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ORIGINAL RESEARCH

Wavelet Entropy of BOLD Time Series:
An Application to Rolandic Epilepsy

Lalit Gupta, MSc,1 Jacobus F.A. Jansen, PhD,1,2 Paul A.M. Hofman, PhD,1,2

Ren�e M.H. Besseling, PhD,1,3 Anton J.A. de Louw, PhD,3,4

Albert P. Aldenkamp, PhD,2,3,4 and Walter H Backes, PhD1,2*

Purpose: To assess the wavelet entropy for the characterization of intrinsic aberrant temporal irregularities in the time
series of resting-state blood-oxygen-level-dependent (BOLD) signal fluctuations. Further, to evaluate the temporal
irregularities (disorder/order) on a voxel-by-voxel basis in the brains of children with Rolandic epilepsy.
Materials and Methods: The BOLD time series was decomposed using the discrete wavelet transform and the wavelet
entropy was calculated. Using a model time series consisting of multiple harmonics and nonstationary components, the
wavelet entropy was compared with Shannon and spectral (Fourier-based) entropy. As an application, the wavelet
entropy in 22 children with Rolandic epilepsy was compared to 22 age-matched healthy controls. The images were
obtained by performing resting-state functional magnetic resonance imaging (fMRI) using a 3T system, an 8-element
receive-only head coil, and an echo planar imaging pulse sequence (T�2 -weighted). The wavelet entropy was also
compared to spectral entropy, regional homogeneity, and Shannon entropy.
Results: Wavelet entropy was found to identify the nonstationary components of the model time series. In Rolandic
epilepsy patients, a significantly elevated wavelet entropy was observed relative to controls for the whole cerebrum
(P 5 0.03). Spectral entropy (P 5 0.41), regional homogeneity (P 5 0.52), and Shannon entropy (P 5 0.32) did not reveal
significant differences.
Conclusion: The wavelet entropy measure appeared more sensitive to detect abnormalities in cerebral fluctuations rep-
resented by nonstationary effects in the BOLD time series than more conventional measures. This effect was observed
in the model time series as well as in Rolandic epilepsy. These observations suggest that the brains of children with
Rolandic epilepsy exhibit stronger nonstationary temporal signal fluctuations than controls.
Level of Evidence: 2
Technical Efficacy: Stage 3

J. MAGN. RESON. IMAGING 2017;46:1728–1737.

Brain regions show spatial patterns of coherent blood-

oxygen-level-dependent (BOLD) activity during resting-

state functional magnetic resonance imaging (rsfMRI).

Recent studies have indicated that, in addition to variations

in spatial patterns, resting-state activity also shows complex

nonstationary BOLD signal fluctuations in rsfMRI time

series.1–3 However, most of the contemporary methods for

analysis of rsfMRI data are based on the detection of

similarities between time series of different brain regions or

on the correspondence of time series to a predefined model,

but do not capture temporal irregularities in the signal.

A method that merely compares the time signals of various

brain regions will be insensitive to similar irregularities,

which could be critical for characterization of BOLD time

series in certain diseases like epilepsy.4–6 However, a method

that characterizes the intrinsic aberrant irregular temporal

aspects of time series signal in rsfMRI is currently lacking.

Such a method should ideally be able to quantify the temporal

disorder/order of brain fluctuations on a voxel-by-voxel basis.

The fluctuations of the BOLD time series are a combi-

nation of oscillations that are active in a complex manner in

several frequency ranges. The spectral entropy can be used to

quantify the disorder/order of these time series.7 For instance,

the spectral entropy would be low for a pure sinusoidal signal

(one frequency, hence one peak) and high for a noise signal

(all frequencies, hence wider spectrum). However, this method
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is less appropriate for BOLD time series, because the discrete

