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REGULAR ARTICLE

Examination of retinal vascular trajectory in schizophrenia and
bipolar disorder

Abhishek Appaji, MTech, ME ,1,2† Bhargavi Nagendra, DNB,3† Dona M. Chako, MPhil,3 Ananth Padmanabha, MTech,1

Arpitha Jacob, MPhil,3 Chaitra V. Hiremath, DPM,3 Shivarama Varambally, MD,3 Muralidharan Kesavan, MD,3

Ganesan Venkatasubramanian, MD, PhD,3 Shyam V. Rao, PhD,1,2 Carroll A. B. Webers, MD, PhD, FEBOpht,2

Tos T. J. M. Berendschot, PhD2 and Naren P. Rao, MD 3*

Aim: Evidence suggests microvascular dysfunction (wider
retinal venules and narrower arterioles) in schizophrenia
(SCZ) and bipolar disorder (BD). The vascular development
is synchronous with neuronal development in the retina and
brain. The retinal vessel trajectory is related to retinal nerve
fiber layer thinning and cerebrovascular abnormalities in
SCZ and BD and has not yet been examined. Hence, in this
study we examined the retinal vascular trajectory in SCZ
and BD in comparison with healthy volunteers (HV).

Methods: Retinal images were acquired from 100 HV, SCZ
patients, and BD patients, respectively, with a non-mydriatic
fundus camera. Images were quantified to obtain the reti-
nal arterial and venous trajectories using a validated,
semiautomated algorithm. Analysis of covariance and regres-
sion analyses were conducted to examine group differences.
A supervised machine-learning ensemble of bagged-trees
method was used for automated classification of trajectory
values.

Results: There was a significant difference among groups
in both the retinal venous trajectory (HV: 0.17 � 0.08; SCZ:

0.25 � 0.17; BD: 0.27 � 0.20; P < 0.001) and the arterial tra-
jectory (HV: 0.34 � 0.15; SCZ: 0.29 � 0.10; BD: 0.29 � 0.11;
P = 0.003) even after adjusting for age and sex (P < 0.001).
On post-hoc analysis, the SCZ and BD groups differed from
the HV on retinal venous and arterial trajectories, but there
was no difference between SCZ and BD patients. The
machine learning showed an accuracy of 86% and 73% for
classifying HV versus SCZ and BD, respectively.

Conclusion: Smaller trajectories of retinal arteries indicate
wider and flatter curves in SCZ and BD. Considering the
relation between retinal/cerebral vasculatures and retinal
nerve fiber layer thinness, the retinal vascular trajectory is a
potential marker for SCZ and BD. As a relatively affordable
investigation, retinal fundus photography should be further
explored in SCZ and BD as a potential screening measure.

Keywords: bipolar disorder, machine learning, retinal nerve fiber layer,

retinal vascular trajectory, schizophrenia.

http://onlinelibrary.wiley.com/doi/10.1111/pcn.12921/full

The retina, an embryonic extension of the central nervous system, is
often considered as a ‘window to the brain’ due to its easy accessibil-
ity.1 Retinal imaging is a safer, faster, and less expensive technique
compared to other imaging modalities, like magnetic resonance imag-
ing (MRI), used for psychiatric disorders.2 The retinal nerve fiber
layer (RNFL), which is composed of axons from the retinal ganglion
cells, shares an embryonic origin with the brain, thus permitting sur-
rogate examination of axonal histopathology.3 Studies have reported
thinning of the RNFL as measured by optical coherence tomography
(OCT) in several neuropsychiatric conditions.1,3 RNFL thinning has
also been found to be associated with brain atrophy in multiple scle-
rosis, validating its use as a marker for brain abnormality.4 Several
studies in the last decade have reported RNFL thinning in patients
with schizophrenia (SCZ) and bipolar disorder (BD)5–9 but not in
major depressive disorder,10,11 suggesting that RNFL abnormalities
are limited to SCZ and BD. A recent study has also reported an over-
lap in genes implicated in macular thickness and systemic diseases,
including SCZ.12 Two genetic loci, rs7432375 and rs7523273, are

