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Background and purpose: The gross tumour volume (GTV) is predictive of clinical outcome and conse-
quently features in many machine-learned models. 4D-planning, however, has prompted substitution
of the GTV with the internal gross target volume (iGTV). We present and validate a method to synthesise
GTV data from the iGTV, allowing the combination of 3D and 4D planned patient cohorts for modelling.
Material and methods: Expert delineations in 40 non-small cell lung cancer patients were used to develop
linear fit and erosion methods to synthesise the GTV volume and shape. Quality was assessed using Dice
Similarity Coefficients (DSC) and closest point measurements; by calculating dosimetric features; and by
assessing the quality of random forest models built on patient populations with and without synthetic
GTVs.
Results: Volume estimates were within the magnitudes of inter-observer delineation variability. Shape
comparisons produced mean DSCs of 0.8817 and 0.8584 for upper and lower lobe cases, respectively.
A model trained on combined true and synthetic data performed significantly better than models trained
on GTV alone, or combined GTV and iGTV data.
Conclusions: Accurate synthesis of GTV size from the iGTV permits the combination of lung cancer patient
cohorts, facilitating machine learning applications in thoracic radiotherapy.

� 2017 Elsevier B.V. All rights reserved. Radiotherapy and Oncology 126 (2018) 355–361
Machine learning is increasingly being used in a wide range of
fields due to its ability to learn from the surrounding environment
and identify relationships and correlations between parameters
[1]. It is particularly useful in ‘big data’ environments where data
volumes are too great for humans to perform comprehensive anal-
yses. Within radiotherapy, because of the volume of data generated
for each patient, its complexity, and the rise in the number of treat-
ment options, there has been increased interest in using machine-
learned prediction models to guide treatment pathway decisions. A
number of models applied to lung cancer radiotherapy have been
reported in the literature, including the prediction of 2-year sur-
vival of Non-Small Cell Lung Cancer (NSCLC) patients [2], dyspha-
gia [3] and radiation pneumonitis [4]. Predictive model
performance is essentially dictated by the quality and volume of
data upon which they are trained. Generally, model quality
improves as the training data more closely represent the popula-
tion data in which it will be applied, and the larger the dataset
the more likely it is to correctly sample that population. As data
are often missing in many variables, the more features that are
selected for modelling, the smaller the complete set of data
becomes. Routine clinical data are often so incomplete that cohort
sizes can become very limited for any model requiring more than a
handful of features.

Using only these limited complete datasets increases the risk of
over-fitting and models may become unrepresentative of the pop-
ulation from which the data are sampled. Cohort sizes can be
increased by data sharing initiatives such as the Computer Aided
Theragnostics (CAT) project which are building towards dis-
tributed learning [5–7]. However, even with such strategies, unless
we can be certain that missing data are randomly distributed, the
risk of biasing models remains if only complete patient datasets
are selected. To avoid the issues associated with the use of com-
plete datasets, typically the approach to missing data is to impute
it from the available non-missing data. However, even modern
multiple imputation techniques risk biasing models if not used
carefully [8], and approximation accuracy decreases as the fraction
of missing data increases. It is clear that more attention needs to be

http://crossmark.crossref.org/dialog/?doi=10.1016/j.radonc.2017.11.015&domain=pdf
https://doi.org/10.1016/j.radonc.2017.11.015
mailto:corinne.johnson@physics.cr.man.ac.uk
https://doi.org/10.1016/j.radonc.2017.11.015
http://www.sciencedirect.com/science/journal/01678140
http://www.thegreenjournal.com


356 Combination of 3D and 4D planned target volumes
paid to prospective data recording, but such efforts even if enacted
immediately cannot help improve the quality of current clinical
data archives. An alternative is to attempt to synthesise missing
data from other sources that are available to us. In this paper we
show a robustly validated example of synthesising Gross Tumour
Volume (GTV) volume and shape data from the recorded motion-
adapted GTV, otherwise known as Internal Gross Target Volume
(iGTV), among patients who received radiotherapy for NSCLC.

