heavy disci-
plines like radiation oncology. 

The metadata that ontologies add to the knowledge graph not only make the data adhere 
to the FAIR principles but also enrich the data and serve another practical purpose. By using 
domain specific ontologies in our knowledge graph, the original real world data can co-exist 
in the same graph together with the project specific categories and numerical values. In the 
analysis there is the potential to allow algorithms to infer indirect knowledge from the 
graph, which is not possible in a flat relational database. In other words, the clinical exper-
tise in the creation of the ontology and knowledge graph means that the metadata is en-
hancing the instance data, and that inferencing could potentially improve AI/ML analysis of 
the data. For example, identification of similar patient groups, depending on their charac-
teristics, may enable a personalised approach for prognostic studies.  

In the future the central registry may become substituted by a federated/distributed anal-
ysis of data using the Personal Health Train (PHT)19. The  requirements set by the Semantic 
Web technologies allows machines to understand and interpret the data element classes. 
Furthermore, ML applications can be implemented, such as the validation and exchange of 
prediction models using the privacy preserving PHT infrastructure19. Moreover, the 

https://www.zotero.org/google-docs/?aIbDwM
https://www.zotero.org/google-docs/?3cx2Og
https://www.zotero.org/google-docs/?SUdRpi
https://www.zotero.org/google-docs/?soOqED
https://www.zotero.org/google-docs/?TpBRQw
https://www.zotero.org/google-docs/?WRjoEf
https://www.zotero.org/google-docs/?wKtlcV
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knowledge graph format may efficiently serve data handling and storage of (distributed) 
large-scale datasets (“big data”). 
 

9.4 Conclusion 
With this study we present our knowledge graph; a database solution for a clinical and re-
search repository that ensures a high degree of flexibility which is needed in a new and 
advancing field. Our research repository promotes adherence to the FAIR principles. This 
will facilitate re-use of the data for instance by linking the data to other data sets or incor-
porating the PHT infrastructure for federated learning analysis. Lastly, the knowledge graph 
enhances the data and creates opportunities for improved Machine Learning (ML)/Artificial 
Intelligence (AI) analysis. Future plans are to link sets of tumour specific items that contain 
data elements related to the treatment, patient reported outcome measures and radiother-
apy dose information in order to allow for the design and validation of ΔNTCP models 
needed in the MBA proton patients’ selection. 
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Abstract 
 

Purpose 

The registration of multi-source radiation oncology data is a time consuming and labour 

intensive procedure. The standardisation of data collection offers the possibility for the ac-

quisition of quality data for research and clinical purposes. With this study we present an 

overview of the different tumour group data lists in the Dutch national proton therapy reg-

istry. Our goal is to provide the radiotherapy community with a flexible and interoperable 

data model for data exchange between centres. We highlight data variables that are needed 

for models used in the model-based approach (MBA), which ensures a fair selection of pa-

tients that will benefit most from proton therapy. 

Methods 

As a representative example of the workings of these different tumour specific knowledge 

graphs, we present the FAIR (Findable, Accessible, Interoperable, Reusable) data principles-

compliant knowledge graph approach describing the head and neck tumour variables using 

radiotherapy domain ontologies and semantic web technologies. We used dosimetric and 

clinical variables included in the standardised head and neck tumour group items list (pro-

trait.nl) that are used for the selection of patients candidates for proton therapy.  

Results 

We successfully implemented the creation of the knowledge graph using data items from 

the head and neck tumour list. Furthermore, we presented the structure of an interoperable 

data model based on the usage of publicly available ontologies and semantic web technol-

ogies. 

Conclusion  

With this study we provide a synopsis of the different data items lists of the ProTRAIT reg-

istry, focusing on a particular knowledge graph with data items included in the head and 

neck tumour group list. We also highlight the importance of the FAIR data principles that 

can establish a standardised framework of data reusability in radiotherapy. 
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10.1 Introduction 
 

Recently, significant efforts have taken place for the digital transformation of radiation on-

cology1. These efforts are targeted toward gaining and exploiting new knowledge from the 

data acquired for and used in daily practice  for more efficient and personalised treat-

ments2,3. The vast majority of these “big-data”2 is multisource and usually labelled with a 

hospital’s specific terminology. The storage of these data in multiple sources within the local 

hospitals systems leads to a lack of standardised clinical data curation and inconsistencies 

in labelling. As a result, the exploitation of this valuable information is very difficult and time 

consuming, especially when combining data from multiple centres. When these data are in 

fact usable, artificial intelligence (AI) algorithms are able to predict clinically relevant patient 

outcomes and subsequently improve care for patients and possibly produce new 

knowledge3.  

In order to make exploitation of these multi-source and multi-center data possible, we need 

to use tools that can guarantee a harmonised and uniform data registration pipeline. This 

can only be achieved by implementing tools that adhere to the FAIR (Findable, Accessible, 

Interoperable. Reusable) data principles4. For example, taking into account the rapid devel-

opment of the Fast Healthcare Interoperability Resources (FHIR)5 in radiotherapy, labelling 

data with publicly available ontologies is beneficial as the interoperability is reassured so 

that the data output can be re-used in a wider perspective. Furthermore, with the transfor-

mation of the data elements into a machine readable format such as the Resource Descrip-

tion Framework (RDF)6 format, the data can be more easily used as an input for AI-based 

analysis.  

The harmonisation of radiotherapy real-world data according to the FAIR principles was re-

cently achieved within the ProTRAIT (PROton Therapy ReseArch regIsTry)7 initiative, which 

had as a main goal the standardised registration of patients candidates for proton therapy 

in the Netherlands. This registration includes different data elements categorised in differ-

ent tumour specific groups that are collected at a multi-institutional level, including radia-

tion dose and toxicity related data items as well as demographic information 7. These data 

elements are transformed in a FAIR format using semantic web technologies such as the 

resource description framework (RDF)6 standard and radiotherapy specific ontologies9–11. 

Moreover, the use of the FAIR principles within the standardised data collection of proton 

therapy patients will enable multi-centre interoperability for proton therapy data.  

In this manuscript, we present the structure of the data model we used for the creation of 

the knowledge graphs used in the ProTrait initiative and will focus on the head and neck 

tumour section, and more specifically the subsection of data elements that are included in 

the national indication protocol for proton therapy (NIPP)12 for the computation of the Nor-

mal Tissue Complication Probability (NTCP) dysphagia and xerostomia models using photon 

and proton dose variables. These models are used for the selection of patients for proton 

therapy in the Netherlands according to the model-based approach (MBA)13. 

https://www.zotero.org/google-docs/?Osx8Wc
https://www.zotero.org/google-docs/?7JzLHa
https://www.zotero.org/google-docs/?5ODJLk
https://www.zotero.org/google-docs/?3MuDTI
https://www.zotero.org/google-docs/?3AvyTh
https://www.zotero.org/google-docs/?ZZU5j7
https://www.zotero.org/google-docs/?m8thRD
https://www.zotero.org/google-docs/?BSjIZ1
https://www.zotero.org/google-docs/?z1XuiW
https://www.zotero.org/google-docs/?ArASKc
https://www.zotero.org/google-docs/?ZIEZi0
https://www.zotero.org/google-docs/?LuebwR
https://www.zotero.org/google-docs/?zYomiN
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10.2 Materials and methods 

Knowledge graph creation 

Generally, the data elements defined in the tumour specific lists of the ProTRAIT data reg-

istry contain for example tumour specific, diagnostics, treatment planning information, 

acute and late toxicity, and patient-reported outcome measures. The different data ele-

ments registered for the head and neck cancer registry were selected by a coordinated ef-

fort led by physicians, medical physicists and computer scientists who collected and con-

sistently defined the necessary clinical items needed. They are publicly available in .xlsx for-

mat in the GitHub repository with detailed definitions and explanations such as the type of 

the element (character or integer) or the exact clinical definition of each data element. 

The data elements of the registry were transformed into a FAIR format in using publicly 

available ontologies9 needed for transforming the data into RDF6. Specifically, the RDF for-

mat transforms the data in triples, ensuring that the data are machine actionable. Two ra-

diation oncology focused ontologies were used: the Radiation Oncology Ontology (ROO)11 

and the Radiation Oncology Structures (ROS)14 ontology. In addition, the more generic Na-

tional Cancer Institute Thesaurus (NCIT)10 was used. Each ontology used in the creation of 

these knowledge graphs  is publicly available via Bioportal15. Furthermore, for the transfor-

mation of the  relational databases to RDF format the mapping language R2RML16 was used. 

The R2RML language allows the representation of a relational database as an equivalent 

graph data object using ontologies which can be used and controlled by a mapping syntax 

file. The knowledge graph data model was chosen because it adds the flexibility that the 

real world data registry needs17. 

As an example, we present the knowledge graph created with the variables used for the 

NTCP dysphagia model of the NIPP12 that predicts the NTCP values for the head and neck 

cancer patients candidates for proton therapy to develop greater than second grade dys-

phagia six months after the end of their radiotherapy treatment. The different prognostic 

variables in the NTCP model as described by the NIPP12 are: i) the baseline dysphagia score 

as rated by physicians in the start of the treatment, ii) the mean photon-proton dose to the 

oral cavity and iii) the mean photon/proton dose to the superior pharyngeal constrictor 

muscle (PCM). For the creation of the knowledge graph presenting the prognostic variables 

of the aforementioned NTCP model, we used 368 head and neck cancer patients treated 

with photon and proton based radiotherapy between 2019 and 2021 in MAASTRO clinic, 

Maastricht, The Netherlands.  

