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Abstract

Background In (para-)thyroid surgery iatrogenic parathyroid injury should
be prevented. To aid the surgeons’ eye, a camera system enabling
parathyroid-specific image enhancement would be useful. Hyperspectral cam-
era technology might work, provided that the spectral signature of parathyroid
tissue offers enough specific features to be reliably and automatically distin-
guished from surrounding tissues. As a first step to investigate this, we exam-
ined the feasibility of wide band diffuse reflectance spectroscopy (DRS) for
automated spectroscopic tissue classification, using silicon (Si) and indium-
gallium-arsenide (InGaAs) sensors.

Methods DRS (350–1830nm) was performed during (para-)thyroid resec-
tions. From the acquired spectra 36 features at predefined wavelengths were
extracted. The best features for classification of parathyroid from adipose or
thyroid were assessed by binary logistic regression for Si- and InGaAs-sensor
ranges. Classification performance was evaluated by leave-one-out cross-
validation.

Results In 19 patients 299 spectra were recorded (62 tissue sites: thy-
roid=23, parathyroid=21, adipose=18). Classification accuracy of
parathyroid–adipose was, respectively, 79% (Si), 82% (InGaAs) and 97%
(Si/InGaAs combined). Parathyroid–thyroid classification accuracies were
80% (Si), 75% (InGaAs), 82% (Si/InGaAs combined).

Conclusions Si and InGaAs sensors are fairly accurate for automated spec-
troscopic classification of parathyroid, adipose and thyroid tissues. Combina-
tion of both sensor technologies improves accuracy. Follow-up research,
aimed towards hyperspectral imaging seems justified. Copyright © 2016 John
Wiley & Sons, Ltd.

Keywords diffuse reflectance spectroscopy; thyroid and parathyroid surgery; au-
tomated tissue classification; parathyroid; thyroid; adipose tissue

Introduction

To perform safe and efficient thyroid and parathyroid surgery, a high level of
surgical skills is required together with understanding of natural variations
in head and neck anatomy (e.g. thyroid, parathyroid, lymph nodes, and recur-
rent laryngeal nerves). Detecting the small sized parathyroid glands and

ORIGINAL ARTICLE

Accepted: 18 March 2016

Copyright © 2016 John Wiley & Sons, Ltd.

THE INTERNATIONAL JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY
Int J Med Robotics Comput Assist Surg 2017; 13: e1748.
Published online 19 May 2016 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/rcs.1748



performing re-operative thyroid surgery can be especially
challenging and time consuming. This visual task can be
even more challenging due to anatomical variations in lo-
cation, especially for the lower parathyroid glands (1).
During these complicated surgical procedures iatrogenic
injury to the parathyroid glands may occur (2). In a retro-
spective analysis of 5104 primary and 685 secondary thy-
roidectomies, temporary hypocalcaemia associated with
hypoparathyroidism occurred in respectively 7.1% and
5% of cases (permanent in 1.8% and 2.5%). The rate of
permanent complications was found to be significantly
higher in re-operative surgery (3). Intraoperative identifi-
cation of parathyroid glands before removal of the thyroid
gland is of great importance to prevent these complica-
tions. Therefore, a tool for improved intraoperative para-
thyroid gland detection is desirable. Exploring the
capabilities of spectroscopy beyond the limitations of the
human eye offers a possible roadmap towards such a tool.

Several innovative optical techniques have been under
investigation for their potential in differentiating benign
from malignant cells in thyroid and parathyroid speci-
mens: multispectral image analysis (4,5), Raman spec-
troscopy (6) and elastic scattering spectroscopy (7).
Fluorescence imaging after peripheral infusion of
aminolevulinic acid (8,9) or methylene blue (10) is re-
ported for intraoperative detection of parathyroid adeno-
mas. In addition, near-infrared auto-fluorescence
incorporates potential for real-time parathyroid tissue lo-
calization (11). Furthermore, optical coherence tomogra-
phy is reported as a tool for parathyroid gland
identification (12,13).