The GTV, as defined by the International Commission on Radia-
tion Units and Measurements (ICRU) [9], has long been associated
with patient outcome due to its close link with tumour stage and
the volume of irradiated normal tissue. Recently reported radio-
therapy outcome prediction models have confirmed this knowl-
edge by identifying the GTV as a highly predictive feature
[10,11]. In addition to the GTV volume itself, factors calculated
from its geometry, whether dosimetric measures [12], or, more
recently, radiomics features [13,14], have been shown to have pre-
dictive potential.

The GTV is historically defined by a clinician contouring on a
3D-CT scan of the patient. However, since the advent of 4D-CT
and its uptake in dynamic radiotherapy planning, the GTV it typi-
cally replaced by the Internal Target Volume (ITV), defined by the
ICRU as the volume encompassing the CTV and its motion [15].
This is dogmatically acquired by contouring the GTV on each 4D-
CT phase image, expanding them into individual CTVs, and taking
their union as the tumour ITV. Practically, however, the process
is often streamlined by contouring the ‘motion-adapted GTV’, or
iGTV, directly on the Maximum Intensity Projection (MIP) of the
4D image set before expanding this to account for microscopic
spread [16], removing the need for the GTV to be defined directly.

Lung cancer patients treated at our institution before 2011 were
planned using 3D-CT scans. The majority treated after this date will
have had a 4D planning CT. There are therefore two distinct lung
cancer patient cohorts for whom the recorded measures of tumour
size and shape, and all factors that depend upon this, are incompat-
ible. The ability to combine both cohorts would significantly allevi-
ate the missing data problem and enable their direct comparison
for e.g. time-ordered validation data partitioning. In this study
we hypothesise that it is possible to calculate a synthetic GTV
(sGTV) and its associated dosimetric features from the iGTV. Our
aim is to develop a concise method to obtain a sGTV, robustly val-
idate it, and demonstrate the utility of this method in improving
the accuracy of clinical outcome predictive modelling.
Materials and methods

Patient cohort

We selected a cohort of 40 4D-planned NSCLC patients from
routine IMRT data approved for this study by the UK Health
Research Authority and The Christie Caldicott information gover-
nance committee (ethical approval Ref. 17/NW/0060). These
patients were selected to be representative of the tumour location
seen in the wider population, by including approximately 1/3
lower lobe and 2/3 upper lobe tumours. 4D-CT was acquired with
the ‘Philips Bellows’ pressure belt system to obtain the surrogate
respiratory signal and was reconstructed at 512 � 512 resolution
with 3 mm slice separation and pixel size of 0.97 mm or
1.17 mm. The (ICRU defined) GTV was contoured by an experi-
enced radiation oncologist on the end exhale phase image in addi-
tion to the pre-existing MIP iGTV segmentation. The clinician was
not blinded to the iGTV.

The patients were randomly split into development (n = 25) and
validation cohorts (n = 15). As lower lobe tumours typically exhibit
greater motion due to their proximity to the diaphragm [17,18],
upper and lower lobe cases were separated before final cohort
assignment.

A further population of 747 NSCLC patients treated at The Chris-
tie, for whom either a GTV (N = 318) or an iGTV (N = 429) were con-
toured, were used to demonstrate the use of the synthesised GTV
method for combining data cohorts (the ‘modelling cohort’). A
cohort of patients treated at the MAASTRO Clinic (Maastricht,
The Netherlands), who had their GTVs defined on a 3D CT with
the aid of FDG-PET, was used as a blind external validation set
(N = 274) [2].
Linear fit: volume prediction

Using the development cohort, linear relationships between the
iGTV and the GTV volumes were determined separately for upper
and lower lobe tumours. The intercept was constrained to be zero,
to require a GTV to exist in order for an iGTV to exist. All iGTV and
GTV volumes were calculated within the Pinnacle planning system.
Synthetic GTV volumes were calculated using these fits for each
case within the validation set.
Erosion: volume and contour geometry prediction

