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Background and purpose: A higher radiation dose to the heart is known to be associated with increased
mortality in non-small cell lung cancer (NSCLC) patients. It is however unknown what the contribution
of the heart dose is when other risk factors for mortality are also accounted for.
Materials and methods: We constructed and externally validated prediction models of mortality after
definitive chemoradiotherapy for NSCLC. Models were developed in 145 stage I-IIIB NSCLC patients.
Clinical (performance status, age, gross tumour volume (GTV) combining primary tumour and involved
lymph nodes, current smoker) and dosimetric (mean lung (MLD) and heart (MHD) dose) variables were
considered. Multivariable logistic regression models predicting 12 and 24 month mortality were built in
5-fold cross-validation. Discrimination and calibration was assessed in 3 external validation datasets con-
taining 878 (via distributed learning), 127 and 96 NSCLC patients.
Results: The best discriminating prediction models combined GTV, smoker and/or MHD: bootstrapping
AUC (95% CI) of 0.74 (0.66–0.78) and 0.69 (0.55–0.74) at 12 and 24 months. At external validation, the
24 month mortality GTV-smoker-MHD model robustly showed moderate discrimination (AUC = 0.61–
0.64 before and 0.64–0.65 after model update) with limited 0.01–0.07 improvement over a GTV-only
model, and calibration slope (0.64–0.65). This model can identify patients for whom a MHD reduction
may be useful (e.g. PPV = 77%, NPV = 52% (60% cut-off)).
Conclusions: Tumour volume is strongly related to mortality risk in the first 2 years after chemoradio-
therapy for NSCLC. Modelling indicates that efforts to reduce cardiac dose may be relevant for small
tumours and that smoking has an important negative association with survival.

� 2019 Elsevier B.V. All rights reserved. Radiotherapy and Oncology 152 (2020) 117–125
Locally advanced non-small cell lung cancer (LA-NSCLC) when
radically treated with standard concurrent chemoradiotherapy
has a high local recurrence rate of approximately 30% at 2 years
[1,2]. Additionally, the overall survival rates are low, around 30%
in selected patients at 5 years in recent clinical trials investigating
modern chemoradiotherapy [3–5]. Treatment-induced toxicity
may partly be responsible for these unfavorable results, as indi-
cated by the higher mortality in the high-dose arm of RTOG0617
[2,3]. A secondary analysis of this study showed the volume of
the heart receiving >50 Gy to be significantly associated with over-
all survival in multivariable analysis [6].
To estimate the toxicity risk, population-based models of
adverse events are used, for example a mean lung dose (MLD)
planning constraint of 20 Gy is recommended to limit the rate of
radiation pneumonitis [7]. These constraints are however not well
defined at present, especially for the heart dose.

There is a growing body of evidence supporting the hypothesis
that radiation to the heart induces cardiac injury and non-cancer-
related deaths in lung cancer patients. Although the independent
association of heart dose with mortality could not be replicated
in two other studies, several associations corroborating the
RTOG0617 findings have been published recently. In LA-NSCLC it
was shown that the mean heart dose was associated with grade
�3 [10] or symptomatic cardiac events [11]. In patients with stage
I–II NSCLC treated with stereotactic body radiotherapy, the dose to
the base of the heart was associated with non-cancer death [12].
Analyses of large routine NSCLC radiotherapy planning and image
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guidance datasets have identified a region at the base (i.e., superi-
oposterior region) of the heart that significantly was associated
with reduced survival [13]. Furthermore a recent population-
based study showed that set-up errors that shift the high dose
region towards the heart correlate with excess mortality compared
to those that move dose away from the heart [14].

The accurate estimation of the individual mortality risk includ-
ing the impact of heart dose would allow personalization of plan-
ning dose constraints. This could facilitate the selection of high-
risk patients that may benefit from emerging radiotherapy tech-
nologies, enabling high precision delivery of the radiation dose
(i.e., lowering the heart dose) such as proton therapy and the mag-
netic resonance-guided linear accelerator radiotherapy (MR-linac)
[15]. Published externally validated prediction models of lung can-
cer mortality focused on clinical and treatment-related risk factors
and did not include dosimetric factors for heart or lungs [16,17].
These studies reported moderate model accuracy when validated
externally with area under the curve around 0.60. Others studied
the influence of the heart dose on mortality in a monocentric data-
set, but did not include important risk factors such as tumour vol-
ume [6,9] or did not report prediction model parameters [6,8,9,13].
Moreover, modelling was mostly not repeated for different time
points after treatment. In order to show the advantage of dose
reductions to organs at risk with emerging technologies, based
on the predicted mortality risk-driven patient selection in a realis-
tic randomized setting, it is crucial to choose an optimal (as early
as possible) mortality endpoint during model development.