associated with risk for both age-related macular degeneration and
SCZ.13–15 Though the functional significance of these genes in the
pathogenesis of SCZ is not completely known, it is interesting to note
that rs7523273 is associated with functional brain activation in the
precuneus/posterior cingulate cortex of SCZ patients.16 Hence, though
preliminary, these findings suggest a pleiotropy effect of these genes
between RNFL thickness and SCZ.

However, the measurement of RNFL thickness requires OCT.17

Though less expensive than brain imaging, the cost of OCT still
limits its utility in the wider community under resource-constrained
settings. Fundus imaging is less expensive than OCT and ideally
suited for use in community settings. An earlier study reported a sig-
nificant association between the retinal arterial trajectory measured as
retinal artery angle (angle between the supratemporal and
infratemporal arteries) and RNFL thickness.18 This contribution to
RNFL thickness by retinal blood vessels could either be direct or
indirect and may be bidirectional. Another earlier study suggested that
blood vessels directly contribute to the interindividual variations in
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RNFL thickness in healthy individuals and patients.19,20 In addition
to this direct contribution, because the development of retinal vessels
is influenced by axonal distribution, the locations of blood vessels
influence the variations in RNFL thickness.19,20

The retinal arterial trajectory can be measured using a relatively
inexpensive fundus camera,21,22 and this provides an opportunity to
indirectly examine abnormalities in RNFL thickness.

Former studies using fundus cameras have reported abnormali-
ties in retinal vasculature; venular calibers were found to be increased
in SCZ patients and in unaffected co-twins of SCZ patients.23–25

Recently, we also reported wider venules and narrower arterioles in
SCZ and BD patients compared to healthy volunteers (HV).26 The
trajectories of retinal vessels in SCZ and BD patients are yet to be
examined, despite their relations with RNFL abnormalities. Hence, in
this study we examined retinal vessel trajectory in patients with SCZ
and BD in comparison with HV. Based on the literature suggestive of
RNFL thinning in SCZ and BD, we hypothesized that these patients
would have wider retinal arterial trajectories (in other words flatter
curve, with the arms of the curve farther from the fovea) when com-
pared to HV. Several lines of research in the past decade have
suggested considerable overlap in the genetic and pathogenic factors
across SCZ and BD; though there are a few differences between these
two disorders, it is interesting to note that there are considerable simi-
larities as well.27 Considering these similarities between SCZ and
BD, our secondary hypothesis was that there would be no significant
difference in retinal arterial trajectories between these two groups. In
addition, a proof-of-concept machine-learning method using an
ensemble of bagged trees was employed for automated classification
of patients and HV based on their vascular trajectory values.

Methods
Subjects
One hundred patients with SCZ and BD, respectively, were recruited from
the clinical services of the National Institute of Mental Health and Neuro-
sciences, Bangalore, India. Patients were examined by a board-certified
psychiatrist and diagnosed as per the ICD-10.28 Patients who had an
ongoing psychiatric comorbidity, or had had substance abuse or depen-
dence (except nicotine) in the previous 12 months were excluded from the
study. One hundred HV were recruited using flyers and word of mouth
from the same geographical area. None of the HV had a lifetime history
of psychiatric disorder, neurological illness, or family history of psychoses
in first-degree relatives. All HV were interviewed by a qualified psychia-
trist and also completed the Cross-Cutting Symptom Scale29,30 to rule out
any Axis I disorders. Participants diagnosed or treated for hypertension,
diabetes, stroke, or history of eye surgery/trauma were excluded from the
study. The patients and HV were also excluded for other ophthalmologic
disorders, such as macular degeneration and glaucoma, based on their
medical history. Ophthalmic examinations, including refraction, axial
length, and intraocular pressure, were not carried out. All participants were
adults, aged 18 to 50 years. The study was approved by the institute ethics
board and all participants provided written informed consent.

