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A B S T R A C T

We study a problem that plays an important role in the flower industry: we must determine how many mother
plants are required to be able to produce a given demand of cuttings per week. This sounds like an easy problem,
but working with living material (plants) introduces complications that are rarely encountered in optimization
problems: there is no list with possible cutting patterns, describing the average number of cuttings taken from a
mother plant per week. More importantly, there is no easy way to find out whether a cutting pattern is feasible,
that is, whether the mother plants can keep up delivering the number of cuttings required by the cutting pattern
each week: the only alternative to asking for an ‘expert’s opinion’ is to apply a field-test, which takes a lot of time
(and there are very many options to check).

We have tackled this problem by a combination of data mining and linear programming. We apply data
mining to infer constraints that a feasible cutting pattern should obey, and we use these constraints in a linear
programming formulation to determine the minimum number of mother plants that are needed to supply the
demand. Due to the linearity of the constraints obtained by data mining, this formulation can be reformulated
such that it becomes trivially solvable. Next, we look at the problem of finding the optimal number of mother
plants for the case that we can sell a given number of the remaining cuttings on the market for a given price; we
show that this problem can be solved efficiently through linear programming.

1. Introduction

Dümmen Orange is a leading company in breeding and develop-
ment of cut flowers, potted plants, bedding plants and perennials with
over a century of experience in the horticultural industry. In addition to
a large marketing and sales network, Dümmen Orange has a strong
network of production locations. In these production centers so-called
mother plants are planted and grown for a large number of varieties.
When these mother plants are ready, cuttings are harvested during a
period of approximately 16weeks, after which the mother plants are
removed. These cuttings are sold to growers, who either place orders
beforehand, or place orders during the harvesting weeks. For each
variety, the majority of sales takes place in the ‘peak weeks’, which is a
period of approximately 10weeks; the company has reasonably accu-
rate demand forecasts per week available.

Dümmen Orange experienced the following problem: For each
variety, the number of mother plants to be planted is determined on
basis of sales forecasts, to which a buffer of 10% is added. When orders

come in, contracts are concluded with the growers guaranteeing that
the required number of cuttings will be delivered at the desired time.
When the harvesting starts, at some point in time the availability of the
buffer of 10% is reported to the sales agents, who then try to acquire
orders for selling these additional cuttings. Unfortunately, when they
are very successful, too many cuttings are required per week, and the
mother plants cannot keep up this pace for too many weeks in a row,
which results in a shortage in later weeks. This led Dümmen Orange to
the question of when to report the availability of the buffer, and pos-
sibly to change its size.

Dümmen Orange posed this problem at the study group ‘Wiskunde
met de Industrie’ SWI2016.1 In close contact with Dümmen Orange we
figured out that we had to address the following research questions:

1. Model how the number of cuttings harvested in previous weeks
influences the potential number of cuttings that can be taken from a
mother plant in the current and future weeks.

2. Determine how many mother plants should be planted to meet the
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predicted demand.
3. Determine how many cuttings to offer for sale in each week (and

thus how many to cut).

We have looked at these problems for just a single variety of plant in
isolation, which is reasonable, since the production processes of the
different varieties do not influence each other. Because of a lack of data,
we ignored any random disturbances, but these can easily be included
in a later stadium, when more data or additional knowledge becomes
available. For the variety that we studied, we were provided with the
predicted demands and the average number of cuttings harvested per
mother plant per week for the years 2006–2015 (160 numbers in total);
this was all the information that was available for this problem within
the company.

This paper is organized as follows. In Section 2 we analyze the
problem. In Section 3 we show how the feasibility constraints can be
determined using data mining, and in Section 4 we describe how we can
use these feasibility constraints to find the minimum number of mother
plants that are required to supply the predicted demand. In Section 5
we present a linear program to find the optimal number of mother
plants and the best cutting pattern, given that we know how many
cuttings can be sold additionally and at which price. We conclude by
providing computational experiments in Section 6 and draw conclu-
sions in Section 7.
Our contribution. We present a simple form of data mining to

generate the yet unknown constraints that are needed to verify the
feasibility of a cutting pattern; as far as we know, our paper is the first
one in which constraints are inferred using data mining. We further
show that due to the linearity of these constraints we only need to apply
one cutting pattern, which leads to a trivial way to determine the
minimum number of mother plants that have to be planted.