For color vision, the human eye contains only blue,
green and red cones, which also partly overlap in sensitiv-
ity (poor channel separation). Yet, the trained human eye
can discern quite subtle color differences within the visi-
ble range (400–780nm). Normal surgical video cameras
mimic human vision and also just capture red, green and
blue light. Hyperspectral imaging, however, discerns a
multitude of well-separated spectral bands for each pixel,
including the near-infrared range, which is (by definition)
invisible to the human eye. Since aerospace science al-
ready routinely combines hyperspectral camera technol-
ogy with pre-acquired reference-library spectra recorded
on the earth surface, to generate satellite images for dis-
covering places of interest, for example, agricultural pur-
poses and military and homeland security applications,
we reasoned this technique might also hold potential for
image-guided surgery (14). Although hyperspectral imag-
ing is still far from being a routine surgical tool, it has al-
ready shown potential for noninvasive intraoperative
assessment of tissue oxygen saturation (15,16), for intra-
operative enhancement of anatomical structures (17,18)
and for intraoperative tumor detection (19). Medical
hyperspectral imaging-systems typically use silicon (Si)

and occasionally indium gallium arsenide (InGaAs) cam-
era chips. The wavelength range 400–1000nm is covered
by Si, whereas InGaAs is typically sensitive in the
900–1700nm wavelength region (and depending on chip
composition even up to 2500nm) (14).

Diffuse reflectance spectroscopy (DRS) was studied for
tissue differentiation as basis for a feedback system to en-
hance nerve preservation in oral and maxillofacial surgery
(20), in head and neck surgery and in carpal tunnel re-
lease surgery (21). DRS has, however, not yet been stud-
ied for thyroid or parathyroid differentiation.

Nachabé et al. (22,23) showed the benefit of extending
visualization ‘beyond silicon’ up to a wavelength of
1600nm, providing additional information regarding tis-
sue concentrations of the biological chromophores water
and lipid.

The present translational study is a first fibre-optic
spectrometric exploration with the ultimate long-term
goal of obtaining parathyroid gland-specific spectral sig-
natures as a basis for further research on image enhance-
ment. In vivo, wide band (350–1830nm) diffuse
reflectance spectra of human thyroid, parathyroid and
surrounding adipose tissue were collected and assessed
for the presence of endogenous contrasts that might en-
able future tissue-specific contrast enhancement. There-
fore we applied tissue classification using spectral
features that are largely independent of signal intensity
using a previously reported approach (21).

Materials and methods

All in vivo data acquisition was performed at the Surgery
Department of Maastricht University Medical Center
(MUMC, Maastricht, The Netherlands) during thyroid
and parathyroid surgery (surgeon N.D.B.). Prior to mea-
surements, the local institutional review board of
Maastricht University Medical Center (registration num-
ber METC 10-4-035) granted approval and preoperative
written informed consent was obtained from all patients.

Material

Diffuse reflectance spectra were acquired using custom
developed ETO-sterilized disposable optical fibre probes
(TNO, Eindhoven the Netherlands and Light Guide
Optics, Rheinbach Germany), a modified Xenon light
source (D-light C, Karl Storz, Tuttlingen Germany), and
a spectrometer (Analytical Spectral Devices, Inc., Colo-
rado USA) covering the range 350–1830nm. The spec-
trometer is equipped with two sensor technologies: a
silicon (Si) based sensor and an indium gallium arsenide
(InGaAs) based sensor. The cross-over point between
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these sensors is at 1000nm. The fibre probe is the medium
to transport light from source to tissue, and to transport
reflected light from tissue to spectrometer. The system
was installed on a compact trolley to facilitate in vivo tis-
sue data acquisition during routine surgery. The setup
was tested and approved according to the essential re-
quirements of IEC 60601-1 to assure patient safety. The
equipment has previously been described in more detail
(24).

Figure 1 shows the fibre probe tip composed of eight
optical fibres: one central receiving fibre (400 um diame-
ter, NA 0.22±0.02) and seven illuminating fibres
(300μm diameter, NA 0.22±0.02). The rigid stainless
steel probe tip has a 2mm diameter and a length of
10mm. The remaining length of the sterile fibre probe is
highly flexible.

In vivo data acquisition

During parathyroid and thyroid resections, in vivo
wide-band diffuse reflectance spectra (350–1830 nm,
1 nm spectral resolution) were collected. For each tis-
sue type, five spectra per site (taking 30 s per site)
were acquired, covering at least one site per tissue

type; this resulted in 1.5 to 3 additional min per sur-
gical procedure (see also Table 1). The sterile fibre
probe was handled by the surgeon and gently
brought into direct contact with one of the desig-
nated tissues (see Figure 1). If blood was visibly pres-
ent on the tissue surface, it was dapped away using a
sterile gauze. Between the measurements on different
locations, the probe tip was swiped with a clean ster-
ile gauze wetted with saline. Acquired data were la-
beled according to the tissue type description of the
attending surgeon. Since extirpation of the measured
‘healthy’ tissue types could logically not be conducted
in this explorative in vivo human study, histopatho-
logical confirmation of the measurements was not
possible.