Clinical assessments
The severity of positive symptoms, negative symptoms, and general
psychopathology in SCZ was measured using the Brief Psychiatric
Rating Scale (BPRS).31 In BD, the severity of clinical symptoms was
measured using Young’s Mania Rating Scale (YMRS)32 and the
Hamilton Depression Rating Scale (HDRS).33 Functioning was
assessed using the Global Assessment of Functioning (GAF)34 and
the Clinical Global Impression (CGI)35 in both SCZ and BD.

Retinal image acquisition
The procedure of retinal image acquisition was explained to those
who agreed to participate in the study and signed a consent form.
They were seated in a dark room for 5 min prior to the procedure to
facilitate auto-dilation of pupils through accommodation. Optic-disk-
centered retinal images of both the eyes were acquired with a valid

method by a trained individual using a fundus camera with a
40-degree field of view.36 The retinal images were acquired using a
non-mydriatic 3Nethra device (Forus Health, Bangalore, India) by an
experienced operator. Each participant was asked to sit in front of the
fundus camera and to rest his/her chin on its chin rest. The camera
was adjusted to acquire the left eye retina by flashing a light and the
image was captured and saved in the computer. This image-
acquisition method was based on fundus illumination through light
flashes forming a color image. The same procedure was repeated for
the right eye.26

Measurement of trajectory of retinal vessels
All images were visually examined by a board-certified ophthalmolo-
gist and pathological conditions of the retina, such as macular degen-
eration and glaucoma, were ruled out. Experienced raters
differentiated the vessels as arteries and veins using an established
method.37 The following criteria were used to differentiate the arteries
and veins in accord with previous studies: (i) arteries are brighter in
color than veins; (ii) arteries have a smaller caliber than veins;
(iii) the central reflex (the light reflex of the inner parts of the vessel)
is wider in arteries and narrower in veins; and (iv) arteries and veins
usually alternate near the optic disk before branching out. The trajec-
tories of arteries and veins for both the eyes were calculated using a
validated mathematical model described in a previous study.38 A
semiautomated software was formulated using MATLAB 2018a
(MathWorks, Natick, MA, USA). Initially, the retinal images of the
right and left eyes were rotated 90� clockwise and anticlockwise,
respectively. Following this, a minimum of 20 points were marked on
the vascular trajectories passing through the infratemporal and
supratemporal margin areas of the retinal images such that each arm
to the right and left of the optic disk had a minimum of 10 points
each (shown in Fig. 1). The infratemporal and supratemporal mar-
gins/peaks of the optic disk were chosen in view of the thick retinal
nerve fiber bundles in this area. The fovea is located between these
two peaks/margins, so the retina stretches more horizontally and/or
vertically in some eyes due to tension on the fovea, resulting in a
greater distance between these two peaks where the retinal vessel tra-
jectories are measured. This results in a thinner retina.38,39 The x and
y coordinates of the marked points were automatically detected
in MATLAB and were converted to new coordinates by shifting the
origin to the center of the optic disk. Thereafter, these data of
converted coordinates were fitted to a second-degree polynomial
P1X 2

