

How Diet Leads to Defensive Dynamism

Citation for published version (APA):

Oudendijk, Z., & Sloggett, J. J. (2022). How Diet Leads to Defensive Dynamism: Effect of the Dietary Quality on Autogenous Alkaloid Recovery Rate in a Chemically Defended Beetle. Journal of Chemical Ecology, 48(1), 99-107. https://doi.org/10.1007/s10886-021-01326-2

Document status and date: Published: 01/01/2022

DOI: 10.1007/s10886-021-01326-2

Document Version: Accepted author manuscript (Peer reviewed / editorial board version)

Please check the document version of this publication:

 A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

 The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these riahts.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:

www.umlib.nl/taverne-license

Take down policy

If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl providing details and we will investigate your claim.

HOW DIET LEADS TO DEFENSIVE DYNAMISM: EFFECT OF THE DIETARY QUALITY ON AUTOGENOUS ALKALOID RECOVERY RATE IN A CHEMICALLY DEFENDED BEETLE

Zowi Oudendijk* & John J. Sloggett[,]

Maastricht Science Programme, Maastricht University

*Correspondence Email: z.oudendijk@alumni.maastrichtuniversity.nl

Journal of Chemical Ecology, https://doi.org/10.1007/s10886-021-01326-2

HOW DIET LEADS TO DEFENSIVE DYNAMISM: EFFECT OF THE DIETARY QUALITY ON AUTOGENOUS ALKALOIDS RECOVERY RATE IN A CHEMICALLY DEFENDED BEETLE

ZOWI OUDENDIJK* & JOHN J. SLOGGETT

Maastricht Science Programme, Maastricht University, P.O. Box 616, 6200 MD Maastricht,

The Netherlands

Corresponding Email: z.oudendijk@alumni.maastrichtuniversity.nl

ORCID: ZO: 0000-0001-9643-4150, JJS: 0000-0002-8007-7643

Abstract-The impact of different diets on chemical defense has been extensively studied in animals that sequester defensive chemicals from food. However, there are fewer studies of dietmediated variation in autogenously produced defenses. Ladybird beetles, which use autogenously synthesized defensive alkaloids, are used as models in a wide diversity of studies of chemical defense, specifically in studies of intraspecific variation in color pattern and chemical defense. Many aphidophagous ladybirds consume a wide diversity of aphid prey, which vary in quality and thus could affect the synthesis of chemical defense. We measured alkaloid recovery rate after reflex bleeding by the ladybird Adalia bipunctata on two different aphid diets, the high quality Acyrthosiphon pisum and the lower quality Aphis fabae. Alkaloids reaccumulated in ladybirds more slowly when they were fed A. fabae than when they were fed A. pisum and females generally had more alkaloid than males, but reaccumulated alkaloid more slowly. Recovery times were in excess of 12 days. There appeared to be a weak positive relationship between alkaloid level and time since reflex bleeding for eggs of A. pisum- but not A. fabae-fed females. Our findings on diet and alkaloid synthesis in ladybirds suggest that chemical defense levels are very dynamic, indicating that studies conducted at a single point in time, such as those focused on ladybird color pattern, fail to consider a wide diversity of temporal variation that occurs in the field. This is likely true for many autogenously produced chemical defense systems in a diversity of other organisms.

Key Words-Coccinellidae, chemical defense, Adalia bipunctata, dietary generalist, adaline.

Declarations

Funding: Universteitsfonds Limburg (CoBes18.010-VT)

Conflicts of interest/Competing interests: The authors declare no competing interests.

Ethics approval: Not applicable

Consent to participate: Not applicable

Consent for publication: Not applicable

Availability of data and material: Not applicable

Code availability: Not applicable

Authors' contributions:

ZO and JJS formulated the idea and developed the methodology. ZO conducted the experiments and statistical analysis, with advice from JJS. ZO and JJS wrote the manuscript.

Acknowledgement

We thank Solène Blanchard and François Verheggen for providing the starting culture of *Aphis fabae*. We thank Marie Correia for technical advice, Fokko Zandbergen, Paul Lemmens, and Tobie van Zwieten for laboratory support, and Hanne Diliën for her comments on this work. This research was partially supported by Universiteitsfonds Limburg (SWOL) (Grant:CoBes18.010-VT).

INTRODUCTION

Chemical defense is widely used as a protective mechanism in insects and other animals. Defensive chemicals are generally obtained either by sequestration from the diet or through autogenous synthesis (e.g. Zvereva and Kozlov 2016; Ruxton et al. 2018). Intraspecific variation in both quality and quantity of these toxins has often been observed (Brower et al. 1982; Jones et al. 1987; Holliday et al. 2009), being frequently quantitative rather than qualitative (Speed et al. 2012). While there are a lot of examples of variation due to diet in directly sequestered defenses (e.g. Lampert and Bowers 2010; Ramos et al. 2012; Agrawal et al. 2021), there are very few documented cases related to diet mediated variation in autogenously synthesized defensive chemicals (Brückner and Heethoff 2018).

Ladybird beetles (Coccinellidae) use endogenously synthesized taxon-specific defensive alkaloids (Pasteels et al. 1973; Daloze et al. 1995; King and Meinwald 1996; Laurent et al. 2005). These alkaloids protect the beetles against a diversity of natural enemies (e.g. Marples et al. 1989; Marples 1993; Hemptinne et al. 2000). When disturbed, adults and larvae emit droplets of alkaloid-bearing hemolymph (Happ and Eisner 1961; Kendall 1971), a defense mechanism known as reflex bleeding. Eggs and pupae also are protected by alkaloids (Daloze et al. 1995; King and Meinwald 1996). Synthesis and use of these endogenous alkaloids are energetically costly processes (Holloway et al. 1991; Grill and Moore 1998; Bayoumy et al. 2020).

Ladybirds have been used as models in a wide diversity of studies of chemical defense (e.g. de Jong et al. 1991; Marples 1993; Grill and Moore 1998; Sloggett et al. 2009; Arenas et al. 2015). One area of considerable interest has been the link between color pattern variation and defensive capability, both intra- and interspecifically (Bezzerides et al. 2007; Blount et al. 2012; Winters et al. 2014; Arenas et al. 2015; Wheeler et al. 2015). However, although intraspecific variation in chemical defense concentration is accepted as a given in many of these studies, the bases of this variability are only partially understood. Genetic variation in the defensive capability of ladybirds is known (de Jong et al. 1991) and rearing temperature, microbial infection and food quantity appear to play a role (Blount et al. 2012; Steele et al. 2020a, b), however dietary quality mediated via prey species has not been studied. Generalist aphidophagous ladybirds consume many different aphid prey species of differing dietary quality (Hodek and Evans 2012). Thus, dietary quality related to prey species is potentially a very significant factor in determining chemical defense strength.

In this paper we take a dynamic temporal approach to measuring chemical defense responses to dietary quality, by measuring alkaloid accumulation in ladybirds provided with qualitatively different aphid diets after reflex bleeding. For this we use a well-established model system that has been used to study the effect of different aphid diets for over 50 years, the two-spotted ladybird Adalia bipunctata (L.) and its aphid prey, the pea aphid Acyrthosiphon pisum (Harris) and the black bean aphid Aphis fabae Scopoli. While A. pisum is a high-quality prey, A. fabae has been shown to be poorer for the ladybird: deleterious effects have previously been observed on larval survival, development time, subsequent adult weight, adult preoviposition period, fecundity, fertility, and longevity (Blackman 1965, 1967; El-Hariri 1966a, b; Rana et al. 2002). In spite of this A. fabae is regularly used for feeding and breeding by A. bipunctata in the wild (e.g. Banks 1955). Adalia bipunctata synthesizes adaline (Tursch et al. 1973) as a major alkaloid and adalinine (Lognay et al. 1996) as a minor one for its defense. As in other ladybirds these alkaloids are synthesized in the fat body of the beetle from fatty acid precursors (Laurent et al. 2001; Haulotte et al. 2012). Using this model system, this study asked how diet affects the reaccumulation of the autogenously synthesized alkaloids of male and female A. bipunctata over time, and also its effect on the alkaloid content of the eggs that the females produce.

METHODS AND MATERIALS

Insect Culture. Adult *A. bipunctata* were acquired from Entocare Biologische Gewasbescherming Wageningen, The Netherlands. Ladybirds were maintained in a constantclimate cabinet set at 21 °C, 70% RH and a 16L:8D light regime. They were maintained in 9 cm diameter Petri dishes, the interior of which had been previously scraped with a coarse scouring pad, giving a roughened surface to facilitate easy movement. *Aphis fabae*, and *A*. *pisum* (Hemiptera: Aphididae) colonies were reared separately on broad bean plants (*Vicia faba* L., cultivar Witkiem) in the lab (20 ± 2.0 °C) under a constant light source. Ladybirds were fed aphids collected from the host plant daily, without plant material, which causes condensation to accumulate in Petri dishes (cf. Majerus et al. 1989).

Care Prior to Reflex Bleeding. The progression of the experiment is shown in Fig. 1. Ladybirds were immobilized using a flow of carbon dioxide and sexed under a dissecting microscope using the criteria of Randall et al. (1992). They were placed in single-sex Petri dishes with a density of approximately ten ladybirds per dish. Each dish was replaced daily, and the ladybirds were fed with an excess of aphids without plant material, either *A. pisum* or *A. fabae*. On the second day of feeding, females and males were paired in a 5.5 cm diameter Petri dish, roughened as described previously, under a light source for two hours with an excess of aphids. The pairs were maintained in the Petri dish after mating, and only pairs that copulated, and thus were are able to lay fertile eggs, were used in the subsequent experiment.

Reflex Bleeding. All adult *A. bipunctata* were reflex bled on the sixth day of the experiment, based on the assumption that new alkaloid would be synthesized after alkaloid loss. Reflex bleeding is also expected to minimize the starting variation in alkaloid quantity that would be found in untreated ladybirds as a consequence of natural variation and possible prior reflex bleeding. The methodology of stimulating reflex bleeding was modified from de Jong et al. (1991). Ladybirds were fixed by taping the elytra on to sample slides (Knapp et al. 2018). All the six femora and sides of the prontoum were squeezed clockwise with forceps until the secretion ceased. The reflex blood was removed using filter paper. This method maximized the excretion of reflex blood from the ladybird and ensured that all ladybirds were in a comparable baseline state at the beginning of the experiment.

