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Conflic
Purpose: Accurate contouring of positron emission tomography (PET) functional volumes is now considered
crucial in image-guided radiotherapy and other oncology applications because the use of functional imaging allows
for biological target definition. In addition, the definition of variable uptake regions within the tumor itself may
facilitate dose painting for dosimetry optimization.
Methods and Materials: Current state-of-the-art algorithms for functional volume segmentation use adaptive
thresholding. We developed an approach called fuzzy locally adaptive Bayesian (FLAB), validated on homoge-
neous objects, and then improved it by allowing the use of up to three tumor classes for the delineation of inhomo-
geneous tumors (3-FLAB). Simulated and real tumors with histology data containing homogeneous and
heterogeneous activity distributions were used to assess the algorithm’s accuracy.
Results: The new 3-FLAB algorithm is able to extract the overall tumor from the background tissues and delineate
variable uptake regions within the tumors, with higher accuracy and robustness compared with adaptive threshold
(Tbckg) and fuzzy C-means (FCM). 3-FLAB performed with a mean classification error of less than 9% ± 8% on the
simulated tumors, whereas binary-only implementation led to errors of 15% ± 11%. Tbckg and FCM led to mean
errors of 20% ± 12% and 17% ± 14%, respectively. 3-FLAB also led to more robust estimation of the maximum
diameters of tumors with histology measurements, with <6% standard deviation, whereas binary FLAB, Tbckg and
FCM lead to 10%, 12%, and 13%, respectively.
Conclusion: These encouraging results warrant further investigation in future studies that will investigate the impact
of 3-FLAB in radiotherapy treatment planning, diagnosis, and therapy response evaluation. � 2010 Elsevier Inc.

Heterogeneous functional volumes delineation, Automatic segmentation, Image-guided radiotherapy,
Dose painting.
INTRODUCTION

Although most clinical applications of positron emission

tomography (PET) rely on manual and visual analysis, accu-

rate functional volume delineation in PET is crucial for

numerous oncology applications. These include the use of

tumor volume and associated determination of semiquantita-

tive indices of activity concentration for diagnosis and ther-

apy response evaluation (1) or the definition of target

volumes in intensity-modulated radiation therapy (IMRT)

(2). Subjective (1) and tedious manual delineation cannot

perform accurate and reproducible segmentation, particularly

when considering complex shapes and nonhomogeneous
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uptake. This results from the low quality of PET images

due to statistical noise and partial volume effects (PVE)

(3), arising from the scanner’s limited spatial resolution.

Most of the previously proposed methods for PET volume

definition are semiautomatic and threshold-based, using

either fixed (30%–75% of the maximum activity) (2, 4, 5)

or adaptive approaches incorporating the background activity

(6–10). Unfortunately, these approaches often require

additional a priori information and are user- and system-

dependent. They require manual background regions of

interest (ROIs), and their performance depends on parame-

ters requiring optimization using phantom acquisitions for
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Fig. 1. The fuzzy scheme in the three-class fuzzy locally adaptive
Bayesian (3-FLAB) implementation.
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each scanner and reconstruction. Finally, all of these

approaches are strictly binary and were not validated consid-

ering heterogeneous volumes.

Numerous works have addressed PET lesion segmentation

using more advanced image segmentation methodologies

(11–19). However, the majority of these approaches often

depend on pre- or postprocessing steps such as deconvolution

or denoising, are often binary only, and are validated on

phantom acquisitions or clinical data without rigorous

ground truth.

We previously developed an algorithm for PET volume

definition by combining a fuzzy measure with a locally

adaptive Bayesian-based classification (FLAB) that has

been shown to perform better with respect to fixed threshold-

ing, fuzzy C-means (FCM), or fuzzy hidden Markov chains

(FHMC) for PET volume definition, as far as homogeneous

spheres or slightly heterogeneous and nonspherical tumors

are concerned (20). Preliminary results show that FLAB is

also robust with respect to variability of the acquisition and

reconstruction parameters (24).