In this work, we constructed and externally validated logistic
regression mortality prediction models at 1 and 2 year after treat-
ment in radically treated NSCLC cohorts from 4 separate institu-
tions. We investigated a combined set of clinical and dosimetric
risk factors, including tumour volume and dose to heart and lungs.
The additional benefit of dosimetric factors for the performance of
prediction models was studied in terms of model discrimination
and calibration.
Materials and methods

Datasets

Stage I-IIIB NSCLC patients treated with radical chemoradio-
therapy at MAASTRO Clinic during two time periods (previously
collected datasets from 2003–2006 and 2014–2016 periods) con-
stituted the development dataset. We excluded patients who did
not receive chemotherapy either before or during radiotherapy,
patients treated with stereotactic body radiotherapy, and patients
who had received previous radiotherapy to the thorax. One hun-
dred forty five patients with complete data were included. Pre-
scription doses varied during the two time periods and included
66 Gy (2.75 Gy fractions with sequential chemotherapy or 2 Gy
fractions with concurrent chemotherapy), 72 Gy (1.8 Gy fractions
twice daily), 45 Gy (1.5 Gy fractions twice daily) followed by up
to 24 Gy (2 Gy fractions), and isotoxically dose-escalated radio-
therapy up to 106.4 Gy (24 fractions, positron emission tomogra-
phy (PET)-boost randomized study [18]). Treatment dose was
calculated on a free-breathing or mid-ventilation CT-scan [19] with
convolution-superposition or Varian’s Acuros algorithms, using
3D-conformal radiotherapy (3D-CRT), volumetric modulated arc
therapy (VMAT) or hybrid VMAT [20] techniques. Margins of
5 mm from gross tumour volume (GTV) or internal target volume
(ITV) to the clinical target volume (CTV) and 5–10 mm from CTV
to the planning target volume (PTV) were applied.

The first external validation dataset consisted of 878 NSCLC
patients radically treated with 3D-CRT, intensity-modulated radio-
therapy (IMRT) or VMAT (chemo)radiotherapy at The Christie NHS
Foundation Trust between 2005 and 2017 (ethical approval ref. 17/
NW/0060). Prescription doses were 55 Gy (2.75 Gy fractions) with
radiotherapy alone or with sequential chemotherapy, and 60–
66 Gy (2 Gy fractions) with concurrent chemotherapy or radiother-
apy alone. In patients planned using 4D CT, the motion adjusted
GTV was contoured on the Maximum Intensity Projection (MIP)
image. GTV was then recovered through the method of Johnson
et al. [21]. All patients were planned using the Philips Pinnacle
treatment planning system with treatment margin protocols as
described above for the MAASTRO cohort.

A second external validation dataset consisted of 127 NSCLC
patients from Erasmus MC Rotterdam treated with radical
(chemo)radiotherapy between 2009 and 2013. Prescription doses
were 66 Gy (2 Gy fractions) for concurrent chemoradiotherapy
and 45–60 Gy (3 Gy fractions) for sequential chemoradiotherapy.
Planning was done with 3D-CRT. Margins of 5 mm were used from
primary tumour GTV to CTV. As the hilar and mediastinal lymph
nodes were contoured as nodal CTV, nodal GTV had to be estimated
based on the primary tumour GTV-CTV association.

The third external validation dataset consisted of 96 NSCLC
patients from UZ Leuven treated with radical chemoradiotherapy
(mostly 66 Gy in 2 Gy fractions with concurrent chemotherapy)
with 3D-CRT or IMRT and margins as for the MAASTRO cohort,
between 2011 and 2016. The institutional review boards of all cen-
ters have approved the study.