10.3 Results 
 

An overview of the different tumour groups in the data registry and the number of the dif-

ferent items in the respective knowledge graphs for each tumour site are shown in Table 1. 

The different ProTRAIT data element lists can be found in the GitHub repository. These lists 

contain different data elements related to the radiotherapy treatment planning such as the 

mean dose to organs at risk (OARs), toxicity rates at different timepoints like the six months 

https://github.com/ProTraitInfra/Item-lists/tree/main/Lists/Definitieve%20CRF's%20OpenClinica/Head%20and%20Neck
https://www.zotero.org/google-docs/?U6XNRo
https://www.zotero.org/google-docs/?JI7Rki
https://www.zotero.org/google-docs/?hbxi96
https://www.zotero.org/google-docs/?0Qmq1m
https://www.zotero.org/google-docs/?KGxkDV
https://www.zotero.org/google-docs/?TibKCV
https://www.zotero.org/google-docs/?MSiZ45
https://www.zotero.org/google-docs/?xaIoOD
https://www.zotero.org/google-docs/?MKSWbd
https://www.zotero.org/google-docs/?fieD8G
https://github.com/ProTraitInfra/Item-lists
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xerostomia rates and clinical data items such as the TNM stage for each specific tumour 

group. Table 1 enumerates and categorises the data items of four specific tumour group 

lists with several examples. 

 

 

Examples of the different knowledge graphs that can potentially be created are shown in 

the figures S.1-S.4 of the supplementary material. The four knowledge graphs show some 

representative data items for each tumour group as there are some common data elements 

among them such as the clinical TNM stage or the Planning Target Volume (PTV). Specifi-

cally, we would like to focus on the section of our knowledge graph containing the variables 

used for the head and neck NTCP model development according to the indication proto-

col12, as shown in figure 1.  

 

 

 

Table 1: Overview of the data items number with examples categorised in different 

groups 

Item lists 

Head 

and 

neck Lung 

Oe-

sopha

-gus Breast 

Clinical 

items Ex-

amples 

Radiotherapy 

specific items 

examples 

Toxicity items 

examples 

Number of 

clinical 

items 57 58 55 123 Clinical 

TNM stage, 

Tumour lo-

cation, 

Date of di-

agnosis, 

Histology, 

Surgery 

Mean Dose Thy-

roid, V20 Heart, 

Gross Target 

Volume GTV, 

Planning Tu-

mour Volume 

(PTV), Mean 

dose - Brain-

stem,Maximal 

dose - Spinal 

cord 

Dermatitis, 

Dysphagia, 

Xerostomia, 

Feeding Tube 

dependency, 

Heart fail-

ure,Liver dis-

ease 

Number of 

Radiother-

apy spe-

cific items 221 158 166 261 

Number of 

toxicity 

items 16 20 29 26 

https://www.zotero.org/google-docs/?nD6Px4
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Figure 1: Schematic representation of the NTCP variables graph as a subsection of the over-

all ProTRAIT registry knowledge graph.  Figure 2 is presented in an enlarged version below. 

For the creation of the knowledge graphs the Radiation Oncology Ontology (ROO)11 and the 

National Cancer Institute Thesaurus (NCIT)10 ontology were used. The ROO and NCIT codes 

are included in the knowledge graph nodes. 

Abbreviations: PROMs= Patient Reported Outcome Measures, NTCP= Normal Tissue Com-

plication Probability 

 

Displaying the data elements used for the computation of the xerostomia and dysphagia 

NTCP models according to the NIPP12, we present the knowledge graph subsection in figure 

2. The different concepts are connected based on clinically relevant relationships with each 

other in a logical representation in their graph18. Dosimetric photon and proton data ele-

ments are connected with the planning comparison data item. The planning comparison 

between photon and proton treatment plans using the NTCP models is the main part of the 

MBA correctly predicting the clinical benefit of the proton therapy to the patients in terms 

of reduced toxicity rates. 

 

 

 

 

https://www.zotero.org/google-docs/?mC9hZW
https://www.zotero.org/google-docs/?5yIHvi
https://www.zotero.org/google-docs/?fHvg9a
https://www.zotero.org/google-docs/?oso1eW
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Figure 2: Schematic overview of the NTCP subsection of the knowledge graph created with 

data items included in the head and neck data item list and used in the NIPP12 NTCP models 

for xerostomia and dysphagia of the Dutch indication protocol for proton therapy. For space 

economy and readability purposes the predicates between the different instances and data 

classes are not present in the figure.For the creation of the knowledge graphs the Radiation 

Oncology Ontology (ROO)11 and the National Cancer Institute Thesaurus (NCIT)10 ontology 

were used. The ROO and NCIT codes are included in the knowledge graph nodes. 

Abbreviations:OARs= Organs at Risk 

An example of a NTCP model included in the national protocol12 is the logistic regression 

based model that predicts the probabilities of patients to develop grade 2 or more  dyspha-

gia six months after the radiotherapy treatment. Using the variables included in the NTCP 

model (as described in the results section) we created a sub-graph by selecting a subsection 

of the figure 2 knowledge graph as shown in figure 3. 

https://www.zotero.org/google-docs/?U89WH6
https://www.zotero.org/google-docs/?DvUMkY
https://www.zotero.org/google-docs/?YDOxlM
https://www.zotero.org/google-docs/?UYyNCZ
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Figure 3: Schematic overview of the knowledge graph created using the variables of the 

NIPP12 NTCP grade 2+. For space economy and readability purposes the predicates between 

the different instances are not present in the figure.For the creation of the knowledge 

graphs the Radiation Oncology Ontology (ROO)11 and the National Cancer Institute Thesau-

rus (NCIT)10 ontology were used. The ROO and NCIT codes are included in the knowledge 

graph nodes. 

Abbreviations: Dmean=Mean delivered radiation Dose, PCM=pharyngeal constrictor muscle 

After development of the knowledge graphs we used data included in the dysphagia NTCP 

model of the NIPP19 from 368 patients registered in the ProTRAIT registry to verify its use 

with real-world data. 95.7% of these patients were treated with photons while 4.3% were 

treated with protons (Intensity modulated proton therapy-IMPT). The percentage of pa-

tients who developed dysphagia equal or greater than second grade in the start of the radi-

otherapy treatment was 22%. This percentage increased by 11% to 33% for the time-point 

of six months after the end of the radiotherapy as presented in figure 4. 

https://www.zotero.org/google-docs/?Wd5pga
https://www.zotero.org/google-docs/?D5V4n7
https://www.zotero.org/google-docs/?8IUV5i
https://www.zotero.org/google-docs/?6L01b7
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Figure 4: Flowchart with the comparison of the proportion of patients that developed equal 

or greater than second grade dysphagia in the start of the treatment and six months after 

it. The percentage of patients who developed second grade dysphagia increased by 11% in 

the time-point of six months compared to the start of the radiotherapy treatment. 

 

10.4 Discussion 
 

In this technical note, we provided an overview of the tumour-specific ProTRAIT registry 

knowledge graphs, with a special focus on the head and neck data elements list. We pre-

sented a knowledge graph that represents the different data items used for the computa-

tion of the NTCP dysphagia and xerostomia models utilised in the MBA for the selection of 

patients for proton therapy in the Netherlands. For the creation of the RDF-based 

knowledge graph, publicly available radiation oncology-related ontologies10,11 were used in 

combination with the relational database to RDF R2RML mapping language 16. 

 

The transformation of the relational data warehouses of the participating centres to a se-

mantic RDF data model enables interoperability between different centres and a level of 

https://www.zotero.org/google-docs/?rCETk9
https://www.zotero.org/google-docs/?YVpuKU
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flexibility, something that a relational database structure cannot easily replicate. Further-

more, the RDF standard makes the data machine actionable which is key for the implemen-

tation of federated learning studies. One of the main intentions for which the ProTRAIT 

knowledge graph is designed is the Personal Health Train (PHT) approach where statistical 

analysis can be exchanged between different centres in a privacy preserving manner. In our 

case, an envisioned purpose is the creation and validation of the head and neck NTCP dys-

phagia and xerostomia models in the different Dutch proton therapy centres without the 

exchange of patients’ data using the above mentioned knowledge graph data model and 

PHT. 

Furthermore, we would like to underline the importance of the ontologies used for the cre-

ation of interoperable data. Ontologies offer the possibility to combine radiotherapy data 

with different data groups such as the different data items lists of ProTRAIT and numerical 

or categorical values, inferring indirect knowledge from the created knowledge graph. Thus, 

the implementation of AI and machine learning (ML) techniques could be potentially im-

proved due to the inference offered by the semantic data model. For instance, the inclusion 

of patients specific dose parameters or tumour specific data items such as the TNM stage 

can be used for the exchange of statistical prognostic models in a distributed learning man-

ner. 

Therefore, it is of paramount importance for the different radiotherapy centres to system-

atically collect data in a standardised way. The creation of a national radiotherapy registry 

of clinical data requires the systematic and continuous collaboration of different profes-

sional disciplines. Clinicians, radiotherapy technicians, data and computer scientists should 

collaborate to create standardised data item lists and privacy-preserving Information Tech-

nology (IT) infrastructures in order for a registry to be established. Problems with the data 

structure and terminologies of each hospital or the free text fields in the electronic health 

record (EHR) systems make the registration and use of data a labour intensive and time 

consuming task. As a result, additional resources in terms of personnel are still necessary 

such as data managers who will undertake the task of manual data registration. 