Clinical tumors may be characterized by heterogeneous

uptake, thus demanding a nonbinary approach for an accurate

segmentation that may have a significant impact in defining

biological target volumes for dose painting (21). The goals

of this work were to (1) improve the FLAB model by incor-

porating the use of three hard classes and three fuzzy transi-

tions and (2) evaluate its accuracy on real (with known

diameter measured in histology) and simulated (with known

ground truth) data sets containing inhomogeneous tumors.
METHODS AND MATERIALS

Three-class fuzzy Bayesian segmentation (3-FLAB)
The 3-FLAB algorithm is an extension of our previous work

considering only a binary segmentation (20). FLAB automatically

estimates parameters of interest from the image, maximizing the

probability of each voxel to belong to one of the considered classes.

This probability is estimated for each voxel as a function of its value

and the values of its neighbors relative to the voxels’ statistical

distributions in the image, which corresponds to an estimation of

the noise within each class. Hence, each voxel of the volume is

considered a random variable within a Bayesian framework:

PðXjYÞ ¼ PðX;YÞ
PðYÞ ¼

PðYjXÞPðXÞ
PðYÞ ; (1)

where PðXjYÞis the probability of belonging to Class X knowing

Observation Y. This probability is obtained by the product of

PðYjXÞ and PðXÞ, corresponding to the noise model and the spatial

model, respectively. PðYjXÞ is estimated considering the statistical

distribution of the voxels within each class, whereas PðXÞ is esti-

mated using a sliding cube of 3� 3� 3 voxels; hence, each voxel’s

classification is influenced by its neighbors. The parameters to

estimate are the mean and variance of each class and the spatial

probabilities of each voxel with respect to its neighbors. This is

performed iteratively using a stochastic version (SEM) (25) of the

Expectation Maximization (EM) (26) initialized with K-means

(27) or fuzzy C-means (28). In addition, a fuzzy measure between

the classes was added to account for the blur between regions,

assuming each voxel may contain a mixture of classes (22, 23).
The difference between 3-FLAB and the previously developed

binary-only FLAB (20) is the use of three classes and three fuzzy

transitions within the model (see Fig. 1), to deal with both homoge-

neous and heterogeneous activity distributions. Figure 2 demon-

strates the inability of FLAB to handle highly nonuniform activity

distributions, where the lower uptake part of the lesion is errone-

ously considered as part of the background (see Fig. 2b), emphasiz-

ing the need to better model heterogeneous activity distributions.

3-FLAB should retain the accuracy and robustness of the original

model, while also being able to handle the challenging heteroge-

neous activity distributions that are frequently seen in clinical

lesions. The 3-FLAB segmentation workflow is summarized as

follows, and the implementation and mathematical details can be

found in the Appendix.

1. Initialization of both the spatial and noise models parameters:

means and variances of each class are obtained using the

K-means or fuzzy C-means. The prior probabilities are fixed at

one third for each class.

2. Iterative estimation is performed using the SEM by stochastic

sampling for each voxel according to its posterior probability.

3. Segmentation is done by selecting for each voxel the class or

fuzzy level that maximizes its posterior probability and fusion

of fuzzy levels with each hard class to generate a two- or three-

class segmentation map.
Alternative segmentation methodologies used for
comparison

We compared the results of the 3-FLAB algorithm with the binary

FLAB approach and the fuzzy C-means (with two or three clusters)

clustering introduced by Dunn (28) and used to segment PET brain

tumors in (13), as well as an adaptive thresholding (6) (Tbckg):

Ithreshold ¼ a� Imean þ Ibackground: (2)

Imean was obtained by computing the mean of all voxels contained

inside an initial threshold at 70% of the maximum and Ibackground

by computing the mean of the voxels inside a ROI manually drawn

on the background. Imean and Ibackground were subsequently used to



Fig. 2. Binary fuzzy locally adaptive Bayesian (FLAB) model applied to a heterogeneous simulated tumour (a). The
segmentation result (b) clearly misses parts of the tumour.
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derive a first approximation of the source-to-background contrast.