Clinical and dosimetric variables were chosen based on their
importance as prognostic factors for overall survival in the litera-
ture: baseline World Health Organization performance status
[8,13,16,17], age at start of treatment [16], current smoker at time
of diagnosis (yes/no) [22], the available dosimetric variables mean
lung dose (based on both lungs) [6,8] and mean heart dose (MHD)
[6,9], and GTV combining primary tumour and involved lymph
nodes volumes [8,13,17,23,24]. GTV was chosen instead of TNM
stage as it was previously shown to be a more significant prognos-
tic factor for overall survival [17,23,24]. The heart was delineated
in all datasets along with the pericardial sac from its most caudal
part at the apex up to the beginning of the large vessels cranially.
Logistic and Cox regression model development

Survival times were calculated from the last day of radiotherapy
treatment, except for the Christie cohort where this was the first
day of radiotherapy. In the development dataset, Kaplan–Meier
analyses assessed the association of all variables with survival. Sur-
vival curves were generated with continuous variables grouped
with respect to their median value. Logistic regression models
were built with the endpoints of 12 month and 24 month mortal-
ity. Censored observations at these time points (20 cases at
12 months and 25 cases at 24 months) were discarded. There were
no missing data in the development dataset and non-linear trans-
formations (log, square root, inverse transformations, etc.) of con-
tinuous variables were tested in the univariable analyses.
Backward stepwise model building processes (including all vari-
ables) were followed based on the Akaike’s Information Criterion
which incorporates a penalty on the number of model parameters
to avoid overfitting [25]. Based on one hundred times repeated 5-
fold cross-validation (model building performed in every fold), the
most frequently built models were selected for further analysis.
Final model coefficients were determined by fitting these selected
models on the complete development dataset. Cox regression
models were generated for reference using the same procedure.

Model discrimination was assessed by the area under the recei-
ver operating characteristic curve (AUC) or c-statistic. Model cali-
bration was assessed by calibration plots correlating predicted
mortality probabilities and observed mortality. Internal validation
was performed by repeating the modelling within 500 bootstrap
samples that were of equal size as the study population and were
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drawn with replacement. This resulted in a shrinkage factor to be
multiplied with the regression coefficients. Using the shrunk coef-
ficients should give more generalizable predictions out of sample.
Table 1
Patient and treatment characteristics in the development dataset and the 3 external valid

Development set External va

MAASTRO
145 patients
(2003–2016)

The Christi
878 patien
(2005–201

Age (years) 65 (39–88) 71 (32–93)
Tumour T stage
1 13 (9.0 %) 102 (11.6 %
2 42 (29.0 %) 290 (33.0 %
3 14 (9.7 %) 241 (27.5 %
4 58 (40.0 %) 204 (23.2 %
Unknown 18 (12.4 %) 41 (4.7 %)
N stage
0 31 (21.4 %) 272 (31.0 %
1 2 (1.4 %) 114 (13.0 %
2 55 (37.9 %) 298 (33.9 %
3 40 (27.6 %) 165 (18.8 %
Unknown 17 (11.7 %) 29 (3.3 %)
Histology
Squamous cell carcinoma 50 (34.5 %) 418 (47.6 %
Adenocarcinoma 31 (21.4 %) 223 (25.4 %
NSCLC NOS 16 (11.0 %) 94 (10.7 %)
Large cell 37 (25.5 %) 7 (0.8 %)
Other 3 (2.1 %) 31 (3.5 %)
Unknown 8 (5.5 %) 105 (12.0 %
WHO performance status at baseline
0 51 (35.2 %) 89 (10.1 %)
1 78 (53.8 %) 379 (43.2 %
2 15 (10.3 %) 293 (33.4 %
�3 1 (0.7 %) 84 (9.6 %)
Unknown NA 33 (3.8 %)
Smoking status at diagnosis
Current smoker 53 (36.6 %) 228 (26.0 %
Stopped/never smoker 92 (63.5 %) 418 (47.6 %
Unknown NA 232 (26.4 %
Chemotherapy treatment
Concurrent 59 (40.7 %) 182 (20.7 %
Sequential 86 (59.3 %) 143 (16.3 %
RT alone or unknown NA 553 (63.0 %
Treatment technique
3D-CRT 90 (62.1 %) 280 (31.9 %
IMRT NA 583 (66.4 %
VMAT 45 (31.0 %) NA
Hybrid VMAT 10 (6.9 %) NA
Unknown NA 15 (1.7 %)
GTV volume (cc) 79.4 (0.3–996.8) 45.5 (0.3–5
Dose per fraction (Gy)
1.5 26 (17.9 %) NA
1.8 37 (25.5 %) NA
2 69 (47.6 %) 182 (20.7 %
>2 13 (9.0 %) 696 (79.3 %
Unknown NA NA
Mean Lung Dose (Gy physical dose) 15.6 (2.7–23.6) 13.8 (3.3–2
Mean Heart Dose (Gy physical dose) 7.7 (0.1–45.2) 13.1 (0.0–3
1 year survival probability (%) 61.3 62.0
<2009 52.8 NA***
�2009 76.9 62.0
2 year survival probability (%) 38.7 35.1
<2009 29.2 NA***
�2009 61.5 35.1
Median survival time (month) 18.1 16.5
<2009 13.9 NA***
�2009 >25.2 16.5
Median follow-up time (month) 35.5 39.1
<2009 102.6 NA***
�2009 22.6 39.1