Calculation of dosimetric features relies upon the defined GTV
shape. The recovery of sGTV geometry from iGTV contours is there-
fore required for the calculation of such parameters. We use binary
morphology operators with kernels estimated directly through
comparison of corresponding development cohort iGTVs and GTVs.
The differences (in mm) in contour spacing in the horizontal (left–
right) and vertical (anterior–posterior) projections from the struc-
tures’ centres were determined for each slice of the paired contour
sets. Additionally, the average slice difference between the two
structures was determined. The integer values of the average dif-
ferences in the horizontal and vertical directions, along with the
average slice difference were used to construct 3D elliptical ker-
nels, which were then applied to the validation cohort to generate
a sGTV from the iGTV.
Volume comparison

Individualised error thresholds for each validation patient’s true
GTV volume, which the synthetic GTV should fall within, were esti-
mated by uniformly eroding and dilating the true GTVs by 1 and 2
pixels (approximately 1 mm and 2 mm). No erosion/dilation was
performed in the cranial–caudal direction owing to the 3 mm slice
thickness, which is larger than the change to be studied. The error
tolerance thresholds were chosen as ‘acceptable’ (2 mm) and
‘strict’ (1 mm) limits on the synthetic GTV volume, respectively,
and were designed to be in accordance with the ICRU recom-
mended uncertainty limits for radiotherapy dose and positional
accuracy of 2% and 2 mm [19].

Additionally we calculated the ratios of sGTV/GTV and iGTV/
GTV, to compare both the sGTV and the iGTV volumes to the true
GTV volume.
Contour comparison

The geometric accuracy of sGTVs in comparison to their true
GTVs was assessed using: (a) the Dice Similarity Coefficient
(DSC), and (b) determination of the closest point distances
between every vertex in corresponding structure contours.
The closest point search was performed in both directions (i.e.
sGTV? GTV and vice versa) to ensure that crossing contours could
not artificially mask the distance to any protrusions. For reference,
these metrics were also calculated to compare the iGTV to the true
GTV.



C. Johnson et al. / Radiotherapy and Oncology 126 (2018) 355–361 357
Dosimetric comparison

Dosimetric features were calculated for the sGTV and iGTV
structures using the clinically validated dose distribution, and the
residual difference to the values calculated for the true GTV was
determined. Specifically we compared the minimum, mean and
maximum dose, the standard deviation of the dose and the dose
delivered to 95% of the structure volume (D95). Similar to the vol-
ume comparison, strict and acceptable error tolerances were set at
1% and 2% respectively, as per the ICRU recommendations [19]. The
difference between the residual doses for the sGTV and the iGTV
were compared using paired t-tests.
Fig. 1. Linear fits of the true GTV versus the iGTV for both upper (top) and lower
(bottom) lobe patients, with the linear equation and the r-squared value of the fit
shown on each plot.
Random forest model

The efficacy of the synthesised GTVs in combining statically and
dynamically planned lung cancer patient populations was explored
using the much larger modelling patient cohort. Using the Caret
package in R [20], we built a series of Random Forest models to pre-
dict 2 year survival of NSCLC patients. Univariate analysis was per-
formed on the sub-set of 3D-planned patients (i.e. the 318 patients
with a true GTV defined) for all available variables: age, gender,
World Health Organisation Performance Status, T stage, N stage,
GTV or sGTV volume, Overall Treatment Time and the GTV or sGTV
equivalent dose at 2 Gy (EQD2). All apart from N stage were found
to be predictive, and thus were included in each of the models.

The following tests were then performed:

� A model built using just the sGTV Christie patients (N = 429)
was tested against a validation cohort of true GTV Christie
patients (N = 318), and vice versa.

� The following set of models were trained and then tested
against the unseen external validation cohort (N = 274).
o A model built without any GTV information (N = 747).
o A model trained on the true GTV patients alone (N = 318).
o A model trained on the whole modelling cohort (N = 747) but

with the GTV values imputed from the existing true GTV data
rather than using the synthesised GTV values (N = 747).

o A model trained on the combined GTV and iGTV data
(N = 747).

o A model trained on the combined GTV and sGTV data
(N = 747).