The parameter a was optimized using phantom acquisitions on

each scanner used to obtain the data. The adaptive thresholding

algorithm was implemented using a region-growing approach with

the maximum intensity voxel as a seed and iteratively adding

three-dimensional (3D) neighboring voxels if their value was above

the threshold calculated using Eq. 2.
Validation studies
Data sets: Data Set 1 was used to evaluate the performance of the

algorithm under realistic imaging conditions. It consists of 20 3D

simulated tumors with variable levels of irregular shape and homoge-

neous or nonhomogeneous uptake distributions derived from tumors

in patients undergoing 18F-fluorodeoxyglucose PET/CT investiga-

tions for radiotherapy treatment planning purposes. These images

were acquired in 2D and 3D mode using the GE Discovery LS and

Philips Gemini PET/CT scanners, respectively. Three of these tumors

illustrating the range of sizes, shapes, and heterogeneities considered

are shown in Fig. 4a–4c. The goal was to produce realistic images of

PET tumors while retaining a voxel-based ground truth to compute

accurate voxel-based classification errors. Half of the tumors were

simulated considering a homogeneous uptake distribution, whereas

the other half was simulated using significant heterogeneity within

the tumor. The procedure followed to generate these images is

illustrated in Fig. 3 and detailed in the following paragraphs.

Each clinical tumor is first manually delineated on the PET image

by a nuclear medicine expert, thus creating a voxelized volume that

represents the ground truth of the simulation. The activity levels

attributed to each of the tumor parts were derived from the average

activity measured in the same areas of the tumor in the correspond-

ing patient images. This ground truth tumor structure is subse-

quently transformed into a nonuniform rational B-splines

(NURBS) volume using Rhinoceros (CADLINK software, Moran-

gis, France), for insertion into the NURBS-based CArdiac-Torso

(NCAT) phantom (29) attenuation maps at the approximate position

where it was located in the patient (30). No respiratory or cardiac

motions were considered. Simulations using a model of the Philips

PET/CT scanner previously validated with Geant4 Application for

Tomography Emission (GATE) (31) were carried out. Forty-five

million coincidences were simulated corresponding to the statistics
of a clinical acquisition over a single-axial 18-cm field of view (31).

Images were subsequently reconstructed using OPL-EM (seven

iterations, one subset) (31) with two voxel sizes (4 � 4 � 4 for

the Philips Gemini and 2 � 2 � 5 mm3 for the GE Discovery LS)

to match those used in the corresponding clinical images.

Data Set 2 contains 18 images of lung tumors from patients with

histologically proven non–small cell lung cancer (clinical Stage Ib–

IIIb), acquired on the Siemens Biograph PET/CT scanner and recon-

structed using OSEM (four iterations, eight subsets), with scatter

and CT-based attenuation correction, and 5.31 � 5.31 � 3.38

mm3 voxels. These tumors were surgically extracted for a histology

study in which their maximum diameter was measured by

macroscopic examination (32). These diameters range from 15 to

90 mm (44 � 21). One of these tumors is shown in Fig. 4d.

Analysis: Because our goal is not the detection of a lesion in the

whole image but the accurate estimation of its volume and shape, we

assume it has been detected and isolated by the clinician within a 3D

‘‘box’’ encompassing the tumor.

Because a ground truth was available, classification errors (CE)

were computed. In the case of a two-class ground truth, the CE is:

CE ¼ card{tjctsxt}

card{tjxt ¼ 1}
� 100; (3)

where ct is the classification of voxel t, and xt is the true class. Card is

the number of elements. This error measurement takes into consid-

eration the spatial distribution of the tumor by considering both

background voxels classified as object and object voxels classified

as background. Consequently, this measure is more appropriate

than simple volume estimation, which could lead to overall small

volume errors associated with largely inaccurate segmentations. In

addition, the errors are computed relatively to the size of the object,

to avoid biases relative to the size of the processing box. In the case

of a three-class ground truth, CE may be computed for each of the

three classes using Eq. 4 or with respect to a binarized ground truth

(second and third class merged) using Eq. 3.

