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Abstract

A new approach for unknown event detection in videos
with dense motion, such as crowds or dynamic textures, is
developed, without requiring the estimation of optical flow,
with no prior knowledge about normal or abnormal events,
and with no training. The proposed method directly extracts
motion statistics from the phase of the video’s Fourier trans-
form and detects changes in them, and in the video, by ap-
plying sequential statistical change detection theory. Focus
is placed on the motion component, as videos of densely
moving entities, such as temporal textures and crowds, of-
ten have a very similar appearance, but different dynamic
features. Experiments with synthetically generated datasets
demonstrate the method’s operation under various condi-
tions, while experiments on a recently introduced crowd
dataset show that it succeeds at detecting new events in
videos of crowds, with no training, and no prior knowledge
of the location of new events in space and time.'

1. Introduction

Videos with dense motion, such as crowds, traffic, tem-
poral textures, are common in surveillance and monitor-
ing, in security, environmental, commercial and other ap-
plications. The detection of unknown events in such videos
poses a challenge, due to the lack of knowledge on the na-
ture of the event, the complex nature of the motion in them,
occlusions, non-rigidity, and the lack of prior knowledge
about the spatiotemporal location of the events.

Many works use motion estimates, tracking or trajec-
tory extraction to detect abnormal events, as motion can
provide crucial information about the events taking place,
which cannot always be derived from appearance informa-
tion, especially in crowded scenes with a homogeneous ap-
pearance. In [17], crowd motions are modeled as mix-
tures of dynamic textures for spatiotemporal localization
of events, while in [5] tracklets are analyzed to detect ab-
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normal events. Latent topic analysis has also been used
for unsupervised event detection in crowds [16], but it re-
quires processing of large datasets, so it has a high compu-
tational load, and its outcomes are tailored to the specific
dataset being analyzed [14]. Model-based approaches like
Linear Dynamic Systems (LDS) [2], [15], or physics-based
models [1], [12], cannot sufficiently describe all categories
of crowded scene dynamics, which may go beyond each
model’s restrictions.

Deep learning methods face challenges dealing with the
analysis of crowd videos for unusual event detection be-
cause abnormal events, by their definition, are not well-
defined, can be varied, and are scarce in datasets. This re-
sults in a small number of training samples, which tends
to lead to overfitting in deep learning approaches. More-
over, as anomalous events are not clearly defined, ground
truth annotations in benchmark videos are subjective. A re-
cent deep learning approach for crowd event detection mod-
els normal events on benchmark datasets using Generative
Adversarial Nets (GANs) and uses them as a basis for the
detection of abnormal events, with good results. However,
their models are based on optical flow estimation, which can
become problematic in very dense scenarios and whose es-
timation is computationally costly. Slicing CNNs have been
proposed in [11] to effectively model crowd motions with a
lower computational burden than the very high one of 3D
CNNs, and higher accuracy than methods that attempt to
represent motion using 2D CNNs on spatiotemporal xt and
yt slices of a video in (z,y,t) space. The latter methods
contain multiple object motions in each slice, which [11]
separate by integrating CNN learned zy features in their
framework. This results in improved crowd classification
accuracy, but at a higher computational cost, while the issue
of abnormal crowd event detection is not addressed. In [9],
CNNs pre-trained on image datasets are used to mitigate the
heavy computational cost of deep learning, and their tempo-
ral variations are fused with optical flow estimates to detect
abnormal events in video.

For the analysis of videos with dense motions, such as
crowds or dynamic textures, many limitations of existing



approaches, including the need to estimate optical flow val-
ues, can be overcome by transform domain modeling. In
the transform domain each frame is processed globally,
so issues related to local sources of noise are overcome,
while the computational cost of the methods remains low.
Motivated by their use for static textures and the different
kinds of spatio-temporal dynamics present in the video data,
scale-space transformations have been used [3], [13] to an-
alyze dynamic textures. They are able to capture and sep-
arate local and global periodicities in the motions, while
wavelets that are more tuned to motion are being devel-
oped [3]. Other approaches focus on Fourier-domain pro-
cessing of the data [4], where phase information of the 2D
FT is used for modeling of temporal textures, as it contains
most information about the motion in the video sequence.
That method differs from ours as it directly uses the phase
itself, whereas in this work, we use the FT to extract the
characteristic function of stochastic dsiplacements, which
provides a complete estimation of motion statistics.