All sGTV values were computed using the erosion method. The
imputed GTV valueswere calculated using both simplemean impu-
tationandvia amore sophisticated randomforest proximitymethod
(using the RandomForestSRC package in R [21–23]). In order to limit
the effects of imputation to the GTV only, the cohorts were com-
posed only of patients with complete datasets. Parameter tuning
was performed using a gridded search optimised onmodel accuracy
assessed using 5-fold cross-validation in the training data [20].
Model performance in validation data was measured in terms of
the Area Under the ROC Curve (AUC), where a value of 0.5 indicates
a performance no better than random and a value of 1 indicates per-
fect classification, together with the model sensitivity/specificity
optimised to maximise the prediction Kappa value. Twenty repeats
of model training/testing were performed to determine AUC uncer-
tainty and model comparisons were performed using the Welch
two-sample t-tests on the resultant sets of AUCs for each model.
Results

Linear fit prediction of volume

The linear fit of the upper lobe patients within the development
cohort had a gradient of 1.0833, with constrained intercept 0 (R2 =
0.9878, RMSE = 6.926), while the linear fit of the lower lobe cases
had a gradient of 1.1664, constrained intercept 0 (R2 = 0.9701, R
MSE = 10.073), as shown in Fig. 1.
Morphological prediction of volume

The average left–right and anterior–posterior distances between
the iGTV and GTV contours were 1.81 by 1.91 mm respectively
(standard deviation 1.31 and 1.84) for the upper lobe patients,
and 2.51 by 3.29 mm (standard deviation 1.48 and 2.49, respec-
tively) for the lower lobe patients of the development cohort. The
average slice difference was 1.17 and 1.71 mm respectively (stan-
dard deviation 1.59 and 1.35) for upper and lower lobe patients.

The sGTV volumes obtained from the 3D erosion using these
kernels are shown in Table 1. The corresponding sGTV/GTV and
iGTV/GTV values for the linear fit sGTV, the erosion sGTV and the
iGTV are shown in Table 2, where it can be seen that the best vol-
ume estimates are achieved by the erosion method, followed by
the linear fit. The volumes from the erosion method were therefore
used for the random forest models.
Morphological prediction of geometry

The results of the closest point assessment based upon the 3D
erosion along with the DSCs are shown in Table 2. The sGTV and
iGTV closest point results are comparable, with the mean and
range values being statistically similar (mean: p = 0.38 and 0.20;
range: p = 0.08 and 0.98, for upper and lower lobe cases, respec-
tively). Similarly, there is no significant difference between the
DSC for the sGTV and for the iGTV for either the upper or lower
lobe cases (p = 0.27 and 0.10, respectively).
Dosimetric comparison

The mean difference in dose parameters between the sGTV and
GTV, and iGTV and GTV, calculated over all validation patients are



Table 1
GTV, iGTV and sGTV volumes.

Patient True GTV
volume
(cm3)

Lower 1 mm
confidence
interval

Upper 1 mm
confidence
interval

Lower 2 mm
confidence
interval

Upper 2 mm
confidence
interval

Linear Fit
sGTV volume
(cm3)

Erosion method
sGTV volume
(cm3)

iGTV
volume
(cm3)

Upper lobe
1 73.83 65.75 82.20 56.28 93.24 76.07 73.74 82.41
2 127.70 113.41 142.51 96.58 162.08 137.18 133.10 148.60
3 63.98 58.07 70.05 50.35 78.60 70.06 69.30 75.89
4 3.61 2.41 4.94 1.17 6.76 5.25 4.21 5.69
5 12.64 9.97 15.51 7.22 19.26 13.77 12.10 14.91
6 6.97 5.24 8.84 3.55 11.27 9.97 5.54 10.80
7 19.17 14.17 24.64 8.98 32.30 22.95 19.31 24.86
8 19.55 16.03 23.31 12.07 28.53 25.40 23.37 27.52

Lower lobe
1 38.06 32.64 43.75 26.72 51.03 46.29 36.94 53.99
2 22.61 19.29 26.10 15.43 30.85 38.24 29.75 44.61
3 54.81 45.69 64.56 35.58 78.01 63.57 54.73 74.15
4 58.35 51.96 65.00 44.09 74.19 66.22 46.44 64.41
5 30.51 23.66 37.84 16.10 48.10 20.61 28.37 47.37
6 85.79 75.50 96.51 63.96 110.24 83.80 65.29 97.75
7 46.50 41.03 52.20 34.61 59.79 51.97 41.48 60.62

True GTV, iGTV and sGTV volumes for each of the upper and lower lobe patients, along with the approximate upper and lower 1 mm and 2 mm confidence intervals. sGTV
volumes are given for both the linear fit and the erosion methods.