CEc ¼
card{tjxt ¼ c; ctsc}þ card{tjxtsc; ct ¼ c}

card{tjxt ¼ c}
� 100; (4)

where CEc stands for the classification error associated with a given

class c.



Fig. 3. The simulation of realistic positron emission tomography images.
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Two analyses were conducted using Data Set 1. The first consid-

ered the entire data set (both homogeneous and heterogeneous

tumors) and CE computed using Eq. 3 to compare overall perfor-

mances of FLAB (binary only), 3-FLAB, FCM, and Tbckg. The

second considered only the 10 heterogeneous tumors to compute

CE2 and CE3 using Eq. 4 for 3-FLAB and FCM with three clusters.

The segmentation accuracy on the tumors with histology (Data

Set 2) was assessed by segmenting the clinical image and subse-

quently measuring the maximum diameter on the segmented

volumes to compare it with the histology measurement.
RESULTS

Figure 5 contains one axial slice of the segmentations

obtained on three simulated tumors of Data Set 1 and one

tumor of Data Set 2. Figure 6a contains the mean classifica-

tion errors and standard deviation obtained by all the methods

on the 20 tumors of Data Set 1. FLAB (binary only)

performed well on homogeneous tumors but failed as

expected on strongly heterogeneous lesions, leading to over-

all errors of 15% � 11%. 3-FLAB, in contrast, produced

segmentation maps closer to the ground truth, both visually

and quantitatively, with errors between 5% and 15%

(9% � 8%). FCM (with two or three clusters) was competi-

tive with respect to 3-FLAB for some tumors but showed

a higher variability (10%–40%) and mean error (20% �
12%). This translated qualitatively in FCM being unable to

differentiate two regions within the tumor as well as being

unable to detect discontinuities in the contours (e.g.,

Fig. 5d, first row). In addition, for the regions where a transi-

tion was present between the high uptake region and the

background (e.g., Fig. 4d), the 3-FLAB approach was the

only one giving accurate representation of this transition

(Fig. 5c vs. Fig. 5d, last row). Tbckg was not able to produce

satisfactory segmentation in several cases. Tumors with high

overall contrast were approximately extracted from the back-

ground (e.g., Fig. 5e, rows 2–4). However, as a binary

method, it is unable to delineate uptake distributions within

the tumor. In several cases, the heterogeneity was significant,

and Tbckg lead to significant underevaluation of the tumor

volume (CE up to 60% with a mean of 17% � 14%) because
it tends to extract the high-activity region or parts of the re-

duced uptake region only (e.g., Fig. 5e, first row).

Figure 6b compares 3-FCM (using three clusters) and

3-FLAB concerning the three-class segmentation of the 10

heterogeneous simulated tumors of Data Set 1. 3-FCM is

less accurate and robust compared with 3-FLAB, especially

in the delineation of higher activity regions (third class),

with about twice the mean error and standard deviation

(24% � 20%) of 3-FLAB (11% � 8%).