For inter-patient comparability, all raw in vivo spec-
tra were calibrated, after the completion of in vivo
spectroscopy, by using the dark current (14) and white
reference phantom (Optical-grade spectralon reference;
Labsphere, Inc., North Sutton, New Hampshire USA).
The integration times of the silicon and InGaAs sensor
were individually optimized during the Spectralon cali-
bration. No correction for ambient light was
performed.

Data processing

The calibration normalizes the radiance spectrum to
yield the reflectance, which manages the problem of
spectral non-uniformity of the illumination device and
influence of the dark current (26). Since both reflec-
tance intensity and spectral shape are related to the
composition of the tissue, no further normalization
steps were performed. To identify possible distinctive
features for tissue-specific enhancement, 36 features
(i.e. 18 gradients and 18 amplitude differences at
predefined points in the tissue spectra) were extracted
based on known wavelengths related to characteristic
absorption features for blood, water and fat (27–29).
Gradients are ‘slopes’ between two predefined points
in the tissue spectra, i.e. (DR2–DR1)/(λ2–λ1). Ampli-
tude differences are ‘intensity differences’ between
two predefined spectral points, i.e. (DR2–DR1).
DR=diffuse reflectance; λ=wavelength. These fea-
tures have also been described in our previous publica-
tion (21). Figure 2 illustrates the characteristic
wavelengths and features in a mean spectrum for hu-
man adipose tissue (anatomical region: neck). All data
processing was performed by in-house developed soft-
ware (using MATLAB environment Version 7.7.0,
MathWorks Inc., Natick, Massachusetts, USA).

To evaluate the results for application in imaging
technology for identification of parathyroid within its

Figure 1. Intraoperative fibre probe tissue measurement. Intra-
operative spectral fibre probe measurement performed during a
left hemithyroidectomy procedure. The sterile optical fibre probe
is gently brought into contact with one of the parathyroid glands.
Right lower corner: close-up of the fibre probe tip. A ring light of
seven fibres (illuminated white) injects light into the tissue, one
central fibre (here for illustration purposes illuminated yellow)
transports the diffusely reflected light to the spectrometer
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natural surroundings, we performed three separate
classification steps: i.e. Si-sensor (≤1000 nm) features,
InGaAs-sensor (≥900 nm) features, and features cover-
ing the whole range (350–1830 nm). Considering the
number of subjects, the number of extracted features
(n=36) is too large to perform a statistically meaning-
ful classification, as the extracted features could be re-
dundant in the information they retain. Therefore,
using combinations of all 36 features to build a classi-
fier would result in a dimensionality problem and
over-fitting (30). To omit this problem, we identified
the most distinctive features, for classification of para-
thyroid in relation to surrounding adipose tissue or ad-
jacent thyroid tissue, by using binary logistic regression
(SPSS Inc., Chicago, IL, USA) for both wavelength re-
gions separately. This statistical technique allows for
the prediction of categorical dependent variables (here
the tissue type: parathyroid or adipose /thyroid) using
a set of independent variables (here the 36 spectral fea-
tures) (31).

In accordance with our previous report on classifying
nerve tissue within adipose surroundings (21), we

trained a support vector machine (SVM) classifier (32)
which attempts to find an optimum line to separate
the training data groups with minimum risk (30). To es-
timate classification performance and to prevent overly
optimistic results (20,33,34), we implemented a cross-
validation (CV) approach. With a goal to obtain the
classification accuracy as a performance measure, the
data set is divided into a training set (to train the clas-
sifier) and a test set (to validate the classifier). The CV
approach uses leave-one-out (LOO; in this case: leave-
one-‘tissue-site’-out) validation of the collected parathy-
roid and adipose/thyroid hyperspectral data. This ap-
proach utilizes the same data set for both training and
testing purposes and is very useful in cases of a rela-
tively small data sample.