Table 2
Volume and shape comparison.

Patient sGTV (Linear Fit) sGTV (Erosion) iGTV

sGTV/GTV Mean
Difference
(mm)

Range
(mm)

Standard
Deviation of
Difference
(mm)

Dice
Similarity
Coefficient

sGTV/
GTV

Mean
Difference
(mm)

Range
(mm)

Standard
Deviation
of Difference
(mm)

Dice
Similarity
Coefficient

iGTV/
GTV

Upper lobe
1 1.03 0.91 0–11.53 0.90 0.94 1.00 0.74 0–12.45 1.17 0.94 1.12
2 1.07 1.40 0–7.79 1.03 0.93 1.04 1.71 0–8.73 1.39 0.92 1.16
3 1.10 1.29 0–8.73 1.13 0.92 1.08 1.20 0–8.18 1.46 0.91 1.19
4 1.45 1.08 0–5.27 0.97 0.82 1.16 1.39 0–4.77 1.26 0.78 1.57
5 1.09 0.91 0–3.27 0.57 0.91 0.96 0.82 0–4.77 0.98 0.92 1.18
6 1.43 1.01 0–5.77 0.99 0.84 1.23 1.46 0–6.08 1.15 0.78 1.54
7 1.19 1.17 0–6.00 0.83 0.85 1.01 1.05 0–6.62 1.30 0.87 1.30
8 1.30 1.75 0–10.16 1.67 0.83 1.20 1.79 0–11.13 2.19 0.83 1.41
Mean 1.21 1.19 0–7.32 1.01 0.88 1.08 1.27 0–7.84 1.36 0.87 1.31
S.D. 0.17 0.29 0–2.75 0.31 0.05 0.10 0.38 0–2.84 0.37 0.07 0.18

Lower lobe
1 1.22 1.55 0–6.31 1.10 0.85 0.97 1.95 0–9.66 1.80 0.83 1.42
2 1.69 3.86 0–21.99 4.69 0.65 1.32 4.13 0–24.88 6.23 0.67 1.97
3 1.16 2.31 0–15.80 2.35 0.81 1.00 1.66 0–14.54 2.43 0.85 1.35
4 0.95 2.04 0–14.43 1.40 0.84 0.80 0.90 0–8.81 1.50 0.95 1.10
5 1.33 2.31 0–20.63 2.24 0.72 0.93 2.03 0–25.33 3.42 0.78 1.55
6 0.98 1.99 0–11.83 1.41 0.83 0.76 0.99 0–6.45 1.42 0.93 1.14
7 1.12 1.69 0–6.29 1.11 0.89 0.89 1.75 0–7.29 1.60 0.86 1.30
Mean 1.21 2.25 0–13.90 2.04 0.80 0.95 1.92 0–13.85 2.63 0.84 1.41
S.D. 0.25 0.77 0–6.25 1.27 0.08 0.18 1.07 0–8.11 1.74 0.09 0.29

Volume ratio results are given for the sGTV determined from the linear fits and the erosion methods, as well as the iGTV, for all upper and lower lobe cases. Each is a
comparison to the true GTV volume. Additionally, for the sGTV and iGTV, the Dice similarity coefficient and the closest point assessment results are presented, again as
compared to the true GTV structures. Closest point assessment results are based upon the difference between the true GTV contours and those predicted from the erosion of
the iGTV (sGTV), and additionally for the iGTV itself. Results are given in terms of the mean, range and standard deviation of the closest point distances, determined over the
whole structure.
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shown in Fig. 2. Generally the dosimetric parameters are similar for
the sGTV and iGTV, likely because the dose distribution is designed
to be uniform within the PTV. Significant differences were deter-
mined for the minimum dose, the maximum dose and the standard
deviation (p-values of 0.005, 0.01 and 0.01, respectively).
Random forest model