Radiation oncology relies on accurate data to ensure patients receive the best care. How-

ever, a significant amount of data is stored in different sources and often in unstructured 

text format such as medical history reports and clinicians’ notes captured in the electronic 

health record EHR systems of the hospitals. Usually, deploying a labour-intensive process is 

required to extract information needed for research or clinical purposes. Because of the 

significance of acquiring structured and quality data, the different care providers dedicate 

highly skilled professionals such as clinical data managers to manually review and extract 

clinical insights, which is a time-consuming, expensive and error prone procedure. In the 

ProTRAIT case, without automation in accordance with the FAIR principles, the data man-

agers and data engineers of each participating centre need to continue manual registration 

of clinical information necessary for the Dutch national registry. The implementation of clin-
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ical natural language processing (NLP) technologies potentially someday provide an alter-

native and comprehensive, automated and cost effective solution to manual clinical data 

extraction20,21. In our radiotherapy case the acceleration of the data extraction from the 

different EHR systems will enable a rapid and quality data input for semantic web and FAIR 

compliant technologies like our knowledge graph approach. It is worth mentioning that sev-

eral health data FAIRfication approaches have been proposed based on the fast healthcare 

interoperability resources (FHIR) standard22–24. These could turn out to be viable alterna-

tives to our knowledge graphs. Currently, FHIR-based profiles are not clinically implemented 

and adopted yet in the RT domain and were therefore not implemented yet in our registry. 

 

10.5 Conclusion 
 

With this work we provide an overview of the different data items lists of the ProTRAIT 

registry, presenting in particular a subsection of our knowledge graph with data items in-

cluded in the head and neck tumour group list. Specifically, these head and neck data items 

are included in the NIPP12 which is used for the selection of patients for proton therapy in 

the Netherlands. The creation of the data items lists by experienced radiotherapy profes-

sionals in combination with the inclusion of semantic data scientists for the transformation 

of the different data items into a machine readable format, facilitates the interoperability 

and flexibility that a semantic data model offers. Furthermore, adhering to the FAIR princi-

ples in the creation of our knowledge graph enables the link of external data sources as well 

as with the reusability of data. In conclusion, we would like to underline the potential of the 

knowledge graph approach regarding the utilisation of federated AI/ML analysis in radio-

therapy. 
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10.7 Supplementary material 
Using publicly available radiation oncology related ontologies1–3 and the Resource Descrip-
tion Framework4 (RDF) standard we present characteristic examples of the knowledge 
graphs (figures S.1-S.4) that can be created using the data elements of the four different 
tumour group standardised lists of ProTRAIT (PROton Therapy ReseArch regIsTry). 
 

 
Figure S.1: Knowledge graph containing different characteristic clinical, toxicity and radio-
therapy treatment variables from the standardised ProTRAIT oesophagus tumour group list 
(Item-lists/Lists/Definitieve CRF's OpenClinica/Oesophagus at main · ProTraitInfra/Item-
lists · GitHub). 

https://www.zotero.org/google-docs/?LZT1UF
https://www.zotero.org/google-docs/?RdXuwz
https://github.com/ProTraitInfra/Item-lists/tree/main/Lists/Definitieve%20CRF's%20OpenClinica/Oesophagus
https://github.com/ProTraitInfra/Item-lists/tree/main/Lists/Definitieve%20CRF's%20OpenClinica/Oesophagus
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Figure S.2: Knowledge graph containing different characteristic clinical, toxicity and radio-
therapy treatment variables from the standardised ProTRAIT breast tumour group list 
(Item-lists/Lists/Definitieve CRF's OpenClinica/Breast at main · ProTraitInfra/Item-lists · 
GitHub)  

https://github.com/ProTraitInfra/Item-lists/tree/main/Lists/Definitieve%20CRF's%20OpenClinica/Breast
https://github.com/ProTraitInfra/Item-lists/tree/main/Lists/Definitieve%20CRF's%20OpenClinica/Breast
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Figure S.3:Knowledge graph containing different characteristic clinical, toxicity and radio-
therapy treatment variables from the standardised ProTRAIT lung tumour group list (Item-
lists/Lists/Definitieve CRF's OpenClinica/Lung at main · ProTraitInfra/Item-lists · GitHub) 

https://github.com/ProTraitInfra/Item-lists/tree/main/Lists/Definitieve%20CRF's%20OpenClinica/Lung
https://github.com/ProTraitInfra/Item-lists/tree/main/Lists/Definitieve%20CRF's%20OpenClinica/Lung
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Figure S.4:Knowledge graph containing different characteristic clinical, toxicity and radio-
therapy treatment variables from the standardised ProTRAIT head and neck tumour group 
list (Item-lists/Lists/Definitieve CRF's OpenClinica/Head and Neck at main · ProTraitIn-
fra/Item-lists · GitHub)  
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Chapter 11 

Discussion, future perspectives and research impact 

In this thesis we have investigated the current status of artificial intelligence (AI) applica-
tions in radiotherapy (RT) and have identified the pitfalls and barriers for their respective 
implementation in three RT domains; i) medical imaging (Chapters 2-5), ii) prediction 
modelling (Chapter 6) and iii) RT treatment planning quality assurance (QA) checks (Chap-
ters 7-8). We focused on potential solutions that can play the role of “accelerators'' in the 
responsible and cautious implementation of AI in the RT clinical routine procedures. Of 
specific interest and focus has been the introduction of the Findable, Accessible, Interop-
erable and Reusable (FAIR) data principles1 in the RT domain (Chapter 8). The FAIR data 
principles have the potential to establish a standardised framework that can tackle data-
sharing difficulties that come with privacy-sensitive RT data. The basic components for the 
transformation of the multi-source RT data in a FAIR format are the radiation oncology re-
lated ontologies2 and semantic web techniques3. These two components have the robust-
ness to integrate and implement AI techniques as they can transform data toa machine-
readable format, enabling interoperability and flexibility in RT data structures (Chapters 9-
10).  

As an extension of the thesis, this discussion chapter will provide an overview of five im-
portant points: 1) the different barriers and methodological pitfalls in the implementation 
of AI and particularly machine learning (ML) techniques using quantitative imaging fea-
tures for the prediction of RT treatment related outcomes and providing potential solu-
tions, 2) the importance of external validation of ML-based prediction models in RT, 3) the 
role of AI in the daily RT treatment planning QA checks, 4) FAIR data principles in RT and 5) 
the future perspectives for the significant step of the clinical integration of AI in the three 
different RT domains investigated in this thesis. 

 

 

 

 

 

 

 

 

https://www.zotero.org/google-docs/?fRMYhp
https://www.zotero.org/google-docs/?t12i58
https://www.zotero.org/google-docs/?GnndpI
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11.1  Artificial intelligence in radiotherapy clinical routine 
 

In the last decade, AI has had some impressive breakthroughs that have solved challenging 
problems that existed for decades. The most impressive achievements of AI are in the fields 
of image recognition, voice transcription and translation between languages. These very 
impressive milestones have led to a justified excitement about the impact of those devel-
opments in the real world. The AI pipeline very naturally starts with the cognitive task as-
signed to the computers by humans. The collection process for input data to solve the learn-
ing problem follows, accompanied with statistics and the selected algorithm. The input data 
should be representative of the conditions that the AI system will encounter in the future. 
The final step is the model deployment after optimization steps to achieve the best perfor-
mance.  

These AI-based technologies will transform many different disciplines. Since AI tools and 
frameworks have been improved significantly and accurate predictions for well defined 
problems in a research environment are achieved, there should be a shift in focus toward 
the operationalisation of AI for its integration in clinical procedures. Because of the signifi-
cant research and efforts in the RT domain4, the clinical implementation of AI-based solu-
tions in this domain has already been successful in some cases, such as the introduction of 
the automated RT treatment planning5–7.   

However there are important obstacles and technical challenges related to the robustness 
of AI. These challenges include the effects of biassed, incomplete and shifting input data, 
unknown dependencies in the input data that cannot be considered in the prediction model 
building and the context that underlie the input data. For example AI algorithms can be 
antagonised by similar AI algorithms resulting in opposing or different outcomes. An im-
portant obstacle regarding the robustness of AI techniques is its inability to change effec-
tively between tasks and its inability to improvise, a task at which humans are very good. 
This difference between humans and machines is related to the fact that humans are good 
at transferring intuition from some learning tasks that they have already solved to some 
other new learning tasks that they do not have a lot of experience with. The application of 
AI algorithms trained in a specific source domain to a relatively different target domain has 
been investigated by the domain adaptation field in computer science8. Moreover, humans 
do not need a lot of training data to develop a new cognitive task, contrariwise computers 
need a lot of training data to transfer learning from a cognitive task they perform well to 
novel tasks that they do not have experience with.  

A second important issue underlying the robustness of AI is causal inference. According to 
the personal opinion of the author of this thesis, understanding a clinical question-problem 
is not about being able to make predictions about it, but about the causal mechanisms that 
link different variables that underlie the clinical problem and are either observable or un-
observable. A lot of emphasis has been placed on the ability of algorithms to make accurate  
predictions but there is no understanding on whether humans are even able to understand 
the causal mechanisms underlying the input data used in AI-based technologies. Undoubt-
edly, the clinical translation of AI also raises privacy and ethical issues that we need to un-
derstand establishing an intimate interaction between computer, data scientists and RT do-
main experts as discussed in Chapter 8. Taking into account the aforementioned obstacles, 

https://www.zotero.org/google-docs/?7Oe2op
https://www.zotero.org/google-docs/?0DGAbx
https://www.zotero.org/google-docs/?29WSzh
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and specifically the emerging need to first understand the different data items variables 
used in AI techniques before implementing an AI algorithm, we established a Findable Ac-
cessible Interoperable and Reusable (FAIR) data principles framework using multi-source RT 
data (Chapters 4-5,9-10). The goal of our FAIR-based research is not only focused on the 
interoperability and reusability of RT data, but also on the need to fully understand the clear 
definitions, relationships and connections between the different data items used as an in-
put of AI algorithms. 

