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Games, Puzzles and Treewidth

Tom C. van der Zanden(B)
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Abstract. We discuss some results on the complexity of games and
puzzles. In particular, we focus on the relationship between bounded
treewidth and the (in-)tractability of games and puzzles in which graphs
play a role. We discuss some general methods which are good starting
points for finding complexity proofs for games and puzzles.
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1 Introduction

This article was written on the occasion of the 60th birthday of Hans Bodlaen-
der. As one of his PhD students, I have come to know Hans not only for his
appreciation of deep theoretical research on graphs, but also for his enjoyment
of games and puzzles and for fun (but nevertheless serious) research. Our collab-
oration started during Hans’ algorithms master course, in which there was an
assignment on solving the puzzle game Bloxorz. This resulted in our first joint
paper, in which we showed Bloxorz PSPACE-complete [24]. Happy 60th, Hans!

Fig. 1. An instance of a
Sudoku puzzle, a com-
mon example of an NP-
complete puzzle.

The complexity of games and puzzles is a widely
studied topic, and there are far too many results out
there to even begin to give an overview. Instead, we will
focus on a few common techniques for showing hardness
and in particular on the relation to treewidth. One of
the reasons game and puzzle complexity is so popular,
is, of course, that it is fun: trying to build gadgets with
elements from Super Mario or arguing whether a game
remains NP-hard even when general relativity is con-
sidered [9] provide light-hearted insights into complex-
ity. Games and puzzles also make excellent and visceral
examples for teaching: Sudoku is a perfect example of
a problem in NP – it is clearly easy to verify the cor-
rectness of a solution while, intuitively, it seems much harder to find a solution
(and indeed, the problem is NP-complete [27]).

Decision versions of many classical pen-and-paper puzzles (such as Sudoku,
Fig. 1) are easily seen to be in NP and most often, are also NP-complete. Other
examples include Nonogram and Kakuro (see e.g. [13], Appendix A.7 for
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an overview). These puzzles are essentially constraint satisfaction problems, so
it is natural they would be NP-complete.

In many puzzles, the player has to move pieces around on a board in order to
reach a target configuration. For example, in Peg Solitaire, pegs are arranged
on a grid, and the player is allowed to move a peg from one hole to another by
jumping over another (adjacent) peg, after which the peg that has been jumped
over is removed from the board. Deciding whether the board can be cleared (save
for one peg) is NP-complete [22]. Here, membership in NP is obvious: since every
move reduces the number of pegs by one, a solution has bounded length.

Fig. 2. A Rush Hour
puzzle by ThinkFun. The
goal is to move the red
car off the right side of
the board.

More often, puzzles which involve moving pieces on
a board are PSPACE-complete. A necessary1 condition
for this is that the length of a solution is not polyno-
mially bounded (and, save for a few exceptions, if the
length of a solution is not polynomially bounded, the
problem is PSPACE-complete). An example of such a
puzzle is Rush Hour [10] (Fig. 2), in which cars (rect-
angles of size 1×2), that may only move backwards and
forwards, are arranged vertically and horizontally on a
board and the goal is to move a specific car to its desti-
nation. One possible approach to proving hardness [13]
constructs a Rush Hour instance in which the player is
forced to move the cars in such a way that corresponds
to painstakingly checking all possible assignments to a
quantified boolean formula2. These types of puzzles are
essentially reconfiguration problems [17].

Another interesting source of problems to analyse are (platform) video games.
Here, the decision question is whether the player can reach the end of the level.
The simplest such games are in P (since they reduce to a reachability question
that can be solved using, for instance, breadth-first search). However, depending
on what elements are present in a level, such games may be NP-complete (e.g.,
Super Mario [1]) or even PSPACE-complete (e.g., Zelda [2]).

Of course, the complexity strongly depends on what features are present in
the game. Several metatheorems exist characterizing which features make a video
game hard (see e.g., [11,25]). For example, NP-hardness can be obtained if there
is a time limit and a way to force the player to visit several locations (reduction
from Hamiltonian Path), or if the game features one-way passages (such as a
long fall feature, where the player can survive a fall higher than they can jump)
and a way to enable passages at a later stage of the level (such as a button that
opens a door or an enemy that can be killed to enable safe passage later). For
PSPACE-hardness, reversible state changes are required, such as blocks that can
be pushed back and forth (e.g., Sokoban [7]) or pressure plates that can force
the player to close doors (and a means to open them again).