2. Finding constraints needed for feasibility of cutting patterns

Since the number of cuttings taken from the mother plants in pre-
vious weeks influences the potential yield for the current week in some
unknown way, we decided to work with feasible cutting patterns. Here, a
cutting pattern describes for each one of the 16weeks the average
number of cuttings that are taken from a mother plant; since it is an
average (taken over all mother plants), this number can be fractional.
For the variety that we studied the typical yield per week was 2 or a
little less; as an example a possible cutting pattern could be

…{2.0;1.8;1.9;2.0; }, which indicates that in the first week on average 2.0
cuttings are taken, in the second week 1.8, etc. To be a bit more general,
from now on we use T to denote the number of weeks during which we
take cuttings. After consulting the experts from Dümmen Orange we
found out that the exact time at which the mother plants were planted
within the planting interval made no difference with respect to their
potential yield of cuttings, and therefore we do not need to let the
cutting patterns depend on the time of planting.

Suppose that we know the set of possible, feasible cutting patterns
that we can apply. In that case we can solve the problem of determining
the required number of mother plants by formulating it as a linear
programming problem. Let n be the number of cutting patterns. We
represent cutting pattern j by the parameters ajt , which indicate the
average number of cuttings harvested in week t = …t T( 1, , ), when a
plant is cut according to pattern j ( = …j n1, , ). Define xj = …j n( 1, , ) as
the number of mother plants that are cut according to cutting pattern j.
If we denote the predicted demand in week t by bt = …t T( 1, , ), then we
can formulate the problem of determining the minimum number of
mother plants as a linear programming (LP) problem as follows:
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The solution of this LP program yields the minimum number M of
mother plants that have to be planted. Dümmen Orange can decide to
add more (for example to have a buffer to guard against disturbances in
the production and/or sales process). Note that, although the variables
xj should attain integral values only since these correspond to numbers,
it is sufficient to solve the problem by solving the LP-relaxation (where
the integrality constraints are relaxed) and round up the outcome va-
lues, since the total of the xj values is big and at most T of them will get
a value different from zero (we will see later that we need only one
cutting pattern in an optimal solution). Moreover, if the time of
planting the mother plants would make a difference with respect to the
yield of cuttings, then this can easily be incorporated in this model by
making the xj variables dependent on the time of planting.

The LP formulation above is identical to the LP formulation for the
standard cutting stock problem (see for example Gilmore & Gomory,
1961, 1963), but the cutting patterns correspond to different situations.
In the cutting stock problem we consider items with different lengths,
whereas we now have identical items that are cut in different weeks.
More importantly, in the cutting stock problem, it is trivial to describe
the constraints that a cutting pattern must satisfy to be feasible. This
makes the cutting stock problem the perfect example for applying the
technique of column generation, which was invented by Ford and
Fulkerson (1958) and Gilmore and Gomory (1961, 1963).

In our problem on the other hand, the domain expert can decide for
a given cutting pattern whether it is presumably feasible, but the
characteristics of a feasible cutting pattern are unknown, and hence
there is no explicit list with constraints that a set of values …a a( , , )T1
must satisfy such that it constitutes a feasible cutting pattern. We infer
these constraints by looking at the data, which give the average yield
per mother plant per week in the years 2006–2015.

3. Data mining

Data mining is used to retrieve relations from the data. There is a
large interaction between data mining and operations research, but it is
mainly a one way connection: techniques and algorithms from opera-
tions research are applied in data mining (Olafsson, Li, & Wu, 2008).
We want to apply data mining to find constraints that will be in-
corporated in the model explicitly, after which we can apply the tech-
niques from operations research. As far as we know, such an approach
has not been conducted before. For example, Li and Olafsson (2005),
who use data mining to derive dispatching rules for a complex pro-
duction scheduling problem, state that the idea of this data mining ap-
proach to production scheduling is to complement more traditional opera-
tions research approaches.