Collection of Sample. Six or seven pairs of ladybirds were frozen for analysis directly after reflex bleeding and also after 1, 3, 5, 8, and 12 days. On each occasion, each individual was

separately weighed inside a 5.5 cm diameter Petri dish, using a Satorius CPA225D Semi Microbalance (precision of 0.01 mg). All ladybird samples were transferred into separate 1.2 mL glass test tubes held inside a 2.0 mL Eppendorf safe-lock tube and stored at -80 °C.

The remaining dishes were inspected daily for dead ladybirds and the presence of eggs. Dishes were replaced, and the ladybirds were provided with fresh aphids. The numbers of eggs were recorded. Each egg cluster with greater than 25 eggs, was weighed using a Mettler Toledo Balance XS205 with precision of 0.01 mg. Each cluster of <25 eggs was combined with eggs from a neighboring day from the same female, because small numbers of eggs are difficult to weigh accurately. These pooled samples were allocated to the day from which the larger number of eggs came in subsequent statistical analysis. Females that laid <25 eggs over more than two days were excluded from the analysis. The collected eggs were stored in a freezer at -25 °C. The difference in the temperature from the storage of the adult samples was for space reasons, and is not expected to affect the amount of the alkaloid recovered.

Alkaloid Extraction. The extraction of alkaloids from the adult ladybird samples was conducted as follows; 200 μ L of methanol was pipetted into a 1.2 mL test tube with each ladybird and 5 μ L of a 10 mg/mL nicotine solution was added as an internal standard. Extraction of egg samples followed the same procedure with 100 μ L of methanol and 5 μ L of a 2 mg/mL nicotine solution added to a single clutch of eggs. The samples were crushed and the solution with the remains was left for 15 min to extract the maximum amount of alkaloid into the solvent. The test tube was placed inside a 2.0 mL Eppendorf Safe-lock tube and centrifuged with an Eppendorf 5424 microcentrifuge for 5 minutes at 15,000 rcf at room temperature. The supernatant was transferred into a new glass tube and the undissolved parts were discarded. The methanolic solution was dried with nitrogen gas to remove the methanol and redissolved in 100 μ L of chloroform for adult ladybird samples and 50 μ L for eggs. It was shaken until everything had dissolved. The solution, containing the extracted alkaloids, was subsequently transferred into GC-MS vials with a 150 μ L glass low volume insert and stored at -80 °C if GC-MS was not carried out immediately.

Quantitative Analysis. The analysis of 1 μ L chloroform containing the alkaloid extracts was performed using a Shimadzu GC-2010 Plus gas chromatograph with an AOC-20i autoinjector. The column injection was performed using an OPTIC-4 Multi Inlet System. The GC column was a SH-Rxi-5ms (30m length; 0.25 mm inner diameter; 0.25 μ m film thickness). The GC was coupled to a 2010 Ultra Mass Spectrometer. The carrier gas helium flow was at a constant rate of 1.05 mL min⁻¹. Mass spectra were recorded with an EIMS (70 eV). The injection temperature was 50 °C rising to 200 °C at 5 °C/sec. This was found to minimize the degradation of adalinine. The GC program was held at 50 °C for 30 sec, then increased to 170 °C at 20 °C/min, then to 290 °C at 10 °C/min and a final increase to 325 °C at 20 °C/min, and the final temperature was held for 3 min.

The alkaloids and standard were identified by comparison to published mass spectra (Lognay et al. 1996; Hautier et al. 2008) or by injection of the pure compound (nicotine). Retention times were approximately 8.66 min for nicotine, 12.53 min for adaline and 13.30 min for (undegraded) adalinine. The amount of alkaloid in samples was calculated by comparison of the area of the alkaloid peaks to the nicotine peak as mg nicotine equivalents (see Supplementary Table S1 and S2). Results are given per mg wet mass. Even with precise adjustment on the GC-MS to control the injection temperature to achieve only minimal degradation of adaline, both analysis on adults and eggs showed a very small amount of adaline degradation (RT = 10.90 min) as in other studies (cf. Hautier et al. 2008). This was nonetheless an exceedingly small amount, at the limits of detection and was thus was not quantified. The proportion of degraded adalinine (RT = 14.49 min) was much higher: it significantly correlated with the undegraded adalinine (Fig. S1a, b). Thus, both degraded and undegraded adalinine were combined for the rest of the analysis. It is worth noting that our allocations of peaks to

undegraded and degraded adalinine were based on mass spectra and might potentially be reversed; however this does not affect our results due to the two being combined. Between the two analyzed alkaloids, adalinine and adaline show a significant positive correlation (Fig. S1c, d). Both alkaloids were combined for the rest of the alkaloid analysis, labelled as 'total alkaloid' in the results. Data for individual alkaloids is provided in the electronic supplementary material (Fig. S2 to S4).

Data Analysis. Alkaloid concentrations (µg/mg wet mass) were calculated by dividing alkaloid calculated in each sample (see above) by the sample mass. This measure, also used by some other authors (e.g. de Jong et al. 1991; Wheeler et al. 2015) and which accounts for variation in body mass, gives the best measure of defensive capability, as alkaloid concentration in the body or reflex blood determines deterrent capability (cf. Pasteels et al. 1973). Comparative analysis was conducted differentiating diets and sexes of ladybirds. An analysis of covariance (ANCOVA) was performed to investigate the reaccumulation of alkaloid as a function of both diet and sex using time as a covariate. Similar analyses testing reaccumulation as a function of diet were done for eggs. Levene's test was conducted to check for equality of variances. To further examine the relationship between diet/sex and alkaloid recovery rate, individual Pearson correlations were calculated for adults and eggs. In addition, a Pearson test for the correlation of the two endogenous synthesized major and minor alkaloids, adaline and adalinine was also performed. The data was analyzed using IBM SPSS Version 25.0 and R version 3.4.2 (R Core Team 2013).

Daily oviposition rate was calculated as the total number of eggs laid by each female divided by the number of days she was alive in the experiment. Both this and egg mass between diets were analyzed using a one-tailed Mann-Whitney U-test, with alternative hypotheses based on prior literature (Blackman 1967) that *A. fabae* fed ladybirds would lay fewer smaller eggs.

RESULTS

Effect of Diet on Adult Alkaloid Level. Measure of alkaloid reaccumulation in adult ladybirds on the two aphid diets (Fig. 2) showed that the total alkaloid reaccumulation for adult *A. bipunctata* was affected significantly for both the interactive term Diet*Time and Sex*Time, indicating that reaccumulation rate differed with Diet and Sex (Table 1). The rate was lower for ladybirds fed on the lower quality *A. fabae* and for female than males: correlations with time were also weaker for females and on *A. fabae* diets (Fig. 2). Females generally had a higher concentration of alkaloid than males (fixed term Sex) but the term Diet was not significant, possibly because reflex bled ladybirds in both dietary treatments started with similarly low alkaloid levels. Results for each of the individual alkaloids adaline and adalinine, were similar, except that Sex*Time was not significant for adaline (Table S3, Fig. S2 to S4).

Effect of Diet on Egg Production and Alkaloid Levels. When female two-spotted ladybird were fed with *A. fabae*, the oviposition rate per day was lower than when fed *A. pisum* (Fig. 3a; Mann-Whitney U test: U = 402, P = 0.049), consistent with earlier studies (El-Hariri 1966b; Rana et al. 2002). No effect was observed on the weight of the eggs (Fig. 3b; t = 1.547, df = 40, P = 0.13), although this has been observed previously (Blackman 1967).

In an ANCOVA there was no significant effect of Diet*Time for total alkaloid (Table 2), adaline or adalinine (Table S4). In individual correlations, a positive but weak relationship between alkaloid concentration and time since reflex bleeding was observed for eggs of *A*. *pisum* fed ladybirds for total alkaloid and adaline but not adalinine (Fig. 4, Fig. S4a). There was no correlation for eggs of *A*. *fabae* fed ladybirds for any alkaloid measure (Fig. S4b).

DISCUSSION

After reflex bleeding, alkaloids reaccumulated in ladybirds more slowly when they were fed *A. fabae* than when they were fed *A. pisum*. Thus, synthesis of alkaloids in *A. bipunctata* was dependent on dietary quality, both directly, via food content, and because the adult ladybirds could eat fewer of the less palatable *A. fabae* (Blackman 1967), although they

clearly do eat sufficient to sustain reproduction. It is worth noting that this dietary effect exists irrespective of the reasons for alkaloid synthesis. We frame the subsequent discussion in terms of recovery, i.e. alkaloid increase, after reflex bleeding, although potentially alkaloid might have increased in the two groups over time irrespective of this. Given earlier studies (e.g., de Jong et al. 1991), however, it does not seem much more likely that the documented increase arose primarily as a result of prior alkaloid depletion.

This relationship between the quality of the fed aphids and the amount of the synthesized alkaloids can be explained through the synthesis of defensive chemicals, for which the energy from food is needed. Previous research has emphasized an integral role for fatty acids as precursors involved in the synthesis of ladybird alkaloids, including adaline (Attygalle et al. 1994; Laurent et al. 2002; Haulotte et al. 2012). Given their importance, a link is to be expected to the level of fat reserves in the beetle: alkaloid synthetic rate could decline with a reduction in *A. bipunctata* fat reserves, which are lower with an *A. fabae* diet (El-Hariri 1966a). Other nutritional factors may also contribute: for example, the amino acid glutamine is suggested to play significant role in adaline synthesis (Laurent et al. 2002).

Interestingly males accumulated alkaloid faster than the female ladybirds, and the effect was stronger, although female *A. bipunctata*, like other ladybirds, synthesize a greater volume of alkaloids than the males (de Jong et al. 1991). However, females allocate a considerable proportion of the alkaloid they synthesize to eggs, which likely explains the lower reaccumulation rate in females and lower correlations with time. No consistent effects on the alkaloid investment in eggs by females between the different diets were observed, although there was limited evidence for a weak increase in alkaloid investment over time on the higher quality diet. Possibly, because alkaloid reaccumulated in *A. pisum*-fed females faster this allowed them to allocate slightly more alkaloid to eggs in the later stages of the experiment. Absence of an effect on the allocation of alkaloids in the egg from diet and level of

reaccumulation could possibly be due to allocation of the alkaloids in the eggs being kept constant by the female, ensuring that eggs receive consistent levels of protection. However, study by Kajita et al. (2010) showed the amount of alkaloids across egg clutches significantly varied, and was not constant.