Figure 7 contains the mean error and standard deviation

with respect to the maximum diameter, computed on the

tumor histology database (Data Set 2). Whereas all methods

gave relatively low mean errors (#3%), the standard devia-

tion associated with FCM and Tbckg (13% and 12%, respec-

tively) is about twice that of 3-FLAB (<6%), and binary

FLAB showed a standard deviation of almost 10%. The

low mean error for all these algorithms is explained by the

fact that there were about the same amount of under- and over-

estimation of the diameters in this data set, resulting in an

overall low mean error. Here the standard deviation is a better

indicator of the accuracy obtained on the data set and demon-

strates higher accuracy and robustness for 3-FLAB.
DISCUSSION

Functional volume delineation represents an area of interest

for multiple clinical applications (routine and research) of

PET. Such areas include response to therapy studies and the

use of biological tumor volumes in radiotherapy treatment

planning. Although several fully automatic algorithms have

recently been proposed (11–20), segmentation methodolo-

gies currently used in clinical practice are based on the use

of fixed and adaptive thresholding (4–10). These algorithms

have been shown to determine functional volumes accurately

under specific imaging conditions of spherical and homoge-

neous activity distribution object in phantom studies and

have been evaluated on clinical images for which the ground

truth is unknown. In clinical practice, lesions are often hetero-

geneous in shape and uptake. To address these issues, we have

extended a previously developed algorithm to evaluate



Fig. 4. Data sets illustration. (a–d) Examples of clinical tumors (up) with CT (left) and PET (right), and the corresponding
simulated PET (down): (a–c) Data Set 1; (d) Data Set 2.
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lesions with nonuniform uptake and nonspherical forms. In

addition, we have proposed an evaluation framework includ-

ing both realistic simulated patient lesions and histological

assessment of tumor diameters, allowing for evaluation of

segmentation algorithms under standard imaging conditions

and the added advantage of knowing the ground truth.

The inability of the adaptive thresholding considered in

this study to segment complex tumors accurately is

demonstrated by its poor performance. This is explained by

the fact that in cases of heterogeneous uptake, the 70%

threshold used for the initial estimation of the tumor-to-back-

ground contrast may retain only the high uptake region, thus

leading to incorrect contrast estimation. However, if the

lesion is small or has a small contrast, the 70% threshold

may lead to an initial overestimation of the volume of the

tumor, and hence an underestimation of its uptake and an

incorrect estimation of the contrast, for which the subsequent

adaptive thresholding may not be able to compensate. In

addition, the background ROI is user-dependent with a poten-

tially high impact on the result, especially with heteroge-
neous background. In such cases, we systematically

selected the ROI that resulted in the lowest error. Finally,

the region growing implementation avoids incorporating

false positives of the background if they are not connected

to the main tumor, especially when the contrast is low or

the background is noisy and heterogeneous. However, it

also makes the algorithm dependent on the seed location

and can lead to missing parts of the tumor when several

high-uptake regions are connected by low-uptake regions.

FCM can produce binary or three-class segmentations, but

its robustness and accuracy are much lower compared with

FLAB because it incorporates neither spatial correlation

nor noise modeling. One advantage of the Tbckg over FCM

is its region growing implementation that makes it less sus-

ceptible than FCM to the inclusion of high-intensity voxels

of the background. Therefore, FCM usually performs poorer

than Tbckg for low-contrast lesions and noisy images but bet-

ter for heterogeneous activity distributions within the tumor.

In contrast, 3-FLAB performed accurately even under chal-

lenging contrast, noise, and heterogeneity conditions, with



Fig. 5. Segmentations of the tumors in Fig. 4a–4d: (a) ground truth; (b) positron emission tomographic image; segmen-
tations for (c) three-class fuzzy locally adaptive Bayesian, (d) fuzzy C-means, and (e) adaptive threshold models.
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overall superior performance compared with the other

algorithms considered here.

The need for more than three classes may arise for hetero-

geneous tumors on a heterogeneous background. However,

all the clinical tumors considered in this study were correctly

delineated using two or three classes because the contrasts

between the heterogeneities within the tumor are usually

much higher than those occurring in the background. Hence,

only one hard class may be sufficient to deal with the back-

ground, whereas two are required to correctly handle the

significantly different uptakes occurring inside the tumor.

Eventually the 3-FLAB algorithm could be extended to

more than three classes assuming that only pairs of hard

classes generate fuzzy transitions. One also has to keep in

mind that using more classes will lead to smaller regions,

but those regions within the tumor will subsequently be

used for quantification or radiotherapy dose boosting and/

or painting and should therefore be kept reasonably large.

The potential impact of using three classes proposed by

3-FLAB should therefore be investigated before more

complex segmentations using additional classes can be

considered.