Abbreviations: NSCLC NOS: Non-small cell lung cancer Not otherwise specified; WHO: W
Intensity-Modulated Radiotherapy; VMAT: Volumetric Modulated Arc Therapy; GTV: Gr
*Ever smoker.
**Never smoker.
***Only 5 patients treated <2009.
An AUC corrected for optimism was calculated by averaging the
optimism (obtained when applying bootstrap sample-derived
model coefficients to predict risks in the whole dataset) over all
ation datasets. Median and range or absolute numbers and proportions.

lidation sets

e
ts
7)

Erasmus MC
127 patients
(2009–2013)

UZ Leuven
96 patients
(2011–2016)

62 (30–80) 64 (42–89)

) 19 (15.0 %) 11 (11.5 %)
) 20 (15.8 %) 9 (9.4 %)
) 25 (19.7 %) 24 (25.0 %)
) 59 (46.5 %) 28 (29.2 %)

4 (3.2 %) 24 (25.0 %)

) 20 (15.8 %) 12 (12.5 %)
) 10 (7.9 %) 9 (9.4 %)
) 79 (62.2 %) 37 (38.5 %)
) 18 (14.2 %) 20 (20.8 %)

NA 18 (18.8 %)

) 46 (36.2 %) 28 (29.2 %)
) 49 (38.6 %) 41 (42.7 %)

NA 2 (2.1 %)
32 (25.2 %) 8 (8.3 %)
NA NA

) NA 17 (17.7 %)

42 (33.1 %) 10 (10.4 %)
) 73 (57.5 %) 49 (51.0 %)
) 5 (3.9 %) 1 (1.0 %)

NA NA
7 (5.5 %) NA

) 118 (92.9 %) * 44 (45.8 %)
) 6 (4.7 %)** 52 (54.2 %)
) 3 (2.4 %) NA

) 111 (87.4 %) 70 (72.9 %)
) 14 (11.0 %) 14 (14.6 %)
) 2 (1.6 %) 12 (12.5 %)

) 127 (100.0 %) 50 (52.1 %)
) NA 43 (44.8 %)

NA 2 (2.1 %)
NA NA
NA 1 (1.0 %)

01.5) 84.9 (0.5–510.2) 79.7 (4.2–559.4)

NA NA
1 (0.8 %) 4 (4.2 %)

) 115 (90.6 %) 68 (70.8 %)
) 11 (8.7 %) 23 (24.0 %)

NA 1 (1.0 %)
5.7) (missing for N = 83) 15.6 (2.3–22.2) 16.6 (3.2–23.7)
5.4) 10.9 (0.0–46.0) 10.0 (0.1–41.6)

78.7 81.2
NA NA
78.7 81.2
48.0 54.4
NA NA
48.0 54.4
22.6 29.0
NA NA
22.6 29.0
67.0 44.1
NA NA
67.0 44.1

orld Health Organization; 3D-CRT: 3 Dimensional Conformal Radiotherapy, IMRT:
oss Tumour Volume.
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500 bootstrap replications and subtracting this average optimism
from the development sample performance metric [26].
External model validation