11.2 Modelling radiotherapy treatment outcomes using imaging features - Pitfalls and 
solutions 
 

Medical imaging is one of the potential applications that AI can contribute to and revolu-
tionise. The various imaging modalities used in combination with the rapid advances of the 
imaging technologies in RT result in large amounts of available data for research. This pleth-
ora of available medical images in the RT departments attracted the attention of research-
ers and clinicians and contributed to the introduction of the radiomics concept as a novel 
field of interest in the RT (AI) research community9,10. Radiomics refers to the comprehen-
sive quantification of tumour phenotypes by extracting a large number of quantitative im-
aging derived features10.  Radiomics has many potential uses, including predicting outcomes 
such as toxicities and overall survival of patients using ML algorithms11 for personalised can-
cer treatment. Currently, the goal of the clinical translation of radiomics-based models has 
not yet been achieved. In the first part of this thesis, we presented the basic radiomics prin-
ciples and described the barriers and methodological pitfalls that decelerate radiomics in-
tegration in the decision making process of clinicians. Specifically, in Chapter 2 we investi-
gated uncertainties related to the i) imaging data acquisition settings, ii) methodological 
ML-based pitfalls with respect to imaging features extraction and iii) the standardised radi-
omics infrastructure/pipeline that can be reproduced by multiple RT centres. For each of 
the above-mentioned uncertainty categories we provide a practical roadmap and standard-
isation guidelines as potential solutions that will accelerate the reproducibility and repeat-
ability of radiomics studies. 

11.2.1 Data acquisition during the imaging procedure 
The majority of radiomics studies are based on retrospective imaging data analysis from 
clinical trials without a need for quantification of the measured features. There was there-
fore no need for standardisation in terms of imaging acquisition parameters as these images 
were mainly used to determine the size and staging of the tumours. Due to the still persist-
ing lack of standardisation between various data generating scanners, the inclusion of ret-
rospective imaging data from clinical trials in radiomics studies with the acquisition of pro-
spective new datasets requires the detailed and adequate reporting of the imaging acquisi-
tion parameters. 

Hence, the imaging data acquired from different scanner manufacturers in combination 
with different acquisition parameters is an important barrier in radiomics studies in terms 
of radiomics findings reproducibility. Consequently, data acquisition protocols, reconstruc-
tion algorithms and scanners vendor names are some of the settings that should be re-
ported in every radiomics study. The appropriate selection, labelling and annotation of the 
source data can accelerate the translation of radiomics in a clinical environment. Taking into 

https://www.zotero.org/google-docs/?1TnrNf
https://www.zotero.org/google-docs/?cQcEHl
https://www.zotero.org/google-docs/?bTp3xE
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account the need for efficient reporting of the imaging acquisition settings in radiomics 
studies we provided a set of useful and practical principles regarding the image acquisition 
settings in Chapter 2. 

 

11.2.2 Standardisation of imaging features extraction  
Radiomics features are computed based on mathematical equations available in different 
sources in the literature12. This means that theoretically, the definition of each radiomics 
feature is mathematically defined. However, various open source and licensed features ex-
traction radiomics software tools implement things differently, resulting in variations and 
inconsistencies in feature names, the selection of specific values for certain feature param-
eters and even some  feature equations. Consequently, it is a reality that radiomics re-
searchers have to choose among different open-source and licenced commercial software 
that have different feature settings and naming lexicons from images acquired from differ-
ent imaging devices. Those variations have an impact in the comparison and reproducibility 
of radiomics studies when the feature definitions and the extraction parameters settings 
are not adequately reported, especially in a case of images acquired from different scanner 
vendors with different technical settings. To tackle these problems, we proposed in Chapter 
2 guidelines of radiomics features computation reporting accompanied with the radiomics 
computation workflow defined by the Image Biomarker Standardisation Initiative 
(IBSI)13.The IBSI’s effort has as a main goal to establish a standardised lexicon and definition 
of radiomics features with reporting guidelines advancing the reproducibility and external 
validation of radiomics based models. It is important to highlight that despite the significant 
efforts of the IBSI in the radiomics field, the reproducibility of radiomics studies is not en-
sured by using extraction software tested by the IBSI. Specifically, the different RT institutes 
with a radiomics research profile cannot fully harmonise and adapt an IBSI recommended 
radiomics pipeline due to the fact that their main goal is and always will be tumour detec-
tion and size determination for medical treatment. Nonetheless, the IBSI initiative consti-
tutes an ideal solution for radiomics studies using prospective data. The real challenges are 
related to the harmonisation of specific settings that do not necessarily follow the default 
settings of the software used and the consistency of the maintenance of the different soft-
ware versions that can possibly change in the future.  

11.3 The role of publicly available datasets  
 

Focusing on the problematic reproducibility of radiomics features14 due to the barriers de-
scribed in Chapter 2 and taking into account the difficulties of data sharing across the dif-
ferent centres15, we initiated a multi-centre data sharing study suitable for radiomics re-
searchers with publicly available datasets in Chapter 3. Specifically, we provided computed 
tomography (CT) scans of two different phantoms scanned in three different RT centres in 
the Netherlands with varying imaging parameters such as the slice thickness of the CT im-
ages and the reconstruction algorithms. Our goal was to provide an annotated multi-centre 
dataset that enables reproducibility and standardisation of radiomics features which are 
fundamental requirements for the generalisability of radiomics-based models. Moreover, 
with this chapter we encourage the radiomics community to investigate the repeatability 
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and reproducibility of imaging derived features identifying unstable feature values with re-
spect to image acquisition settings. Expanding the work undertaken in Chapter 3, we intro-
duced the concept of combining semantic web technologies and radiation oncology related 
ontologies with publicly available datasets in Chapter 4. Semantic web-based ontologies 
benefit the radiomics field by providing definitions of radiomics features and describing 
their calculation procedure. For instance, specific radiomics orientated ontologies such as 
the radiomics ontology (RO)16 are mainly designed with the goal to introduce standardised 
reporting of radiomics features and parts of the technical parameters of the radiomics work-
flow. 

 

In Chapter 4, our goal was to establish a publicly available semantic web-based interopera-
bility framework applied to multi-source public radiomics related datasets. Moreover, with 
the application of semantic web technologies such as the Resource Description Framework 
(RDF) the data were transformed in a machine-readable format, which is a fundamental 
component for the implementation of ML techniques. Implementing the two above-men-
tioned components we offered to the radiomics community a set of four publicly available 
FAIR (Findable Accessible Interoperable and Reusable)1 compliant radiomics datasets high-
lighting the benefits and flexibility of transforming and storing radiomics data in a FAIR prin-
ciples-based data model, which enforces standardised terminologies. With the implemen-
tation of these FAIR compliant frameworks, federated learning studies are enabled as well 
as external validation of radiomics-based models. 

In conclusion, a lot of effort from the radiomics research community is still necessary for 
proper clinical translation and usability of radiomics data and models. Besides the chal-
lenges presented in this thesis, there is an emerging need to understand the biological 
meaning of radiomics features and changes in features. As radiomics is mainly a data-driven 
technology, there are no insights regarding the impact of biological processes on the radi-
omics features and subsequently the model outputs. Therefore, we believe that fundamen-
tal research is necessary where not only radiomics is investigated, but also other (biological) 
data types such as genetic, clinical and histologic data, which could result in discovery of 
correlations between radiomics features and biological processes in the human body. These 
correlations will further prove the validity of radiomics as a tool for clinical use. Moreover, 
we would like to underline that the radiomics approach is not totally “cost-free” despite the 
large amount of seemingly readily available medical images in the RT departments. The in-
put data acquisition, preparation and pre-processing steps for the data quality improve-
ment are resource and labour intensive tasks assigned to the data engineers or data man-
agers of the RT departments. Data sharing can be a potential solution addressing this barrier 
including the time consuming task of legal, ethical and administrative approvals that medi-
cal data sharing requires as less effort is required for the generation of new data. 

11.4 Artificial Intelligence-based prediction modelling in radiotherapy - The need for ex-
ternal validation  
 

During the previous years, a surge in the development of prediction model studies was ob-
served in the RT domain, which is not limited to radiomics alone. The main goal of these 
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studies was to clinically integrate prediction models that can be used for personalised RT, 
decision making, toxicity rate prediction and risk classification of patients. However, despite 
the significant amount of studies related to prediction models in RT during the last years 
(6098 studies between 2010-2020 according to Pubmed) and their potential and promising 
perspectives in patients’ care, their clinical integration is not successful in most of the cases. 
One of the main reasons is the small number of externally validated prediction models in 
RT (295 studies between 2010-2020 according to PubMed). The term “external validation” 
is defined as the procedure of validating the original prediction model in an independent 
external patients cohort to determine whether the original model performs sufficiently. This 
external cohort ideally is a different population compared to the original in terms of geo-
graphical originality and treatment time period. External validation is needed to ensure re-
producibility and repeatability of models due to ML’s (especially supervised ML techniques) 
nature to perform perfectly in a development cohort, also known as overfitting. This results 
in a lack of generalizability as no cohort is ever a perfect representation of the true popula-
tion17. This lack of external validation according to the scientific literature is one of the fac-
tors that leads to a lack of clinical integration of these prediction models that often do have 
clinical relevance. The complexity of AI algorithms is also a factor that retrogresses the ex-
ternal validation of AI-based prediction models as the AI algorithms might not be under-
standable by some RT professionals and considered as a “black-box” 18.  