Fourier transform (DFT) requires stationarity of the brain sig-

nal, which is likely nonstationary.8 Short-time Fourier trans-

form (STFT) uses DFT in small time-evolving windows,

assuming signals as quasistationary within the sliding window,

which resolves some of the shortcomings of DFT. However,

due to the uncertainty principle, one critical limitation

appears when windowing the data: if the window is too short

(high temporal resolution), the frequency resolution will be

poor, and if the window is too long (low temporal resolution),

the time localization will be less precise. Furthermore, STFT is

rather inconvenient for BOLD time series as the number of

samples (and sample frequency) is often too limited in com-

parison to, for instance, electroencephalographic recordings.9

An alternative approach to overcome these limitations, is to

use a time-frequency representation of the time signal as

provided by the wavelet transform. The orthogonal discrete

wavelet transform (DWT) makes no assumptions about sta-

tionarity and analyzes the signal at different frequency sub-

bands with different time resolutions.10 With DWT, the time-

frequency structure of the signal can be followed with optimal

temporal resolution and the signal is represented as amplitudes

(and energy) over various wavelet coefficients, by which the

frequency subbands can be followed over time.11 The wavelet

entropy measure is computed over the wavelet subbands as

the integral of the squared wavelet components over time and

represents the disorder/order of the time signal.

The objective of this work was to study the use of the

wavelet entropy measure to capture the cerebral fluctuations

represented by nonstationary effects in the BOLD time

series. For epilepsy in general, it is known that the brain

may express abnormal dynamic fluctuations either as epilep-

tiform or direct seizure activity.12,13 Therefore, a further

objective was to analyze the wavelet entropy measure in epi-

lepsy, for which we set out a comparison study between

children with Rolandic epilepsy and healthy controls.

Materials and Methods

Wavelet Entropy Method
The wavelet entropy method analyzes the changes in order/disorder

of the signal over the wavelet subbands. First, the signal is decom-

posed using the full tree dyadic DWT.10 Then the entropy over

subbands is calculated.3,14,15 A block diagram of the complete

methodology is shown in Fig. 1.

WAVELET TRANSFORM. The Wavelet Transform is a method to

analyze a signal within different frequency ranges by means of

dilating and transiting of a single function termed mother

wavelet.16 The DWT is implemented by Mallat’s algorithm.10,17

The Mallat algorithm uses lowpass and highpass filters to divide

the input signal into high and low frequency components, ie, the

signal Sj over subbands indexed j (both approximate and detailed

subbands). This process is repeated by applying the downsampled

filter output into another identical filter pair. The process is repeat-

ed to obtain a set of approximation (lowpass signal) and a detail

FIGURE 1: Block diagram illustrating the methodology for computing the wavelet entropy measure. The time series signal,
sampled at frequency f, is decomposed down to three levels using the Daubechies full tree dyadic discrete wavelet transform.
The wavelet entropy (W) is calculated using the relative energy (E/ET) of each subband.
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(highpass signal) subbands (Sj). In this study, full tree wavelet decom-

position is used, which is depicted in Fig. 1.

In the present work, the Daubechies16 wavelet is chosen as the

mother wavelet function because the corresponding algorithm picks

up minute details that can be missed by other wavelet algorithms, like

the Haar wavelet algorithm. Even if the signal is not represented well

by one member of the Daubechies family, it may still be efficiently

represented by another.

WAVELET ENTROPY. Each time series was decomposed into

different wavelet subbands using the Daubechies-4 wavelet full tree

(up to three levels). The lowest wavelet coefficient, or subbands,

(Sj) (<31 mHz) was excluded from the analysis to avoid contami-

nation of slow signal drifts. The method to calculate wavelet entro-

py is as follows:

Let Sj(k) represent the timepoint k of subband j. Energy Ej

in subband j will be given as:

Ej5
XN

k51
SjðkÞ

2

where N is the number of timepoints per subband. The total energy

over all the subbands is then:

ET 5
X8

j52
Ej

and the wavelet entropy, W, is computed as:

W 52
X8

j52
pj log pj

where pj5
Ej

ET
.

A complete random signal will have a wavelet representation

with equal energy over all subbands (ie, a completely inhomoge-

neous signal). Hence, the wavelet entropy will be maximal. On the

other hand, for a wavelet representation of a signal with a contri-

bution to only one subband (j), thus no distribution, the wavelet

entropy will be zero (as Ej 5 ET and log(Ej/ET) 5 0). However, a

typical BOLD signal reflects a more homogeneous time series and

a frequency structure in which the energy roughly decreases as a

function of frequency (subband), due to the lowpass nature of the

hemodynamic response. When the distribution of energies over

frequency subbands becomes more equal (ie, more random, more

equally distributed frequency structure due to abnormality), the

wavelet entropy increases.