The developed models were validated in 3 external validation
datasets by applying the model coefficients to each individual to
predict mortality risks. No censored observations were present at
12 months, while seventy four, zero and nine patients were dis-
carded for the 24 month mortality endpoint in the Christie, Eras-
mus MC and UZ Leuven validation datasets, respectively.
Discrimination was assessed and calibration plots were analyzed
for their intercept (ideally 0, with negative and positive values
indicating systematic over- and underestimation of the risks,
respectively) and slope (values below and above 1 indicating
model over- and underfitting, respectively) [27]. The appropriate
model updating technique was chosen using a closed testing pro-
cedure, i.e., adjusting only the intercept as a baseline risk correc-
tion was compared to a slope adjustment and a model revision
[28]. The validation in the Christie cohort was undertaken using
the Varian Learning Portal (VLP, Varian Medical Systems, Palo Alto,
CA) distributed learning platform. Distributed learning addresses
information governance concerns with the traditional data sharing
model in which datasets are physically centralized at one institu-
tion for analysis. Instead the analysis algorithm is sent to each site
holding data, analyzing it locally and returning only the results.
Fig. 1. Kaplan–Meier curves for overall survival in the development set of 145 patients. N
RT. Groups based on gross tumour volume (GTV) (upper left graph), current smoking (up
GTV and MHD were the median values for GTV of 79.4 cc and for MHD of 7.7 Gy.
Distributed learning whilst a relatively novel approach, has previ-
ously been used in several projects at the authors’ institutions
[16,29,30]. The data was mapped at each site according to public
Radiation Oncology Ontology [31].

Statistics and model building were performed in Statistica ver-
sion 13 (Dell Inc., Tulsa, OK) and MATLAB R2015b (The Mathworks
Inc., Natick, MA). Significance was assumed for p values smaller
than 0.05. TRIPOD reporting guidelines were followed [32].
Results

Patient and treatment characteristics of the 4 datasets are listed
in Table 1. The development dataset had 1 and 2 year overall sur-
vival probabilities of 61.3% and 38.7%. Nonlinear transformations
of continuous variables were not seen to significantly improve
the likelihood of univariable associations. In univariable logistic
regression for both the 12 and 24 month mortality endpoints and
time-to-event Cox regression, the variables gross tumour volume
(GTV), mean heart dose (MHD) and current smoker were signifi-
cantly associated with increased mortality (Appendix A). Kaplan–
Meier curves (Fig. 1) confirmed that GTV, with an association with
mortality detectable as early as 2 months after treatment, and
smoking, with an association detectable from 6 months after treat-
ment, had a consistent impact onmortality risk up to 5 years. How-
ever, the survival curves show that the increased mortality
umbers at risk are indicated below the graphs and the follow-up time starts at end of
per right graph) and mean heart dose (MHD) (lower left graph). The cut-offs used for



Fig. 2. GTV-smoker-MHD logistic regression models. Graphical representation of the GTV-smoker-MHD logistic regression models predicting 12 month (left graph) and
24 month (right graph) mortality risk in the development dataset of 145 patients. Mean Heart Dose (MHD) dependence of the risks for representative patient categories based
on the covariates Gross Tumour Volume (GTV) and current smoking status. Predicted probabilities can be calculated using following formula: P = (1 + e�S)�1 with S = �1.68
+ 0.0077*GTV + 0.71*SMOKER (Yes = 1/No = 0) + 0.0277*MHD for 12 month mortality risk and S = �0.40 + 0.0045*GTV + 0.79*SMOKER (Yes = 1/No = �1) + 0.0283*MHD for
24 month mortality risk. The distribution of MHD values in the dataset (n = absolute number of patients) is shown at the bottom of the graphs.

Table 2
Multivariable logistic regression prediction models for 12 and 24 month mortality optimized in the development set. Predicted risks can be calculated as P = (1 + e�S)�1 with
S ¼ b0 þ

Pn
i¼1bixi . 4 models combining the most frequently selected covariates using 100 times repeated 5-fold cross-validation (Appendix B). Covariates (model coefficients, OR

and p value), discriminative power (AUC and discrimination slope (average prediction difference between patients with and without the outcome)) and goodness of fit
(Nagelkerke R2). The GTV-smoker-MHD models are depicted in Fig. 2. Calibration of these models is depicted in Fig. 3 (24 month mortality) and Appendix E (12 month mortality).