100 +P2X +P3
� �

curve-fitting equation based on the best-fit second-

degree polynomial by the least-squares method as shown in Figure 1.
In cases where the retinal artery or vein were branched, and the main
artery was larger than the branch artery, the main artery was plotted
for the trajectory. However, if the branch artery was as large as the
main artery, marking was not done beyond the branching point. In
such cases, also, a minimum of 20 points were marked. Under these
conditions, a larger P1 indicated that the curve of the retinal vascular
trajectory was steeper and narrower, and that the arms of the
curve would be closer to the fovea. A smaller P1 indicated that
the curve of the trajectory was flatter and wider, and the arms of the
curve would be farther from the fovea. Hence, the value of P1 was used
as a single measure of the retinal vascular trajectory to indicate the
steepness and width of the trajectory parabola. The average of the reti-
nal vascular trajectories of the right and left eyes was used as the pri-
mary outcome measure. The procedure described above was adopted
for both retinal arteries and veins separately. A subsample of 30 partici-
pant images was analyzed by two independent evaluators to check
interrater reliability. A good interrater reliability of 0.83 (intraclass cor-
relation for average artery: kappa = 0.85; P <0.001; for average vein:
Kappa = 0.81; P <0.001) was obtained for the vascular trajectories.

Statistical analysis
All statistical analyses were performed using SPSS version 24 (IBM,
Armonk, NY, USA). The Shapiro–Wilk test was used to examine the
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data for normative distribution. Parametric statistical tests were used
as the data were found to be normatively distributed. Differences in
age and sex distribution across the groups were analyzed using
one-way analysis of variance (ANOVA) and the χ2-test, respectively. Dif-
ferences in retinal vascular trajectory across the groups were mea-
sured using analysis of covariance (ANCOVA). As we compared
trajectories of both retinal arteries and veins, we applied the
Bonferroni correction for multiple comparisons (three groups and two
measures) and considered a corrected P-value of ≤0.05/6 = 0.0083 to
be significant. The contribution of age and sex as potential con-
founding variables was assessed using regression coefficients with
95% confidence interval between the groups, both with and without
these as covariates. The relation between retinal trajectories and
clinical/demographic variables was assessed using Pearson’s correla-
tion analyses using the scores on BPRS, YMRS, and HDRS, as well
as age at onset of illness, duration of illness, and chlorpromazine-
equivalent of antipsychotic as predictor variables. A P-value of <0.01
was considered significant in view of the multiple variables. To con-
trol for the confounding effects of nicotine dependence, a subanalysis
was performed after excluding 12 subjects with SCZ and four sub-
jects with BD who had nicotine dependence.

Machine-learning analysis
We conducted a proof-of-concept machine-learning analysis to exam-
ine the utility of retinal vascular measures in differentiating the three
groups. The machine-learning algorithm was implemented through
MATLAB 2018a using a supervised machine-learning approach. The
labels used for training were based on the three groups (SCZ, BD,
and HV). A total of six features from both the left and right eye were
used for classification, namely, left and right retinal arterial trajecto-
ries, left and right retinal venous trajectories, and their respective
averages. The supervised machine-learning model was created by

feeding a known set of input data (features) and the known group of
the data (i.e., labels or classes). This model was then used to classify
the new unknown data into one of the three groups through cross-val-
idation. We used five default folds that partitioned the data into five
disjoint sets; each fold trains the model using out-of-fold observations
and assesses model performance using in-fold data followed by calcu-
lation of the average test error of overall folds. The data were par-
titioned into five equal folds out of which four folds were taken for
training and one fold was taken for testing/validation. This process
was repeated five times with each fold being used exactly once as the
validation fold. This validation model was chosen to avoid overfitting
of the data. The method provides good predictive accuracy to the final
model trained using all the data. The usage of multiple fits ensures
efficient use of all the available data despite small numbers. The
learning rate was chosen as 0.1. The bagged decision trees ensemble
method was used for classification. We also conducted a support-
vector machine (SVM) analysis to independently confirm the find-
ings. We chose SVM and the ensemble of bagged trees as these
methods have good speed, high model flexibility, and can be
implemented with moderate computational power,40,41 translating to
feasibility in real life clinical scenarios.

Results
Comparison of demographic variables
Out of the 300 participants recruited, 31 were excluded following
quality check of retinal images and ambiguity in retinal vascular tra-
jectory marking. Thus, 87 HV, 94 SCZ, and 88 BD were included for
the analysis, totaling 269 participants. Demographic details and clini-
cal measures are provided in Table 1. We found a significant differ-
ence in age (P = 0.005) across the three groups and no difference in
sex distribution (P = 0.053).