In-house developed classifiers (using MATLAB environ-
ment Version 7.7.0, MathWorks Inc., Natick, Massachu-
setts, USA) were used to estimate the classification
performance by calculating sensitivity, specificity, positive
predictive value, negative predictive value and accuracy
for both wavelength regions (i.e. Si-sensor and InGaAs-
sensor detection range) separately and in combination.

Table 1. Study subject characteristics and measured sites per tissue type

Subject# Gender Age BMI Indication for surgery Surgical procedure

Sites per tissue type

Thyroid Parathyroid Adipose

1 M 67 24 Bethesda 3 * node thyroid left Left HT 2 2 0
2 F 55 32 PH Right PAR 2 1 2
3 M 54 31 MEN-2a syndrome, medullar

thyroid carcinoma left
TT+ radical LND neck,
right axillary LND

0 0 1

4 F 14 21 PH Left PAR 2 2 2
5 F 67 37 Status after hemithyroidectomy

right, in which a follicular
carcinoma was found

Resection of remaining
thyroid (left HT)

0 2 1

6 F 53 34 Multinodular goiter TT 2 2 1
7 F 56 44 Bethesda 2 * node thyroid right Right HT 0 0 1
8 F 67 30 Multinodular goiter Left HT 1 0 0
9 F 60 43 Tertiary hyperparathyroidism after

kidney transplantation
Subtotal parathyroid
resection

1 1 0

10 F 55 - Multinodular goiter Left HT+ subtotal right
thyroidectomy

1 0 0

11 F 50 18 Multinodular goiter Left HT 1 1 1
12 M 80 26 PH Left PAR 1 0 1
13 F 54 35 PH Right PAR 1 1 1
14 M 74 29 PH Right PAR 1 0 1
15 F 60 31 Multinodular goiter Left HT 1 1 1
16 F 46 30 Multinodular goiter Left HT 1 2 1
17 F 53 34 Bethesda 3 *

node thyroid right
Right HT 2 2 2

18 F 23 23 Graves’ disease TT 2 2 1
19 F 49 19 Multinodular goiter Left HT 2 2 1

Sites per tissue type
(grand total 62)

23 21 18

Spectra per tissue type
(grand total 299)

112 97 90

*The Bethesda system was used for reporting thyroid cytopathology (25).
M=male; F= female; BMI=body mass index; PH=primary hyperparathyroidism; PAR=parathyroid adenoma resection;
HT=hemithyroidectomy; TT= total thyroidectomy; LND= lymph node dissection.
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Results

In 19 patients (4 male, 15 female) undergoing parathy-
roid or thyroid surgery, 299 in vivo tissue spectra were
recorded on 62 tissue sites (thyroid n=23, parathyroid
gland n=21, adipose tissue n=18). Table 1 summa-
rizes patient characteristics and the number of mea-
sured sites per tissue type. Figure 3 shows mean
diffuse reflectance spectra and corresponding standard

deviations for thyroid, parathyroid and surrounding adi-
pose tissue.

Classification of spectral data in
Si-sensor range

From the 36 extracted features (see Figure 2) 11 were lo-
cated within the silicon detection range. Given the study
sample of an average of 20 spots per tissue type, inclusion

Figure 2. Example of spectrum (adipose tissue) with characteristic wavelengths and investigated features. Qualitative landmarks for
oxygenated/reduced hemoglobin (characteristic ‘W-shape’ between 500 and 600 nm), water (absorption peaks at 965 and 1440 nm)
and human fat (absorption peaks at 1210 and 1720 nm) (27–29) are indicated by the arrows. The spectral detection ranges of respec-
tively the human eye and of Si-sensor and InGaAs-sensor based camera chips are indicated. (This Figure was previously published as
Figure 2 in: ‘Differentiation between nerve and adipose tissue using wide-band (350–1830 nm) in vivo diffuse reflectance spectros-
copy’, by Schols RM, ter Laan M, Stassen LP, Bouvy ND, Amelink A, Wieringa FP, Alic L; Lasers in Surgery and Medicine, 2014 Jun
4. Epub ahead of print, doi: 10.1002/lsm.22264, © 2014 Wiley Periodicals, Inc. Wiley-Blackwell. Used with permission.)
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of maximum 2 features is statistically responsible. Binary
logistic regression identified gradients Ft3 (B2–B6) and
Ft36 (650–700nm) as most promising combination for
differentiation of parathyroid from surrounding adipose
tissue. Gradient Ft36 (650–700nm) solely, also appeared
to be the best distinctive feature for differentiation of
parathyroid from thyroid tissue. Figure 4(A) shows a scat-
ter plot (Ft36 and Ft3) for classification of parathyroid in
adipose surrounding. Figure 4(B) shows a boxplot (Ft 36)
for classification of parathyroid in thyroid surrounding.