Model coefficient b OR (95% CI) p value AUC (95% CI) Discrim. slope Nagelkerke R2

Original Shrunk (factor f)

12 month mortality prediction models
GTV model f = 1.15 0.74 (0.65; 0.82)

Optimism-corrected:
0.737 (0.737; 0.737)

0.142 0.164
Intercept b0 �1.229 �1.36
GTV (+1 cc) 0.00891 0.0102 1.0090 (1.0036; 1.014) 0.0011
GTV-smoker model f = 0.89 0.75 (0.66; 0.83)

Optimism-corrected:
0.745 (0.709; 0.758)

0.172 0.205
Intercept b0 �1.59 �1.45
GTV (+1 cc) 0.00886 0.0079 1.0089 (1.0035; 1.014) 0.0012
Current smoker (yes vs no) 0.83 0.739 2.294 (1.056; 4.982) 0.036
GTV-MHD model f = 1.05 0.74 (0.65; 0.82)

Optimism-corrected:
0.733 (0.684; 0.747)

0.162 0.189
Intercept b0 �1.491 �1.54
GTV (+1 cc) 0.00761 0.0080 1.0076 (1.0021; 1.013) 0.0070
MHD (+1 Gy) 0.0343 0.0359 1.035 (0.993; 1.079) 0.11
GTV-smoker-MHD model f = 0.92 0.77 (0.67; 0.84)

Optimism-corrected:
0.745 (0.697; 0.763)

0.188 0.223
Intercept b0 �1.795 �1.68
GTV (+1 cc) 0.00775 0.0071 1.0078 (1.0022; 1.0134) 0.0061
Current smoker (yes vs no) 0.772 0.710 2.163 (0.987; 4.742) 0.054
MHD (+1 Gy) 0.0301 0.0277 1.031 (0.988; 1.075) 0.16

24 month mortality prediction models
GTV model f = 1.22 0.70 (0.60; 0.78)

Optimism-corrected:
0.698 (0.698; 0.698)

0.068 0.080
Intercept b0 0.0329 �0.088
GTV (+1 cc) 0.00639 0.0078 1.0064 (1.0007; 1.012) 0.028
GTV-smoker model f = 0.87 0.72 (0.63; 0.80)

Optimism-corrected:
0.717 (0.704; 0.731)

0.110 0.139
Intercept b0 �0.330 �0.21
GTV (+1 cc) 0.00630 0.0055 1.0063 (1.00065; 1.012) 0.029
Current smoker (yes vs no) 0.979 0.852 2.663 (1.152; 6.157) 0.022
GTV-MHD model f = 0.97 0.69 (0.60; 0.77)

Optimism-corrected:
0.685 (0.589; 0.711)

0.087 0.109
Intercept b0 �0.248 �0.22
GTV (+1 cc) 0.0051 0.0049 1.0051 (0.999; 1.011) 0.088
MHD (+1 Gy) 0.0378 0.0367 1.0385 (0.991; 1.088) 0.11
GTV-smoker-MHD model f = 0.87 0.72 (0.63; 0.80)

Optimism-corrected:
0.708 (0.639; 0.738)

0.121 0.158
Intercept b0 �0.546 �0.40
GTV (+1 cc) 0.0052 0.0045 1.0052 (0.999; 1.011) 0.079
Current smoker (yes vs no) 0.912 0.793 2.490 (1.067; 5.809) 0.035
MHD (+1 Gy) 0.0325 0.0283 1.0331 (0.985; 1.084) 0.19

Abbreviations: GTV: Gross Tumour Volume; MHD: Mean Heart Dose; OR: Odds Ratio; CI: Confidence Interval; AUC: Area Under the Curve; Discrim. slope: Discrimination
slope; R2: Coefficient of determination.
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associated with higher MHD is most pronounced between 6 and
24 months after treatment.

In repeated cross-validation of model development (Appendix
B), the GTV covariate was selected in 94% of logistic regression
models, followed by current smoker (81%) and MHD (44%). MLD
was selected in only 8% of the models. At both time points, the
most frequently developed model was the GTV-smoker model
(combining GTV and current smoker covariates) followed by the
GTV-smoker-MHD model (Fig. 2). Further analysis therefore
focused on these and on related (GTV-only and GTV-MHD) models,
in order to study the additional benefit of each covariate. Final
logistic regression model coefficients are reported in Table 2. Per-
formance metrics showed only minimal differences in discrimina-
tion between the models (DAUC < 0.03). Optimism-corrected AUCs
were 0.74 (95% CI: 0.66–0.78) and 0.69 (95% CI: 0.55–0.74) for
modelling at 12 and 24 months, respectively. Cox regression mod-
els (Appendix C) showed even smaller c-statistic variations and
worsened when adding the MHD covariate. However, the hetero-
geneity of the development dataset in terms of follow-up times
in the different treatment periods might have biased the variable
selection. The Cox models were therefore not studied further in
the validation steps.