Table 1. Comparison of demographic and clinical details between the groups

HV (n = 87) SCZ (n = 94) BD (n = 88) F/t/χ2 P

Age (years) 30.2 � 7.6 32.5 � 6.0 33.4 � 6.0 5.4 0.005
Sex ratio (M/F) 41/46 61/33 51/37 5.87 0.053
Age at onset (years) — 25.0 � 5.2 23.8 � 6.0 1.7 0.196
Duration of illness (years) — 7.6 � 5.2 9.1 � 5.6 2.6 0.11
BPRS — 25.83 � 5.4 — — —
HDRS — — 3.97 � 5.6 — —
YMRS — — 1.75 � 2.9 — —

BD, bipolar disorder patients; BPRS, Brief Psychiatric Rating Scale; F, analysis of variance; HDRS, Hamilton Depression Rating Scale; HV,
healthy volunteer; SCZ, schizophrenia patients; t, independent t-test; YMRS, Young’s Mania Rating Scale.

500
Linear Model Poly2
f(x) = p1*x2/100 + p2*x + p3

Coefficients
p1 = 0.2404 p2 = 0.3547 p3 = 101.7400

300cy
200

–400 –300 –200 –100 0
cx

100 200 300 400

100 Fig.1 Marking of retinal trajectory in a
representative fundus image (left) and
least-square second-degree polynomial
curve fitting (right); ( ) cy versus cx; ( )
least-square fitting.
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Differences in trajectory of retinal vessels between HV
and patients
ANCOVA showed a significant difference across the three groups in
trajectories of retinal artery (constant P1 of HV: 0.34 � 0.15; SCZ:
0.29 � 0.10; BD: 0.29 � 0.11; F = 4.1; P = 0.003). The results
showed that the value P1 of the retinal arterial trajectory was signifi-
cantly smaller in SCZ (0.29 � 0.10) and BD (0.29 � 0.11) patients
as compared to HV (0.34 � 0.15), indicating flatter and wider retinal
arterial trajectories in patients. There was a significant difference
across the three groups in the trajectories of retinal veins as well (con-
stant P1 of HV: 0.17 � 0.08; SCZ: 0.25 � 0.17; BD: 0.27 � 0.20;
F = 5.2; P < 0.001). However, the value P1 of the retinal venous tra-
jectory was significantly greater in SCZ (0.25 � 0.17) and BD
(0.27 � 0.20) patients as compared to HV (0.17 � 0.08), indicating
steeper and narrower retinal venous trajectories in patients. Post-hoc
analysis revealed that while there was a significant difference between
HV and both SCZ and BD patients in the trajectories of retinal arter-
ies (P < 0.01) and veins (P < 0.01), there was no significant differ-
ence between the two patient groups, SCZ and BD (P > 0.05), on
these measures (Fig. S1 and Table S1).

The contribution of age and sex as potential confounding vari-
ables was assessed using regression analysis. There was no consider-
able difference in the regression coefficients and significance values
either with or without age and sex as additional regressors on separate
linear regression analyses (Table 2), suggesting the absence of any
significant effect of these potential confounders. Further details are
provided in Table S2. Similarly, nicotine dependence did not show
significant effects either (Appendix S1).

Relation between clinical variables and retinal vascular
trajectory
There was no significant correlation between clinical variables (dura-
tion of illness, age at onset, total score on YMRS, HDRS, BPRS, and
antipsychotic dose) and trajectories of retinal arteries and veins
(P > 0.01) on Pearson’s partial correlation analyses with and without
age and sex as covariates (Table S3).