Model Time Series
A model time series consisting of two harmonic components and

nonstationary components (either a dampened sinusoidal wave or

random noise signal) with varying amplitudes, and its wavelet sub-

bands and Fourier spectrum, are shown in Fig. 2. Figure 3 illustrates

the values of wavelet entropy for various types of dynamic signals.

Subjects
The study was approved by the Ethical Review Board. The parents or

guardians of all children gave written informed consent for study

participation. At our specialized epilepsy referral center neurological

examinations and electroencephalogram (EEG) recordings were

obtained for all patients. Two pediatric neurologists independently

analyzed clinical and seizure characteristics to confirm the diagnosis

of Rolandic epilepsy. To confirm the diagnosis, agreement between

the pediatric neurologists and EEG confirmation was required.18

After confirmation, 22 children with Rolandic epilepsy (eight

girls; age, mean 6 SD: 11.3 6 2.0 years) were selected for the study.

A 24-hour EEG selection criteria included centrotemporal spikes on

EEG and concordant seizures etiology representing anarthria, hemi-

clonia involving the face and/or unilateral extremities, or secondarily

generalized seizures. Rolandic spikes were in the centrotemporal

region either in only one hemisphere or independently on both sides.

In some of the patients, spikes were broad and tended to spread to

the adjacent regions. Rolandic spikes were diphasic high-voltage

(100–300 lV) sharp waves with a transverse dipole; they were often

followed by a slow wave. The EEG data were analyzed by two clinical

neurophysiologists. In cases of poorly observed nocturnal seizures,

post-ictal signs of generalized seizures or confirmation of post-ictal

hemiparesis was sufficient for inclusion in case of otherwise typical

EEG. Further details were previously described.18 In addition, 22

healthy controls were enrolled in the study (11 girls, age 10.5 6 1.6

years). All patients had an IQ >70 and all controls attended regular

education, and had neither (a history of) neurological disorders, nor

learning problems.

MRI
Imaging was performed on a 3T MRI systems (Philips Achieva,

Best, the Netherlands) using an 8-element receive-only head coil.

Conventional structural MRI and resting-state fMRI was applied.

Structural imaging included a T1-weighted sequence. A 3D fast-

spoiled gradient echo sequence was used, employing echo time /

repetition time / inversion time (TE/TR/TI) 38/8300/1022 msec,

a cubic voxel size of 1 mm, and an acquisition time of 8 minutes.

The rsfMRI involved a task-free T �2 -weighted BOLD sequence of

N 5 195 dynamic image volumes at a TR of 2 seconds, resulting

in an acquisition time of 6.5 minutes. Further settings included:

EPI sequence, TE 35 msec, pixel size 2 mm, and 4-mm thick axial

slices.

Image Processing
The functional images were slice-time and motion-corrected and

spatially coregistered to the Montreal Neurological Institute (MNI)

anatomical scan. To correct for nonneurophysiological signal fluctua-

tions, the mean time series signal of the white matter and ventricular

cerebrospinal fluid were calculated by averaging the signal over all

corresponding voxels. Mean white matter and cerebrospinal fluid

time series were then used as time-dependent covariates to correct

gray matter time series by linear regression.19,20 Gray matter, white

matter, and cerebrospinal fluid voxels were segmented from the T1-

weighted images (Freesurfer) to obtain the specific time series sig-

nals.21,22 Functional MRI images were smoothed with an 8-mm

(full-width-at-half-maximum) 3D Gaussian kernel (SPM8 software).

Analysis was performed on the gray matter of the whole cerebrum.

Additionally, the Rolandic strip was also separately analyzed since

patients with Rolandic epilepsy are known to generate discharges in

either left and/or right sensorimotor cortex.12 The BOLD time series

might be affected by artifacts due to head movement or high-duty

gradient system switching, seen as time spikes in the time series.