This paper is structured as follows: Sec 2 presents
the phase-based approximation of motion statistics, while
Sec. 3 details the sequential approach to detecting new
events in the video data. The approach is tested experi-
mentally in Sec 4. In Sec. 4.1 there is an in-depth analysis
of its properties through testing on synthetically generated
datasets, while Sec. 4.2 presents experiments on a newly in-
troduced dataset with crowd motions [8], where its ability
to detect new events in crowds is demonstrated.

2. Phase-Based Dense Motion Statistics

In the videos examined in this work, new events are char-
acterized by changes in motion, while the scene appearance
often remains the same. For this reason, we introduce a
novel approach for the estimation of motion scene statistics,
to effectively assess their dynamics and evolution over time.
The motion in such videos is complex, and characterized
by multiple occlusions, making traditional motion estima-
tion (e.g. by optical flow or other approaches) challenging
and potentially inaccurate. For this reason, we make the as-
sumption that multiple small motions can be considered to
follow a stochastic distribution which can characterize com-
plex scenes with dense motions more accurately than tradi-
tional optical flow or other motion estimates. In the sequel
we consider one type of stochastic motion per video frame,
however the same framework can be applied locally to small
regions of each frame (for example blocks or superpixels).

We consider that there is a displacement 7 =
(r(z,t),r(y,t)) between frames 1 and ¢, which results in
the Fourier Transform:

C(u,v,t) = Clu,v) - e I ur@O+or(y.n) (1)

In our case of (approximately) stochastic motion, we can
break down 7 into a deterministic mean d (¢ is omitted for

simplicity of notation), and a stochastic zero-mean compo-
nent 7 that follows a distribution f(7). If all image pixels
are displaced by 7 = d + 7, where d = (d(z), d(y)) and
7o = (ro(x),ro(y)) ~ f(7), the ratio of the FT of frames 1
and ¢ can be written as:

L{u, v,1) = e~ 3@d@+vdw) _ =i(umo(@)oro) (3

and its 2 D inverse spatial FT for random displacement
against a zero background is then given by:

L(z,y,t) = 6(z — d(z) —ro(x),y — d(y) —r0(y)). (3
In the case of detereministic motion, eq. (3) becomes:
L(z,y,t) = 6(z — d(z),y — d(y)), (4)

leading to a single peak around the displacement d =
(d(x),d(y)), which allows its estimation. In the case of
stochastic motion, we deduce from eq. (3) that there will be
not be one central peak, but a “cloud” of peaks around it,
varying with each random motion instantiation.

However, we can derive a comprehensive characteriza-
tion of the motion statistics from eq. (3). We consider a set
of instantiations of the random process represented by 7,
where, for simplicity, we make the assumption that d = 0
in the rest of the paper. This is without loss of generality, be-
cause a non-zero mean random displacement # will simply
follow a shifted distribution f(d +7) instead of f (7). Thus,
for zero-mean stochastic displacement, eq. (2) becomes:

L(u,v,t) = eI (uro(@)+oro(y)) (5)

If we consider several instantiations of 7y, the ensemble av-
erage of eq. (5) is given by:

E[L(u,v,t)] = Ele™7uro@)] Ele=ivro®)], (6)

where we have made the simplifying assumption that the
motion components in the x and y directions are indepen-
dent from each other. It is known from probability theory
that the characteristic function of a random variable Z that
follows the real probability density function (pdf) f(z) is
given by its pdf’s Fourier transform (FT) (or the complex
conjugate of the FT, depending on the definitions used for
the characteristic function and the FT):

+oo i )
By (v) = FIf(2)] = / f2)ei=dz = ™), (1)