Machine-learning analyses
Ensemble of bagged trees had an accuracy of 86% with sensitivity of
88% and specificity of 85% for differentiating HV and SCZ. A lower
but considerably good accuracy of 73% with sensitivity of 78% and
specificity of 76% was obtained for differentiating HV and BD. For
differentiating SCZ and BD, the accuracy was 77% with a sensitivity
of 81% and specificity of 86%. The exploratory SVM analysis
showed a similar, but relatively lesser, accuracy than the ensemble of
bagged trees (Appendix S2).

Discussion
This is the first study to assess the trajectories of retinal vessels in
SCZ and BD patients in comparison with HV. The results show that

P1 of the retinal arterial trajectory was significantly lesser and P1 of
the retinal venous trajectory was significantly greater in SCZ and BD
patients as compared to HV. This indicates a wider and flatter parab-
ola of the arteries and steeper and narrower parabola of the veins in
the patients than in the HV. Neither the arterial nor venous trajecto-
ries differed between patients with SCZ and those with BD.

Our findings of wider retinal arterial trajectories are in accord
with our hypothesis and previous findings. During embryonic devel-
opment, common mechanisms underlie the vascularization of both the
retina and the brain as the retina is embryologically an extension of
the diencephalon.42 In both the retina and the brain, the vascular
development is synchronous to neuronal development; the neuro-
vascular coupling assures simultaneous generation of neuroblasts and
blood vessels.43 In addition, endothelial cells play a critical role in
migration and differentiation of oligodendrocytes.43 Interestingly,
emerging evidence suggests the role of angiogenesis and blood vessel
pathologies in the pathogenesis of psychoses, importantly SCZ. Pre-
liminary evidence from genetic, post-mortem, and imaging studies
suggests a vascular remodeling and hypoxia signaling as risk factors
for SCZ.43,44 Considering these relations, it is possible that retinal
vascular abnormalities are indicative of cerebral vascular abnormali-
ties, which in turn are implicated in the pathogenesis of psychoses.

In addition, the retinal arterial trajectory measured as the retinal
artery angle has been shown to have significant association with thin-
ner RNFL18 and several studies have reported wider retinal artery tra-
jectories to be associated with RNFL defects.38,39,45,46

A few studies have examined RNFL thickness using OCT in
SCZ and BD patients and have reported thinning of the RNFL5,9,47–49

and the inner nuclear layer50 in patients compared to HV.
Hence, our findings of wider retinal artery trajectories in SCZ

and BD patients suggest that the retinal arterial trajectory could be a
potential surrogate measure of RNFL thickness seen in psychoses.
Our findings provide rationale for further examination of the associa-
tion between retinal vascular trajectory and RNFL thickness using
OCT in SCZ and BD.

Based on the common developmental origins between the retina
and the brain,51 a few studies have examined the relation between
RNFL thickness and brain structure. In a large population-based
study, a thinner RNFL and ganglion cell layer was shown to be asso-
ciated with lower gray matter density in the visual cortex and a thin-
ner ganglion cell layer was associated with lower gray matter density
in the thalamus.51 In addition, lower fractional anisotropy of the cor-
pus callosum and optic radiation were associated with thinner
RNFL.51,52 While the definitive mechanisms are still unclear, axonal
degeneration has been postulated to be responsible for both thinning
of the RNFL and decreased gray matter volume in the brain.53 How-
ever, the brain correlates of thin RNFL have not directly been exam-
ined in SCZ and BD to date. Considering the relation between retinal
arterial trajectory and RNFL thickness, it is possible that the abnor-
malities in retinal vascular trajectory may also be related to the

Table 2. Mean difference of retinal trajectories among HV, SCZ patients, and BD patients adjusted for age and sex

Not adjusted for age and sex Adjusted for age and sex

Parameter Group β† (95%CI) P β† (95%CI) P

Retinal vein trajectory HV SCZ 0.08 (0.041 to 0.119) <0.001 0.075 (0.035 to 0.115) <0.001
HV BD 0.102 (0.041 to 0.119) <0.001 0.107 (0.06 to 0.153) <0.001
SCZ BD 0.022 (−0.031 to 0.076) 0.417 0.022 (−0.032 to 0.076) 0.415