We have already demonstrated that FLAB performs well

for small lesions down to 13 mm in diameter (20), and this

study was not designed to investigate specifically the ability

of 3-FLAB to deal with small tumors because these rarely
exhibit heterogeneous uptake that can be detected on the

PET image considering the existing resolution limits.

3-FLAB retains all the characteristics of FLAB but also has

the ability to consider a third class and therefore handle non-

uniform lesion activity distributions. Thus, 3-FLAB does not

as such improve the delineation of small (<2 cm) lesions.

However, the higher/lower uptake regions within the larger

tumors are often of small size, comparable to that of small

lesions, with PVE affecting them with respect to their ‘‘back-

ground,’’ which is, in fact, the other part of the tumor with

a different uptake. As Fig. 6b demonstrates, 3-FLAB is

capable of accurately segmenting these regions.

An application that could greatly benefit from the use of

FLAB is radiotherapy treatment planning (33). It is now

acknowledged that planning based on PET/CT volumes

improves tumor delineation by reducing inter- and intraob-

server variability (32, 34). It can also lead to the inclusion

of regions not visible on CT or the exclusion of regions with-

out significant uptake (35). Using the 3-FLAB algorithm

could help lower inter- and intraobserver variability, as

well as shorten the time-consuming delineation process

associated with currently implemented algorithms given the

need for multiple phantom studies in the use of adaptive

thresholding. 3-FLAB takes a few seconds per iteration

even for the largest tumors considered in this study (on a sin-

gle 2-Ghz core processor in C++ implementation). Further,
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‘‘dose painting’’ can be facilitated by the nonbinary nature of

the proposed segmentation, allowing for automatic definition

of ROIs inside the tumor—for example, in dose-escalation

studies (36)—in addition to the external contour information

for optimized dosimetry, potentially reducing the dose deliv-

ered to healthy surrounding tissues and organs. The impact of

such improved accuracy on overall patient outcome remains

to be demonstrated in clinical studies, which are planned for

the future. Finally, FLAB robustness with respect to the noise

characteristics associated with the use of different scanners,

acquisition protocols, and reconstruction algorithms has

been demonstrated in a preliminary study (24) and should

allow its use with any type of PET images without the need

for time-consuming preprocessing optimization.
The proposed algorithm may also have an impact on

diagnosis and therapy response assessment when combined

with PVE correction (PVC) for accurate quantification.

With various PVC approaches, anatomic information from

MRI or CT is used to improve the quantitative and qualitative

accuracy of functional images (37, 38). Unfortunately, when

no anatomic image is available or no correlation exists

between the anatomic and functional structures, such

approaches are not easy to use (3). This is especially true in

cases of large heterogeneous tumors for which there is little

to no correlation between the anatomic and functional infor-

mation. A potential solution will be the use of the FLAB

result instead of the anatomic image in combination with

one of the previously proposed PVC algorithms. This should

lead to improved contrast at the object’s borders as well as

improved quantification in the regions within the tumor.

Such combination recently demonstrated encouraging

results (39) and warrants further investigation regarding the

potential impact in clinical therapy response studies.
CONCLUSION

A modified version of the FLAB algorithm has been devel-

oped to include the estimation of three hard classes and three

fuzzy transitions. This automatic approach combines statisti-

cal and fuzzy modeling to address specific issues associated

with 3D-PET images, such as noise and PVE. Its accuracy

has been assessed on both simulated and clinical images of

complex shapes containing inhomogeneous activities and

small regions. The results demonstrate the ability of

3-FLAB to delineate such lesions, for which the threshold-

based methodologies suggested until now have failed.
REFERENCES
1. Krak NC, Boellaard R, Hoekstra OS, et al. Effects of ROI def-
inition and reconstruction method on quantitative outcome and
applicability in a response monitoring trial. Eur J Nucl Med Mol
Imaging 2005;32:294–301.