1 Unless NP = PSPACE.
2 E.g., a formula of the form ∃x1∀x2∃x3 · · · ∀xnφ(x1, x2, . . . , xn), where φ is an unquan-

tified boolean formula over binary variables x1, . . . , xn.
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Finally, two-player games tend to be either PSPACE- or EXPTIME-complete.
Games which allow an unbounded number of moves tend to be EXPTIME-
complete, such as Chess [12] and Go [20]. On the other hand, if the number
of moves is bounded, two-player games tend to be PSPACE-complete. Examples
include Reversi [18] and Generalized Geography [21].

In this article, we will survey several known results on the hardness of games
and puzzles, with a focus on techniques and frameworks for proving hardness
and, where applicable, the relation to (bounded) treewidth.

2 Hardness of Video Games

2.1 NP-Hard Video Games

One possible method to show NP-hardness of a video game is to give a direct
reduction from Satisfiability. Aloupis et al. [1] use this approach for Super

Mario. Variable and clause gadgets are shown in Fig. 3. In the variable gadget,
the player may go either left or right to assign a particular variable to true or
false. The fall is long enough that the player cannot jump back up to (also)
make the other assignment. The clause gadget is entered from one of the three
entrances on the bottom (corresponding to one of the three literals in a 3-SAT
clause); hitting the item block from below will release a star powerup to the area
above. This powerup can later be used to traverse the flames on the right.

(a) Variable gadget (b) Clause gadget

Fig. 3. Gadgets showing the hardness of Super Mario due to Aloupis et al. [1].

To complete the reduction, we still need a (complicated) crossover gadget,
i.e., a gadget which allows to paths to cross each other without the player being
able to switch from one path to the other. This gadget is needed to make appro-
priate connections between the variable and clause gadgets. Aloupis et al. [1]
give such a gadget. The construction allows (and forces) the player to first tra-
verse all variable gadgets and make a choice for each one (and thus, unlocking
the various clause gadgets) and then traverse the check paths of all the clause
gadgets.
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To simplify the proof, one might consider using Planar 3-SAT, that is,
3-SAT wherein the incidence graph of variables and clauses is planar – hoping
that using this problem might help eliminate the need for a crossover gadget.
Unfortunately, this is not the case, because we also need additional paths to visit
all the variables (to set them) and clauses (to check them).

Recently [19], the following very interesting satisfiability variant was shown
NP-complete:

Sided Linked Planar 3-SAT-3
Given: A CNF formula φ with at most 3 literals per clause and at most 3

literals per variable, such that the incidence graph, augmented with a
cycle that first visits all variables and then visits all clauses, is planar
and admits an embedding such that for each variable, the edges going
to its positive literals occur on a different side of the cycle than the
edges going to its negative literals.

Question: Does φ have a satisfying assignment?

This is a very useful satisfiability variant, since the cycle visiting all variables
and clauses can be used to perform the setting and checking exactly as required
in the previous proof. Using this satisfiability variant, the crossover gadget can
be eliminated from the reduction for Super Mario, and, in fact, from many
other proofs as well.

This proof illustrates just one example of what can cause a video game to be
NP-hard: in this case, it is the fact that the existence of a long drop (which forces
us to make a choice in going left or right) combined with the existence of a game
element that unlocks a path for later traversal (essentially, this is Metatheorem 3
of [11]). Viglietta’s metatheorems [25] capture several other possible elements
that can make a game NP-hard:

Metatheorem 1 ([25]). If a video game features one of the following combina-
tions of elements, it is NP-hard:

– Location traversal (spots in the level that must be traversed, e.g., items that
must be collected), combined with single-use paths.

– Tokens, toll roads that consume a token to traverse and location traversal.
Tokens may be either cumulative (any number can be held) or collectible (one
may be held at a time).

– Cumulative tokens and toll roads.
– Pressure plates3, which correspond one-to-one to doors that they may open or

close.