The quantitative results of classification performance
are listed in Table 2. Leave-one-out cross-validation
(LOO CV) is based on Si-sensor range data from thyroid
and parathyroid surgery for train and test purposes.

Classification of spectral data in
InGaAs-sensor range

From the 36 extracted features 25 were located within the
spectral detection range of InGaAs (see Figure 2). After bi-
nary logistic regression, gradients Ft12 (W1–F4) and Ft17
(F4–F5) were selected as the most promising combination
for differentiation of parathyroid from surrounding adi-
pose tissue. Gradients Ft12 (W1–F4) and Ft14 (F2–F1)
were identified as best distinctive feature combination
for differentiation of parathyroid from thyroid tissue.
Figure 5(A) and 5(B) show scatter plots for these
InGaAs-sensor based features, extracted for respectively
parathyroid versus adipose tissue and parathyroid versus
thyroid tissue.

The quantitative results of LOO CV classification perfor-
mance are listed in Table 3. LOO CV is solely based on
InGaAs-sensor range data from thyroid and parathyroid
surgery for train and test purposes.

Combining Si-sensor and InGaAs-sensor
ranges for spectral data classification

Classification performance was also evaluated when com-
bining the Si-sensor and InGaAs-sensor detector ranges,
including up to 3 spectral features. After binary logistic re-
gression, gradients Ft12 (W1–F4), Ft17 (F4–F5) and Ft36
(650–700nm) were selected as the most promising com-
bination for differentiation of parathyroid from surround-
ing adipose tissue.

Gradients Ft27 (W1–F4) and Ft32 (F2–F1) and Ft36
(650–700nm) were identified as best distinctive feature
combination for differentiation of parathyroid from thy-
roid tissue.

Figure 6(A) and 6(B) show scatter plots for these com-
bined Si-sensor and InGaAs-sensor based features, ex-
tracted for respectively parathyroid versus adipose tissue
and parathyroid versus thyroid tissue.

The quantitative results of LOO CV classification perfor-
mance are listed in Table 4. LOO CV is based on the whole
wide-band spectral range covering both Si-sensor and
InGaAs-sensor range data from thyroid and parathyroid
surgery for train and test purposes.

Discussion

The wide band (350–1830nm) diffuse optical reflectance
fingerprints of human thyroid, parathyroid and surround-
ing adipose tissue were identified in this explorative
study. These spectra covered silicon (Si) and indium gal-
lium arsenide (InGaAs) detector ranges, thereby exceed-
ing wavelength boundaries (1600nm or 1700nm)
reported by preceding work (22,23,25,26). Spectroscopic
measurements on human skin samples in the wavelength
range 1000–2200 nm have previously been reported (35),
but not regarding any of the tissues included in our study.

Although the presented reflectance spectra (Figure 3)
show great similarity between the three different tissue
types, performance of automated tissue-specific classifica-
tion was fairly accurate in both sensor detection ranges
(i.e. Si and InGaAs) to discriminate parathyroid tissue
from either surrounding adipose tissue or adjacent thy-
roid tissue. Based on the classification accuracies (Tables 2
and 3) we can conclude that Si and InGaAs sensors are
equally suited for automated discrimination between
parathyroid glands and surrounding adipose tissue or ad-
jacent thyroid tissue. As tissue-classification accuracies of
around 80% are far from clinically relevant, we also inves-
tigated combining the two spectral sensor ranges, which
resulted in improved classification performance regarding
differentiation of parathyroid tissue from surrounding ad-
ipose tissue.