Ideally, a successful external validation of a prediction model is followed by a coordinated 
effort by physicians and researchers, to further investigate whether the prediction model 
can assist them in the daily clinical practice by improving patients’ RT related outcomes or 
quality of life. For the second part of this thesis, in Chapter 6 we performed an external 
validation study to highlight the significance of testing AI-based prediction models before 
their clinical integration. We investigated whether the Normal Tissue Complication Proba-
bility (NTCP) model for dysphagia performs well in an external validation dataset. The lo-
gistic regression-based NTCP model is used for the selection of head and neck cancer pa-
tients that will benefit more from proton therapy in the Netherlands according to the na-
tional protocol for proton therapy in the Netherlands. We showed that the assessment of 
AI-based models needs additional validation steps for the acquisition of reliable risk esti-
mates even if an algorithm has a good discrimination (the ability of prediction algorithms to 
give a higher estimated risk to the patients with the event rather than the patients without 
the event).  

Taking into account that some logistic regression based clinical prediction models may per-
form poorly when validated in external and independent cohorts compared to their training 
cohorts, they might require to be updated. Furthermore, due to  the fact that different AI 
algorithms can be used in models that are poorly calibrated19, we decided to follow a dif-
ferent validation approach as described by the study of Vergouwe et al.20. This study de-
scribed the “closed testing procedure” consisting of three different levels of calibration of 
logistic regression models in the case of an external validation. The term calibration can be 
defined as the risk estimates accuracy on the agreement between the number of estimated 
and observed events. Inadequate or poor calibration can lead to unreliable predictions and 
a less clinically useful model21,22. A model can be recalibrated as follows: i) the re-estimation 
of the logistic regression model intercept (recalibration in the large), ii) the re-estimation of 
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the logistic regression model intercept and slope (recalibration) and iii) the re-estimation of 
the logistic regression model predictors coefficients (model revision).  

Using the model performance measure of likelihood ratio test, the closed testing procedure 
selects the most suitable method of calibration for the external validation cohort. It is sug-
gested that in the case of a model revision an additional external validation dataset should 
be used for the model’s generalisability evaluation while in the case of recalibration there 
is not a common consent23. In the case of recalibration in the large selection based on the 
closed testing procedure, there is no indication for using an additional external validation 
dataset23. Based on the above-mentioned indications, the implementation of the closed 
testing procedure becomes problematic for limited sample size datasets where model revi-
sion requires an additional patient cohort. Furthermore, there should be robust evidence 
on the effects of the updated predictors regarding the improved model performance before 
selecting the model revision as an updated method. Moreover, the model revision update 
method cancels the prognostic value of the original logistic regression model predictors 
leading to less robust predictions in the external validation cohort with an over-fitting 
model. In the case that the predicted risk of the logistic regression model is not fully repre-
sented by the predictor variables of the original model, the recalibration in the large method 
is suitable especially where there is a disagreement between the predicted and observed 
risks. In Chapter 6, the significance of external validation of AI-based models is highlighted 
and specifically the multivariable logistic regression models used for the selection of pa-
tients for proton therapy, we performed additional model update steps which are most of 
the times ignored19 although it is recommended by the TRIPOD (Transparent Reporting of a 
multivariable prediction model for Individual Prognosis Or Diagnosis) recommendations for 
prediction modelling studies24. 

 

11.5 Artificial Intelligence-assisted treatment planning quality assurance 
 

Quality assurance (QA) checks are one of the most significant parts of the RT workflow for 
the efficient and safe delivery of a treatment plan to the patients. QA is a time consuming  
procedure for the medical physicists and radiation technologists. The detection of RT treat-
ment planning errors before treatment takes place, is a labour intensive procedure that can 
cause delays in the daily clinical routine workflow of a RT department. In the third section 
of this thesis, in Chapter 7, we focused on the introduction of AI algorithms, specifically in 
Bayesian networks, in the treatment planning QA procedure. As a first step, in Chapter 7, 
we wanted to highlight the significance of the external validation of AI prediction models as 
a prerequisite for their clinical translation. In this chapter, we attempted to externally vali-
date an existing Bayesian network model for the early detection of RT treatment planning 
errors that can assist RT professionals in their daily clinical routine. We used an independent 
Dutch cohort of patients, but were unsuccessful in externally validating the existing model. 
We concluded that some additional data pre-processing steps were needed in combination 
with a structure update of the Bayesian network developed in Washington in the United 
States of America (USA). As a next step of this study, we aim to establish a collaboration 
with the creators of the original model in the USA to develop and provide to the RT com-
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munity with an externally validated and reproducible QA model that could predict treat-
ment planning errors. Specifically, we aim to enrich the Bayesian network structure with 
dosimetric treatment planning variables that can improve the performance of the probabil-
istic model making it reusable by other RT centres. 

Currently, the introduction of AI in the QA checks in the RT departments is hesitant as the 
majority of the RT professionals lack the basic data science or AI knowledge for the basic 
understanding of AI algorithms, although significant studies have demonstrated promising 
AI-based QA solutions4,25. This hesitancy stems from distrust due to the opaque nature of 
many of these models, which are generally described as  “black boxes” by some of RT pro-
fessionals (such as medical physicists) despite their high interest in AI projects in general26. 
The absence of basic data and computer science knowledge in the medical physicists edu-
cation curricula is one of the main reasons for the lag in implementation of AI in the QA 
procedures and the absence of commercial AI-based solutions. Furthermore, the effort and 
time required for the acquisition of high quality datasets (“cleaned” data in the language of 
data scientists) in combination with the privacy regulations regarding the usage of RT data 
with patients' sensitive information are important barriers for testing and implementing the 
AI algorithms in multiple RT centres. All the aforementioned points highlight the importance 
of the strong collaboration between the different disciplines within a RT department. Data 
managers/stewards, computer scientists, medical physicists and clinicians should together 
establish a “round table” of discussion and collaboration for the robust implementation and 
development of AI methods in the QA workload. 

11.6 The significance of knowledge exchange in radiotherapy studies 
 

As we have mentioned in the Introduction chapter, there are important legal and adminis-
trative barriers27 that hamper data exchange between different RT centres. For example, 
in many cases hospitals are not allowed or willing to share data due to concerns about pa-
tient privacy. Additionally, much of the data collected in a routine clinical care setting is 
not stored in a structured way, but generally in free text format. A result of these barriers 
is that it is difficult to receive and extract data from data archiving systems, which ham-
pers the building and validation of AI models for relevant clinical outcomes and therefore  
knowledge exchange. These data sharing and usage difficulties led to the need to invest in 
privacy preserving technologies. A promising form of privacy-preserving technology for 
data sharing is federated learning, which constitutes a novel approach in the healthcare 
domain that has the potential to enable the exchange of statistical algorithms on a multi-
centric level without the exchange of patients’ data28,29.  Specifically, secure local “data-
stations” are used in each participating centre for the federated training of statistical ML-
based algorithms without the exchange of patients’ data, enabling multi-centre collabora-
tions. In Chapter 5, we implemented and expanded the federated learning approach in 
the radiomics field using the infrastructure presented in Chapter 4 with the transfor-
mation of radiomics data in a FAIR compliant format. We exchanged statistical models 
predicting the two-years overall survival as an outcome between two different Dutch RT 
centres following the privacy and security guidelines. Having as a goal to establish and pro-
mote a proof-of-concept framework for federated learning studies in the radiomics field 
rather than developing a novel radiomics model, we successfully validated the radiomics 
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signature published by Aerts et al.9 in an independent RT centre. Moreover, we verified 
and concluded that the federated radiomics model validation approach has indistinguisha-
ble results to the centralised approach without exchanging  sensitive patient data. 

 

11.7  The role of the FAIR data principles 
 

In this thesis we provided an overview of the AI applications in three different RT domains 
(imaging, prediction modelling and treatment planning QA), investigating pitfalls and 
providing useful solutions. Across all these different domains, one challenge arises every-
where, namely the difficulty of exchanging data across different centres, which hampers 
implementation of these useful technological innovations.Furthermore, taking into account 
the need to primarily “understand” the data and the relationships between them before 
implementing an AI technique, we stressed the importance of implementing the FAIR data 
principles in RT research Chapters 4-5, 9-10.  Based on the experience gained during the 
research executed in this thesis, regarding the data acquisition from the different data ar-
chive hospitals systems and the data structures that can support the FAIR data principles, 
we provided a FAIR data transformation practical guide presenting use cases that can be 
implemented in RT data in Chapter 9.This guide includes the different action points from 
the RT stakeholders for the responsible and coordinated clinical integration of AI methods 
in RT enabling the privacy preserving multi-centre collaborations. 

The future of RT is strictly dependent on the coordinated and systematic efforts of the dif-
ferent professional parties involved, for the utilisation of the knowledge that multi-source 
RT data offer when adhering to the FAIR data principles. This transformation for the new 
era of RT research requires time and significant resources for the integration of this new 
technology to the hospitals data archive systems. Regarding resources, doing research that 
has the potential to be integrated into the clinic in most of the cases is not a reality without 
economic or technical resources. During the last years scientific journals30 and research 
funding organisations31 initiated requirements for FAIR data management plans in space 
science publications and grant applications respectively. The RT domain requires specific 
data manipulations in terms of data management plans and data usage policies by the dif-
ferent hospitals due to the privacy sensitivity of data. Although the definition of the FAIR 
data principles does not include a detailed guide regarding technical details of data usage 
and publication policy, it is necessary to adapt research policies in an institutional level that 
are aligned with the FAIR principles. An ideal propulsion for the implementation of the FAIR 
principles by the different data usage policies in an institutional level stems from the afore-
mentioned requirements from the funding agencies. Therefore, it is more than necessary 
to rethink carefully the data management plans concerning the research ethical and sensi-
tive data usage and their FAIR compliant transformation starting from the base of initiating 
a research project to its translation into the clinic.  