The domain expert at Dümmen Orange gave several indications on
what constitutes a feasible cutting pattern. For instance, for the variety
that we consider one can obtain a maximum of 2.0 cuttings per mother
plant in a given week; hence, we find the constraint that a 2.0t for all

= …t T1, , . After having harvested the maximum of 2.0 cuttings in
week t, the mother plants have to recover, which can be formulated by
the constraint + +a a 3.9t t 1 for all = …t T1, , 1. Furthermore, a
pattern that alternates between cutting the maximum amount possible
and cutting a much smaller number (e.g. a pattern such as

…{2.0;1.4;2.0;1.4, }) is not feasible either; it turned out later that any
cutting pattern must satisfy the constraint to be feasible.

It is apparent that the number of constraints required may be large,
and a different set of values is needed for each variety. Obtaining these
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values from domain experts would be very time consuming (if possible
at all), and hence we need to define a process to automate it. Thereto,
Dümmen Orange provided us with data specifying the average number
of cuttings harvested per mother plant per week in the years
2006–2015. We applied a very primitive form of data mining to derive
the constraints; recall that we have no more than T10 numbers in our
excel file, in contrast to the gigabytes of data that are standard in data
mining. Together with the domain expert, we decided that the pre-
sumably relevant constraints will be of the form + + …+a a a Xt t tk1 2 ,
where … …t t T, , {1, , }k1 and < < … <t t tk1 2 . To find these constraints,
we simply enumerated all possibilities with = …k 1, , 6 and t t 10k 1
and computed for each constraint the right hand side value X as the
maximum value observed in the historical data for the expression on
the left hand side.

Even though the bound of each constraint is set to the maximum
value observed, the fact that very many such constraints work together
ensures that only realistic cutting patterns will satisfy the constraints.
The domain expert confirmed that the cutting patterns that we identi-
fied in this way appeared feasible. Instead of taking the maximum it is
also possible to use a bit more conservative constraints by putting X
equal to the k-th percentile instead of the maximum of the observed
values, especially if in the future a larger training data set may become
available.

Another possible shortcoming of our data mining model might be
that we do not have the data available that we need. We used the data
concerning the number of cuttings that were actually harvested instead
of the maximum number of cuttings that could have been harvested
(which data are not available). Hence, the constraints that were in-
ferred might be too restrictive: we may exclude a certain feasible cut-
ting pattern, simply because this cutting pattern has not been used
before. We leave these issues to the experts, who if necessary can per-
form some experiments to test cutting patterns.

Below, we have listed a small excerpt of the list of constraints that
we obtained using data mining; these constraints must hold for all
possible t values. Since the majority of cuttings must be harvested
during the peak weaks, it is possible to reduce the domain of t; in this
case approximately 1000 constraints of the several thousands of con-
straints remain.
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4. Determining the minimum number of mother plants

Now that we have a description of the feasibility constraints, we can
solve the linear programming formulation to decide on the number of
mother plants that we need. Since the number of feasible cutting pat-
terns is much too large to enumerate, it seems inevitable to use column
generation, just like for the cutting stock problem. If we solve the LP for
a limited number of cutting patterns, then we find a shadow price t

= …t T( 1, , ) for each week constraint. Hence, the reduced cost of a
cutting pattern described by …a a( , , )T1 is equal to

=
a1 ,

t

T

t t
1

and this must be minimized subject to the feasibility constraints. Since
these feasibility constraints are linear, the resulting pricing problem is a
linear programming problem, and hence can be solved very efficiently.
But it turns out that we do not need the technique of column generation
at all. Since the feasible region described by the constraints is convex,
we have that each convex combination of a set of cutting patterns sa-
tisfies these constraints and hence corresponds to a feasible cutting
pattern again. This observation leads to the following result.

Theorem 4.1. Let = …x x x( , , )n1 denote an optimal solution to the linear
program of minimizing the required number of mother plants. Then there
exists an equivalent solution in which we use only one cutting pattern

= …C C C( , , )T1 .