S0 eq. (6) can be expressed as:
E[L(u,v,t)] = @y () (1) Pry () (v), (8)

where @, () (u), @, (y)(v) are the characteristic functions
of the random displacements ro(z) and 7 (y) in the = and y



directions respectively. The characteristic function offers a
complete description of a random variable’s distribution [7],
as all existing higher order moments and the pdf of the ran-
dom variable can be derived from it. We examine the z
direction, and the same procedure can be applied to the y
direction. For v = 0, eq. (8) becomes:

E[L(u, 0, t)] = (I)ro(z)(u)q)ro(y) (0) = cI)ro(ac) (u)’ ©)

since @, (,)(0) = E[e’%] = 1. Then:

Fra(@) = F @y (W)], fro(y) = F 1 [@ry (0)].
(10)
i.e. the random displacement’s pdf is estimated from the
inverse FT of its characteristic function. Eq. (10) can be
used to extract the pdf’s of the random displacements in the
z and y directions using only the FT’s of frames 1 and ¢ that
were used to estimate L(u,v,t).

In theory, the ensemble average of L(u,v,t) can be es-
timated from several instantiations of the random process
under examination (in our case the random displacements
7o). In practice this is not possible since we only have one
instantiation of the random process of interest, namely one
video sequence. To overcome this issue, we make the as-
sumption that the random displacements’ process is weakly
ergodic, so its statistical properties can be approximated by
arithmetic means rather than ensemble averages. Then, in
order to extract statistical properties of the random motions,
we consider that instantiations of the same 7 take place in
wq frames before and after frame ¢, giving the arithmetic
mean approximation of the ensemble average:

t+w0/2

E[L(u,v,t)] = . >

L(u,v, k). (11)
Wo k}:t—’wo/Q-‘rl

As the experimental results show, this approximation of the
ensemble average works well in practice, giving reliable
change detection and recognition results. The value of wy
is set equal to 20, which is long enough for numerical ac-
curacy, but short enough to contain stable motion charac-
teristics (i.e. it is not likely that there will be a significant
change in motion during those frames).

3. Sequential Cumulative Sum for Change De-
tection

When a new event occurs in videos of crowds or traffic,
it often affects the motion in the scene more significantly
that its appearance. This occurs, for example, in videos of
crowds of people who are walking and suddenly run and/or
disperse, or in traffic videos where the traffic may change
from light to heavy. The pdfs of the displacements esti-
mated as in Sec. 2 can then be used in a statistical sequential
change detection framework in order to detect changes in

the scene motion. Sequential change detection methods are
used to detect changes in a dataset’s statistical distribution
(in our case the pdf of the displacements) using only cur-
rently available data, and can therefore be implemented for
real time solutions. In this work we focus on the Cumulative
Sum (CUSUM) algorithm, as it is designed to sequentially
detect changes between distributions.

If the data under examination at time ¢t is X; =
[x1, 22, ..., x¢], its distribution before an unknown change
point k* is fo(x), and after this change point it is fi(x), the
log-likelihood ratio at each time instant & is given by:

Sk = 1%28{{3) (12)

and the CUSUM test statistic is given by [6]:
T = (T—1+s1) ", (13)

where ()" = max(0, -). A change is detected when the test
statistic T}, surpasses a threshold 7, which is chosen using
training data to simultaneously lead to the smallest number
of false alarms and the quickest detection of changes.

4. Experiments

We have carried out experiments on synthetic “dynamic
texture” videos, whose texture has a homogeneous ap-
pearance and stochastic motion that changes over time, to
simulate real-world crowd/traffic data and dynamic tex-
tures, as well as with real-world crowd datasets. Our ex-
periments demonstrate that the proposed method detects
changes quickly, with no prior knowledge on the type of
video being analyzed, and no training, as well as no estima-
tion of optical flow.

4.1. Synthetic Dynamic Textures

In order to demonstrate the effectiveness of the proposed
approach, we first create synthetic videos of dynamic tex-
tures, that simulate new events in real-world videos. The
synthetic videos feature a homogeneous textured appear-
ance undergoing stochastic motion that changes with time,
either over the entire frame, or over one part of the frame
with the same appearance. The homogeneity of the mov-
ing texture’s appearance shows that the results cannot be
attributed to its changing appearance, but only to the mo-
tion distribution estimated by our approach. Fig. 1 shows
two frames of the textured video, comprising of blood cells,
and the absolute difference between successive frames, to
demonstrate the warping of all frame pixels by the stochas-
tically generated two-dimensional displacement. The dif-
ference values are very low, so they are magnified by 255
in the figure, showing that all frame pixels are warped by
different values of the normal distribution.