Assuming that our results do represent alkaloid reaccumulation after reflex bleeding, which is supported by other studies (de Jong et al. 1991), it is notable that all alkaloid reaccumulation periods were exceedingly long with both treatments, even the high quality one: in our study they were still increasing even after 12 days. This is consistent with the synthesis of autogenously produced chemical defenses in some other animals (Rossini et al. 1997; Jared et al. 2014), although it can be faster (Heethoff 2012). Although the long recovery time can partly be explained by us having reflex bled our ladybirds to exhaustion, it still seems likely that the recovery period can run to days, given that ladybirds could produce quite large quantities of reflex fluid during reflex bleeding (Holloway et al. 1993).

Studies of chemically defended organisms often rely on single measures to quantify defense levels, usually at peak strength. This has been true for studies testing whether interspecific variation in color pattern and quantitative aspects of chemical defense are linked (Speed et al. 2012). Our study suggests that this approach is unrealistic as it fails to capture a vast amount of variation that can occur even within individuals over time. As reflex bleeding itself can lead to differing levels of chemical defense and long recovery times after alkaloid use, this mechanism only increases the differences between individuals over time. Although individuals of generalist species, such as *A. bipunctata* consume only a few species of aphids in their lives, the potential prey of such species extends to hundreds of different aphids which vary in quality (Majerus 1994; Hodek and Evans 2012) exerting a further substantial intraspecific effect on the amount of ladybirds alkaloid. For ladybirds these effects potentially undermine studies linking color pattern, which does not change over time (except with age:

11

Majerus 1994), to defense levels, which clearly do. Any correlation detected in laboratory studies with single measurements of defense levels may be drowned out by environmental variation in the field. Similar effects to those we observed here undoubtedly occur in other chemically defended organisms, suggesting that a more temporally dynamic view is needed to better understand the functioning of chemical defense under natural conditions (Brückner and Heethoff 2018). This needs to reflect that many defenses temporarily decline with use and may increase again slowly and heterogeneously across individuals due to factors such as diet, as has been shown here, and potentially other environmental factors such as temperature (Steele et al. 2020a).

Our findings on differences in reaccumulation of alkaloid in relation to quality of diet in the two-spotted ladybird adds to our understanding of alkaloid synthesis in ladybirds, and suggests that the level of chemical defense in ladybirds are much more dynamic than had previously been considered. In the context of this work, how diet and alkaloids are mechanistically linked and a detailed understanding of allocation of alkaloid investment between the eggs and females remain to be studied. Our broader findings on this ladybird, are without doubt applicable to many other chemically defended organisms that synthesize their own toxins, indicating that a more dynamic approach is needed across a wide diversity of studies of chemical defense.

REFERENCES

- Agrawal AA, Böröczky K, Haribal M, Hastings AP, White RA, Jiang R-W, Duplais C (2021) Cardenolides, toxicity, and the costs of sequestration in the coevolutionary interaction between monarchs and milkweeds. PNAS 118:e2024463118. <u>https://doi.org/10.1073/pnas.2024463118</u>
- Arenas ML, Walter D, Stevens M (2015) Signal honesty and predation risk among a closely related group of aposematic species. Sci Rep 5:11021. https://doi.org/10.1038/srep11021
- Attygalle AB, Blankespoor CL, Eisner T, Meinwald J (1994) Biosynthesis of a defensive insect alkaloid: epilachnene from oleic acid and serine. PNAS 91:12790-12793. https://doi.org/10.1073/pnas.91.26.12790

- Banks CJ (1955) An Ecological Study of Coccinellidae (Col.) associated with *Aphis fabae* Scop. on *Vicia faba*. Bull Entomol Res 46:561-587. https://doi.org/10.1017/S0007485300039559
- Bayoumy MH, Osawa N, Hatt S (2020) Fitness costs of reflex bleeding in the ladybird beetle *Harmonia axyridis*: the role of parental effects. Insect Sci 27:1346-1356. https://doi.org/10.1111/1744-7917.12737
- Bezzerides AL, McGraw KJ, Parker RS, Husseini J (2007) Elytra color as a signal of chemical defense in the Asian ladybird beetle *Harmonia axyridis*. Behav Ecol Sociobiol 61:1401-1408. https://doi.org/10.1007/s00265-007-0371-9
- Blackman RL (1965) Studies on specificity in Coccinellidae. Ann Appl Biol 56:336-338. https://doi.org/10.1111/j.1744-7348.1965.tb01249.x
- Blackman RL (1967) The effects of different aphid foods on *Adalia bipunctata* L. and *Coccinella 7-punctata* L. Ann Appl Biol 59:207-219. <u>https://doi.org/10.1111/j.1744-7348.1967.tb04429.x</u>
- Blount JD, Rowland HM, Drijfhout FP, Endler JA, Inger R, Sloggett JJ, Hurst GDD, Hodgson DJ, Speed MP (2012) How the ladybird got its spots: effects of resource limitation on the honesty of aposematic signals. Funct Ecol 26:334-342. https://doi.org/10.1111/j.1365-2435.2012.01961.x
- Brower LP, Seiber JN, Nelson CJ, Lynch SP, Tuskes PM (1982) Plant-determined variation in the cardenolide content, thin-layer chromatography profiles, and emetic potency of monarch butterflies, *Danaus plexippus* reared on the milkweed, *Asclepias eriocarpa* in California. J Chem Ecol 8:579-633. https://doi.org/10.1007/BF00989631
- Brückner A, Heethoff M (2018) Nutritional effects on chemical defense alter predator–prey dynamics. Chemoecology 28:1-9. <u>https://doi.org/10.1007/s00049-018-0253-9</u>
- Daloze D, Braekman J-C, Pasteels JM (1995) Ladybird defence alkaloids: Structural, chemotaxonomic and biosynthetic aspects (Col.: Coccinellidae). Chemoecology 5:173-183. <u>https://doi.org/10.1007/bf01240602</u>
- El-Hariri G (1966a) Changes in metabolic reserves of three species of aphidophagous Coccinellidae (Coleoptera) during metamorphosis. Entomol Exp Appl 9:349-358. https://doi.org/10.1111/j.1570-7458.1966.tb00992.x
- El-Hariri G (1966b) Laboratory studies on the reproduction of *Adalia bipunctata* (Coleoptera, Coccinellidae). Entomol Exp Appl 9:200-204. <u>https://doi.org/10.1111/j.1570-7458.1966.tb02349.x</u>
- Grill CP, Moore AJ (1998) Effects of a larval antipredator response and larval diet on adult phenotype in an aposematic ladybird beetle. Oecologia 114:274-282. https://doi.org/10.1007/s004420050446
- Happ GM, Eisner T (1961) Hemorrhage in a coccinellid beetle and its repellent effect on ants. Science 134:329-331. <u>https://doi.org/10.1126/science.134.3475.329</u>
- Haulotte E, Laurent P, Braekman J-C (2012) Biosynthesis of defensive Coccinellidae alkaloids: Incorporation of fatty acids in adaline, coccinelline, and harmonine. Eur J Org Chem 2012:1907-1912. https://doi.org/10.1002/ejoc.201101563
- Hautier L, Grégoire J-C, de Schauwers J, San Martin G, Callier P, Jansen J-P, de Biseau J-C (2008) Intraguild predation by *Harmonia axyridis* on coccinellids revealed by exogenous alkaloid sequestration. Chemoecology 18:191-196. <u>https://doi.org/10.1007/s00049-008-0405-4</u>
- Heethoff M (2012) Regeneration of complex oil-gland secretions and its importance for chemical defense in an oribatid mite. J Chem Ecol 38:1116-1123. https://doi.org/10.1007/s10886-012-0169-8