2.2 PSPACE-Hard Video Games

Many video games are PSPACE-hard. This can be the case when they feature
movable elements (such as Sokoban [7]) or if the game features elements that
3 A pressure plate, as opposed to a button, is a game element that the player cannot

avoid triggering if traversed.
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(a) Clause gad-
get

(b) Existential quantifier (c) Universal quantifier

Fig. 4. Construction showing PSPACE-hardness of games with pressure plates
(depicted as circles; a circle labelled +x (resp. −x) opens (resp. closes) door x) and
doors (depicted as squares) due to Viglietta [25].

give the player the option to open doors or can force them to close them again. In
the previous section, we stated the metatheorem that for pressure plates which
correspond one-to-one with doors it is possible to obtain NP-hardness. This is
tight, since there exist NP-complete games featuring these elements: since each
door is controlled by at most one pressure plate, once it is opened or closed its
state can never change again.

If instead we consider a game in which each door may be controlled by two
pressure plates, one which may open it and one which may close it, we obtain
PSPACE-hardness:

Metatheorem 2 [25]. If a game features pressure plates and doors, each pres-
sure plate controls at most one door and each door is controlled by at most two
pressure plates, then the game is PSPACE-hard.

The proof (due to Viglietta [25]) is by reduction from Quantified Boolean

Formula Satisfiability. Figure 4 shows the gadgets used in the construction:
(a) a clause gadget, which may be traversed if at least one of the doors cor-
responding to one of the three literals of the clause is open. (b) an existential
quantifier gadget, which can be traversed from top left to top right by picking
either the top or bottom path (which opens doors corresponding to either a true
or false assignment to that variable) (c) a universal quantifier, which must be
traversed in the following way: the player enters from the top left, passes the top
path (making a true assignment), then leaves from the top right. The player then
returns (after checking the rest of the formula) on the bottom right and then
must traverse the middle two paths (making a false assignment), after which the
player must again exit from the top right to verify the assignment again, before
returning on the bottom right and being able to exit on the bottom left.

One drawback of this scheme is that pressure plates must be able to act
on doors anywhere in the level. This cannot always be realized easily. On the
positive side, it is not necessary to build a crossover gadget (since crossings are
provided by the pressure plates working on arbitrarily distant doors). Another
framework, the door framework [2], gets rid of the requirement that buttons may



252 T. C. van der Zanden

operate arbitrarily distant doors, and states that a game is PSPACE-hard if it
is possible to build a crossover gadget and a door gadget, which contains three
distinct paths: an open path (which may open the door when traversed), a close
path (which forcibly closes the door when traversed) and a door path (which
may be traversed only when open).

Many games feature buttons, a game element which is similar to, but different
from, a pressure plate. When encountering a button, the player has the option
of pressing it or not (in contrast to a pressure plate, which is activated whether
the player would like it to or not). Buttons which act on only one door at a time
are trivial (since a player would always press an “open” button and would never
press a “close” button), so it is not possible to obtain a hardness metatheorem
for these. Instead, Viglietta [25] considers k-buttons: a button which may act
on at most k doors at once. For k ≥ 2, a player may be incentivized to press a
button that would close a door, provided it also opens another.

One could ask what is the minimum k for which a game with k-buttons is
hard. Viglietta [25] showed that for k = 2 such games are NP-hard, and for
k = 3, PSPACE-hard. Hans and I improved this, showing that k = 2 already
suffices for PSPACE-hardness:

Metatheorem 3 ([24]). A game featuring 2-buttons is PSPACE-hard, even if
each door may be acted upon by at most 2 buttons.

Bloxorz [16] (Fig. 5) is a puzzle game that features a third type of element,
a switch, that may toggle a (trap-)door between open and closed (i.e., repeated
presses of a switch will cause the state of the door to cycle between open and
closed). The unique feature of Bloxorz is that the player is a 1 × 1 × 2 block,
for which two types of moves are possible: if the block is standing up, a tilting
move is possible, which causes the block to lay on one of its 1 × 2 sides. If the
block is lying on a 1 × 2 side, it can either do a tilting move (causing the block
to stand up again), or a rolling move, rolling over to another of its 1 × 2 sides.
These special types of moves enable some interesting gadget constructions.

Each switch in Bloxorz may act on only one trapdoor (and each trapdoor
may be acted upon by only one switch). However, we can exploit the fact that
the block is 1×2 to build what are, essentially, 2-switches (if the block falls down
on a 1 × 2 side on two switches, they are both triggered). Thus, it is possible to

Fig. 5. An example Bloxorz level
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show that Bloxorz is PSPACE-complete [24]. The proof can be distilled to the
following metatheorem:

Metatheorem 4 (Consequence of [24]). If a game features 2-switches, it is
PSPACE-hard, even if each door may be controlled by at most one switch.