Proof. Define = =M xj
n

j1 . We construct this cutting pattern C by
taking the weighted average of all cutting patterns, where we use x M/j
as our weight function, for = …j n1, , . Hence, we have that

=
=

C a x M/ .t
j

n

jt j
1

Since all weights are non-negative and add up to 1, this is a convex
combination, and therefore C is a feasible cutting pattern. If we cut all
M mother plants according to this cutting pattern, then we get the same
yield as we get for the optimal solution x .

Since we want to produce bt cuttings in week t = …t T( 1, , ), it is
optimal to use the cutting pattern = …C C C( , , )T1 , where =C b M/t t , and
we determine M as the smallest number such that …b M b M( / , , / )T1 sa-
tisfies all constraints identified using data mining. Our first idea was to
determine this valueM using binary search, but there is an even simpler
method. Recall that we have to check whether the values =a b M/t t

= …t T( 1, , ) satisfy the constraints, such as + +a a 3.9t t 1 . This is
equivalent to checking whether + = ++ +Ma Ma b b M3.9t t t t1 1 , which
implies that M must be greater than or equal to + +b b( )/3.9t t 1 . For each
one of the feasibility constraints we can obtain a lower bound on M in
this way; the minimum number of mother plants required is equal to
the maximum of these lower bounds.

Note that this approach works only if we can guarantee that a
convex combination of a set of cutting patterns is feasible. If we would
need additional non-linear constraints to describe a feasible cutting
pattern, then we have to resort to column generation again. The pricing
problem would then not be solvable as an LP any more, but we could
apply an approach such as Constraint Programming instead.

5. Determining how many cuttings to offer for sale

The solution approach yields a lower bound M on the number of
mother plants that must be planted, but even if exactlyMmother plants
are planted, then in a number of weeks more cuttings will be available
than ordered. The exact surplus per week depends on the applied cut-
ting pattern, and we can optimize this as well, given that we know for
each week t = …t T( 1, , ) how many cuttings we can sell additionally
(which we denote by Dt) and the profit pt that we gain per cutting sold
additionally. Suppose that the management of Dümmen Orange has
decided on the number Q of mother plants to be planted; this can be any
given value, as long as Q M . We can then solve the problem of de-
termining how many cuttings extra to offer for sale per week in a si-
milar fashion by formulating it as an LP again. Next to the decision
variables xj, we introduce decision variables yt = …t T( 1, , ) that will
indicate the number of additional cuttings to be sold in week t. Just like
we did for xj, we ignore the integrality of the yt variables. We then get
the following LP formulation:

H. Hoogeveen et al. Computers & Industrial Engineering 127 (2019) 39–44

41



= …

= …
= …

=

=

p y

a x y b t T

x Q

y D t T
x j n

max

subject to

1, ,

0 1, ,
0 1, ,

t
t t

j

n

jt j t t

j

n

j

t t

j

1

1

We can use Theorem 4.1 again to show that we can use a single cutting
pattern C. As a consequence, we can once again solve this problem
without generating cutting patterns. We introduce the variables zt that
indicate the number of cuttings that we harvest in week t = …t T( 1, , );
we must have that z bt t and we sell the remainder z bt t at a price of
pt per cutting. Since we use a single cutting pattern, we cut =a z Q/t t
cuttings per mother plant. Then we can rewrite the LP as

+
=

p z b

b z b D t
z Ma t

a

max ( )

subject to

‘the variables form a feasible cutting pattern

t
t t t

t t t t

t t

t

If Q is a decision variable as well, then the constraints =z Qat t are not
linear, but we can rewrite the above formulation to obtain a linear
program again by eliminating the at variables. To that end, we multiply
the constraints that ensure the feasibility of the cutting patterns, for
example + +a a 3.85t t 2 , by Q, such that we obtain the constraint

+ +z z Q3.85t t 2 . Obviously, we have to include the cost of growing Q
mother plants in the objective function. We further remark that our
approach can also be used in case we refine the model by offering the
possibility of selling up to bt,1 cuttings for price pt,1, up to bt,2 cuttings for
price pt,2, etc.