- Hemptinne J-L, Dixon AFG, Gauthier C (2000) Nutritive cost of intraguild predation on eggs of *Coccinella septempunctata* and *Adalia bipunctata* (Coleoptera: Coccinellidae). Eur J Entomol 97:559-562. <u>https://doi.org/10.14411/eje.2000.087</u>
- Hodek I, Evans EW (2012) Food Relationships. In: Hodek I, van Emden H, Honěk A (eds) Ecology and Behaviour of the Ladybird Beetles (Coccinellidae). Wiley-Blackwell, Chichester, pp 141-274. <u>https://doi.org/10.1002/9781118223208.ch5</u>
- Holliday AE, Walker FM, Brodie EDI, Formica VA (2009) Differences in defensive volatiles of the forked fungus beetle, *Bolitotherus cornutus*, living on two species of fungus. J Chem Ecol 35:1302-1308. <u>https://doi.org/10.1007/s10886-009-9712-7</u>
- Holloway GJ, de Jong PW, Ottenheim M (1993) The genetics and cost of chemical defense in the two-spot ladybird (*Adalia bipunctata*. L). Evolution 47:1229-1239. https://doi.org/10.1111/j.1558-5646.1993.tb02149.x
- Holloway GJ, de Jong PW, Brakefield PM, de Vos H (1991) Chemical defence in ladybird beetles (Coccinellidae). I. Distribution of coccinelline and individual variation in defence in 7-spot ladybirds (*Coccinella septempunctata*). Chemoecology 2:7-14. <u>https://doi.org/10.1007/bf01240660</u>
- Jared SGS, Jared C, Egami MI, Mailho-Fontana PL, Rodrigues MT, Antoniazzi MM (2014) Functional assessment of toad parotoid macroglands: A study based on poison replacement after mechanical compression. Toxicon 87:92-103. https://doi.org/10.1016/j.toxicon.2014.05.020
- Jones CG, Hess TA, Whitman DW, Silk PJ, Blum MS (1987) Effects of diet breadth on autogenous chemical defense of a generalist grasshopper. J Chem Ecol 13:283-297. https://doi.org/10.1007/BF01025888
- de Jong PW, Holloway GJ, Brakefield PM, de Vos H (1991) Chemical defence in ladybird beetles (Coccinellidae). II. Amount of reflex fluid, the alkaloid adaline and individual variation in defence in 2-spot ladybirds (*Adalia bipunctata*). Chemoecology 2:15-19. https://doi.org/10.1007/bf01240661
- Kajita Y, Obrycki JJ, Sloggett JJ, Haynes KF (2010) Intraspecific alkaloid variation in ladybird eggs and its effects on con- and hetero-specific intraguild predators. Oecologia 163:313-322. <u>https://doi.org/10.1007/s00442-009-1551-2</u>
- Kendall DA (1971) A note on reflex bleeding in the larvae of the beetle *Exochomus quadripustulatus* (L.) (Col.: Coccinellidae). The Entomologist 104:233-235.
- King AG, Meinwald J (1996) Review of the defensive chemistry of coccinellids. Chem Rev 96:1105-1122. <u>https://doi.org/10.1021/cr950242v</u>
- Knapp M, Dobeš P, Řeřicha M, Hyršl P (2018) Puncture vs. reflex bleeding: Haemolymph composition reveals significant differences among ladybird species (Coleoptera: Coccinellidae), but not between sampling methods. Eur J Entomol 115:1-6. <u>https://doi.org/10.14411/eje.2018.001</u>
- Lampert EC, Bowers MD (2010) Host plant influences on iridoid glycoside sequestration of generalist and specialist caterpillars. J Chem Ecol 36:1101-1104. https://doi.org/10.1007/s10886-010-9849-4
- Laurent P, Braekman J-C, Daloze D (2005) Insect Chemical Defense. In: Schulz S (ed) The Chemistry of pheromones and other semiochemicals II. (Topics in Current Chemistry 240). Springer Berlin Heidelberg, Berlin, Heidelberg, pp 167-229. <u>https://doi.org/10.1007/b98317</u>
- Laurent P, Braekman J-C, Daloze D, Pasteels JM (2002) In vitro production of adaline and coccinelline, two defensive alkaloids from ladybird beetles (Coleoptera: Coccinellidae). Insect Biochem Molec Biol 32:1017-1023. <u>https://doi.org/10.1016/s0965-1748(02)00038-3</u>

- Laurent P, Lebrun B, Braekman J-C, Daloze D, Pasteels JM (2001) Biosynthetic studies on adaline and adalinine, two alkaloids from ladybird beetles (Coleoptera: Coccinellidae). Tetrahedron 57:3403-3412. <u>https://doi.org/10.1016/s0040-4020(01)00207-1</u>
- Lognay G, Hemptinne J-L, Chan FY, Gaspar C, Marlier M, Braekman J-C, Daloze D, Pasteels JM (1996) Adalinine, a new piperidine alkaloid from the ladybird beetles *Adalia bipunctata* and *Adalia decempunctata*. J Nat Prod 59:510-511. <u>https://doi.org/10.1021/np960129f</u>
- Majerus MEN (1994) Ladybirds. HarperCollins, London,
- Majerus MEN, Kearns PWE, Forge H, Ireland H (1989) Ladybirds as teaching aids: 1 Collecting and culturing. J Biol Educ 23:85-95. https://doi.org/10.1080/00219266.1989.9655039
- Marples NM (1993) Is the alkaloid in 2spot ladybirds (*Adalia bipunctata*) a defence against ant predation? Chemoecology 4:29-32. <u>https://doi.org/10.1007/bf01245893</u>
- Marples NM, Brakefield PM, Cowie RJ (1989) Differences between the 7-spot and 2-spot ladybird beetles (Coccinellidae) in their toxic effects on a bird predator. Ecol Entomol 14:79-84. <u>https://doi.org/10.1111/j.1365-2311.1989.tb00756.x</u>
- Pasteels JM, Deroe C, Tursch B, Braekman J-C, Daloze D, Hootele C (1973) Distribution et activités des alcaloïdes défensifs des Coccinellidae. J Insect Physiol 19:1771-1784. https://doi.org/10.1016/0022-1910(73)90046-2
- R Core Team (2013) R: A language and environment for statistical computing.
- Ramos CS, Ramos NSM, Da Silva RR, Da Câmara CAG, Almeida AV (2012) Metabolism by grasshoppers of volatile chemical constituents from *Mangifera indica* and *Solanum paniculatum* leaves. J Insect Physiol 58:1663-1668. https://doi.org/10.1016/j.jinsphys.2012.10.007
- Rana JS, Dixon AFG, Jarošik V (2002) Costs and benefits of prey specialization in a generalist insect predator. J Anim Ecol 71:15-22. <u>https://doi.org/10.1046/j.0021-8790.2001.00574.x</u>
- Randall K, Majerus M, Forge H (1992) Characteristics for sex determination in British ladybirds (Coleoptera: Coccinellidae). The Entomologist 111:109-122.
- Rossini C, Attygalle AB, González A, Smedley SR, Eisner M, Meinwald J, Eisner T (1997) Defensive production of formic acid (80%) by a carabid beetle (*Galerita lecontei*). PNAS 94:6792-6797. http://doi.org/10.1073/pnas.94.13.6792
- Ruxton GD, Allen WL, Sherratt TN, Speed MP (2018) Avoiding Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry. 2nd edn. Oxford University Press, Oxford. http://doi.org/10.1093/oso/9780199688678.001.0001
- Sloggett JJ, Haynes KF, Obrycki JJ (2009) Hidden costs to an invasive intraguild predator from chemically defended native prey. Oikos 118:1396-1404. <u>http://doi.org/10.1111/j.1600-0706.2009.17407.x</u>
- Speed MP, Ruxton GD, Mappes J, Sherratt TN (2012) Why are defensive toxins so variable? An evolutionary perspective. Biol Rev 87:874-884. <u>http://doi.org/10.1111/j.1469-185X.2012.00228.x</u>
- Steele T, Singer RD, Bjørnson S (2020a) Effects of temperature on larval development, alkaloid production and microsporidiosis in the two-spotted lady beetle, Adalia bipunctata L. (Coleoptera: Coccinellidae). J Invertebr Pathol 172:107353. https://doi.org/10.1016/j.jip.2020.107353
- Steele T, Singer RD, Bjørnson S (2020b) Effects of food availability on microsporidiosis and alkaloid production in the two-spotted lady beetle, *Adalia bipunctata* L. J Invertebr Pathol 175:107443. <u>https://doi.org/10.1016/j.jip.2020.107443</u>
- Tursch B, Braekman J-C, Daloze D, Hootele C, Losman D, Karlsson R, Pasteels JM (1973) Chemical ecology of arthropods, VI. Adaline, a novel alkaloid from *Adalia bipunctata*

L, (Coleoptera, Coccinellidae). Tetrahedron Lett 14:201-202. https://doi.org/10.1016/S0040-4039(01)95617-5

- Wheeler CA, Millar JG, Cardé RT (2015) Multimodal signal interactions in the ladybeetle, *Hippodamia convergens*, aposematic system. Chemoecology 25:123-133. <u>http://doi.org/10.1007/s00049-014-0181-2</u>
- Winters AE, Stevens M, Mitchell C, Blomberg SP, Blount JD (2014) Maternal effects and warning signal honesty in eggs and offspring of an aposematic ladybird beetle. Funct Ecol 28:1187-1196. <u>http://doi.org/10.1111/1365-2435.12266</u>
- Zvereva EL, Kozlov MV (2016) The costs and effectiveness of chemical defenses in herbivorous insects: a meta-analysis. Ecol Monogr 86:107-124. http://doi.org/10.1890/15-0911.1

Figures

Fig. 1 Experimental scheme of care prior to sample collection for analysis. Adult *A. bipunctata* was obtained on the starting day and fed for two days. On the second day of feeding, females and males were paired, only copulated pairs were used in the experiment. All individuals were reflex bled on the sixth day of the experiment. Pairs of ladybirds were frozen for analysis directly after reflex bleeding and also after 1, 3, 5, 8, and 12 days.

Fig. 2 Mean ±SE of alkaloid concentration in *A. bipunctata* over 12 days after reflex bleeding for male (a) and female (b) adult ladybirds. For each sampling day and treatment 6 or 7 pairs were analyzed. Units are µg nicotine equivalent/mg wet mass ladybirds. Pearson Correlation Analysis: (a) *A. pisum* - $r^2 = 0.28$, n = 38, P < 0.001; *A. fabae* - $r^2 = 0.20$, n = 39, P = 0.004. (b) *A. pisum* - $r^2 = 0.10$, n = 38, P = 0.006; *A. fabae* - $r^2 = 0.03$, n = 39, P = 0.32. Data for each diet are offset horizontally to facilitate interpretation of error bars.

Fig. 3 Reproductive parameters of females fed on two aphid diets. (a) Mean \pm SE daily oviposition rate by each female. For *A. pisum n* = 32, and *A. fabae n* = 33. **P* < 0.05. Numbers are lower than the Figure 2 as the ladybirds were killed on day 0, could not lay any eggs. (b) Average weight of individual eggs laid by each female. For *A. pisum n* = 20 and *A. fabae n* = 22.

Fig. 4 Mean ±SE of alkaloid concentration in eggs over 12 days after reflex bleeding of females. For each day and diet the number of samples is between 25 and 66. Units are μ g nicotine equivalent/mg wet mass of eggs. Pearson Correlation Analysis: *A. pisum* - $r^2 = 0.061$, n = 72, P = 0.036; *A. fabae* - $r^2 = 0.20$, n = 59, P = 0.29. Data for each diet are offset horizontally to facilitate interpretation of error bars.

Tables

Table 1 Results of an ANCOVA analysis on total alkaloid concentration in adult *A. bipunctata*,

 with fixed effects Diet and Sex and covariate Time since reflex bleeding

Fixed Variable	df	F	Р
Diet	1	0.499	0.481
Sex	1	9.486	0.002
Diet*Sex	1	0.209	0.648
Diet*Time	1	5.015	0.027
Sex*Time	1	4.298	0.040
Diet*Sex*Time	1	1.056	0.306

Bold letters indicate a significance of (P < 0.05). Number of analyzed adult pairs of each aphid diet: A. pisum - n = 38; A. fabae - n = 39. N = 154.