Note that for this metatheorem, it is not relevant whether the 2-switches
behave like pressure plates (in the sense that they are always forcibly triggered)
or buttons (in the sense that the player can choose to trigger them or not).

3 Constraint Logic Framework

Many hardness constructions for games and puzzles are quite involved, and
require the creation of complicated crossover gadgets or lengthy arguments about
simulating the behaviour of a Turing machine. The Constraint Logic framework,
introduced by Hearn and Demaine [13], provides several games and puzzles based
around the notion of constraint graphs, each of which is complete for a different
complexity class. These aim to be convenient starting points for reductions and
simplify hardness proofs (for instance, by eliminating the need to construct a
dedicated crossover gadget).

Of particular interest is the PSPACE-complete variant, called Nondeter-

ministic Constraint Logic (NCL), which has proven very useful for a wide
variety of hardness proofs. However, the Constraint Logic framework includes
many games, each of which capture the essence of a different complexity class
and its relation to games: for instance, it is possible to define a two-player game
on constraint graphs. The edges are partitioned between the players, the players
take turns flipping an edge from their set and each player has a target edge
that they must flip to win. In a bounded setting (each edge may be flipped
at most once), this game is PSPACE-complete (capturing, e.g., the hardness of
Reversi), while in general it is EXPTIME-complete (capturing, e.g., the hard-
ness of Chess). We will now formally introduce Constraint Logic.

Definition 1. A constraint graph is an undirected graph G = (V,E), together
with:

– For each vertex v ∈ V , a vertex weight w(v),
– For each edge e ∈ E, an edge weight w(e).

Given a constraint graph G, a configuration is an assignment of orientations
to its edges. A configuration is valid if for each vertex, the total weight of edges
pointing in towards that vertex is at least that vertex’ weight.

The Constraint Graph Satisfiability problem asks whether a con-
straint graph G admits a valid configuration. It can be viewed as the constraint
logic equivalent of 3-SAT.

Constraint Graph Satisfiability

Given: A constraint graph G.
Question: Does G have a valid configuration?
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Constraint Graph Satisfiability is NP-complete, even for very
restricted constraint graphs:

Theorem 1 ([13]). It is NP-complete to decide whether a constraint graph G
admits a valid configuration, even if G is planar, has maximum degree 3, each
vertex has weight equal to 2 and the edge weights are in {1, 2}.

In fact, for all discussions on constraint logic, it suffices to consider ver-
tex weights 2 and edge weights {1, 2}. Going forward, we shall omit the vertex
weights. Following the convention in [13], red edges shall have weight 1 and blue
edges (drawn thicker) shall have weight 2.

Given a (valid) configuration for a constraint graph, we can obtain another
configuration by flipping the direction of one edge. A move is an edge flip between
two valid configurations.

Nondeterministic Constraint Logic (NCL)

Given: A constraint graph G, a valid configuration C for G and a target
edge e ∈ G.

Question: Is there a sequence of moves on G, starting from C, that even-
tually reverses e?

We may also consider the configuration-to-configuration variant of NCL,
which asks whether a starting configuration C1 can be reconfigured (through
moves) to a target configuration C2. All complexity results discussed in this
section hold analogously for this variant.

NCL is PSPACE-complete, even for very restricted constraint graphs. We
may consider graphs constructed using only the two vertex types shown in Fig. 6.
The OR vertex has three incident blue (weight 2) edges, and thus in any valid
configuration at least one of them needs to point inward. It resembles an OR
gate in the sense that if we identify one edge as the “output”, it can point
outward if and only if at least one of the two other edges is pointing inward.
The AND vertex has two incident red (weight 1) edges and one incident blue
(weight 2) edge. It is satisfied if and only if both red edges point inward or the
blue edge points inward. Thus, we can think of the blue edge as its “output”,
able to point outward only if both red edges are pointing inward. The fact that
NCL is PSPACE-complete for such restricted graphs makes it a very powerful
tool for constructing hardness proofs.

Theorem 2. Nondeterministic Constraint Logic is PSPACE-complete,
even for planar constraint graphs that use only AND and OR vertices.