Figure 3. Mean spectra per tissue type. Average tissue spectra for
thyroid (red), parathyroid (green) and adipose tissue (blue).
Dashed lines in the corresponding colors indicate the respective
standard deviations
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Regarding the spectral signatures of the three tissue
types (Figure 3) we observed a clear opposite course
(i.e. ascending slope between 650 and 700nm) for

parathyroid compared with the spectra of adipose tissue
and thyroid (i.e. descending slope). From this, feature
Ft36 was established. Another blood-related feature

Table 2. Classification performance of selected Si-sensor features

LOO CV TP TN Sensitivity Specificity PPV NPV Accuracy

Parathyroid – Adipose 15/21 16/18 71 (48–88) 89 (64–98) 88 (62–98) 73 (50–88) 79
Parathyroid – Thyroid 15/21 20/23 71 (48–88) 87 (65–97) 83 (58–96) 77 (56–90) 80

TP= true positive; TN= true negative ➔ numbers indicate identified tissue spots. A positive test is defined as the tissue observed being
parathyroid gland; a negative test is defined as the tissue observed being adipose tissue / thyroid.
Sensitivity; specificity; PPV=positive predictive value; NPV=negative predictive value; accuracy ➔ numbers are percentages; numbers in
parentheses indicate 95% confidence interval.
LOO CV= leave-one-out cross–validation.

Figure 4. (A) Parathyroid versus adipose tissue: scatter plot of two selected features within Si-range. Each data point in this
scatterplot represents the selected features (gradients Ft3 and Ft36) estimated using DRS data from 21 parathyroid and 18 adipose
tissue sites. (B) Parathyroid versus thyroid: box plot of selected feature within Si-range. Box plot showing selected feature (gradient
Ft36) estimated using DRS data from 23 thyroid and 21 parathyroid tissue sites

Automated spectroscopic tissue classification 7 of 12
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(Ft3) in the Si sensor range was complementary for
distinguishing parathyroid from surrounding adipose
tissue (Figure 4). Within the InGaAs sensor range fat-
related features (Figure 5, respectively, Ft12 and Ft14,
and Ft12 and Ft17) performed best for enabling auto-
mated tissue classification. Combining Si and InGaAs
sensor features resulted in improved tissue

classification; this was especially profound when dis-
criminating parathyroid from adipose tissue. The statis-
tically different spectral features used for classification
of parathyroid versus adipose tissue or thyroid are
probably due to differences in chemical composition
(e.g. water/lipid content) of the investigated tissues
and structures.

Figure 5. (A) Parathyroid versus adipose tissue: scatter plot of two selected features within InGaAs-range. Scatter plot showing two
selected features (gradients Ft12 and Ft17) estimated using DRS data from 21 parathyroid and 18 adipose tissue sites. (B) Parathyroid
versus thyroid tissue: scatter plot of two selected features within InGaAs-range. Scatter plot showing selected features (gradients Ft12
and Ft14) estimated using DRS data from 21 parathyroid and 23 thyroid tissue sites

8 of 12 R. M. Schols et al.
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Figure 6. (A) Parathyroid versus adipose tissue: scatter plot of three selected features. Three-dimensional scatter plot showing se-
lected features (gradients Ft12, Ft17 and Ft36) estimated using DRS data from 21 parathyroid and 18 adipose tissue sites. (B) Para-
thyroid versus thyroid tissue: scatter plot of three selected features. Three-dimensional scatter plot showing selected features
(gradients Ft27, Ft32 and Ft36) estimated using DRS data from 21 parathyroid and 23 thyroid tissue sites

Table 3. Classification performance of selected InGaAs-sensor features

LOO CV TP TN Sensitivity Specificity PPV NPV Accuracy

Parathyroid – Adipose 19/21 13/18 90 (68–98) 72 (46–89) 79 (57–92) 87 (58–98) 82
Parathyroid – Thyroid 16/21 17/23 76 (52–91) 74 (51–89) 73 (50–88) 77 (54–91) 75

TP= true positive; TN= true negative ➔ numbers indicate identified tissue spots. A positive test is defined as the tissue observed being
parathyroid gland; a negative test is defined as the tissue observed being adipose tissue / thyroid.
Sensitivity; specificity; PPV=positive predictive value; NPV=negative predictive value; accuracy ➔ numbers are percentages; numbers in
parentheses indicate 95% confidence interval.
LOO CV= leave-one-out cross–validation.
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Experimental methods such as near-infrared fluores-
cence imaging after peripheral infusion of aminolevulinic
acid (8,9) or methylene blue (10) (i.e. exogenous contrast
agents) could also be used for parathyroid gland or para-
thyroid adenoma localization. The reflectance spectra in
our study, which were the basis to extract spectral fea-
tures, originate from intrinsic tissue properties (i.e. en-
dogenous chromophores) that do not require dye
administration. Consequently there is no risk of potential
toxicity or allergy to a contrast agent.