Table 2 Results of an ANCOVA analysis on egg total alkaloid concentration in adult A.

 bipunctata, with fixed effect Diet and covariate Time since female reflex bleeding

Fixed Variable	df	F	Р
Diet	1	0.583	0.446
Diet*Time	1	1.162	0.283

Number of analyzed egg samples from each female aphid diet: A. pisum - n = 72; A. fabae - n = 59. N = 131.

Figure 2:

Figure 3:

Figure 4:

ELECTRONIC SUPPLEMENTARY MATERIAL EXCEL FILE HOW DIET LEADS TO DEFENSIVE DYNAMISM: EFFECT OF THE DIETARY QUALITY ON

TITLE	now biel leads to belensive brittamism. Effect of the bieltart goalint on
IIILE	AUTOGENOUS ALKALOIDS RECOVERY RATE IN A CHEMICALLY DEFENDED BEETLE
AUTHOR	ZOWI OUDENDIJK,* & JOHN J. SLOGGETT
AFFILIATION	Maastricht Science Programme, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
CORRESPONDING EMAIL	z.oudendijk@alumni.maastrichtuniversity.nl
TABLES	
Table S1	Conversion dataset for calculating alkaloid concentration in ladybird
Table S2	Conversion dataset for calculating alkaloid concentration in eggs

Table S1 Conversion dataset for calculating alkaloid level	in ladybird
--	-------------

Aphid	Va Sex	riables Trials	Day	Weight (g)	(mg)	Nicotine	GC-MS P Adaline	eak Area Adalinine	Degraded Adalinine	Con Adaline	version (µg nicotine Adalinine Deg	equivalent /mg v raded Adalinine	vet mass ladybird Total Adalinine) Total Alkaloid
A. pisum A. pisum	Female	1	0	0.01776 0.02163	17.76 21.63	4249697 4909717	8596937 14884637	299862 393015	159482 170574	5.695 7.008	0.199 0.185	0.106	0.304 0.265	6.000 7.273
A. pisum A. pisum	Female	1	3	0.0214 0.01759	21.4 17.59	3839393 3476221	12066851 12975420	483798 322906	143352 205756	7.343	0.294 0.264	0.087	0.382 0.432	7.725
A. pisum A. pisum	Female	1	8	0.02059 0.01954	20.59 19.54	3115972 4679778	10459849 13641198	375005 424975	118895 306268	8.152 7.459	0.292 0.232	0.093 0.167	0.385 0.400	8.537 7.859
A. pisum A. pisum	Female Female	2 2	0 1	0.01982 0.01918	19.82 19.18	4852201 2975840	13747125 10432410	397597 251737	281165 199152	7.147 9.139	0.207 0.221	0.146 0.174	0.353 0.395	7.500 9.534
A. pisum A. pisum	Female Female	2 2	3 5	0.01648 0.01581	16.48 15.81	6481955 6071266	12993748 11496749	526508 390456	445416 227494	6.082 5.989	0.246 0.203	0.208 0.119	0.455 0.322	6.537 6.311
A. pisum A. pisum	Female Female	2 2	8 12	0.01869 0.01687	18.69 16.87	5328791 41168812	8250594 148551262	251933 2692407	166709 4437480	4.142 10.695	0.126 0.194	0.084 0.319	0.210 0.513	4.352 11.208
A. pisum A. pisum	Female Female	3 3	0	0.02075 0.02077	20.75 20.77	4267064 2476853	13772217 10572443	541425 365197	568836 449881	7.777 10.276	0.306 0.355	0.321 0.437	0.627 0.792	8.404 11.068
A. pisum A. pisum	Female Female	3 3	3 5	0.01606 0.0181	16.06 18.1	2540670 5490131	7302303 8473271	233950 806894	285270 525018	8.948 4.263	0.287 0.406	0.350 0.264	0.636 0.670	9.584 4.934
A. pisum A nisum	Female	3	8	0.01901 0.02135	19.01	5503867 3744584	13940627 12386192	374771 405219	424412 585598	6.662 7.747	0.179	0.203	0.382	7.044
A. pisum A. pisum	Female	4	0	0.01731	17.31	5658160 7181680	10569319	385060 369398	266678 225652	5.396 1.442	0.197	0.136	0.333	5.728 1.807
A. pisum A. pisum	Female	4	3	0.02164	21.64	2986508 5754082	13268697 4098743	404869 263422	331387 276087	10.265	0.313	0.256	0.570	10.835
A. pisum	Female	4	8	0.01242	12.42	6624025 5740268	26744052 9364677	1082387 482823	1061330	16.254	0.658	0.645	1.303	17.557
A. pisum	Female	5	0	0.01239	12.39	4513260	8910798	394633	411117	7.968	0.353	0.368	0.720	8.688
A. pisum A. pisum	Female	5	3	0.01235	12.35	2368045	7319434	440578	382295	12.514	0.753	0.654	1.407	13.921
A. pisum A. pisum	Female	5	8	0.01166	11.66	5912866	10930136	755065	683178	7.927	0.548	0.239	1.043	8.970
A. pisum A. pisum	Female	6	0	0.01021 0.01018	10.18	5651471	11379992	509983	377305	9.890	0.443	0.818	0.771	10.661
A. pisum A. pisum	Female	6	3	0.01268	12.68	4513394	10144333	269248	262094	6.962 8.905	0.315	0.228	0.545	9.371
A. pisum A. pisum	Female	6	5	0.01154 0.011	11.54	2965498 5090697	7458199 5722351	599064 220386	382943 422476	10.897 5.109	0.875	0.560	1.435 0.574	12.332 5.683
A. pisum A. pisum	Female	6 7	12	0.0128 0.01348	12.8 13.48	1278873 4156004	8813030 11463667	604166 604281	354996 458012	26.919 10.231	1.845 0.539	1.084 0.409	2.930 0.948	29.849 11.179
A. pisum A. pisum	Female Male	7 1	3 0	0.01143 0.0168	11.43 16.8	5127574 3826760	6496261 5683689	257590 362292	203038 119295	5.542 4.420	0.220 0.282	0.173 0.093	0.393 0.375	5.935 4.795
A. pisum A. pisum	Male Male	1	1 3	0.00835 0.01793	8.35 17.93	4548423 5334440	5749837 7640823	608828 483266	245682 209562	7.570 3.994	0.802 0.253	0.323 0.110	1.125 0.362	8.695 4.356
A. pisum A. pisum	Male Male	1	5 8	0.01211 0.0152	12.11 15.2	5764472 3656269	13794482 7858810	1709340 1105220	606535 339494	9.880 7.070	1.224 0.994	0.434 0.305	1.659 1.300	11.539 8.370
A. pisum A. pisum	Male Male	1 2	12 0	0.02362 0.01541	23.62 15.41	5047493 5560239	5272811 1869640	673971 118722	188722 66550	2.211 1.091	0.283 0.069	0.079 0.039	0.362 0.108	2.573 1.199
A. pisum A. pisum	Male Male	2 2	1 3	0.01332 0.01813	13.32 18.13	5697899 4518956	5564154 6496802	333943 861334	95502 424609	3.666 3.965	0.220 0.526	0.063 0.259	0.283 0.785	3.949 4.750
A. pisum A. pisum	Male Male	2 2	5 8	0.01744 0.01622	17.44 16.22	6016897 6269418	10528566 6004246	641671 1688444	344152 367278	5.017 2.952	0.306 0.830	0.164 0.181	0.470 1.011	5.486 3.963
A. pisum A nisum	Male	2	12	0.01565 0.02185	15.65	7706309 24725502	16648916 27351603	1402664 2159869	647778 1404260	6.902 2.531	0.582	0.269	0.850	7.752
A. pisum A. pisum	Male	3	1	0.01873 0.01425	18.73	22351529 5612826	27444592 9822888	1773223	1250722 588369	3.278	0.212	0.149	0.361	3.639
A. pisum	Male	3	5	0.01713	17.13	42651038	94836056 7093696	3094325	2929057 671735	6.490 5.508	0.212	0.200	0.412	6.902
A. pisum	Male	3	12	0.01201	12.01	1881672	10347298	1586216	989675	22.893	3.510	2.190	5.699	28.593
A. pisum	Male	4	1	0.01335	13.35	5705671	10722789	706764	474741	7.039	0.464	0.312	0.776	7.814
A. pisum	Male	4	5	0.01174	11.74	5460722	6638864	882527	456347	5.178	0.688	0.356	1.044	6.222
A. pisum A. pisum	Male	4	12	0.01288	12.88	1838324	10002088	1329361	727972	23.333	2.807	1.537	4.344	25.466
A. pisum A. pisum	Male	5	0	0.0102	10.2	5206735 4594187	6693337	200765	427687 148606	6.850	0.621	0.403	0.332	6.682
A. pisum A. pisum	Male	5	5	0.00772	10.99	5028186 6880492	4739974	234458 408176	292572	3.600	0.302	0.220	0.522	4.123
A. pisum A. pisum	Male	5 5	8 12	0.01156 0.01157	11.56 11.57	2756124 6252047	6593360 7076086	561920 1273999	344117 833593	10.347 4.891	0.882 0.881	0.540 0.576	1.422 1.457	11.769 6.348
A. pisum A. pisum	Male Male	6 6	0 1	0.00981 0.01086	9.81 10.86	4309831 5753624	5096434 5163023	201807 190057	210305 202012	6.027 4.131	0.239 0.152	0.249 0.162	0.487 0.314	6.514 4.445
A. pisum A. pisum	Male Male	6 6	3 5	0.0111 0.0127	11.1 12.7	6249221 6921588	3737295 7045013	1248439 411211	441836 276782	2.694 4.007	0.900 0.234	0.318 0.157	1.218 0.391	3.912 4.399
A. pisum A. pisum	Male Male	6 6	8 12	0.01216 0.01025	12.16 10.25	3583589 1853490	2548247 6205229	197373 437239	148540 318730	2.924 16.331	0.226	0.170 0.839	0.397 1.990	3.321 18.321
A. pisum A. pisum	Male Male	7 7	0	0.0113 0.01366	11.3 13.66	5872639 3435872	5207769 3004588	371705 303443	196992 236916	3.924 3.201	0.280 0.323	0.148 0.252	0.428	4.352 3.777
A. fabae A. fabae	Female	1	0	0.01959 0.01784	19.59 17.84	5525848 3977006	7854066 7578020	364977 442005	182794 188161	3.628 5.340	0.169 0.311	0.084	0.253	3.881 5.785
A. fabae A. fabae	Female	1	3	0.01707	17.07	2831411 5154360	8298074 13388187	877182 1081330	329937 457867	8.584 7.973	0.907	0.341	1.249	9.833 8.889
A. fabae A. fabae	Female	1	8	0.01706	17.06	4196629 5739524	10144938 7885447	483857 539910	319077 283885	7.085	0.338	0.223	0.561	7.646
A. fabae	Female	2	0	0.019	19	3371487 4710414	9211753 9765946	607353 719187	323286	7.190	0.474	0.252	0.726	7.917
A. fabae	Female	2	3	0.01744	17.44	2114932	5327345	301614	152064	7.222	0.409	0.225	0.615	7.837
A. fabae	Female	2	8	0.01614	16.14	27686443	40435219	1821724	2053120	4.524	0.204	0.230	0.434	4.958
A. fabae	Female	3	0	0.01375	17.35	3900589	10596939	390832	468587	7.829	0.135	0.346	0.635	8.464
A. fabae	Female	3	3	0.01938	19.38	2739656	5984647	314249	325804	5.636	0.296	0.242	0.603	6.239
A. fabae	Female	3	8	0.01556	21.22	4648511	9723721	780231	544457	4.929	0.239	0.236	0.475	5.600
A. fabae	Female	4	0	0.01408	14.06	3899253	6722671	346958	240852	6.079	0.155	0.131	0.532	6.611
A. fabae	Female	4	3	0.01192	14.89	5848039	10570142	374923	449529	6.069	0.829	0.301	0.930	6.543
A. fabae	Female	4	8	0.01074	12.37	1692548	5067328	332670	246028	12.101	0.451	0.231	1.382	13.483
A. fabae A. fabae	Female	4	12	0.00935	9.35	2230516 3987747	5607295 7635482	489773 354994	394425 210299	13.443 8.824	1.174 0.410	0.946	2.120	15.563 9.477
A. fabae A. fabae	Female	5	1 3	0.01059 0.01512	10.59 15.12	5093926 3572210	6060051 7171753	332859 633143	214666 369960	5.617 6.639	0.309 0.586	0.199 0.342	0.507 0.929	6.124 7.568
A. fabae A. fabae	Female Female	5 5	5 8	0.01243 0.01216	12.43 12.16	1732083 1370934	5351721 5941632	385124 291943	248135 196098	12.429 17.821	0.894 0.876	0.576 0.588	1.471 1.464	13.899 19.285
A. fabae A. fabae	Female	5 6	12 0	0.01201 0.01153	12.01 11.53	7220303 6387229	11181653 5929423	257302 363287	123341 264150	6.447 4.026	0.148 0.247	0.071 0.179	0.219 0.426	6.667 4.452
A. fabae A. fabae	Female	6 6	1 3	0.01019 0.01449	10.19 14.49	3836538 4299791	11674688 4852784	820523 323344	488338 199218	14.931 3.894	1.049 0.259	0.625 0.160	1.674 0.419	16.605 4.314
A. fabae A. fabae	Female Female	6 6	5 8	0.01125 0.01467	11.25 14.67	1736750 1766463	2789744 6227650	242241 706621	138017 364651	7.139 12.016	0.620 1.363	0.353 0.704	0.973 2.067	8.112 14.083
A. fabae A. fabae	Female	6 7	12	0.01205 0.01203	12.05 12.03	3304144 5167919	2809083 7697228	150383 522307	122669 230901	3.528 6.190	0.189 0.420	0.154 0.186	0.343 0.606	3.871 6.796
A. fabae A. fabae	Female	7	3 12	0.01212 0.01334	12.12 13.34	4015786 2072088	6212882 6378204	453473 399239	341536 253784	6.382 11.537	0.466	0.351 0.459	0.817	7.199 12.719
A. fabae A. fabae	Male	1	0	0.01433 0.01247	14.33 12.47	5407321 5231821	5159692 6020490	507350 176747	116954	3.329	0.327	0.075	0.403	3.732
A. fabae	Male	1	3	0.01293	12.93	4951455	7388121	588541	175632	5.770	0.460	0.137	0.597	6.367
A. fabae	Male	1	8	0.01503	15.03	6079074	10471506	681024	218075	5.730	0.373	0.119	0.492	6.222
A. fabae	Male	2	0	0.01415	14.15	4977127	6832845	320113	120806	4.851	0.227	0.095	0.313	5.164
A. Jabae A. fabae	Male	2	3	0.01445	14.45	5947613 4557105	4569079 3671759	451143	225930 86255	2.658	0.262	0.131	0.394	3.052
л. Jabae A. fabae	Male	2	5 8	0.01094	10.94	5355050 5922563	6313147	404780 966288	337526 308267	9.377 4.571	0.345	0.288	0.634	5.494
A. fabae A. fabae	Male	2 3	12	0.01948 0.01144	19.48 11.44	5997917 16538698	9167524 14268076	925562 1072299	484903 610029	3.923 3.771	0.396 0.283	0.208 0.161	0.604 0.445	4.527 4.215
A. fabae A. fabae	Male Male	3 3	1 3	0.01864 0.01185	18.64 11.85	26804378 25350794	24966823 29637998	2491063 2758369	1402497 1770383	2.499 4.933	0.249 0.459	0.140 0.295	0.390 0.754	2.888 5.687
A. fabae A. fabae	Male Male	3 3	5 8	0.01093 0.01152	10.93 11.52	41472694 5391371	58649611 7267231	3131925 573563	2429759 567733	6.469 5.850	0.345 0.462	0.268 0.457	0.613 0.919	7.083 6.769
A. fabae A. fabae	Male Male	3 4	12 0	0.01445 0.00869	14.45 8.69	4657927 4315616	7122595 6314679	530721 518794	507591 325292	5.291 8.419	0.394 0.692	0.377 0.434	0.771 1.125	6.062 9.544
A. fabae A. fabae	Male Male	4 4	1 3	0.01103 0.01359	11.03 13.59	5593028 4332490	5125961 5190155	453369 382126	320506 233697	4.155 4.408	0.367 0.325	0.260 0.198	0.627 0.523	4.782 4.930
A. fabae A. fabae	Male Male	4 4	5 8	0.01066 0.0105	10.66 10.5	7349055 2297110	5329114 3777555	134509 370748	160388 180482	3.401 7.831	0.086 0.769	0.102 0.374	0.188 1.143	3.589 8.974