The reusability of data constitutes one of the main aims of the FAIR principles. In the RT 
domain data can be reused for external parties in a case of an external validation multi-
centre study. In this case, it is necessary (from a legal and ethical perspective) to establish 
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data sharing agreements if multiple hospitals are involved in a research project. Data shar-
ing agreements ensure the adequate documentation of compliance aspects of a multi-cen-
tre collaboration pr_oviding a common framework regarding the ethical and data protec-
tion requirements. Based on the different technical “FAIRification” infrastructures and the 
different national legal requirements the field should include common technical standards 
specifying the different data stages of the data “FAIRification” pipeline and the responsibil-
ities of each party on the data sharing agreements. Industrial parties that may support tech-
nically a research project should be convinced to start from a standardised FAIR compliant 
framework that ensures the commercial protection of sensitive data. 

 

It should be highlighted that the FAIR data principles are not a data standard as stated by 
the original publication1. On the contrary, they describe a set of fundamentals of data re-
sources that have the potential to utilise data knowledge via data discovery and reusability. 
The principles are compatible with various approaches that have the potential to transform 
different data sources in a FAIR compatible format. In other words, different data standards 
can be developed based on the FAIR principles. One of the data standards that has the po-
tential to represent individual patients records in a sustainable and flexible standard is the 
Fast Healthcare Interoperability Resources (FHIR) standard. It is a relatively new standard 
developed by the Health Level Seven International (HL7) organisation and constitutes a 
modern iteration of HL7 older versions (version 2.x and version 3.x.) and Clinical Document 
Architecture (CDA) protocols. The FHIR standard has uniform resource identifiers (URIs) 
based resources as basic elements and can be easily implemented as these resources are 
using the Hypertext Transfer Protocol (HTTP)-based  Representational State Transfer (REST-
ful) protocol to communicate. Furthermore, the flexibility that the FHIR standard offers is 
reflected by the different formats of data representation supported, such as JavaScript Ob-
ject Notation (JSON), extensible markup language (XML) or RDF. The initial aim of the FHIR 
standard is to facilitate interoperability between different healthcare electronic data cap-
ture (EDC) or electronic health record (EHR) systems, providing information to both 
healthcare providers and individual patients on different devices such as mobiles phones 
and computers. Currently, FHIR does not directly contain RT based resources as it lacks clin-
ically validated profiles but there are significant ongoing efforts for modelling RT data in 
FHIR standard such as the federated learning privacy preserving approach of the Personal 
Health Train (PHT) using FAIR data32. The combination of the FAIR data principles and the 
FHIR data standard can establish a novel healthcare technology landscape in the future as 
interoperability between different health systems or devices is ensured using FHIR while 
technology becomes a valuable ally in discovering machine readable data by using the FAIR 
principles. Moreover, other technical architectures and data models such as the Observa-
tional Medical Outcomes Partnership (OMOP)33 constitute an alternative to the RDF-based 
FAIR format approach proposed in this thesis. OMOP is mainly used for systematic analysis 
of observational databases using standardised terminologies and vocabularies. The  RDF-
based flexibility of the FAIR format in combination with its structured and standardised 
manner to collect observational data are some of the main factors that make the FAIR for-
mat suitable for RT studies. 
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11.8 Future perspectives 
 

This thesis implemented and presented AI techniques in three RT subdomains (medical im-

aging, prediction modelling and treatment planning QA), discussing and identifying the bar-

riers and gaps that hamper the clinical translation of AI-based clinical decision support sys-

tems. From the different chapters of this thesis, it is more than clear that multi-source data, 

including imaging, clinical, or demographics data, play a significant role in the development 

of AI applications in RT. The main challenge remains to fully and responsibly “exploit” the 

knowledge from multi-source data. Specific solutions such as the transformation of multi-

source data in a FAIR format and the public availability of datasets are suggested from this 

thesis. The suggested FAIR transformation approach contains specific tools including pub-

licly available radiation oncology ontologies in combination with rich metadata that effi-

ciently describe the RT data.  

In this thesis, we mainly used FAIRification tools that are exclusively focused on quantitative 

(imaging-clinical) data and metadata that have as a main goal to establish an interoperabil-

ity framework enabling data reusability. However, there is an emerging need for the devel-

opment of FAIRification tools that focus on qualitative data that potentially can support 

clinical or imaging data. For instance in the QA domain of RT delivery machines such as the 

LINACs there are numerous automatically registered parameters in the different manufac-

turer's log files that are mainly the cause of a machine breakdown. This amount of free text 

data can be potentially exploited and included in AI-based automatic QA checks in combi-

nation with an additional FAIRification step enabling interoperability among the different 

data users. Furthermore, taking into account the wide variety of applications where the 

FAIR data principles can be applied, it is worth highlighting that they need to be focused on 

clinically relevant RT applications such as the mapping of toxicities between different insti-

tutions or automated patients cohorts discovery implementing FAIR inclusion criteria that 

can improve the performance of prediction models. 

Focusing on the first part of the thesis, the radiomics concept proved that it has the poten-

tial to be integrated into clinical practice regardless of the various gaps and pitfalls analysed 

by this work. Radiomics can be a useful cost-effective tool acting as a “clinician’s assistant” 

transforming the available medical images in every RT department into mineable 

knowledge using AI-based approaches. Based on my experience from the research con-

ducted during the last three years, a significant gap exists between the radiomics research-

ers and clinicians. Although significant efforts have taken place in the radiomics research 

community for the standardisation and explainability of radiomics models, currently there 

is not a clinically integrated radiomics based model or a radiomics based clinical decision 

support system. It is still under negotiation in the RT community whether a robust and (ex-

ternally) successfully validated radiomics model is robust enough for routine clinical use. 

According to my experience from the interaction with clinicians in AI-based research pro-
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jects, they tend to prefer more transparent models as preliminary solutions (such as Bayes-

ian networks) because more complex models are difficult to understand and validate. 

Therefore, the fact that an opaque model could statistically perform almost perfectly is not 

necessarily the most important factor for clinical use. Therefore, there is an emerging need 

to reconsider the whole radiomics concept and to foster a strong relationship between cli-

nicians and all the other technical professionals involved by first understanding and defining 

the clinical question and requirements (such as model transparency). The introduction of 

basic data science/statistics educational initiatives focused on clinicians may be a possible 

starting point of this coordinated effort in the future. Moreover, the identification of sys-

tematic or statistical errors in the radiomics workflow is necessary for future radiomics stud-

ies. We, as a radiomics community, need to define a priority list of systematic errors that 

affect radiomics and subsequently prioritise the factors that can be controlled in radiomics 

analyses. For example, reducing or cataloguing scanner variability by using radiomics-spe-

cific phantoms to calibrate scanners and acquisition variability focusing on raw data (e.g. 

synograms) since most images are optimised for visual inspection, but not for automated 

analysis. 

In conclusion, there is a need to re-think the way that AI-based prediction models are de-

veloped in RT. As mentioned in previous sections of this work, a significant percentage of 

clinicians consider AI as a “black-box” approach without understanding the basic technical 

and statistical concepts behind building a prediction model. Clinicians should have a leading 

role in the design of a prediction model as they fully understand the clinical question that 

has to be investigated with the involvement of technical/data science professionals due to 

their strong expertise in the field of statistics and mathematics. Future work in the field of 

prognostic modelling in RT should include the publication/availability of models in central 

repositories/archives adhering to the FAIR data principles having as a goal the continuous 

external validation of these models in different institutions and the investigation of patients 

cohorts or variables that fit to a specific clinical problem. This approach is significant espe-

cially for prediction models that are not published in the academic literature. 

 

11.9 Conclusion 
 

In conclusion, with this thesis we introduced and implemented AI-based techniques in three 
main domains in RT and the application of FAIR data principles in RT. There are still efforts 
needed from both clinicians and data science professionals for the clinical translation of AI 
for the improvement of patient care in the future. Every novel clinical solution design such 
as the implementation of the FAIR data principles in the clinic includes several challenges. 
For instance, institutional culture and resources distribution from the different stakehold-
ers. Moreover, the FAIR initiative requires support from different AI sub-fields such as ML 
and Natural Language Processing (NLP) for data analysis or filtering.  
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Personally, as a data scientist with a clinical physics background, I would like to stress the 
significance of AI and its impact in our scientific approach as humans to improve patients' 
lives as a general final conclusion of this thesis. There is an ongoing discussion whether we, 
as scientists, made progress in understanding human intelligence at a higher level using AI 
by training machines to perform and automate tasks. By trying and succeeding to replicate 
a cognitive ability outside the human brain in some machines, humans understand that this 
particular cognitive task is not as hard as they thought. In the meantime, if humans fail to 
replicate this task with existing computational tools, there are insights given to them re-
garding the reasons that led to this failure. Specifically, computers sometimes are able to 
beat humans in some clinical tasks such as the delineation of anatomical targets in CT scans 
as mentioned in the introduction of this thesis. The delineation procedure is a hard and time 
consuming one.  