In the 3 external validation cohorts, survival probabilities varied
between 62.0% and 81.2% at 1 year and between 35.1% and 54.4% at
2 years. The 24 month mortality prediction models mostly showed
higher validation AUC than the 12 month mortality prediction
models (Table 3). In all 3 validation datasets, 24 month mortality
models including MHD proved to be robust as they required an
update of the model intercept only, except for 1 model, while most
other models required recalibration or revision in at least one of
the datasets. The 24 month mortality GTV-smoker-MHD model
validations performed best in terms of discrimination (0.61–0.64
before and 0.64–0.65 after appropriate model update, respec-
tively), but the improvement over a GTV-only model was limited
(DAUC = 0.01–0.07). This model showed a good calibration (slope
0.64–0.65, Fig. 3).

Discussion

To the best of our knowledge, this is the first study to build and
externally validate prediction models of mortality at 1 and 2 years
after radical chemoradiotherapy for NSCLC, taking into account
clinical and dosimetric variables for more than 1000 patients from
different European institutions. The most heterogeneous dataset in
terms of prescribed radiation doses, tumour stages and radiother-
apy techniques, resulting in large heart dose variability, was used
as the development set. We observed a strong GTV dependence
of mortality risk in logistic and Cox regression modelling, while
current smoker and MHD had limited additional impact on the per-
formance of the prediction model. Based on the analysis of 3 exter-
nal validation datasets, the prediction model combining GTV,
current smoker and MHD most robustly predicts mortality risk,
especially at 24 months after the end of treatment (AUC = 0.61–
0.64 with good calibration slopes). The 12 month mortality models
did not translate well to external datasets (strongly degraded AUC
and calibration metrics). This could partly be explained by the first
year mortality exhibiting a lower dependence on GTV in validation
datasets containing recent treatments (calibration slope of GTV-
only model validation <0.3 in Erasmus MC and UZ Leuven data-
sets). From the studied models, the GTV-smoker-MHD model pre-
dicting mortality at 24 months after treatment could thus be
recommended. However, the optimal endpoint may also depend
on the preferred accuracy measure, with 12 month mortality pre-
diction models having higher negative predictive values (Appendix
D). An institution-specific validation focusing on an adjustment of
the baseline mortality risk remains of paramount importance



Fig. 3. Calibration plots for the 24 month mortality GTV-smoker-MHD prediction model. Calibration in the development set (upper left), the Christie external validation
cohort 1 (lower left), Erasmus MC external validation cohort 2 (GTV-MHD model as no individual smoking information was present) (upper right) and UZ Leuven external
validation cohort 3 (lower right). In cohort 2 and 3, there was only evidence for updating the model intercept, e.g. to correct for the lower mortality frequency visible in the
plots. Calibration plots after model updating are reported in Appendix F.
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before any clinical application of the presented prediction models.
Our Cox regression models might be suboptimal for the prediction
of mortality in the first 2 years after treatment. The cross validation
results of Appendix B show that using Cox regression other vari-
ables were often selected than using logistic regression, e.g. the
Cox regression models including the WHO covariate would result
in a worse performance for the prediction of 2 year mortality risks
as WHO was practically never selected in the 2 year logistic regres-
sion model.

A major advantage of our prediction models is the highly rele-
vant mortality endpoint and the selection of an optimal post-
treatment time point, chosen to maximize the effect size of an
actionable dosimetric variable (MHD). The Kaplan–Meier curves
suggested the MHD to contain information associated with mortal-
ity risk between 6 and 24 months after treatment. An improve-
ment in discrimination when adding MHD to the prediction
model was only observed in approximately one third of cross val-
idation model developments, while it was small but consistently
observed in two validation datasets. Including the MHD covariate
was also important for the improvement of the calibration slopes
observed in external validation. According to our data, only a lim-
ited subset of non-smoking patients with small tumour volumes
associated with higher heart doses (i.e., located close to the heart)
might have a detectable survival benefit from reductions of the
MHD. For example, a MHD reduction from 20 Gy to 10 Gy would
decrease the 24 month absolute mortality risk by 7.1% (12.8% in
relative terms) for a 10 cc GTV in a non-smoking patient. A similar
MHD reduction for a 200 cc GTV in a smoker would result in a
substantially lower absolute survival gain of 3.7% (4.2% in relative
terms).