A. fabae	Male	4	12	0.01248	12.48	2274306	6525319	772783	483304	11.495	1.361	0.851	2.213	1
A. fabae	Male	5	0	0.0073	7.3	5034595	2356827	584709	330002	3.206	0.795	0.449	1.244	
A. fabae	Male	5	1	0.01115	11.15	5487214	5833282	573295	269092	4.767	0.469	0.220	0.688	
A. fabae	Male	5	3	0.0092	9.2	5094421	5165290	216507	184360	5.510	0.231	0.197	0.428	
A. fabae	Male	5	5	0.01159	11.59	1396052	5232437	332059	238916	16.169	1.026	0.738	1.764	
A. fabae	Male	5	8	0.00872	8.72	4405598	4138131	360556	205807	5.386	0.469	0.268	0.737	
A. fabae	Male	5	12	0.01056	10.56	2666920	4070443	319404	237389	7.227	0.567	0.421	0.989	
A. fabae	Male	6	0	0.01369	13.69	6421342	7166531	313358	218683	4.076	0.178	0.124	0.303	
A. fabae	Male	6	1	0.01258	12.58	3875669	6369780	208466	146429	6.532	0.214	0.150	0.364	
A. fabae	Male	6	3	0.01151	11.51	5299704	3685300	210824	198680	3.021	0.173	0.163	0.336	
A. fabae	Male	6	5	0.00962	9.62	2305796	2965470	397263	265318	6.684	0.895	0.598	1.494	
A. fabae	Male	6	8	0.00965	9.65	2954823	3808326	253375	227952	6.678	0.444	0.400	0.844	
A. fabae	Male	6	12	0.01165	11.65	2353986	5463992	279002	172479	9.962	0.509	0.314	0.823	
A. fabae	Male	7	0	0.00917	9.17	5625536	3167420	233443	146939	3.070	0.226	0.142	0.369	
A. fabae	Male	7	3	0.00776	7.76	5624693	3357070	383149	188624	3.846	0.439	0.216	0.655	
4 fabae	Male	7	12	0.01372	13.72	2045087	4852449	543986	254364	8.647	0.969	0.453	1.423	