Figure 1. Synthetic stochastically moving texture video: frame 1,
10, difference of frames 10 and 1 magnified by 255 for visibility.

In the first set of experiments, the video frames undergo
stochastic motion by warping all frame pixels by x and y
displacements following a normal distribution with p = 1
and ¢ = 0.5. The initial motion distribution is approxi-
mated through Eq. (11), where the averaging of the Fourier
transform ratio takes place over the first wg synthetic video
frames. These experiments examine the effect of varying
values of wy on the accuracy of the change detection, by
comparing the resulting CUSUM curves. Fig. 2 shows that
the change at N/2 is clearly detected for all values of wq
examined, but wg = N/20 was chosen as achieving a
more clearly defined “elbow” in the CUSUM curve, making
change detection more robust.

Stochastic displacement "N , o for varying wy,  change from -1 02, 7 =05
T T T T

cusum

500
frames.

Figure 2. CUSUM values for varying wg

In the next set of experiments, we keep wy = 20, set
u = 1, 0 = 0.3 for the initial distribution, and at frame
N/2 = 500 we change the motion distribution’s variance.
We examine the CUSUM curves for 0 = 0.1 : 2 to see
how it behaves for a number of stochastically displaced tex-
tures. The results in Fig. 3 show that, as before, the change
is clearly detected when it takes place.

We also examine the effect of varying stochastic dis-
placement by fixing wy = 20, ¢ = 0.3 and varying the
mean ;4 = —4 : 4. In Fig. 4 we see that the CUSUM
curve still identifies the change-point reliably, despite the
relatively high variance of the displacement values, in rela-
tion to their mean values.

4.2. Motion-Emotion Dataset

The Motion-Emotion Dataset (MED) [8] has been re-
cently released for the detection of crowd events which
are related to emotions, with the categories: Panic, Fight,

cusuM

P

Figure 3. CUSUM values for varying o

cusum

((((((((((

Figure 4. CUSUM values for varying p

Congestion, Obstacle, Neutral. It is suited for testing our
method’s change detection, as ground truth is provided for
the different emotion-relevant crowd events. The crowds
in it are of moderate density, but feature frequent occlu-
sions, which would create errors in optical-flow estimates.
It should be noted that the categories Neutral and Nothing
are essentially the same event, since the motion of the peo-
ple in the scene remains the same in those cases.

We carried out experiments using the ground truth pro-
vided for this dataset, however, upon its careful examina-
tion we observed different start/end times of events. This
in part due to the transitory nature of the event occurrences,
and in part to the subjective nature of such annotations. In
our experimental results, the changes detected closely cor-
respond to changes in the crowd density itself, but are also
close to the provided ground truth. Table 1 presents the ex-
perimental results, where it can be seen that the changes
are detected quite accurately, despite the lack of training.
The average error, normalized per the number of frames in
each video, was calculated to be equal to 0.118, however
this is taking into account false alarms and deviations from
the ground truth that correspond to actual changes in mo-
tion. Most importantly, our comparisons are only with the
provided ground truth and not with the methods described
in [8], [10], as the latter are detecting changes based on
machine learning based classification results, instead of di-
rect change detection. In Fig. 5 we depict frames from
video 7, where the crowd avoids an obstacle and bursts into
panic. When avoiding the obstacle, the crowd motion flow
changes, while the frames where panic takes place are very



shaky and the individuals are running in all directions. As
a result, the CUSUM, depicted in Fig. 6 displays a sharp
change near frame 792.

()

Figure 5. MED video 7. Normal behavior: (a) frame 100 (b) frame
300. (c) Obstacle avoidance and crowd motion direction change at
frame 524. (d) Crowd in panic, very shaky camera at frame 792.
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Figure 6. CUSUM values for MED video #7. Peaks correspond to
changes in motion direction due to obstacle avoidance and panic.