6. Computational experiments

To make our mathematical formulation more tangible for the do-
main experts, we have created a graphical user interface around the LP
formulation, which allows the user to enter a set of training data (note
that we used the historic data to that avail), and then experiment with

various scenarios (see Fig. 1). The user can specify a number of mother
plants and the (predicted) demand levels for each week, and then see
whether the demands can be met given this number of mother plants,
and how much (if any) additional capacity there is in each week. The
software can also calculate the minimum number of mother plants re-
quired to meet a specific set of demands. In the screenshot the required
number of cuttings (for example 5000 for Week 5) have been filled in;
which leads to the red line; then the minimum number of mother plants
is computed (resulting in the 5793 at the bottom). The numbers in
green show the remaining number of cuttings and, in between brackets,
the average yield in the corresponding weeks.

The red line shows the demands entered by the user, while the green
line shows the maximum number of cuttings we could take each week,
while still being able to meet the demands. The gray line shows the
absolute maximum number of cuttings available in a single week, but
note that it is never feasible to take this many cuttings, except for in the
last week (when the demand has dropped to zero).

We also implemented an interface for the harvesting stage, which
aids in determining how many additional cuttings to offer for sale (on
top of the cuttings that have already been ordered). This is depicted in
Fig. 2. For each week, the user can enter how many cuttings have been
ordered so far, as well as (an estimate of) the number of cuttings that
can be sold additionally. Furthermore, the user can enter (for each
week) a profit for each additional cutting sold, and a penalty for not
delivering cuttings that have already been ordered. Given these values,
the program calculates an optimal strategy for selling the additional
cuttings.

The red and green lines have the same meaning as before, while the
blue line represents our program’s advice on selling additional cuttings.

We found that this implementation was a powerful tool for con-
veying the usefulness of our mathematical model to the domain experts.

6.1. Modeling disturbances

In the model described above we do not take any disturbances into
account, due to for example the weather conditions; we are aware of
this, but there are simply no data available that can be used in such a
model. We performed an experiment where the right hand sides of the
constraints were perturbed randomly as a potential approach to getting
more robust solutions. However, even though it is possible to determine
a good relation between environmental conditions (sun, rain, etc.) and
the condition of the mother plants, we cannot use this in our

Fig. 1. GUI for the planting stage.
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computation of the number of mother plants to plant, since the mother
plants have to be planted in advance, and it is impossible to give a
reasonable prediction of the environmental conditions at the time of
harvest. On the other hand, when we get more data, then we could
estimate the fluctuations in outcomes. Therefore, we propose an expert-
based approach as well.

We designed a Matlab-based GUI in which the user can infer con-
straints from data mining results or experience and estimate their
variability (error). The estimated variability is used to generate sce-
narios, which are essential to provide confidence intervals. To generate
scenarios we sample from a uniform probability distribution, where the
range depends on the estimated variability. Intuitively, variability
should decrease with the number of summed values in constraints.
Obviously, we do not take into account rare, but possible events like
wars, droughts, volcanic eruptions (which may block deliveries) or
plant diseases.

Based on the provided constraints and variability data, possible
scenarios are simulated. They are used to calculate the number of
mother plants and a buffer (in percentages) needed to cover, for in-
stance 98% of scenarios. See Fig. 3.

In order to automate a process of estimating buffer and number of
mother plants one has to use historic data and experience of experts at
least once at the beginning. This is easily done for one variety, but
practically impossible for all of the thousands of varieties. Moreover,
estimation of variability from historical data might be challenging. We
believe that expert judgement is essential in this approach.

7. Conclusions

The problem of Dümmen Orange is quite different from other ap-
plications, because of the laws of nature that have to be obeyed: the
output is not constant, but decreases over time if you require too much
in the beginning. We have attacked this problem by linear program-
ming, where we use a simple form of data mining to cover the lack of
constraints describing the feasibility of the cutting patterns. Especially
this latter part seems to be new and very useful for dealing with this
kind of problems. The linear programs are very flexible and easily
solvable, which offers great potential for future use by Dümmen
Orange.

Fig. 2. GUI for the selling stage.

Fig. 3. Print screen of Matlab based GUI which is used to estimate number of mother plants and buffer needed to cover 98% of scenarios.
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