Table S2 Conversion dataset for calculating alkaloid level in eggs

Va	riables	Count	Weight Total (g) T	otal (ma) Indi	ividual (mg)	Nigoting	GC-MS	Peak Area	Dogradad Adalinina	Conv Adalina	ersion (µg nicol	tine equivalent /mg w	et mass egg)	al Alkalaid
A. fabae	Day 1	25	0.00242	2.420	0.097	1388633	2133282	239611	107934	6.348	0.713	0.321	1.034	7.382
A. fabae	1	29	0.00349	3.490	0.120	1902251	1979855	194110	112651	2.982	0.292	0.170	0.462	3.444
A. fabae	1	26	0.00345	3.450	0.133	1637307	2513651	211920	106242	4.450	0.375	0.188	0.563	5.013
A. fabae	1	25	0.00347	3.470	0.139	1626138	2376110	20/315	8/649	4.211	0.367	0.155	0.523	4.734
A. fabae	1	26	0.00310	3.100	0.123	1248040	1244648	95101	35531	3.217	0.481	0.092	0.338	3.555
A. fabae	1	25	0.00306	3.060	0.122	2501966	2629757	135297	105912	3.435	0.177	0.138	0.315	3.750
A. fabae	1	25	0.00288	2.880	0.115	529033	1614123	125248	64872	10.594	0.822	0.426	1.248	11.842
A. fabae	1	26	0.00346	3.460	0.133	1//3/28	4913384	596346	349036	8.006	0.972	0.569	1.540	9.546
A. fabae	1	26	0.00354	3.540	0.110	3092414	8948481	935217	622106	8.174	0.854	0.568	1.423	9,597
A. fabae	1	28	0.00333	3.330	0.119	2298070	5833306	943602	571113	7.623	1.233	0.746	1.979	9.602
A. fabae	1	25	0.00351	3.510	0.140	5300947	7681958	284680	537515	4.129	0.153	0.289	0.442	4.571
A. fabae	1	38	0.00531	5.310	0.140	3781960	12296467	1084515	646603	6.123	0.540	0.322	0.862	6.985
A. Jabae A. fahae	2	45	0.00587	3.870	0.130	2886/52	2420446	262604	520894 91040	4 256	0.652	0.307	0.959	8.808 4.877
A. fabae	2	26	0.00329	3.290	0.127	12012823	11949602	1191316	567488	3.024	0.301	0.144	0.445	3.469
A. fabae	2	28	0.00341	6.020	0.215	3843620	7277543	627482	293547	3.145	0.271	0.127	0.398	3.543
A. fabae	2	31	0.00440	4.400	0.142	8662823	10928503	1359146	894797	2.867	0.357	0.235	0.591	3.458
A. Jabae A. fahae	2	32	0.00473	4.730	0.148	8237799 2225108	9368362	904190	579170	3.054	0.371	0.267	0.638	9.872
A. fabae	2	39	0.00522	5.220	0.134	1665843	12170118	679407	536003	13.996	0.781	0.616	1.398	15.393
A. fabae	2	41	0.00593	5.930	0.145	9589853	22936273	1604784	1109236	4.033	0.282	0.195	0.477	4.511
A. fabae	3	25	0.00335	3.350	0.134	4507544	8320307	534905	695570	5.510	0.354	0.461	0.815	6.325
A. fabae	3	38	0.00476	4.760	0.125	1659056	12205021	415453	765750	9.794	0.526	0.970	1.496	11.290
A. fabae	3	26	0.00280	2.800	0.127	10798763	7634364	676579	415439	2.525	0.224	0.130	0.361	2.886
A. fabae	3	28	0.00322	3.220	0.115	2722489	4858016	408256	256389	5.542	0.466	0.292	0.758	6.300
A. fabae	3	27	0.00318	3.180	0.118	1116577	4920636	429511	740668	13.858	1.210	2.086	3.296	17.154
A. fabae	3	33	0.00410	4.100	0.124	2296709	7186982	568601	377576	7.632	0.604	0.401	1.005	8.637
A. fabae	4	25	0.00310	3.100	0.130	6485031	9081984	904301	453409	4.518	0.450	0.432	0.675	5.193
A. fabae	4	30	0.00360	3.600	0.120	4443387	6776242	772621	415289	4.236	0.483	0.260	0.743	4.979
A. fabae	4	25	0.00341	3.410	0.136	9263178	9490223	958052	725545	3.004	0.303	0.230	0.533	3.537
A. fabae	4	25	0.00305	3.050	0.122	2306325	5066976	407590	323150	7.203	0.579	0.459	1.039	8.242
A. Jabae A. fabae	4	25	0.00430	3.050	0.139	9456241	9398486	805249	493908	3.259	0.243	0.191	0.450	3.709
A. fabae	5	25	0.00325	3.250	0.130	8977001	7778502	796620	558420	2.666	0.273	0.191	0.464	3.131
A. fabae	5	26	0.00297	2.970	0.114	5672487	6928110	604337	444548	4.112	0.359	0.264	0.623	4.735
A. fabae	5	25	0.00285	2.850	0.114	2245154	5106885	791513	606950	7.981	1.237	0.949	2.186	10.167
A. fabae	6	26	0.00254	2.540	0.098	1730241	5993421	261367	153205	13.637	0.595	0.349	0.943	14.581
A. fabae	6	40	0.00566	5.660	0.142	8907110	17531055	1159688	659976	3.477	0.230	0.131	0.361	3.838
A. fabae	6	31	0.00383	3.830	0.124	2032048	7168772	1044655	788216	9.211	1.342	1.013	2.355	11.566
A. fabae	6	25	0.00324	3.240	0.130	7305805	8746419	891374	464821	3.695	0.377	0.196	0.573	4.268
A. fabae	7	28	0.00303	3.170	0.117	2821820	7214492	735561	422463	8.065	0.822	0.332	1.295	9,360
A. fabae	8	28	0.00372	3.720	0.133	8505004	13370627	1618136	742158	4.226	0.511	0.235	0.746	4.972
A. fabae	8	28	0.00315	3.150	0.113	2091028	8344555	869578	500368	12.669	1.320	0.760	2.080	14.749
A. fabae	8	25	0.00359	3.590	0.144	3822596	8169744	367982	240778	5.953	0.268	0.175	0.444	6.397
A. Jabae A. fabae	9	23 32	0.00333	3.810	0.134	2807921	8129779	854249	472804 484032	7.599	0.818	0.458	1.273	9.343 8.850
A. fabae	10	29	0.00294	2.940	0.101	2174904	8580763	224264	122942	13.420	0.351	0.192	0.543	13.963
A. fabae	10	36	0.00502	5.020	0.139	1697388	9932221	391846	208881	11.656	0.460	0.245	0.705	12.361
A. fabae	10	26	0.00301	3.010	0.116	9077543	8916284	699272	535135	3.263	0.256	0.196	0.452	3.715
A. Jubue A. fahae	11	26	0.00315	3.150	0.103	9773996	10808539	684126	578991	3.511	0.222	0.188	0.410	3.921
A. fabae	12	25	0.00357	3.570	0.143	5513752	9603336	621198	436105	4.879	0.316	0.222	0.537	5.416
A. fabae	12	27	0.00319	3.190	0.118	3298727	5527508	863922	626876	5.253	0.821	0.596	1.417	6.670
A. pisum	1	25	0.00327	3.270	0.131	1785556	2751550	140298	58385	4.713	0.240	0.100	0.340	5.053
A. pisum	1	37	0.00436	4.360	0.118	2418593	6503288	229141	190063	6.167	0.217	0.180	0.398	6.565
A. pisum	1	25	0.00291	2.910	0.116	677585	2164432	105584	86826	10.977	0.535	0.440	0.976	11.953
A. pisum	1	27	0.00353	3.530	0.131	1007008	2875608	101215	60397	8.090	0.285	0.170	0.455	8.544
A. pisum A. pisum	1	31	0.00383	3.830	0.118	1707563	2981952	106256	41267	4.560	0.162	0.063	0.226	4.785
A. pisum	1	28	0.00330	3.300	0.118	739076	1508066	56597	47169	6.183	0.232	0.193	0.425	6.609
A. pisum	1	25	0.00314	3.140	0.126	750517	2251738	72861	40491	9.555	0.309	0.172	0.481	10.036
A. pisum	1	31	0.00409	4.090	0.132	569771	1199089	56591	30161	5.146	0.243	0.129	0.372	5.518
A. pisum A. pisum	1	20	0.00349	3.490	0.121	2325276	11454358	586711	568735	14.115	0.723	0.701	1.424	15.538
A. pisum	1	32	0.00365	3.650	0.114	2996844	5944274	532447	421772	5.434	0.487	0.386	0.872	6.307
A. pisum	2	28	0.00349	3.490	0.125	619621	1209315	73055	25791	5.592	0.338	0.119	0.457	6.049
A. pisum	2	30	0.00371	3.710	0.124	693343	1516911	83374	41216	5.897	0.324	0.160	0.484	6.381
A. pisum A nisum	2	41	0.00574	5.740	0.124	576238	1449321	46/209	48087	4.382	0.224	0.145	0.754	4.751
A. pisum	2	35	0.00391	3.910	0.112	583774	1109292	59120	21650	4.860	0.259	0.095	0.354	5.214
A. pisum	2	47	0.00558	5.580	0.119	537697	1606463	54647	49515	5.354	0.182	0.165	0.347	5.701
A. pisum	2	27	0.00363	3.630	0.134	3902648	12626446	298099	499610	8.913	0.210	0.353	0.563	9.476
A. pisum	2	25	0.00328	3.280	0.131	2143588	6080420	636688	475623	8.648	0.906	0.676	1.582	10.230
A. pisum	2	25	0.00293	2.930	0.117	6175537	10010649	541713	460939	5.532	0.299	0.255	0.554	6.087
A. pisum	3	25	0.00279	2.790	0.112	2063344	2579152	94970	67235	4.480	0.165	0.117	0.282	4.762
A. pisum A nisum	3	25	0.00306	3.060	0.123	614581	1148146	64612	30501	6.105	0.344	0.169	0.465	6.611
A. pisum	3	35	0.00445	4.450	0.127	581433	1353291	70439	44013	5.230	0.272	0.170	0.442	5.673
A. pisum	3	52	0.00673	6.730	0.129	575403	1939068	121539	63411	5.007	0.314	0.164	0.478	5.485
A. pisum	3	40	0.00483	4.830	0.121	303059	1021890	63812	14746	6.981	0.436	0.101	0.537	7.518
A. pisum A nisum	3	26 56	0.00265	2.650	0.102	2063087	24931342	232151 912295	188393	5.895	0.425	0.345	0.769	6.292
A. pisum	3	43	0.00506	5.060	0.118	3449533	16805878	1032472	659701	9.628	0.592	0.378	0.969	10.598
A. pisum	3	30	0.00369	3.690	0.123	951696	6057661	285095	157485	17.250	0.812	0.448	1.260	18.510
A. pisum	3	43	0.00569	7.020	0.163	1439286	6746169	938068	420397	6.677	0.928	0.416	1.345	8.021
A. pisum	3	20 28	0.00294	3.520	0.280	4552770	7584749	406542	423704	5.418 9.239	0.141	0.578	1.135	5.957
A. pisum	3	42	0.00467	4.670	0.111	6605778	15897806	832796	606576	5.153	0.270	0.197	0.467	5.620
A. pisum	4	25	0.00278	2.780	0.111	2807006	3535280	165215	95765	4.530	0.212	0.123	0.334	4.865
A. pisum	4	26	0.00336	3.360	0.129	601097	1008850	51583	43390	4.995	0.255	0.215	0.470	5.465
A. pisum A. pisum	4	20 43	0.00525	5.650	0.110	2931049	23351225	731994	437764	14.101	0.442	0.264	0.455	14.807
A. pisum	4	28	0.00347	3.470	0.124	7504101	18406626	1078289	703797	7.069	0.414	0.270	0.684	7.753
A. pisum	4	25	0.00320	3.200	0.128	1120047	8540833	423175	233663	23.829	1.181	0.652	1.833	25.662
A. pisum	4	26	0.00288	2.880	0.111	1402801	6402118	592312	506603	15.847	1.466	1.254	2.720	18.567
A. pisum A. nisum	5	37 26	0.00435	4.550	0.118	1952381 3127774	4415298 7385051	201258 412144	123543 322614	5.253 7.844	0.239	0.147	0.386	5.639 8.625
A. pisum	5	51	0.00624	6.240	0.122	1512311	10501534	441319	268219	11.128	0.468	0.284	0.752	11.880
A. pisum	5	35	0.00411	4.110	0.117	8696074	24544721	1412381	917501	6.867	0.395	0.257	0.652	7.519
A. pisum	5	27	0.00320	3.200	0.119	3529374	9792116	550557	381998	8.670	0.487	0.338	0.826	9.496
A. pisum	5	20 30	0.00314	5.140 9.020	0.112	3978092	8329581	704484	5/5002 682514	2.321	0.512	0.215	0.327	2.708
A. pisum	5	28	0.00293	2.930	0.105	2614564	9667693	468871	374609	12.620	0.612	0.489	1.101	13.721
A. pisum	6	25	0.00307	3.070	0.123	2654047	3407170	169612	103739	4.182	0.208	0.127	0.335	4.517
A. pisum	6	44	0.00525	5.250	0.119	5462269	13322740	631316	387993	4.646	0.220	0.135	0.355	5.001
A. pisum A. pisum	6	29	0.00363	3.630	0.125	1733874	8433644	418400	221948	13.400	0.665	0.353	1.017	13.334