As the LOO cross-validation method inherently pro-
duces relatively optimistic classification results, external
validation remains essential before classification models
can be implemented in clinical practice (36). Such valida-
tion would need to be performed on newly acquired data
in a multi-center study.

In this study, we use physiological knowledge on com-
position of different tissue types, and thereby use the
pre-defined spectral regions of interest covering hemoglo-
bin, water and fat. Tissue differentiation on the basis of
completely automatically extracted features from a larger
data set might achieve better results, and should be ex-
plored in future work. In addition, as the acquired reflec-
tance spectra are specific to the probe geometry, more
research is needed on the relation between these reflec-
tance spectra and in vivo intrinsic tissue biological proper-
ties, which potentially could be captured by optical tissue
properties. This is needed to obtain a better understand-
ing of the nature of discrimination performance: i.e.
whether parathyroid glands can be optically distinguished
from surrounding adipose tissues or adjacent thyroid tis-
sue based on differences in light scattering behaviour (re-
lated to structural differences) or due to differences in
absorption behaviour (related to chromophore concentra-
tions such as blood, water and fat). Such an approach
would also be tissue-specific and robust to inter-patient
and multi-centre variability.

A restriction of this study is that histopathological con-
firmation of the in vivomeasured tissues was not possible,
since these tissues were not removed from the body.
Therefore, the gold standard used in this study was the vi-
sual judgment of an experienced surgeon with a track re-
cord of over 1000 thyroid surgeries. This judgment is
based on color (spectral) information, on the recognition

of anatomical position as well as on spatial structure of a
specific tissue, and on palpation. For our technique to
add most to this judgment, it should be extended from
spot-wise probe-measurements to imaging of the com-
plete surgical field of view.

In contrast to previous ex vivo experiments using wide-
band diffuse reflectance spectroscopy (24), these mea-
surements were performed during surgery. In vivo circum-
stances such as vascular filling and oxygenation were thus
not disrupted.

Lymph node tissue was not included in this initial ex-
plorative study in the field of head and neck surgery, but
certainly should be a subject of future research, as lymph
node differentiation from parathyroid tissue can also be
rather challenging during neck surgery.

In conclusion, in this study we have identified that Si
and InGaAs sensors are quite accurate for automated spec-
troscopic classification of parathyroid glands and sur-
rounding adipose tissue or adjacent thyroid tissue; but
when applied separately not yet with clinically relevant
levels of accuracy. Combination of these two sensor tech-
nologies, however, improves accuracy especially regarding
parathyroid–adipose tissue classification. Note that an im-
aging system embodiment would provide spectral classifi-
cation for each pixel, thus offering additional information
about anatomical structures of the whole displayed image
(which the present fibre probe spot measurements lack).
Without such structural clues, also the human eye would
be at loss for distinction. Hence, automated spectroscopic
tissue classification in (para-)thyroid surgery seems feasi-
ble. Our next research will be to enable moving from single
pixel contact mode to non-contact mode imaging. Having
provided the proof that the hyperspectral imaging tech-
nique contains clinically relevant information opens a
new path towards its integration in existing surgical tools
like camera systems for open surgery or even endoscopes
or robot-assisted systems. In addition, a clinically relevant
camera system needs further development in terms of its
physical size, energy consumption, total cost and opera-
tional speed. Recognizing this potential, the European
Union has funded two research projects on surgical
hyperspectral imaging: HELICoiD (HypErspectraL Imag-
ing Cancer Detection) (37), and EXIST (Extended Image
Sensing Technologies) (38).

Table 4. Classification performance of combined Si-sensor and InGaAs-sensor features

LOO CV TP TN Sensitivity Specificity PPV NPV Accuracy

Parathyroid – Adipose 21/21 17/18 100 (81–100) 94 (71–100) 95 (75–100) 100 (77–100) 97
Parathyroid – Thyroid 18/21 18/23 86 (63–96) 78 (56–92) 78 (56–92) 86 (63–96) 82

TP= true positive; TN= true negative ➔ numbers indicate identified tissue spots. A positive test is defined as the tissue observed being
parathyroid gland; a negative test is defined as the tissue observed being adipose tissue / thyroid.
Sensitivity; specificity; PPV=positive predictive value; NPV=negative predictive value; accuracy ➔ numbers are percentages; numbers in
parentheses indicate 95% confidence interval.
LOO CV= leave-one-out cross–validation.
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