However, the available mathematical and technical understanding we have in combination 
with hardware development are able to achieve better delineations than humans. This fact 
reveals that our mathematical understanding to perform an automatic tumour delineation 
in combination with computational power may give a solution and accelerate a clinical rou-
tine procedure. On the other hand, our inability to create algorithms that can transfer learn-
ing from one cognitive task to another and the “data hungriness” of the AI algorithms, which 
is much higher than that of humans who are very good to adapt their skills from one task to 
the other, show an important ability of the human brain that we do not know how to repli-
cate outside of it. That is a natural target for us, as scientists, to investigate. In other words, 
our access to hardware and data and our ability to expedite this trial and error process try-
ing to develop cognitive abilities outside the human brain, sheds light on which cognitive 
tasks are tractable and not tractable and require paradigm changes to “attack” them. This 
aforementioned fact progresses and develops the human brain by using and implementing 
AI and therefore improves our scientific way of solving a clinical problem as RT scientists. 
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Thesis summary 
 

In recent years, research on artificial intelligence (AI) in the radiotherapy (RT) domain has 
begun to monopolise the interest of different clinicians and researchers.This will likely make 
routine RT clinical procedures more reliable and effective with a direct benefit to the pa-
tients. However, the clinical integration of these AI-based applications is still lacking as sev-
eral steps still need to be included in the AI clinical implementation roadmap starting from 
the research stage and ending up to the clinical integration. One of these crucial steps is the 
adoption of the FAIR (Findable, Accessible, Interoperable, Reusable) data principles among 
the different data structure/archive systems of the radiotherapy centres. The FAIR princi-
ples can establish an interoperability framework for the reusability of RT multisource data 
that can potentially decrypt valuable information for prognostic or diagnostic research and 
clinical purposes. 

This thesis focuses on the introduction of AI techniques and the FAIR data principles in four   
RT subdomains: 

 i) medical imaging, ii) prediction modelling or RT related outcomes,  iii) quality assurance 
(QA) of RT treatment planning and iv) the implementation of the FAIR data principles. 

 

Medical imaging 

In the first part of the thesis we focused on the medical imaging domain. We investigated 
how RT can be transformed into a personalised treatment modality using imaging derived 
features that can decrypt valuable information that is not visible by the human eyes using 
machine learning (ML) techniques (ie. radiomics). Specifically, in chapter 2 we provided a 
roadmap for the clinical implementation of radiomics-based prediction models in the clinic, 
identifying the pitfalls and uncertainties encountered in the  radiomics methodology/pipe-
line followed by the researchers. Furthermore, based on the pitfalls and uncertainties we 
presented, we proposed a standardisation framework with all the necessary technical as-
pects that should be taken into account in the design/development of a radiomics study. 

 

One main take-away from chapter 2 is that the reproducibility of radiomics studies/findings 
is one the main requirements for the standardisation and implementation of the radiomics 
concept in the clinic. Therefore, in chapter 3 we provided a publicly available dataset con-
sisting of Computer Tomography (CT) phantoms (suitable for radiomics studies)  scans from 
three different Dutch RT centres, having as a goal to promote the reproducibility and in-
teroperability of radiomics studies.  

Prediction modelling or RT related outcomes 

In the second part of the thesis we focused on the prediction modelling of RT outcomes 
using AI algorithms. Taking into account the patients data privacy regulations, in chapter 5, 
we implemented a radiomics-based federated decentralised multicentre study, using tNon 
Small Cell Lung Cancer (NSCLC) patients. Having as a base the FAIR transformed clinical and 
radiomics features-based data, we validated a radiomics signature that predicts the 2-years 
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overall survival of NSCLC patients without the exchange of patients data, comparing the 
results of the centralised analysis. The study showed that the performance of the radiomics 
signature of the decentralised approach was not significantly different than the centralised 
one. Furthermore, with this study,  the significance of the FAIR transformation of data for 
federated learning radiomics studies is underlined, implementing a privacy preserving in-
frastructure without the data exchange of patients. 

 

In chapter 6, we performed an independent validation of the logistic regression-based Nor-
mal Tissue Complication Probability (NTCP) model that predicts the six months ≥ 2nd grade 
dysphagia for head and neck cancer patients. This model is part of the Dutch National Indi-
cation Protocol for Proton therapy (NIPP) for the selection of patients candidates for proton 
therapy (PT). In this study, we showed that logistic regression models need a specific vali-
dation approach in independent cohorts, examining the potential update of the different 
components of the logistic regression models (intercept, slope and predictor coefficients) 
through the AI-based approach of the closed testing procedure (CTP). The CTP in combina-
tion with the graphical assessment of the calibration curves of the different updated mod-
els, indicated that the original dysphagia NIPP model needed an update and a new updated 
calibrated model was selected. However, it is important to perform a federated  privacy 
preserving multicentre study using FAIR transformed datasets in the different Dutch PT cen-
tres that can robust the results of the CTP. 

Quality assurance 

The RT treatment planning is a complicated procedure that requires the coordinated efforts 
of clinical and technical RT professionals. For the third part of the thesis, In chapter 7 we 
focused on the quality assurance (QA) of the RT treatment planning procedure by externally 
validating an AI-based method developed in the United States (US) using a Dutch independ-
ent patients cohort. This AI  method using Bayesian Networks (BNs) has as a goal to early 
detect errors encountered in the verification phase of RT treatment planning and alert hu-
mans for  possible erroneous variables included on it. The external validation using an inde-
pendent Dutch patients cohort was not successful, due to the different technical character-
istics of the treatment machines and software used in the different RT centres possibly. 
According to this study, further steps are required for the generalisability and reusability of 
AI-based systems focusing on the automatic error detection among different centres such 
as data preprocessing and the inclusion of more variables included in the treatment plan-
ning such as imaging-based data. 

 

Implementation of FAIR principles 

In chapter 4, expanding the work of chapter 3, we provided a set of four publicly available 
datasets that were used in a breakthrough publication in the radiomics community in 2014 
in a machine-readable format. Specifically, using radiation oncology related ontologies and 
semantic web technologies, we transformed multisource (clinical, radiomics feature-based, 
and imaging) data in a FAIR format for enabling the automation of data processing by the 
machines with minimal human intervention. 
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For the last part of the thesis, we focused on the implementation of the FAIR principles in 
the RT domain. In chapter 8, having as a goal to introduce the FAIR concept in the RT com-
munity, we provided an overview of the action points required from the different RT stake-
holders for the introduction and adoption of the FAIR principles in the different data archive 
systems of the hospitals. Some of the advantages that a FAIR data transformation offers are 
the flexibility to adapt databases and the ability of machines to “read” the different data for 
automated AI-based studies. In chapters 9-10, we provided FAIR data models structured in 
knowledge graphs using the data elements used for the Dutch national registry of patients 
candidates for PT. Using publicly available ontologies and semantic web technologies we 
underline the significance of the flexibility and interoperability of the FAIR format using rou-
tine clinical data. 

 

Scriptie samenvatting 

In de afgelopen jaren is de interesse van verschillende clinici en onderzoekers in onderzoek  
naar kunstmatige intelligentie (AI) in het gebied van radiotherapie (RT) aan het toenemen. 
Dit omdat het waarschijnlijk routinematige RT-klinische procedures betrouwbaarder en ef-
fectiever zal maken met een direct voordeel voor de patiënten. De klinische integratie van 
deze AI-gebaseerde applicaties ontbreekt echter nog, aangezien er nog verschillende stap-
pen moeten worden genomen in de AI-roadmap voor klinische implementatie, beginnend 
bij de onderzoeksfase en eindigend met de klinische integratie. Een van deze cruciale stap-
pen is de invoering van de FAIR (Findable, Accessible, Interoperable, Reusable) data princi-
pes binnen de verschillende datastructuur/archiefsystemen van de radiotherapiecentra. De 
FAIR-principes kunnen een interoperabiliteits kader tot stand brengen ten behoeve van de 
herbruikbaarheid van multi source RT gegevens die mogelijk waardevolle informatie kun-
nen ontsluiten voor prognostisch of diagnostisch onderzoek en klinische doeleinden. 

 Dit proefschrift richt zich op de introductie van AI-technieken en de FAIR-data principes in 
vier RT-subdomeinen: 

i) medische beeldvorming, ii) voorspellen van RT-gerelateerde uitkomsten, iii) kwaliteits-
borging (QA) van RT-behandelingsplanning en iv) de implementatie van de FAIR-gegevens 
principes. 

  

Medische beeldvorming 

In het eerste deel van het proefschrift hebben we ons gericht op het domein van de 
medische beeldvorming. We onderzochten hoe RT kan worden getransformeerd tot een 
gepersonaliseerde behandelingsmodaliteit met behulp van variabelen uit medische 
beelden die waardevolle informatie met behulp  van machine learning (ML) technieken ( 
dwz radiomics) kunnen ontsluiten die niet zichtbaar is voor het menselijk oog. In hoofdstuk 
2 hebben we specifiek een routekaart gegeven voor de klinische implementatie van op ra-
diomics gebaseerde voorspellingsmodellen in de kliniek, waarbij we de valkuilen en onze-
kerheden identificeren die we tegenkwamen in de radiomics methodologie/pijplijn. 
Daarnaast, hebben we op basis van de door ons gepresenteerde valkuilen en onzekerheden 
een standaardisatie raamwerk voorgesteld met alle noodzakelijke technische aspecten 
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waarmee rekening moet worden gehouden bij het ontwerp/de ontwikkeling van radiomics-
onderzoek. 

 Een belangrijke conclusie uit hoofdstuk 2 is dat de reproduceerbaarheid van radiomics-
onderzoeken/bevindingen een van de belangrijkste vereisten is voor de standaardisatie en 
implementatie van het radiomics-concept in de kliniek. Daarom hebben we  in hoofdstuk 3 
een publiek beschikbare dataset gepresenteerd bestaande uit computertomografie (CT) 
fantomen (geschikt voor radiomics-onderzoeken) scans van drie verschillende Nederlandse 
RT-centra, met als doel de reproduceerbaarheid en interoperabiliteit van radiomics-
onderzoeken te bevorderen. 