To prove hardness by reduction from NCL, we thus only need to show how
AND and OR vertices may be constructed. Figure 7 shows how the AND and
OR vertices may be constructed in Rush Hour. In the AND vertex, car C can
move down if and only if cars A and B move out; in the OR vertex, if either
car A or B moves out, car C can move in. These constructions are essentially
the only elements necessary for the proof, it only remains to be shown that they
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2 2

2

2

(a) OR vertex

2 1

2

1

(b) AND vertex

Fig. 6. The two vertex types from which a restricted constraint graph is constructed:
(a) OR vertex and (b) AND vertex. Following the convention set in [13], as a mnemonic
weight 2 edges are drawn blue (dark grey) and thick, while weight 1 edges are drawn
red (light grey) and thinner. From [23]. (Color figure online)

(a) AND vertex (b) OR vertex

Fig. 7. AND and OR vertices, as constructed in a reduction to Rush Hour, Hearn
and Demaine [13].

can (given a planar constraint graph) be arranged in the plane and connected
accordingly; this greatly simplifies the original PSPACE-completeness proof [10].

Bounded Width. Of course, given that a graph is involved, a natural question
is what happens if the unweighed graph underlying the constraint graph has
bounded treewidth. It can easily be seen that Constraint Graph Satisfia-

bility is polynomial-time solvable on graphs of bounded treewidth. Surprisingly,
NCL is PSPACE-complete, even for graphs of bounded treewidth (and actually,
even for graphs of bounded bandwidth):

Theorem 3 ([23]). There is a constant c such that Nondeterministic Con-

straint Logic is PSPACE-complete, even on planar constraint graphs of band-
width at most c that use only AND and OR vertices.

This result is closely related to a result of Wrochna [26] on reconfiguration
problems in bounded bandwidth graphs. Wrochna shows that a Turing machine
(with polynomially bounded tape) can be simulated in a bounded width struc-
ture. Since the tape is linear and, locally, we only need to take into account a
bounded number of cases (depending on the number of states of the TM and the
size of the alphabet), it is actually quite natural that this should be the case.

An amusing consequence of this result is that Rush Hour is PSPACE-
complete even when played on a board of constant width.
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Interestingly, some games on graphs that are PSPACE-complete do become
tractable if the graph has bounded treewidth. For instance, Generalized

Geography can be solved in linear time on graphs of bounded treewidth
[3]. The main difference is that Generalized Geography is a bounded two-
player game, whereas Nondeterministic Constraint Logic is single player,
unbounded. The fact that moves are reversible means that information can flow
back and forth in the graph, passing through separators. Essentially, the separa-
tor property of bounded treewidth graphs is useless if there is a mechanism that
can pass information through them. In contrast, in Generalized Geography,
once a vertex has been picked by one of the players, it cannot be used again.
It is an interesting open problem to settle the conjecture that Bounded Two-

Player Constraint Logic is also tractable in bounded treewidth graphs, and
that the unbounded variant remains EXPTIME-complete.

For more information on Constraint Logic, and for many interesting reduc-
tions from Constraint Logic to various games and puzzles, I refer to the excellent
book [13] by Hearn and Demaine.

4 Partition and Packing Problems

Fig. 8. A simple Poly-

omino Packing puzzle and
a possible solution.

So far, we have looked at video games, pen-and-
paper puzzles and sliding piece puzzles. A final class
of puzzles that we are going to look at are packing
puzzles and jigsaws. Besides fun applications (puz-
zles such as Tangram, polyomino packing or jig-
saws), packing problems also have many practical
applications of real-world importance, such as load-
ing packages into a delivery truck or loading prod-
ucts onto pallets [14].

A key tool for showing the hardness of packing
problems is the 3-Partition problem:

3-Partition
Given: A collection A of 3n positive integers

a1, a2, . . . , a3n.
Question: Is there a partition of A into n

triples such that the numbers in each triple
sum to 1

nΣ3n
i=1ai?

The 3-Partition problem is strongly NP-hard, i.e., it remains NP-complete
even if each integer ai is bounded by a polynomial in n. This is very useful, since
in a reduction we can construct puzzles whose size is proportional to the integers
in the input and still obtain a hardness result.

Reductions from 3-Partition can sometimes give very easy hardness proofs.
Demaine and Demaine [8] give an excellent overview of many types of packing
and jigsaw puzzles, most of which are shown hard using 3-Partition.
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An interesting type of puzzles are Polyomino Packing puzzles. In Poly-

omino Packing we are given a collection of polyominoes (shapes consisting of
unit squares, glued together on their edges) and are asked to build a target shape
(which is a subset of a square grid). Figure 8 shows an example of a Polyomino

Packing puzzle, in which we are asked to pack 5 polyominoes into a 3 × 7
rectangle.