2. Jarritt PH, Carson KJ, Hounsel AR, Visvikis D. The role of
PET/CT scanning in radiotherapy planning. Brit J Rad 2006;
79(Suppl):S27–35.
3. Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET
tumour imaging. J Nucl Med 2007;48:932–945.

4. Erdi YE, Mawlawi O, Larson SW, et al. Segmentation of lung
lesion volume by adaptive positron emission tomography image
thresholding. Cancer 1997;80(Suppl 12):2505–2509.

5. Greco C, Rosenzweig K, Cascini GL, et al. Current status of
PET/CT for tumour volume definition in radiotherapy treatment



308 I. J. Radiation Oncology d Biology d Physics Volume 77, Number 1, 2010
planning for non-small cell lung cancer (NSCLC). Lung Cancer
2007;57:125–134.

6. Nestle U, Kremp S, Schaefer-Schuler A, et al. Comparison of
different methods for delineation of 18F-FDG PET-positive
tissue for target volume definition in radiotherapy of patients
with non–small cell lung cancer. Jour Nucl Med 2005;46:
1342–1348.

7. Black QC, Grills IS, Kestin LL, et al. Defining a radiotherapy
target with positron emission tomography. Int J Radiat Oncol
Biol Phys 2004;60:1272–1282.

8. Davis JB, Reiner B, Huser M, et al. Assessment of 18(F)
PET signals for automatic target volume definition in
radiotherapy treatment planning. Radiother Oncol 2006;80:
43–50.

9. Daisne J-F, Sibomana M, Bol A, et al. Tri-dimensional
automatic segmentation of PET volumes based on measured
source-to-background ratios: influence of reconstruction
algorithms. Radiother Oncol 2003;69:247–250.

10. Van Dalen JA, Hoffman AL, Dicken V, et al. A novel iterative
method for lesion delineation and volumetric quantification
with FDG PET. Nucl Med Commun 2007;28:485–493.

11. White CJ, Brady JM. A semi-automatic approach to the delinea-
tion of tumour boundaries from PET data using level sets. Soci-
ety of Nuclear Medicine 52nd Annual Meeting. Toronto:
Canada; June 2005. abstract 314.

12. Tylski P, Bonniaud G, Decenciere E, et al. 18F-FDG PET
images segmentation using morphological watershed: A phan-
tom study. IEEE Neurosci Symp Conference Record 2006;4:
2063–2067.

13. Zhu W, Jiang T. Automation segmentation of PET image for
brain tumours. IEEE Neurosci Symp Conference Record
2003;4:2627–2629.

14. Montgomery DWG, Amira A, Zaidi H. Fully automated
segmentation of oncological PET volumes using a combined
multiscale and statistical model. Med Phys 2007;34:
722–736.

15. Demirkaya O. Lesion segmentation in wholebody images of
PET. IEEE Neurosci Symp Conference Record 2003;4:
2873–2876.

16. Geets X, Lee JA, Bol A, et al. A gradient-based method for
segmenting FDG-PET images: Methodology and validation.
Eur J Nucl Med Mol Imaging 2007;34:1427–1438.

17. Li H, Thorstad WL, Biehl KJ, et al. A novel PET tumor delin-
eation method based on adaptive region-growing and dual-front
active contours. Med Phys 2008;35:3711–3721.

18. Yu H, Caldwell C, Mah K, et al. Co-registered FDG PET/CT-
based textural characterization of head and neck cancer for radi-
ation treatment planning. IEEE Trans Med Imaging 2009;28:
374–383.

19. Hatt M, Lamare F, Boussion N, et al. Fuzzy hidden Markov
chains segmentation for volume determination and quantitation
in PET. Phys Med Biol 2007;52:3467–3491.

20. Hatt M, Turzo A, Roux C, et al. A fuzzy Bayesian locally adap-
tive segmentation approach for volume determination in PET.
IEEE Trans Med Imaging 2009;28:881–893.