Multiple time spikes may be found across BOLD time series, which
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if not removed, may bias the wavelet entropy measure. Therefore,

time spikes were removed from all the time series using time spike

removal algorithm by Patel et al.23 Figure 4 shows an example time

series from a patient before and after time spikes removal. For statisti-

cal parametric mapping purposes, images were spatially normalized

to the MNI standard space (SPM software, v. 8; Wellcome Depart-

ment, University College London, UK). Wavelet entropy maps

were created and superimposed on to the anatomical images to depict

the distribution over the whole brain.

Alternative Disorder/Order Measures
To assess the effectiveness, the results of the wavelet entropy measure

were compared with other time series measures that characterize

temporal characteristics of disorder/order as outlined in Table 1.

Spectral entropy measures have previously been used in the

literature for EEG signals. To compute the spectral entropy, first a

Fourier transform was applied to determine the power spectrum of

the time series from which the spectral entropy as a measure of

order/disorder8,24 was calculated. Regional homogeneity (ReHo) is

a measure of spatiotemporal homogeneity, and is often used in

studies on temporal lobe epilepsy.25–28 Basically, for the ReHo

method Kendall’s coefficient of concordance between the time series

of each voxel and its multiple neighboring voxels is calculated. The

Hurst exponent is a measure of long-term memory, or measure of

fractality of the BOLD signal.29 To our knowledge, the Hurst expo-

nent and spectral entropy measures have thus far not been described

in the literature on epilepsy and BOLD signals.

Additionally, the Shannon entropy of the complete time

series was also calculated for comparison.

Also measures, which are not used to measure order/disorder

of BOLD time series such as the fractional amplitude in low

frequency fluctuations (fALFF) and the wavelet energy were calcu-

lated. To compare the spectral entropy with the wavelet entropy at

the subband intervals, the spectral energy was calculated also for

the subband frequency ranges. For this, the spectral energy was

averaged over the seven different frequency subbands.

Statistical Analysis
Student’s t-test was used for statistical assessment of any potential

differences between patients with Rolandic epilepsy and healthy

controls. Analyses were performed for each voxel and the results

were obtained for the entire cerebrum and Rolandic strip. For the

wavelet entropy measure, the diagnostic classification between

FIGURE 2: Model time series with two harmonic and one varying nonstationary component, the pertaining wavelet subbands and
Fourier spectrum. (a) Time series signal with two time shifted sine waves, (b) a nonstationary wave (dampened sine curve) added
to (a), (c) a nonstationary wave with higher amplitude added to (a), and (d) white noise added to (c). Wavelet subbands show rela-
tively strong frequency components related to the two sine waves in certain subbands. The nonstationary components appear in
subbands 3, 7, and 8, and their amplitudes increase from (b–c). The wavelet entropy increases relatively more than the Shannon
entropy or spectral entropy from (a–d).
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patients and controls was performed using support vector machine

with a linear kernel30 and 10-fold cross-validation. Sensitivity and

specificity were computed for the entire cerebrum. The area under

the receiver operating characteristic (ROC) curve was also comput-

ed. P < 0.05 was considered statistically significant.

Statistical parametric mapping was applied to statistically

compare the wavelet entropy maps of the patients and healthy con-

trols. Family-wise error corrections (P < 0.05) were used to correct

for the multiple comparison problem of many voxels. The localiza-

tion of significant differences in wavelet entropy are reported in

terms of MNI coordinates.

FIGURE 3: Comparison of the wavelet entropy measure com-
puted from a (stationary) sine wave, a completely random sig-
nal, and a mean gray matter signal of a healthy control subject.
Wavelet subbands represent the information distribution in dif-
ferent subbands (2–6) of a signal. For a random signal the
information is more or less equally distributed over all sub-
bands, whereas for a sine signal the information distribution is
predominantly limited to only one subband. Therefore, the
wavelet entropy is higher for the random signal and lower for
the sine signal. For the brain signal, the information distribu-
tion gradually decreases from lower to higher subbands. There-
fore, the brain wavelet entropy is in between that of the sine
and random signal.

FIGURE 4: Illustration of the time spike removal algorithm
applied to a BOLD time series signal of a patient. In (a) an
example BOLD time series signal is depicted before and after
spike removal, and in (b) the subtraction is shown.