  

Voorspellen van RT-gerelateerde uitkomsten  

In het tweede deel van het proefschrift hebben we ons gericht op de voorspellen van RT-
uitkomsten met behulp van AI-algoritmen. Rekening houdend met de privacyregelgeving 
met betrekking tot patiënten gegevens, hebben we in hoofdstuk 5 een op radiomics ge-
baseerde federatieve gedecentraliseerde multicenter onderzoek geïmplementeerd met 
Non Small Cell Lung Cancer (NSCLC) patiënten. Op basis van FAIR getransformeerde 
klinische en op radiomics gebaseerde gegevens, hebben we een radiomics-profiel 
gevalideerd.Dit profiel voorspelt de algemene overleving van 2 jaar van NSCLC-patiënten 
voorspelt zonder de uitwisseling van patiëntgegevens en hebben we deze resultaten 
vergeleken met een gecentraliseerde analyse. Deze studie toonde aan dat de prestatie van 
de radiomics-profiel van de gedecentraliseerde aanpak niet significant verschilde van die 
van de gecentraliseerde. Bovendien wordt met deze studie het belang van de FAIR-trans-
formatie van gegevens voor federatief leren in radiomics-onderzoeken onderstreept, bij 
een privacy beschermende infrastructuur wordt geïmplementeerd zonder de gegevensuit-
wisseling van patiënten.  

In hoofdstuk 6 hebben we een onafhankelijke validatie uitgevoerd van het Normale Weefsel 
Complicatie Probabiliteit (NTCP) model gebaseerd op logistische regressie dat de zes 
maanden ≥ 2e graad dysfagie voorspelt voor hoofd-halskankerpatiënten. Dit model maakt 
deel uit van de Nederlandse “Landelijk Indicatie Protocol Protonentherapie” (LIPP) voor de 
selectie van patiënten die in aanmerking komen voor protonentherapie (PT) . In deze studie 
hebben we aangetoond dat logistische regressiemodellen een specifieke validatie be-
nadering nodig hebben in onafhankelijke cohorten, waarbij de mogelijke update van de 
verschillende componenten van de logistische regressie modellen (intercept, helling en 
voorspeller coëfficiënten) wordt onderzocht via de AI-gebaseerde benadering van de 
gesloten testprocedure (CTP). De CTP in combinatie met de grafische beoordeling van de 
kalibratiecurves van de verschillende bijgewerkte modellen, gaf aan dat het oorspronkelijke 
dysfagie-LIPP-model een update nodig had en dat er een nieuw bijgewerkt gekalibreerd 
model werd gekozen. Het is echter belangrijk om een federatief privacy behoudend multi-
center onderzoek uit te voeren met behulp van FAIR-getransformeerde datasets in de 
verschillende Nederlandse PT centra die de resultaten van de CTP kunnen robuust maken. 

  

Kwaliteitsverzekering 
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De planning van de RT-behandeling is een gecompliceerde procedure die de 
gecoördineerde inspanningen vereist van klinische en technische RT-professionals. Voor het 
derde deel van het proefschrift, in hoofdstuk 7 , hebben we ons gericht op de kwaliteits-
borging (QA) van de procedure voor het plannen van RT-behandeling door extern een op AI 
gebaseerde methode te valideren die is ontwikkeld in de Verenigde Staten (VS) met behulp 
van een Nederlands onafhankelijk patiënten cohort. Deze AI-methode die gebruikmaakt van 
Bayesian Networks (BN's) heeft als doel fouten in de verificatiefase van de RT-behandeling-
splanning vroegtijdig te detecteren en mensen te waarschuwen voor mogelijke foutieve 
variabelen die erop zijn opgenomen. De externe validatie met behulp van een onafhankelijk 
Nederlands patiënten cohort was niet succesvol, mogelijk vanwege de verschillende tech-
nische kenmerken van de behandel machines en software die in de verschillende RT-centra 
worden gebruikt. Volgens deze studie zijn verdere stappen nodig voor de generaliseerbaar-
heid en herbruikbaarheid van op AI gebaseerde systemen, waarbij de nadruk ligt op de au-
tomatische foutdetectie tussen verschillende centra, zoals gegevens voor verwerking en het 
opnemen van meer variabelen in de behandelplanning, zoals op beeldvorming gebaseerde 
gegevens. 

  

Implementatie van FAIR-principes 

In hoofdstuk 4, dat het werk van hoofdstuk 3 voortzetten, hebben we een set van vier pub-
liek beschikbare datasets gepresenteerd die in 2014 in een invloedrijke publicatie in het 
radiomics gemeenschap werden gebruikt in een machineleesbaar formaat. In het bijzonder 
hebben we met behulp van RT specifieke ontologieën en semantische webtechnologieën 
gegevens uit meerdere bronnen (klinische, op radiomics gebaseerde functies en beeldvorm-
ing) getransformeerd in een FAIR formaat om de automatisering van gegevensverwerking 
door de machines mogelijk te maken met minimale menselijke tussenkomst. 

Voor het laatste deel van het proefschrift hebben we ons gericht op de implementatie van 
de FAIR-principes in het RT domein. Met als doel om het FAIR-concept in de RT-gemeen-
schap te introduceren, hebben we in hoofdstuk 8 een overzicht gegeven van de actiepunten 
die nodig zijn van de verschillende RT-stakeholders voor de introductie en adoptie van de 
FAIR-principes in de verschillende data-archiefsystemen van de ziekenhuizen. Enkele voor-
delen die een FAIR transformatie biedt, zijn de flexibiliteit om databases aan te passen en 
het vermogen van machines om de verschillende gegevens te "lezen" voor geautoma-
tiseerde, op AI gebaseerde onderzoeken. In de hoofdstukken 9-10 hebben we FAIR 
gegevensmodellen geleverd die zijn gestructureerd in “knowledge graphs” met behulp van 
de gegevenselementen die worden gebruikt voor de Nederlandse nationale registratie van 
patiënten die in aanmerking komen voor PT. Met behulp van openbaar beschikbare ontol-
ogieën en semantische webtechnologieën onderstrepen we het belang van de flexibiliteit 
en interoperabiliteit van het FAIR formaat met behulp van data verzameld in de dagelijkse 
klinische praktijk. 
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Research impact 

Sociocultural impact 
In this thesis we proposed and analysed AI solutions that can shorten the gap between re-
search and clinical implementation of AI-based applications and identified specific barriers. 
These barriers significantly delay the clinical translation of AI research findings. This delay 
has a negative impact, not only to the RT clinicians, but also to the patients. The continuous 
challenge and goal of RT is to improve patient care by providing the best treatment option 
fitted to an individual’s life and disease. The most important question of patients to the 
clinicians when they are diagnosed with a cancer related disease is whether they will survive 
or how much survival time they have. The new trend of personalised medicine having not 
only a curative intent but also aiming to decrease radiation induced toxicities/implication 
should be aligned with the modern technological AI advancements. The current evidence 
for treatment choices originates from clinical trials that investigate a well-defined subset of 
the larger patient population according to the requirements of the trial design. Generally, 
the insights gained from these clinical trials are only applicable to a small percentage of the 
patient populations with similar characteristics to those in the trial. The exchange of data 
from all patients rather than a subset and subsequent building of prediction models in a 
privacy preserving manner constitutes a solution of unlocking the potential of medical im-
aging and big data in RT. In this thesis, the exchange of biomarkers extracted from medical 
images enriched with clinical data FAIR compliant data is presented. This AI-application can 
potentially support clinicians in the decision-making process having a promising future im-
pact in patient care. 

Economical and technological impact 
During the last decades due to technological and medicine related advancements, different 
novel treatment options, such as brachytherapy, immunotherapy, proton RT and FLASH 
RT(ultra high doses of radiation), have been made available to cancer patients. Clinicians 
have a plethora of available treatments in their hands to implement. However, many of 
these novel treatment options are costly and time consuming. This is a problem for every 
national health system in the world. Hospitals board members and clinicians that need to 
find an equilibrium between cost effectiveness and the most efficient treatment for pa-
tients,  have difficulties in selecting the best treatment modality. In this thesis, we presented 
the model based approach (MBA) comparing the photon and proton dosimetric differences 
in terms of normal tissue complication probability (NTCP) for proton therapy in the Nether-
lands which is one of the high cost treatment options. In this way, the patients that benefit 
the most from proton therapy are selected while those who will respond well to conven-
tional therapy are offered that. Through this selection, significant resources are saved for 
future proton treatments. Specifically, according to Peeters et al.1 the construction cost of 
a proton therapy centre can be four times higher in terms of a capital investment while the 
operational cost can be three times bigger per fraction compared to photon therapy. The 
aforementioned numbers stress the significance and necessity of a “mechanism” such as 
the model based approach that can clinically benefit cancer patients. 

Moreover, this thesis presented and implemented a framework for the adoption of the FAIR 
data principles in RT involving different stakeholders in the domain. The FAIR approach does 
not only have a significant impact on the way researchers store and transform the different 
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data sources. There is an important economical impact in terms of data loss and data ar-
chive costs. According to the European Commission the annual cost of not transforming 
research data in a FAIR format reaches the “astronomic” amount of 10.2 billion euros2. In 
this cost, different parts of a research pipeline implementation are taken into account such 
as storage and licence costs. Although a FAIR compliant software is not developed in this 
thesis, we presented a FAIR compliant framework using RT multi-source data that can have 
a significant impact on the different RT stakeholders to implement the FAIR concept in the 
hospital systems changing the way that science and research is conducted. 
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