Retinal artery trajectory HV SCZ −0.058 (−0.096 to −0.019) 0.003 −0.049 (−0.088 to −0.010) 0.014
HV BD −0.056 (−0.096 to −0.016) 0.006 −0.042 (−0.083 to −0.002) 0.041
SCZ BD 0.002 (−0.030 to 0.033) 0.915 0.00 (−0.031 to 0.032) 0.985

†Regression coefficient.
BD, bipolar disorder patients; CI, confidence interval; HV, healthy volunteers; SCZ, schizophrenia patients.
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structural brain abnormalities seen in SCZ and BD.54–56 However, this
speculation is based on indirect evidence as the relation between reti-
nal vascular trajectory and brain structure/function in SCZ or BD
remains to be explored.

While several studies have examined retinal arterial trajectories,
retinal venous trajectories have taken the backseat. Our findings sug-
gest an inverse relation between the trajectories of retinal arteries and
veins between the groups. This finding is similar to the inverse rela-
tion seen in retinal vascular caliber; while patients with psychoses
had narrower arterioles than HV, they had wider venules.26 In the
absence of joint examination of retinal venous trajectory and RNFL,
definitive conclusions cannot be drawn regarding the reasons or path-
ophysiological mechanisms behind the differential findings across the
arteries and veins. Studies employing multimodal examination using
fundus photography, OCT, and magnetic resonance imaging in SCZ
and BD patients are needed for direct evidence and definitive under-
standing of these relations.

Our secondary aim was to examine the utility of machine-learning
techniques to differentiate patients from HV using retinal vessel
trajectory as the input variable. Several studies have used the machine-
learning approach to classify SCZ/BD and HV using neuro-
imaging/electrophysiologic/cognitive data as input variables.57–61 A
recent study reported prediction accuracy of 76% to differentiate SCZ
from HV using a multisite machine-learning analysis.62 Another study
reported use of machine-learning analysis and structural MRI to differ-
entiate treatment nonresponders from treatment responders with a sensi-
tivity of 71% and specificity of 68%.63 Similar to structural imaging,
functional imaging is also used to classify SCZ and HV; a recent study
using a functional connectivity measure reported an accuracy of 75%
with a sensitivity of 74% and specificity of 84%.64 While several stud-
ies have examined the use of the machine-learning approach in SCZ, it
is relatively less examined in BD. A few studies using neuroimaging
measures have reported an accuracy of 70%–80% to classify BD and
HV.65 A higher accuracy of 95% was reported to classify BD and HV
using a combination of neuropsychological tests and plasma markers.66

On the other hand, a few studies have explored the utility of machine-
learning analyses using retinal images in ophthalmology.67–71 The
machine-learning approach has been successfully used to classify
healthy versus diabetic retinopathy, age-related macular degeneration,
glaucoma, retinopathy of prematurity, and so forth.72–74 Ours is the first
study to utilize machine-learning analysis to differentiate SCZ/BD from
HV using retinal vessel trajectory as the input factor. Findings of our
study provide proof of concept to use machine-learning techniques
using retinal vessel trajectory as an input factor to classify SCZ/BD
and HV. The ensemble of bagged trees method of classification crossed
the critical threshold of more than 80% for classifying HV and
SCZ.75,76 However, our sample size being small, these findings need to
be replicated in future studies with larger samples.