21. Ling CC, Humm J, Larson S, et al. Towards multi-
dimensional radiotherapy (MD-CRT): Biological imaging
and biological conformality. Int J Radiat Oncol Biol Phys
2000;47:551–560.
22. Caillol H, Pieczynski W, Hillon A. Estimation of fuzzy
Gaussian mixture and unsupervised statistical image segmenta-
tion. IEEE Trans Image Processing 1997;6:425–440.

23. Salzenstein F, Pieczynski W. Parameter estimation in hidden
fuzzy Markov random fields and image segmentation. Graphic
Models Image Processing 1997;59:205–220.

24. Hatt M, Turzo A, Bailly P, et al. Automatic delineation of func-
tional volumes in PET: A robustness study. Presented at the
Society of Nuclear Medicine 2009. Annual Meeting Toronto:
Canada;June 1317.

25. Celeux G, Diebolt J. L’algorithme SEM: un algorithme
d’apprentissage probabiliste pour la reconnaissance de mél-
anges de densités. Revue Statistique Appliquée 1986;34:35–52.

26. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from
incomplete data via the EM algorithm. J R Stat Soc B 1977;39:
1–38.

27. McQueen J. Some methods for classification and analysis of
multivariate observations. Proc 5th Berkeley Symp Math Stat
Prob 1967;1:281–297.

28. Dunn JC. A fuzzy relative of the ISODATA process and its use
in detecting compact well-separated clusters. J Cybernet 1974;
31:32–57.

29. Segars WP. Development and application of the new dynamic
NURBS-based cardiac-torso (NCAT) phantom [Ph.D. thesis].
Chapel Hill, NC: University of North Carolina; 2001.

30. Le Maitre A, Segars WP, Marache S, et al. Incorporating patient
specific variability in the simulation of realistic whole body
18F-FDG distributions for oncology applications. Proc IEEE,
in press.

31. Lamare F, Turzo A, Bizais Y, et al. Validation of a Monte Carlo
simulation of the Philips Allegro/Gemini PET systems using
GATE. Phys Med Biol, 2006;51:943–962.

32. Van Baardwijk A, Bosmans G, Boersma L, et al. PET-CT-
based auto-contouring in non-small-cell lung cancer correlates
with pathology and reduces interobserver variability in the
delineation of the primary tumour and involved nodal volumes.
Int J Radiat Oncol Biol Phys 2007;68:771–778.

33. Pan T, Mawlawi O. PET/CT in radiation oncology. Med Phys
2008;35:4955–4966.

34. Fox JL, Rengan R, O’Meara E, et al. Does registration of PET
and planning CT images decrease interobserver and intraob-
server variation in delineating tumor volumes for non-small-
cell lung cancer? Int J Radiat Oncol Biol Phys 2005;62:70–75.

35. Ashamallaa H, Raa S, Parikh K, et al. The contribution of inte-
grated PET/CT to the evolving definition of treatment volumes
in radiation treatment planning in lung cancer. Int J Radiat
Oncol Biol Phys 2005;63:1016–1023.

36. Sovik A, Malinen E, Olsen DR. Strategies for biologic image-
guided dose escalation: A review. Int J Radiat Oncol Biol
Phys 2009;73:650–658.

37. Rousset OG, Ma Y, Evans AC. Correction for partial volume
effects in PET: Principle and validation. J Nucl Med 1998;39:
904–911.

38. Boussion N, Hatt M, Lamare F, et al. A multiresolution image
based approach for correction of partial volume effects in emis-
sion tomography. Phys Med Biol 2006;51:1857–1876.

39. Boussion N, Hatt M, Visvikis D. Partial volume correction in
PET based on functional volumes. J Nucl Med 2008;49(Suppl
1):388.


	Accurate Automatic Delineation of Heterogeneous Functional Volumes in Positron Emission Tomography for Oncology Applications
	Introduction
	Methods and Materials
	Three-class fuzzy Bayesian segmentation (3-FLAB)
	Alternative segmentation methodologies used for comparison
	Validation studies

	Results
	Discussion
	Conclusion
	References