Planning studies have shown that MHD reductions of at least
50% are commonly achievable with proton therapy [33–35]. Based
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on these data, randomized trials could investigate the potential
advantage of proton therapy with 24 month mortality as the pri-
mary endpoint in patient groups most at risk. The good calibration
slope validation shown for our 24 month mortality prediction
model is crucial in order to translate MHD reductions into
improved survival on a population basis. However, improvement
of the model accuracy is required to limit the number of patients
who needlessly would be included in such study. Improvement
could be achieved by the analysis of additional variables such as
tumour location [3] and treatment technique [36] to strengthen
our conclusions on MHD as an independent risk factor of mortality
at 1 and 2 years after treatment. Radiomics analyses have shown
promising image-based survival discrimination in lung cancer
and should be part of future modelling strategies [37]. Finally,
the models should be updated based on the inclusion of patients
treated with the new standard of care of immune checkpoint inhi-
bitor following concurrent chemoradiotherapy [38].

The GTV was shown in previous studies to be strongly associ-
ated with lung cancer survival [8,13,23,24,39]. Our models did
not select WHO performance status [8,13,16,17], possibly because
only fit patients were selected for chemoradiotherapy in the devel-
opment dataset. In RTOG0617, a survival detriment was observed
for patients with higher heart doses, from the first month after
treatment, which is in line with our Kaplan–Meier curves. Our data
suggest a strong association of smoking with mortality, which is
higher than that of the heart dose. Although we could only obtain
data on the smoking status at the time of initiation of radiotherapy,
this finding supports the importance of smoking cessation pro-
grams in all lung cancer patients, as is reflected in guidelines
[22]. Similarly, in a study estimating the risks of breast cancer
radiotherapy, smoking was seen to dramatically increase the
MHD-related risk of cardiac mortality [40].

This study has some limitations. Our analysis did not allow to
draw conclusions on the causal relation between cardiac dose
and mortality. Ideally, our prediction model should be evaluated
in a randomized trial. The development dataset was heterogeneous
in terms of time period of treatment, which was associated to some
changes in the standard treatment. While this might not be the
ideal situation for model building, it had the advantage of resulting
in generalizable 24 month mortality model coefficients, with
acceptable performance in all external validation datasets. Even
though a large proportion of patients received radiotherapy-only
treatments in the Christie cohort, this did not negatively influence
model discrimination and calibration. Another caveat is that the
Christie dataset had survival times calculated from the start
instead of the end of treatment. This 1–1.5 month bias in the
assessment of mortality is not likely to have influenced model dis-
crimination analysis as the bias was approximately the same in all
patients. Furthermore, a potential bias from the inclusion of cases
with complete data into the development dataset could not be
excluded. The available follow-up in our development dataset
was a major limitation for the Cox model fits. The most recent part
of the development dataset (2014–2016) had a median follow-up
time of 22.6 months, while this was 102.6 months for the older
part (2003–2006). The Cox models reported in Appendix C might
thus contain risk factors that are biased towards the older part of
the dataset.

Initial treatment plan dosimetric data was used, while it has
been shown that the interfractional average MHD variation is
1.2 Gy [41]. This should nevertheless not change the conclusions.
Only physical MLD and MHD doses were available. With almost
all treatments delivered in at least 20 fractions and an upper
MHD value of 46.0 Gy, the impact of a recalculation in 2 Gy equiv-
alent doses is expected to be limited. A complete heart DVH anal-
ysis might have enhanced dose response modelling, but no
previous studies have shown that the selection of one specific
heart dose-volume metric significantly improves associations with
outcome when compared to another heart dose-volume metric
[6,10,11]. Finally, a refinement of our understanding of individual
heart substructure radiosensitivities should come from prospective
studies collecting cardiac imaging and circulating biomarkers.

In conclusion, we developed an externally validated, moder-
ately discriminating and well-calibrated prediction model of
24 month mortality after radical chemoradiotherapy in NSCLC
patients. The model shows that patient prognosis is strongly
related to tumour volume and reveals an important association
with smoking. It allows the identification of individual patients
(i.e., those with small central tumours) for whom a reduction of
the heart dose might be beneficial.
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