A. pisum	7	31	0.00383	3.830	0.124	2421107	3689226	157576	128305	3.979	0.170	0.138	0.308	4.287
A. pisum	7	29	0.00338	3.380	0.117	6990289	12230327	751231	440505	5.176	0.318	0.186	0.504	5.681
A. pisum	7	28	0.00340	3.400	0.121	5753874	8894517	405030	265319	4.547	0.207	0.136	0.343	4.889
A. pisum	7	30	0.00381	3.810	0.127	1612563	14036978	925422	562811	22.847	1.506	0.916	2.422	25.269
A. pisum	7	44	0.00539	5.390	0.123	8225628	24264885	1056296	640827	5.473	0.238	0.145	0.383	5.856
A. pisum	8	66	0.00815	8.150	0.123	2743185	8704097	426473	299186	3.893	0.191	0.134	0.325	4.218
A. pisum	8	28	0.00316	3.160	0.113	5602835	12360580	691401	431012	6.981	0.391	0.243	0.634	7.615
A. pisum	8	30	0.00341	3.410	0.114	6248086	10933067	454706	295105	5.131	0.213	0.139	0.352	5.483
A. pisum	8	28	0.00326	3.260	0.116	2490480	7593512	355148	231634	9.353	0.437	0.285	0.723	10.076
A. pisum	9	41	0.00455	4.550	0.111	2370858	16111553	1063508	648223	14.936	0.986	0.601	1.587	16.522
A. pisum	9	30	0.00354	3.540	0.118	1984474	7718347	373816	264357	10.987	0.532	0.376	0.908	11.895
A. pisum	10	26	0.00311	3.110	0.120	2991732	8955018	446703	239508	9.625	0.480	0.257	0.738	10.362
A. pisum	11	35	0.00425	4.250	0.121	1585970	13979640	855329	557479	20.740	1.269	0.827	2.096	22.836
A. pisum	11	25	0.00245	2.450	0.098	5166024	9690303	401267	195293	7.656	0.317	0.154	0.471	8.128
A. pisum	12	36	0.00436	4.360	0.121	3550269	18703572	1169726	707107	12.083	0.756	0.457	1.212	13.296
A. pisum	12	27	0.00300	3.000	0.111	2394790	9279310	443166	231452	12.916	0.617	0.322	0.939	13.855

SUPPORTING INFORMATION: HOW DIET LEADS TO DEFENSIVE DYNAMISM:

EFFECT OF THE DIETARY QUALITY ON AUTOGENOUS ALKALOIDS RECOVERY

RATE IN A CHEMICALLY DEFENDED BEETLE

ZOWI OUDENDIJK* & JOHN J. SLOGGETT

Maastricht Science Programme, Maastricht University, P.O. Box 616, 6200 MD Maastricht,

The Netherlands

Corresponding Email: z.oudendijk@alumni.maastrichtuniversity.nl

Table of Contents

Table/Figures	Pages
Table S1 . Conversion dataset for calculating alkaloid concentration in ladybird	2
Table S2 . Conversion dataset for calculating alkaloid concentration in eggs	2
Table S3. Results of two-way ANCOVA analyses on the concentrations of	2
individual alkaloids extracted from adult A. bipunctata after reflex bleeding	
Table S4. Results of two-way ANCOVA analyses on the concentrations of	3
individual alkaloids extracted from adult A. bipunctata eggs after reflex bleeing	
Fig. S1. Scatter graphs of correlation between analyzed alkaloid content	4
Fig. S2. Adaline concentration (re)accumulation of adult A. bipunctata over 12	5
days after reflex bleeding for male and female adult ladybirds with different aphid	
diets (A. pisum and A. fabae)	
Fig. S3. Adalinine concentration (re)accumulation of adult A. bipunctata over 12	6
days after reflex bleeding for male and female adult ladybirds with different aphid	
diets (A. pisum and A. fabae)	
Fig. S4. Alkaloid concentration in eggs over 12 days after reflex bleeding of	7
females	

Table S1 and S2

Electronic Supplementary Material Excel file (Tables S1, S2)

Table S3 Results of two-way ANCOVA analyses on the concentrations of individual alkaloids

 extracted from adult A. bipunctata after reflex bleeding

Dependent Variable	Fixed Variable	df	F	Р
Adaline	Diet	1	0.334	0.564
	Sex	1	11.059	0.001
	Diet*Sex	1	0.281	0.597
	Diet*Time	1	4.162	0.043
	Sex*Time	1	3.423	0.066
	Diet*Sex*Time	1	0.721	0.397
Adalinine	Diet	1	1.804	0.181
	Sex	1	1.511	0.221
	Diet*Sex	1	0.001	0.980
	Diet*Time	1	9.378	0.003
	Sex*Time	1	9.341	0.003
	Diet*Sex*Time	1	3.364	0.059

Bold letters indicate a significance of (P < 0.05). Number of analyzed adult pairs of each aphid diet: A. pisum - n = 38; A. fabae - n = 39. N = 154.

Table S4 Results of two-way ANCOVA analyses on the concentrations of individual alkaloids

 extracted from adult A. bipunctata eggs after reflex bleeding

Dependent Variable	Fixed Variable	df	F	Р
Adaline	Diet	1	1.042	0.309
	Diet*Time	1	1.288	0.258
Adalinine	Diet	1	1.367	0.245
	Diet*Time	1	0.201	0.654

Number of analyzed egg samples from each female aphid diet: A. pisum - n = 72; A. fabae - n = 59. N = 131.

Figures

Fig. S1 Scatter graphs of Pearson Correlations between analyzed alkaloid content. Undegraded and degraded adalinine for adults (a), and eggs (b). Adaline and adalinine (combination with degraded adalinine) alkaloids of adult (c), and eggs (d). Units μ g nicotine equivalent/mg wet mass ladybirds. Adult *N* = 154 individuals, Eggs *N* = 131 samples

Fig. S2 Mean ±SE of adaline concentration (re)accumulation of adult *A. bipunctata* over 12 days after reflex bleeding for male (a) and female (b) adult ladybirds with different aphid diets (*A. fabae* and *A. pisum*). Unit µg nicotine equivalent/mg wet mass ladybirds. For each sampling day and treatment 6 or 7 pairs were analyzed. Pearson Correlation Analysis: Male - *A. pisum*, $r^2 = 0.26$, n = 38, P < 0.001; *A. fabae*, $r^2 = 0.19$, n = 39, P = 0.0058; Female - *A. pisum*, $r^2 = 0.091$, n = 38, P = 0.066; *A. fabae*, $r^2 = 0.28$, n = 39, P = 0.31. Data for each diet are offset horizontally to facilitate interpretation of error bars

Fig. S3 Mean ±SE of adalinine concentration (re)accumulation of adult *A. bipunctata* over 12 days after reflex bleeding for male (a) and female (b) adult ladybirds with different aphid diets (*A. fabae* and *A. pisum*). Unit µg nicotine equivalent/mg wet mass ladybirds. For each sampling day and treatment 6 or 7 pairs were analyzed. Pearson Correlation Analysis: Male - *A. pisum*, $r^2 = 0.32$, n = 38, P < 0.001; *A. fabae*, $r^2 = 0.18$, n = 39, P = 0.0078; Female - *A. pisum*, $r^2 = 0.12$, n = 38, P = 0.030; *A. fabae*, $r^2 = 0.017$, n = 39, P = 0.42. Data for each diet are offset horizontally to facilitate interpretation of error bars

Fig. S4 Mean ±SE of individual alkaloid concentration in eggs over 12 days after reflex bleeding of females. Unit µg nicotine equivalent/mg wet mass ladybirds. (a) Adaline, (b) Adalinine. *A. pisum*; n = 72, *A. fabae*; n = 59. Pearson Correlation Analysis: Adaline - *A. pisum*, $r^2 = 0.065$, P = 0.030; *A. fabae*, $r^2 = 0.022$, P = 0.26; Adalinine - *A. pisum*, $r^2 = 0.019$, P = 0.25; *A. fabae*, $r^2 = 0.0038$, P = 0.64. Data for each diet are offset horizontally to facilitate interpretation of error bars