The model trained on the sGTV only cohort and tested against
the true GTV only cohort had an AUC value of 0.71 ± 0.003. The
inverse model – trained on the true GTV only cohort and tested
against the sGTV only cohort – had an AUC value of 0.73 ± 0.009.
The evaluation parameters of the models tested blindly against
the external dataset are shown in Table 3. Using the Welch t-test,
all model combinations were found to be statistically different (all
with p < 0.01) apart from: the true GTV only and the mean imputa-
tion cohorts; and the GTV plus iGTV and the random forest impu-
tation cohorts. The best result was found using the sGTV.
Discussion

In this study, we have developed a simple method for calculat-
ing a synthetic GTV from the iGTV, with the aim of increasing the



Fig. 2. Plots of the mean residual value for each dose metric as compared to the true GTV, calculated from all patients in the validation cohort. Error bars represent the 95%
confidence interval of the mean residual, while the band represents the area of ‘clinical indifference’, calculated here as 1% of the lowest dose value obtained from the true
GTV volumes, and additionally 2% of the true GTV value for the standard deviation and the D95.

Table 3
Random Forest Model Performance.

Model AUC Specificity Sensitivity Kappa

No GTV 0.606 ± 0.021 0.52 0.66 0.17
True GTV only 0.670 ± 0.011 0.56 0.74 0.29
Mean imputed GTVs 0.667 ± 0.006 0.42 0.82 0.25
RF imputed GTVs 0.691 ± 0.008 0.58 0.71 0.28
Combined true GTV and iGTV 0.689 ± 0.012 0.43 0.84 0.29
Combined true GTV and sGTV 0.696 ± 0.007 0.36 0.92 0.32

Resultant model performance values, where the mean and standard deviation of the AUC is based upon 20 repeats.
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cohort size of lung cancer patients available for the development of
radiotherapy outcome prediction models requiring parameters
derived from GTV contours. As far as the authors are aware, this
is the first study of this type.

The volumes predicted from the simple linear fits are all within
the ±2 pixel volume tolerance, except in one lower lobe case. Both
the upper and lower lobe tumour model fits have high R2 values,
but also relatively high RMSE values. The lower lobe model fit is
of lower quality than the upper lobe model, which could be
explained by the smaller number of patients available for mod-
elling and/or by a greater variability in the motion magnitude for
lower lobe patients. In any case all volume uncertainties are well
within the magnitudes of inter-observer delineation variability
reported in the literature. Steenbakkers et al. [24] found the mean
observer variation over all patients included in their study to be
1.02 cm; Giraud et al. [25] observed mean differences of 2.1–3.1
cm; whilst Van de Steene et al. [26] found maximal differences
in the GTV diameter of 4.2–8.4 cm. The maximum volume ratio
over all cases is 1.69 for the linear fit. Typical Vmax/Vmin values from
inter-observer delineation studies quoted in the literature, have
been observed to be in the range of 1.1–10.1 [26–29].

Interestingly, contrary to existing knowledge of lung tumour
motion, [18], the derived kernels were smaller in the cranial–cau-
dal direction than in the left–right and anterior–posterior direc-
tions. This could be a result of the clinician not being blinded to
the existing contours, and thus having limits to search for a GTV
within; and differences in observer opinion regarding the inclusion
of bifuricating regions, in combination with a possible underesti-
mation of the motion due to the 3 mm slice interval. It should also
be noted that the median tumour motion is only 4 mm peak-to-
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peak in the cranial–caudal direction [30], corresponding to 2 mm
on each side, which is similar to the slice interval. Regardless, the
erosion method is superior to the linear fit, with all upper and
lower cases meeting the 2 mm tolerance (12 cases meeting the 1
mm tolerance), and a maximum volume ratio of 1.32 (Table 2).
The volume ratios for the erosion sGTV are also better than those
for the iGTV – with mean values closer to 1, and lower standard
deviations for both upper and lower lobe cases.

