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Purpose: To develop and validate an accurate predictive model and a nomogram for pathologic complete
response (pCR) after chemoradiotherapy (CRT) for rectal cancer based on clinical and sequential PET-CT
data. Accurate prediction could enable more individualised surgical approaches, including less extensive
resection or even a wait-and-see policy.

Methods and materials: Population based databases from 953 patients were collected from four different
institutes and divided into three groups: clinical factors (training: 677 patients, validation: 85 patients),

Keywords: . pre-CRT PET-CT (training: 114 patients, validation: 37 patients) and post-CRT PET-CT (training: 107
Response prediction . s .
PET imaging patients, validation: 55 patients). A pCR was defined as ypTONO reported by pathology after surgery.

The data were analysed using a linear multivariate classification model (support vector machine), and
the model’s performance was evaluated using the area under the curve (AUC) of the receiver operating
characteristic (ROC) curve.
Results: The occurrence rate of pCR in the datasets was between 15% and 31%. The model based on clin-
ical variables (AUCain = 0.61 + 0.03, AUCyajidation = 0.69 £ 0.08) resulted in the following predictors: cT-
and cN-stage and tumour length. Addition of pre-CRT PET data did not result in a significantly higher per-
formance (AUCiain = 0.68 +0.08, AUC,ajidation = 0.68 £ 0.10) and revealed maximal radioactive isotope
uptake (SUV.x) and tumour location as extra predictors. The best model achieved was based on the
addition of post-CRT PET-data (AUCq.in = 0.83 + 0.05, AUCyajidation = 0.86 + 0.05) and included the follow-
ing predictors: tumour length, post-CRT SUV .« and relative change of SUV,.x. This model performed sig-
nificantly better than the clinical model (pyain < 0.001, Pyaiidation = 0.056).
Conclusions: The model and the nomogram developed based on clinical and sequential PET-CT data can
accurately predict pCR, and can be used as a decision support tool for surgery after prospective validation.
© 2010 Elsevier Ireland Ltd. All rights reserved. Radiotherapy and Oncology 98 (2011) 126-133

Machine learning
Rectal cancer
External validation

Over the past decades, treatment outcomes for rectal cancer
have changed dramatically. A better surgical technique, total mes-
orectal excision (TME), and the introduction of neoadjuvant treat-
ments in locally advanced rectal cancer (LARC) have significantly
decreased the risk of locoregional relapse [1,2]. In the last nine
years at least seven published phase III trials have evaluated the
role of adjuvant radiotherapy in rectal cancer [3]. These have pro-
vided an evidence base demonstrating the efficacy of both preop-
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erative radiotherapy and preoperative concurrent chemotherapy
(CRT). CRT has been reported to induce significant tumour down-
sizing and downstaging, [4-6] with a pathologic complete re-
sponse (pCR) after CRT observed in 10%-30% of patients [2,4-8].
Although some studies showed no correlation, [9] many others re-
ported that patients showing a pCR following preoperative CRT
have improved long-term outcomes including excellent local con-
trol rates and disease-free survival, regardless of their initial clini-
cal T- and N-stages [10-13].

However, despite the often phenomenal downsizing and some-
times even complete pathological responses after CRT, these pa-
tients are still operated with a standard extended surgical
procedure due to the lack of reliable accurate preoperative
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diagnostic tools. However, it may be questioned whether a stan-
dard resection is still necessary, considering the good outcome of
these patients reported with less invasive treatments [14,15]. If
accurately selected, patients with a complete response (no residual
tumour) may undergo a less extensive resection or even a so called
‘wait-and-see’ policy. Compared to standard surgery, the benefits
of these treatments are reduced morbidity and mortality (e.g.,
anastomotic leakage, relaparotomy, wound and pelvic infection,
abscess, colostomy, chronic wound healing disturbances, faecal
or urinary incontinence and sexual dysfunction), improved quality
of life and reduced treatment costs.

Thus, an accurate prediction of pCR can help in the selection of
patients for more optimised treatment, sphincter-preserving sur-
gery, less extensive resection, more intense radiation treatment,
or even delayed surgery with a wait-and-see policy [2,3,16]. These
considerations led to the overall goal of this study: to develop an
accurate, data-driven model to predict pathologic complete re-
sponse for rectal cancer patients as decision support for more indi-
vidualised treatment approaches in the future.