Even for very restricted instances, Polyomino Packing is already NP-
complete:

Theorem 4 ([8]). It is (strongly) NP-complete to decide whether n given rect-
angular pieces sized 1×x1, 1×x2, . . . , 1×xn, where the xi’s are positive integers
bounded above by a polynomial in n, can be exactly packed into a specified rect-
angular box of area x1 + x2 + . . . + xn.

The proof due to Demaine and Demaine [8] is by reduction from 3-Partition
and is quite simple and elegant: given an instance of 3-Partition with 3n inte-
gers a1, a2, . . . , a3n, each integer ai is translated to a rectangle of size 1×(ai+n).
We then ask whether these rectangles can be packed into a n × (

3n + 1
nΣ3n

i=1ai

)

rectangle.

Bounded Width. An interesting question is what happens when we bound the
width in some way. For instance, we might ask ourselves what the complexity
of Polyomino Packing is when the target shape is a k × n rectangle, where k
is a (bounded) width parameter. There is a very simple hardness proof showing
hardness even for k = 2:

Theorem 5. Polyomino Packing is NP-hard, even when the target shape is
a 2 × n rectangle.

This can be seen by reduction from 3-Partition. We may construct a 2 ×(
n + 1 + Σ3n

i=1ai

)
rectangle into which n slots of size 1 × (

1
nΣ3n

i=1ai

)
are cut.

We then ask whether this “rectangle with slots” can be packed together with
3n rectangle polyominoes of sizes 1 × a1, 1 × a2, . . . , 1 × a3n into a box of size
2 × (

n + 1 + Σ3n
i=1ai

)
.

The reason having bounded width does not help in this case is that, if we try
to do separator-based dynamic programming (where a separator might divide
the 2 × n box into two 2 × n/2 boxes), we need to remember which pieces we
have used on one side of our separator. A very similar phenomenon appears
in Subgraph Isomorphism in planar and bounded treewidth graphs, where
having bounded treewidth also does not really help [4].

Exact Complexity. Besides studying classification into complexity classes such
as NP and P, it is also interesting to ask what the exact complexity of a problem
is. That is, since Polyomino Packing is NP-hard, we know it most likely
cannot be solved in polynomial time. It then becomes interesting to ask what
the slowest-growing f is such that Polyomino Packing into a 2 × n box can
be solved in time 2O(f(n)).
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Using a dynamic programming approach, and the observation that placing
polyomino pieces into a 2 × n box partitions the remaining area into connected
components that are easy to characterize, it is possible to obtain the following
result:

Theorem 6 ([6]). Polyomino Packing can be solved in 2O(n3/4 log n) time if
the target shape is a 2 × n rectangle.

Of course, a natural question is whether we can also obtain a (matching) lower
bound on f . Using the Exponential Time Hypothesis [15], doing so is sometimes
possible. The Exponential Time Hypothesis (ETH) states that there exists no
algorithm solving n-variable 3-SAT in 2o(n) time. Assuming this hypothesis,
and by designing efficient reductions (that do not blow up the instance size too
much), it is possible to derive conditional lower bounds on the running time of
an algorithm.

The blow-up of the reduction from 3-SAT to 3-Partition is rather large
and does not lead to a tight lower bound for the 2 × n case. However, many
packing problems exhibit an interesting behaviour: their optimal running time
is 2Θ(n/ log n) (under the ETH). This holds for, for instance, Subgraph Isomor-

phism on planar graphs [4,5] and also for Polyomino Packing if we increase
k to 3:

Theorem 7 ([6]). Polyomino Packing cannot be solved in 2o(n/ log n) time,
even if the target shape is a 3 × n rectangle.

Using treewidth-based techniques, we can obtain a matching 2O(n/ log n)-time
algorithm [6]. Interestingly, this means that 4×n (or n×n) Polyomino Packing

is essentially not any harder than 3×n Polyomino Packing. 2×n Polyomino

Packing is somewhat easier, but still NP-hard.

x1 = 010110 011010

x1 = 101001 100101

x2 = 011001 100110

x2 = 100110 011001

c3 = 011010 010110

c3 = 100101 101001

Fig. 9. Top: polyominoes corresponding to variables x1, x2 and clause c3. Bottom: the
complementary polyominoes, that mate with the polyominoes above them to form a
3×Θ(log n) rectangle. Note that the polyominoes are depicted compressed horizontally.
Due to [6].