The closest point method, used to assess the shape of the con-
tours, found relatively large maximum closest point distances
(>2 cm) in 2 out of the 15 validation patients, both of which appear
in the lower lobe cohort. These shape deviations correspond to dif-
ferences in observer opinion as to whether or not to include some
bifurcating regions within the iGTV/true GTV delineation at the site
of gross disease. Additionally, the closest point distance is the dis-
crete case of the Hausdorff distance metric and can over-estimate
comparable distances as measurements may not be normal to con-
tours. As discussed above, these errors remain within the bounds
of observer errors reported in the literature. No statistical differ-
ence was observed between the closest point measurements of
the sGTV and the iGTV. Similarly, while the Dice Similarity Coeffi-
cients (Table 2) show good agreement between the true and syn-
thetic GTVs contours, no significant difference between the DSC
for the sGTV and for the iGTV was found for either the upper or
lower lobe cases.

The model developed using a cohort consisting only of patients
with an sGTV value was found to successfully predict the outcome
of a test cohort consisting only of patients with a true GTV value,
and vice versa. This therefore further strengthens the argument
that there is good agreement between the true and synthetic vol-
umes. Furthermore, the model built with a combined sGTV and
true GTV cohort performed significantly better against an external
validation dataset than all other models, including the model built
from true GTVs alone, models of equal size but with imputed GTV
data, or the model built using GTVs and iGTVs. This shows the
potential of using the sGTV, though the difference in performance
is small. The main benefit of using sGTVs over iGTVs is that it
allows truly large datasets to be analysed without having to re-
delineate the GTVs and avoids a potential bias that could occur
when GTVs and iGTVs are mixed.

The external validation data set used for modelling contained
GTVs that were defined on 3D CT scans. The use of 3D CT can intro-
duce distortions to the tumour volume definition, either over- or
under-estimation, due to the tumour being captured in different
phases of the breathing cycle in different slices [31], and therefore
could affect the results. With the introduction of multi-slice helical
scanners, however, the tumour is much more likely to be captured
in a single or a few breathing phases, minimising distortions in all
but a few cases with the largest tumour volumes and/or the quick-
est breathing cycles. It is therefore most likely that the external
validation cohort will contain a few outliers, but that the majority
of cases would have minimal distortion and therefore the images
used for target delineation would have been representative of the
tumour volume.

Our results show that the developed erosion sGTV provides a
superior volume estimate to both the linear fit sGTV and the iGTV,
and is equivalent to the iGTV in terms of its shape. This is demon-
strated by the volume ratios – which are increasingly improved as
compared to the iGTV by the use of the linear fit and the erosion
method – as well as the modelling results, which found the model
containing the sGTV to be superior to all others developed. At pre-
sent, only the volume is of interest for prediction modelling, for
which the presented synthesis method is effective. However, if
any kind of shape analysis is required, for example, for radiomics
studies, then another, more sophisticated method will need to be
developed.
Colloquially, the iGTV is often referred to as the ITV, despite its
definition differing from that of the ICRU. For data sharing regimes,
it will be vital that the terminology is clarified. Depending on how
each centre defines and outlines these volumes, it might be that
different kernels for the erosion are required; however, the
methodology developed here should still be applicable. We recom-
mend in any case all results to be confirmed in each centre’s own
data.
Conclusion

We demonstrate a purposely simple methodology, suitable for
automated application to large databases of radiotherapy patients,
to estimate GTV volume from existing iGTV contours. The uncer-
tainty in the volume estimates is within reported inter-observer
variabilities; and a cohort utilising the synthesised volumes was
superior to others built using the true GTV only or utilising the
iGTV. The technique provides a robust estimation of volume, but
the effect of spiculation on metrics that might be more sensitive
to shape (e.g. some radiomics measures) remains to be investi-
gated. The erosion kernels used were developed against iGTVs
defined on patients’ MIPs and may need changing where different
contouring protocols are used.
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