TABLE 1. Description of Various Time-Series Measures in the Literature to Quantify the Amount of Disorder/
Order

Method Quantity/measure Description Reference

Wavelet analysis Wavelet entropy Total entropy in wavelet coefficients (15)

Fourier analysis Spectral entropy Entropy in power spectrum in low
frequency range (10-80 mHz)

(24)

Regional
homogeneity

Kendall’s coefficient
of concordance (KCC)

Measure of similarity of time-series
in a voxel and its nearest neighbors

(25)

Hurst exponent Fractal measure Long-term measure of memory;
H50.5 indicates uncorrelated time
series, 0-0.5 high long-term
autocorrelation, while for 0.5-1.0
long-term switching in adjacent
pairs happens

(29)

Entropy Shannon entropy Order/disorder in BOLD time
series computed using Shannon
entropy of time series

(6)
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Results

Using the model time series, Fig. 2 gives a comparison of the

Shannon entropy of the time series, wavelet entropy, and spec-

tral entropy. It can be observed that the wavelet entropy

increases relatively stronger than the Shannon entropy or spec-

tral entropy with increasing amplitude of the nonstationary

(dampened sinusoid) component in the time series. From

Fig. 2a–c, the Shannon entropy increases by 2–3%, spectral

entropy by 25%, and wavelet entropy by 70%.

Figure 5 shows the power spectrum (Fourier transform)

and wavelet subbands of patients and controls. The power

spectrum was not different between patients and controls. The

energy in wavelet subbands gradually decreases from lower to

higher subbands in both patients and controls. Patients show

lower energy than controls in subbands 2–5, which makes the

energy distribution across subbands more uniform (flatter

spectrum) in patients, and increases the wavelet entropy.

Wavelet entropy values for the whole cerebrum are listed

in Table 2. In patients, for the whole cerebrum a significantly

higher wavelet entropy was found compared to controls

(P 5 0.03). Also, for the Rolandic strip the wavelet entropy

was elevated in patients relative to controls (P 5 0.04).

Analyzing the whole cerebrum, a sensitivity of 80% and

specificity of 73% was obtained using the wavelet entropy

measure. The area under the curve indicates robustness of the

method, as it was 0.75 6 0.04 (mean 6 standard deviation).

The wavelet entropy maps for patients with Rolandic

epilepsy and healthy controls are shown in Fig. 6 and the

MNI coordinates of regions where the patients’ wavelet entro-

py is elevated are listed in Table 3. In addition to the Rolandic

strip (sensorimotor cortex), the patients’ wavelet entropy was

elevated in a number of other brain regions, including the

inferior prefrontal cortex (Broca’s area), precuneus, insula, and

lateral occipital cortex. No regions showed significantly lower

wavelet entropy in patients relative to controls.

Comparison With Other Time Series Measures
Table 2 also lists the results using frequency measures such

as spectral entropy and other standard methods such as the

Shannon entropy of time series, ReHo, and Hurst exponent.

For patients, the average Hurst exponent was slightly lower

and closer to 0.5 than in controls. Spectral entropy was

higher and ReHo was lower for patients than controls, indi-

cating higher randomness in the time series of patients.

Most of the measures gave an indication of increased ran-

domness of the patients’ signals compared to the healthy

controls. However, none of these results, other than wavelet

entropy, were significant. Table 2 also shows results

using measures such as fALFF, wavelet energy, and binned

spectral entropy. The results using these measures were not

significant.

Discussion

In this study we presented the wavelet entropy measure to

quantify temporal irregularities in BOLD time series. This

method applies wavelet decomposition to the time series

and determines the frequency structure of the wavelet com-

ponents over various subbands. Model time series showed

that the wavelet entropy measure was more sensitive to the

identification of nonstationary components than conven-

tional measures of disorder/order such as Shannon and spec-

tral entropy. As an application, we analyzed abnormalities in

the resting-state BOLD time series of children with Rolan-

dic epilepsy. The wavelet entropy method was found to be

sensitive to detect abnormal cerebral fluctuations in BOLD

FIGURE 5: (a) Fourier-based power spectrum of patients and
controls. There were no obvious differences observed for any
of the frequency bands between patients and controls. The fre-
quency intervals of the (wavelet) subbands are added to the
graph. (b) Spectral energy binned according the subband inter-
vals of the wavelet transform. (c) Squared amplitudes of wave-
let subbands in patients and controls. The amplitudes are used
to compute the wavelet entropy. In both patients and controls
the energy in wavelet subbands gradually decreases from low-
er to higher subbands. Patients show lower energy than con-
trols in subbands 2–5, which makes the energy distribution
across subbands more uniform (flatter spectrum) in patients,
and increases the wavelet entropy. The spectral energy (in b)
showed a similar trend as the wavelet energy (in c) as a func-
tion of the subband. However, differences in spectral entropy
in patients and controls were not significant. Error bars are
standard errors of mean.