The lower bound can be obtained by a direct reduction from 3-SAT. If we
number the variables in the instance 1, 2, . . . , n and the clauses n + 1, . . . , n +
m+1, we can pick a unique bitstring corresponding to each variable and clause,
being derived from the binary representation of its index. We can then use these
bitstrings to construct corresponding polyominoes, which consist of a solid row
on top and a row on the bottom which has a square whenever the bitstring has a
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x1 = 010110 011010 x1 = 010110 011010c3 = 011010 010110 c4 = 100101 101001 x1 = 010110 011010

x1 = 101001 100101 x1 = 101001 100101

c5 = 100110 011001

c3 = 011010 010110x2 = 011001 100110 x2 = 011001 100110 x2 = 011001 100110

x2 = 100110 011001 x2 = 100110 011001

c4 = 100101 101001 c5 = 100110 011001

c3 = 100101 101001

c5 = 011001 100110

c4 = 011010 010110

Fig. 10. Example of the reduction for the formula (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨
¬x2). Top-to-bottom, left-to-right: formula encoding polyomino for x1, variable-setting
polyomino for x1, clause-checking polyomino for c4, clause checking-polyomino for c5,
formula-encoding polyomino for x2, clause-checking polyomino for c3, variable-setting
polyomino for x2. The polyominoes are arranged in a way that suggests the solution
x1 = false, x2 = true. Due to [6].

1 in that position. Since we need only log (n + m) bits to represent each number,
each corresponding polyomino has only O(log n) squares.

For each clause and variable we can also define a complementary polyomino,
which mates with the corresponding polyomino to form a 3×Θ(log n) rectangle.
Figure 9 shows an example of corresponding and complementary polyominoes.

Using corresponding and complementary polyominoes as building blocks, it
is possible to build up larger polyominoes that form an instance of 3 × n Poly-

omino Packing that is solvable if and only if the formula is satisfiable. The
instance will have a size of O(n log n) squares, leading to the claimed lower
bound.

We will not go into the full details of the reduction here; instead, we refer
to [6]. However, we sketch some details. For every variable, a formula-encoding
polyomino is built, together with a variable-setting polyomino. In any solution,
there are two possible placements of the variable-setting polyomino with respect
to the corresponding formula-encoding one. Either overlapping the left side of the
formula-encoding polyomino, corresponding to a false assignment, or overlapping
the right, corresponding to a true assignment. The places where the variable-
setting polyomino does not overlap the formula-encoding polyomino contain gaps
into which polyominoes corresponding to clauses satisfied by the assignment can
fit. Figure 10 shows an example of this construction.

This technique offers an alternative to 3-Partition-based proofs, giving
tighter lower bounds than would be obtained through 3-Partition. Many games
and puzzles are expressive enough to allow bitstrings to be used to succinctly
encode variables and clauses. The example of 2 × n Polyomino Packing is an
example where we do not have sufficient expressivity and have to fall back to
a direct reduction from 3-Partition. An interesting open problem is to settle
the exact complexity of 3-Partition (and that of 2×n Polyomino Packing),
as current upper and lower bounds are not tight (the chain of reductions that
establishes the hardness of 3-Partition is quite long, blowing up the size of the
instance at several steps; however, we do not know the precise value of the lower
bound that follows).
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5 Conclusions

In this survey, we have discussed several complexity results on various (types
of) games and puzzles. We have seen examples of pen-and-paper puzzles, video
games, jigsaws and packing puzzles, some two-player games and reconfiguration
puzzles. In several cases, we have seen surprising connections to treewidth: recon-
figuration puzzles (and problems) remain PSPACE-hard on bounded (tree-)width
structures, while other PSPACE-hard games (such as Generalized Geogra-

phy) become tractable. We have seen that for Polyomino Packing, the prob-
lem similarly remains NP-hard even for boards of width 2 and that the hardness
does not increase above width 3.

It would be an interesting open problem to further study the complexity of
Constraint Logic variants and games under bounded width. The case for Nonde-

terministic Constraint Logic is well understood, but it would be interesting
to see if the tractability result for Generalized Geography generalizes to a
result for Bounded Two-Player Constraint Logic. Going further, it would
be interesting to investigate the complexity of other Constraint Logic variants
in bounded width graphs.
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