In our experiments we observed that, in some cases,
the proposed method detects changes in the crowd mo-
tion and density that are not annotated as ground truth in
https://github.com/hosseinm/med/. The videos with no “ab-
normal events” are a clear case of this, where according to
the abnormal even annotations, there is no unusual activ-
ity. However, the CUSUM values, depicted in Fig. 8, show
changes in the motion distribution. It should be noted that
this figure differs from the CUSUM plots corresponding to
the synthetically generated videos in Sec. 4.1, as it com-
prises of real world data with several changes in the motion
distribution, varying illumination and density in the scene.

Upon examination of the video itself, we can see that
there are indeed variations in the crowd density and motion
at changepoints detected by our approach, that are not con-
sidered abnormal events in the ground truth. In Fig. 7 we
show the frames of video 24 before and at the changepoints
detected by our algorithm, to show that there is a difference

in motion and density, even though there is not one of the
annotated abnormal events. At frame 462 there is no un-
usual event, however the crowd density has decreased sig-
nificantly, as most people have walked away from the cen-
ter of the frame towards its edges. At frame 760 the crowd
density in the center of the frame has increased again, and a
man suddenly stretches his arms out towards his friend, they
approach and greet each other, and form a small cluster of
activity. The crowd gradually thins out again near frame
1160.

Figure 7. MED video 24 (a) frame 250: normal motion. No ground
truth change, our method finds a change in (b) frame 462: corre-
sponding to decreased crowd density, (c) frame 760: correspond-
ing to sudden arm motion of friends meeting and forming a denser
cluster of people, (d) frame 1160: crowd density has decreased as
people are moving towards the corners of the video frame.
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Figure 8. CUSUM values for MED video #24. Peaks correspond
to changes in crowd density and sudden motions that have not been
annotated in the ground truth as separate events.

5. Conclusions

This work presents a transform-domain approach to ab-
normal event detection in videos featuring dense motion,
which can be approximated by a random distribution. This
provides a description of the motion statistics in the video,



Video

Ground Truth [8]

our results

Testl 829, 1515, 1600 830, 1336, 1590
Test2 625, 1170, 1270 624, 1156, 1286
Test3 550, 900, 1010 494,756, 984
Test4 855, 1040 850, 1032
Test5 810, 960 786, 1056
Test6o 650, 942 636, 1028
Test7 518, 845 524,792
Test8 690, 898 654, 898
Test9 860, 1005 872, 1010
Test10 1290, 1420, 2095, 2293 1258, 1532, 2094, -
Testl1 1464, 1625, 1950, 2152 1292, 1698, 1956, 2074
Test12 199, 500, 615 214, 488, 664
Test13 305, 505 260, 490
Test14 110 104

Test15 373 372

Test16 865 860

Test17 760 634

Test18 475 520

Test19 1230 1232
Test20 1285, 1569, 1675 1286, 1444, 1706
Test21 - 786,984, 1174
Test22 - 664, 864, 1020
Test23 - 528,970, 1208
Test24 - 462, 760, 1160
Test25 600, 1077 580, 1148
Test26 865, 1325 858, 1398
Test27 640, 818, 1017, 1150, 1412, 1527 534,740, 1010, 1230
Test28 795, 855 700, 836
Test29 968, 1024, 1197, 1292 866, 1016, 1170, 1294
Test30 1086 1026

Test31 830 866

Table 1. Comparison with ground truth on the MED datasets

without requiring the estimation of optical flow. It is ap-
propriate for cases where appearance features are not infor-
mative, for example in stochastically moving textures with
a homogeneous appearance. Sequential change detection
is applied to detect changes in such videos, correspond-
ing to changes in motion, and consequently to abnormal
events. We perform experiments with homogeneously tex-
tured video frames to determine the method’s performance
for different cases of changes in the stochastic motion of
homogeneously textured videos. We also carry out experi-
ments on the MED dataset, introduced in 2016, where our
method detects changes in activities with accuracy, while
also detecting changes in the crowd motion and density that
do not correspond to specific events. This is achieved with
no estimation of optical flow values, with no training and no
prior knowledge of the activities in the dataset. Future work
includes expanding this approach to a wider range of cases
of real world crowd or dynamic texture videos, and sup-
plementing it with deep learning layers for the extraction
of rich mid-level descriptive features, aiming at its exten-
sion to recognition problems. It is expected to yield a lower
computational cost through the use of motion statistics, and
increase event detection robustness due to its independence
from optical flow estimates.