Gupta et al.: Wavelet Entropy of BOLD Time Series

December 2017 1733



FIGURE 6: Group averaged wavelet entropy brain maps for children with Rolandic epilepsy (a) and healthy controls (b). The
entropy is only mapped on the gray matter by applying a gray matter mask on the smoothed and group averaged wavelet
entropy maps. Statistical parametric mapping of the difference is depicted in (c). Wavelet entropy is significantly elevated
in patients compared to controls in brain regions including the (bilateral) sensorimotor cortex, (left) inferior prefrontal (Bro-
ca’s area), precuneus, insula, and lateral occipital cortex. Coordinates are in the frame of the Montreal Neurological
Institute.

TABLE 2. Comparison of Time-Series Measures Between Children With Rolandic Epilepsy and Healthy Controls
for the Whole Cerebrum and Bilateral Rolandic Strip

Whole cerebrum Rolandic strip

Measure Patients Controls P-value Patients Controls P-value

Disorder/order measures

Wavelet entropy 1.765 6 0.013 1.731 6 0.011 0.03 1.760 6 0.079 1.736 6 0.087 0.04

Entropy of time-series 6.534 6 0.187 6.584 6 0.024 0.32 6.525 6 0.258 6.575 6 0.031 0.72

Spectral entropy 6.567 6 0.007 6.557 6 0.011 0.41 6.587 6 0.011 6.576 6 0.012 0.61

Spectral entropy
(binned)

2.771 6 0.003 2.767 6 0.004 0.22 2.776 6 0.003 2.772 6 0.003 0.34

ReHo (10-80mHz) 0.420 6 0.009 0.429 6 0.011 0.52 0.407 6 0.011 0.408 6 0.012 0.81

Hurst exponent 0.795 6 0.005 0.800 6 0.008 0.42 0.795 6 0.006 0.801 6 0.009 0.76

Fluctuation strength measures

fALFF 0.371 6 0.041 0.378 6 0.039 0.08 0.370 6 0.005 0.371 6 0.004 0.50

Wavelet energy 64.5 6 1.7 64.5 6 2.7 0.93 63.1 6 2.0 62.7 6 2.9 0.91

Disorder/order measure values are given for the wavelet entropy measure, spectral entropy, and other standard methods including the
(Shannon) entropy of time-series, Regional Homogeneity (ReHo), and Hurst exponent. Fluctuation strength measures are the
(Fourier-based) fractional amplitude of low-frequency oscillations (fALFF) and the wavelet energy. Values are represented as mean 6
standard error.
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time series and was significantly elevated in children with

Rolandic epilepsy in comparison to healthy controls.

The wavelet entropy method is based on the decom-

position of the time series signals into different frequency

bands using Daubechies wavelet analysis. It was observed

that the energy of subbands roughly decreases from lower to

higher frequency subbands in patients as well as healthy

controls. This indicates a variation (or structure) in pattern

of information content over the frequency subbands of the

BOLD time series.3 The wavelet entropy measure captures

this frequency structure, which makes it more appropriate

to study abnormalities in the BOLD time series represented

by nonstationary effects than more conventional measures.

Unlike DFT or STFT, with DWT the time-frequency struc-

ture of the signal can be followed with optimal temporal

resolution, which helps to represent nonstationary compo-

nents in wavelet subbands. The nonstationary components

are detected by the DWT of the BOLD-time series by

means of the convolution with the (time shifted and scaled)

mother wavelet function. Subsequently, the resulting sub-

bands are (squared and) integrated over time to obtain the

energy per subband. DWT also helps to avoid uncontrolled

spectral leakage artifacts inherent in applying DFT to a

nonstationary signal. The wavelet entropy method is

expected to be highly suitable to detect any nonstationary

abnormalities in brain signals for diseases like epilepsy.