A few limitations should be considered in relation to our study
findings. All patients were on treatment with medication and the con-
founding effect of pharmacotherapy cannot be ruled out. However, as
shown in Table S3, there was no significant correlation between retinal
vessel trajectories and chlorpromazine dose equivalents, suggesting
absence of significant effect of antipsychotics. Future studies with a sub-
sample of drug-naïve subjects can control for this confounder. The rep-
resentation of BD-I and BD-II patients were not uniform. There were
65 patients with BD-I and the rest had BD-II. Considering the small
number of participants in each subgroup, we could not examine whether
the subtypes of BD differ on these parameters. Future studies with larger
samples including BD-I and BD-II patients are needed for the same.
The groups were not age-matched. However, even after controlling for
age, the results remained significant. As shown in Table 2, the regres-
sion coefficients were comparable both with and without age and sex as
covariates. Sixteen patients had nicotine dependence (four BD and
12 SCZ), which could have confounded the results considering that pre-
vious studies have reported an association between long-term nicotine
use and RNFL thickness.77,78 However, as nicotine dependence is a
common comorbidity in schizophrenia,79 exclusion of patients with

nicotine use would have affected the generalizability of findings. It is
important to note that the differences between groups remained signifi-
cant even after excluding these 16 participants (details in Appendix 2).
We measured blood pressure, body mass index, and/or glucose levels of
some, but not all, of the participants on the examination day. Though
participants were young and those with a history of hypertension or dia-
betes mellitus were excluded, one cannot rule out the possibility of
undiagnosed hypertension or diabetes mellitus. To control for the poten-
tial confound, we measured blood pressure and body mass index in a
subgroup of patients and conducted a subanalysis including these mea-
sures. The results remained the same even after inclusion of these mea-
sures (details in Appendix S3). Future studies need to consider
measurement of these parameters on the day of retinal image acquisition.
Another major limitation of the study is that we did not measure other
ophthalmologic parameters, including refraction, axial length, and intra-
ocular pressure. It is important to note that ophthalmologic comorbidities
are seen commonly in schizophrenia80 and may have confounded the
findings. Hence, it will be important to measure these parameters in the
future. We did not measure the axial length of the eye or visual
acuity/refraction, which could have influenced the retinal vascular tra-
jectory measurements. However, it is important to note that a previous
study has reported a significant association between the retinal arterial
trajectory and RNFL thickness even after controlling for the axial
length.18 Moreover, another study has reported that SCZ patients and
HV do not differ in axial length of the eye or disorders of refrac-
tion.81 Hence, axial length is not likely to have significant con-
founding effects on the findings. However, it would be ideal if future
studies concurrently measured the axial length and refraction to cor-
rect for their effects.

Our study findings have important implications. Retinal vascular
abnormalities bear relation to abnormalities in RNFL thickness,
which in turn is related to brain abnormalities seen in SCZ and
BD.82,83 Fundus photography is relatively inexpensive when com-
pared to OCT or neuroimaging. In addition, the portable nature of the
equipment also makes it an ideal tool for use in peripheral centers or
where resources are limited. These advantages of fundus photography,
together with our findings from machine-learning analysis, indicate
the potential utility of this method in wider, resource-constrained
settings and warrant further studies with larger sample sizes. Machine-
learning analysis with the use of a single measure (retinal vessel
trajectory) demonstrated reasonable accuracy despite the potential
confounding factors, suggesting its potential utility as a clinical
marker.84 Considerable increase in accuracy may be obtained with
increase in sample size along with dynamic learning and deep learn-
ing. These preliminary findings provide sufficient rationale for
future studies along similar lines on larger samples.

Conclusions
The findings of our study indicate significant differences between the
retinal vessel trajectories in patients (SCZ and BD) and HV. Both
SCZ and BD patients, compared to HV, had smaller P1 for arterial
trajectories, indicating flatter and wider curves of retinal arteries. As
retinal fundoscopic imaging is affordable, accessible, and easy to per-
form, it could prove to be useful as a surrogate investigation for the
RNFL thinning seen in SCZ and BD. The findings from machine-
learning analysis provide proof of concept and preliminary support
towards its potential to differentiate patients with SCZ and BD from
HV. Future studies need to consider examining the relation between
retinal vascular trajectory and RNFL using OCT. Also, the relation
between retinal vascular trajectory and brain structure and function
need to be considered in the future.
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