References

[1] H. A.-A. D. Helbing, A. Johannson. Crowd turbulence: the
physics of crowd disasters. In International Conference on

2

—

3

—

(4]

(5]

(6]

[7

—

(8]

[9

—

[10]

(11]

(12]

[13]

[14]

[15]

(16]

(17]

Nonlinear Mechanics, 2007.

G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto. Dynamic
textures. Int. J. Comput. Vision, 51(2):91-109, Feb. 2003.

S. Dubois, R. Peteri, and M. Menar. Characterization and
recognition of dynamic textures based on the 2d+t curvelet
transform. Signal, Image and Video Processing, 9(4):819 —
830, 2015.

B. Ghanem and N. Ahuja. Phase based modelling of dy-
namic textures. In 2007 IEEE 11th International Conf. on
Computer Vision, 2007.

H. Mousavi, S. Mohammadi, A. Perina, R. Chellali, and
V. Murino. Analyzing tracklets for the detection of abnor-
mal crowd behavior. In WACYV, pages 148-155, 2015.

E. S. Page. Continuous inspection scheme.
41:100-115, 1954.

A. Papoulis. Probability, Random Variables, and Stochastic
Processes. McGraw-Hill, New York, 2nd edition, 1987.

H. Rabiee, J. Haddadnia, H. Mousavi, M. Kalantarzadeh,
M. Nabi, and V. Murino. Novel dataset for fine-grained
abnormal behavior understanding in crowd. In 2016 13th
IEEE International Conference on Advanced Video and Sig-
nal Based Surveillance (AVSS), pages 95-101, 2016.

M. Ravanbakhsh, M. Nabi, H. Mousavi, E. Sangineto, and
N. Sebe. Plug-and-play CNN for crowd motion analy-
sis: An application in abnormal event detection. CoRR,
abs/1610.00307, 2016.

M. Ravanbakhsh, M. Nabi, H. Mousavi, E. Sangineto, and
N. Sebe. Plug-and-play CNN for crowd motion analysis: An
application in abnormal event detection. In 2018 IEEE Win-
ter Conference on Applications of Computer Vision (WACV),
2018.

J. Shao, C. C. Loy, K. Kang, and X. Wang. Slicing convo-
lutional neural network for crowd video understanding. In
CVPR, pages 5620-5628. IEEE Computer Society, 2016.

N. Shroff, P. Turaga, and R. Chellapa. Moving vistas: Ex-
ploiting motion for describing scenes. In 2010 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 1911 — 1918. IEEE, IEEE, 2010/06/13/18 2010.

J. Smith, C.-Y. Lin, and M. Naphade. Video texture index-
ing using spatio-temporal wavelets. In Proceedings. Interna-
tional Conference on Image Processing, 2002.

J. Tang, Z. Meng, X. Nguyen, Q. Mei, and M. Zhang. Under-
standing the limiting factors of topic modeling via posterior
contraction analysis. In Proceedings of the 31st International
Conference on International Conference on Machine Learn-
ing - Volume 32, pages I-190-1-198, 2014.

R. Vidal and A. Ravichandran. Optical flow estimation and
segmentation of multiple moving dynamic textures. 2005
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), 2:516-521 vol. 2, 2005.

X. Wang, X. Ma, and W. E. L. Grimson. Unsupervised ac-
tivity perception in crowded and complicated scenes using
hierarchical bayesian models. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 31:5397555,
2009.

V. M. Weixin Li and N. Vasconcelos. Anomaly detection and
localization in crowded scenes. IEEE Transactions on Pat-

Biometrika,



tern Analysis and Machine Intelligence (TPAMI), 36(1):18-
32, Jan. 2014.


https://www.researchgate.net/publication/331108442