Several studies have indicated that the amplitudes of

the BOLD signal (for instance, amplitude of low-frequency

fluctuations) in predefined frequency bands differed between

patients with epilepsy and controls.31 However, the abnor-

mal frequency bands might vary over various types of epi-

lepsy and also patient by patient.32 This variation might

also be due to dynamic nature of abnormal brain activity. In

other words, abnormalities might not consistently appear in

certain (predefined) frequency bands, but may vary over

time (ie, nonstationarity) across different frequency bands.33

The wavelet entropy measure captures such nonstationary

signal effects (or temporal variations of the frequency

spectrum) by analyzing the time series by means of a

wavelet transform.

Our results showed significantly elevated wavelet entro-

py in patients compared to healthy controls when averaged

over the entire cerebrum. It was observed that a number of the

patients’ brain regions in particular showed elevated wavelet

entropy, indicating that this is a distributed and widespread,

rather than a focal, effect. These regions included the sensori-

motor cortex (Rolandic strip), inferior prefrontal cortex (Bro-

ca’s area, language region), and precuneus (default mode

network regions). It is interesting to note that the wavelet

entropy is elevated in the Rolandic strip, which is the seizure

onset zone, and also in a language region, as we know that lan-

guage function is often impaired in Rolandic epilepsy. Previ-

ously applied functional connectivity methods also showed

significant differences between patients with Rolandic epilepsy

and controls in these regions (Rolandic strip, language regions,

and default mode network regions) in the literature.22,34

However, it needs to be remarked that a spatial overlap (SPM)

analysis, as applied in this study, only reveals brain areas that

coherently over the patients show abnormalities in the time

series signal, while more heterogeneously (spatially) distribut-

ed abnormalities may remain undetected.35

The spontaneous BOLD fluctuations were not found

to differ between patients and controls using methods such

as spectral entropy, regional homogeneity, Hurst exponent,

and entropy of time series. Spectral entropy is a measure of

disorder/order that is determined from the power spectrum

TABLE 3. Summary of Regions Where the Patients’ Wavelet Entropy is Elevated.

MNI coordinates (mm)

x y z Maximum t-value P-value (cluster) Anatomical region

240 210 26 8.90 <0.001 Insula

246 4 14 8.42 0.001 Inferior prefrontal

232 220 46 7.24 0.001 Sensorimotor

248 0 26 8.22 0.007 Precentral
(Sensorimotor)

244 242 38 7.64 <0.001 Sensorimotor

218 246 54 6.87 0.012 Precuneus

242 274 6 8.70 <0.001 Lateral occipital

Regions were identified by applying statistical parametric mapping to statistically compare the wavelet entropy maps of the patients
and healthy controls. Coordinates are given in the standardized MNI (Montreal Neurological Institute) frame. Family-wise error
corrections (P< 0.05) were used to correct for the multiple comparison problem of many voxels.
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of the signal. Our results using this method on the BOLD

time series of children with Rolandic epilepsy were not

significant, likely because spectral entropy is not suitable for

detecting changes in nonstationary time signals.8 The meth-

od by binning spectral energy to the frequency intervals to

comply with the wavelet subband frequency ranges showed

a similar trend as the wavelet energy as a function of the

subband. However, differences in spectral entropy in

patients and controls were not significantly different. It has

to be remarked that comparing the binned spectral entropy

and wavelet entropy might not be accurate, because 1) the

spectral energy is calculated in the frequency domain,

whereas the wavelet energy is calculated in the time domain;

2) due to leakage effects, harmonic frequency ranges do not

fully comply with wavelet subbands; and 3) the Fourier fre-

quency binning deals with a frequency increment (subband

width) that is larger than the actual frequency resolution for

which data are averaged over time windows shorter than the

full acquisition time, which likely mostly affects the slow

frequency values, whereas the wavelet approach considers

the full acquisition duration. Most important, the wavelet

entropy measure appears more capable of detecting changes

in a nonstationary signals due to the localization characteris-

tics of the wavelet transform, which makes it more appro-

priate to detect abnormal changes in dynamic brain signals,

with changing frequencies over time, in diseases like

epilepsy.3,33

Also, the regional homogeneity measure could reveal

abnormalities in the disorder/order of the time series of the

Rolandic epilepsy children. The ReHo method assumes that

within a functional cluster of neighboring voxels, the hemo-

dynamic characteristics of each voxel will be highly similar

(or synchronous).36 However, this measure may suffer from

a partial volume-averaging (T �2 blurring) effect at the milli-

meter scale among adjacent areas in the gray matter. Due to

the blurring of areas on T �2 images, the ReHo measure that

relies on the variation of intensities among adjacent voxels

might be attenuated. Thus, the ReHo measure became

insensitive to local variations and has reduced the differences

in adjacent voxels in the BOLD image.37

The assumption of changes in self-similarity, which is

required for the Hurst exponent, was not observed in

patients with Rolandic epilepsy. As the Hurst exponent has

not previously been used in epilepsy, comparison with other

studies is not possible yet. The value of the Hurst exponent

for patients was closer to 0.5 than in controls, indicating

more strongly uncorrelated, thus random, signals. All the

above measures on disorder/order hinted at stronger,

although statistically insignificant, disorder in the time sig-

nal for the patients with Rolandic epilepsy. However, only

the wavelet entropy measure appeared sufficiently sensitive

to capture and quantify these temporal irregularities. Entro-

py of time series did also not reveal significant differences

between patients and controls. This measure has also not

been used on fMRI and EEG time series in the literature.

The results using this measure hint that more complex mea-

sures of time series are required for measuring homogeneity/

heterogeneity in BOLD time series data.

Independent of the amplitude (or energy) of the signal

fluctuations, the wavelet entropy measure provides new

information on the frequency structure of brain signals in

comparison to Fourier-based or other methods. An addi-

tional advantage of the wavelet entropy measure is that it is

parameter-free and the computation time of wavelet entropy

is relatively shorter than other spectral methods since the

algorithm uses fast wavelet transform in a multiresolution

framework.38

The children with Rolandic epilepsy showed more

irregular nonstationary BOLD signals in many brain regions

in comparison to healthy controls. It seems straightforward

to relate these dynamic regularities to possible epileptiform

activity of the epileptic brain. Epileptic brain activity is

expectedly of very high frequency compared to the measured

frequency range and it remains unknown how this translates

into BOLD fluctuations. These assumptions need further

investigations where, for instance, EEG activity is spatiotem-

porally linked to the BOLD signal by integrated simulta-

neous fMRI-EEG measurements. Whether these children

experienced (subclinical) epileptiform activity during the

MRI scan is unlikely or highly uncertain. For now, it

remains unknown whether the observed abnormalities in the

frequency structure of the BOLD signal is directly due to

epileptiform activity or merely reflects a more disordered

resting-state brain signal.

The current study demonstrates the application of a

novel disorder/order measure for characterizing irregularities

in dynamic brain signals of children with a relevant brain

disease for which time series abnormalities may be expected.

However, there are also a number of considerations that

deserve future attention, including the above-mentioned val-

idation with simultaneously recorded fMRI-EEG signals.

The current study design is retrospective, and not prospec-

tive, which is, however, generally considered sufficient for

diagnostic research. Furthermore, the selection of the wave-

let filter is rather critical to decompose the signal into differ-

ent frequency subbands. In this study we used a Daubechies

wavelet filter, which gave us satisfactory results on the

Rolandic epilepsy patients. As a scope of future work, a new

set of wavelet filters could be designed that can closely rep-

resent the BOLD signal from healthy controls. The filter

design requires a huge amount of data from healthy controls

that can help in determining the most appropriate shape for

the function.39

In conclusion, this study presents the wavelet entropy

measure for quantifying irregularities in BOLD time series

from the brain. The wavelet-based measure gave new
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information about the loss of frequency structure of irregu-

lar brain signals and appeared more sensitive than Fourier-

based spectral entropy and other standard methods. The

observation of elevated wavelet entropy obtained in children

with Rolandic epilepsy are encouraging and, in the future,

the proposed technique could be further expanded to differ-

ent epilepsy syndromes and other brain disorders.
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