The clinical variables associated with a better response to pre-
operative CRT include circumferential tumour extent, tumour dif-
ferentiation, preoperative  classification, carcinoembryonic
antigen (CEA) level, distance from anal verge, and time to surgery
[6,17,18]. Recently, it has also been suggested that PET imaging
might be correlated with tumour response after CRT in locally ad-
vanced rectal cancer. However, the studies involved used only a
small number of patients, which meant that contradictory results
were found. Further, only semi-quantitative PET measurements
were used and analysed with univariate statistics [4,5,7,19-26].
Multivariate analysis was performed in only one study, whose re-
sults lacked statistical significance [27]. Notably, no studies veri-
fied and validated their results with external datasets, despite
the fact that this represents an important prerequisite for the gen-
eralizability of prediction models for other institutes.

In the current study, population based data from four different
institutes were collected and used to train and validate predictive
models for pCR. We hypothesised that the addition of PET imaging
data to clinical variables significantly increases the performance of
prediction models for pCR after CRT as compared to models based
on clinical data alone.

The study was performed within the framework of a decision
support system based on centralised datasets. The increasing
amount of available patient information requires automatic meth-
ods for model building and analysis. Machine learning methods
can be used to update the models continuously by feeding them
with information of new patients. The increasing complexity of
prediction models, too, means that the representation and inter-
pretation of the results also become more important. Tools to en-
hance interpretation for the «clinic include visualisation
techniques such as nomograms and graphical networks. Nomo-
grams are statistical tools that enable users to calculate the overall
probability of a specific clinical outcome for an individual patient
[28]. In this study, the nomogram with the highest accuracy for
the prediction of pCR is provided.

Methods and materials

Study population

Six population based datasets were collected from four insti-
tutes: Maastro Clinic (GROW, MUMC, Maastricht, the Netherlands),
Universita Cattolica del S.Cuore (Rome, Italy), S. Maria della Miseri-
cordia Hospital (Rovigo, Italy) and University Hospital Gasthuis-
berg (Leuven, Belgium). In total, 953 patients met the criteria for
inclusion: long-course RT with neoadjuvant chemotherapy and
the availability of pathological outcome for pCR. Of these, 276

patients underwent a pre-CRT PET scan (one week before the start
of CRT), and 169 patients had both pre- and post-CRT PET scans
(one week before surgery, and six to eight weeks after the end of
CRT). The sequential PET data from Rovigo have already been pub-
lished as a prospective study [20], the Leuven data were collected
prospectively for the BioCare project (LSHC-CT-2204-505785) and
the rest of the data were gathered for a population-based study
registered in the Dutch Trial Register (NTR2166). All compositions
of the cohorts were approved by the local IRB committees. The pa-
tient characteristics are reported in Table 1. The datasets were di-
vided into three groups, based on PET data availability: (1) clinical
variables only, (2) clinical variables with pre-CRT PET variables
(PET-pre), (3) clinical variables with both pre- and post-CRT PET
variables (PET-post). For each group, a training set and an external
validation set were defined. The training sets were used to identify
the pCR predictors, while the validation sets were used to test the
performance of the models in other centres. Datasets from a single
centre with the highest number of patients were used for training.
A dataset was deemed not useful for external validation if it origi-
nated from the same centre as the corresponding training set. The
definition of the different combined training and validation sets is
explained in Table 2, based on the datasets in Table 1.

The available clinical variables were age, gender (0: female, 1:
male), clinical tumour (cT) and nodal (cN) stage, and two variables
based on MRI (or endoscopy if MRI was unavailable): tumour loca-
tion categorised in three levels (1: low, 0-5 cm from anal verge; 2:
mid, 5-10 cm from anal verge; 3: high, >10 cm from anal verge)
and tumour length (cm). For the patients who had PET-CT scans,
the tumours were semi-automatically contoured at Maastro Clinic
using dedicated software (TrueD, Siemens Medical, Erlangen, Ger-
many). Standardised uptake-value (SUV) thresholding was based
on the tumour-to-background signal ratio, with the gluteus muscle
as reference background [29,30]. From the resulting tumour con-
tour, maximal tumour diameter (MaxD), gross tumour volume
(GTV), and maximal and mean SUV values within the GTV were
calculated. If the post-CRT PET-CT scan was available, the same
variables were scored, and a response index (RI) for each variable
was calculated. For variable X, the response index is the relative
percent difference between the value of the post-CRT and pre-
CRT and it was defined as RI = (Xpre — Xpost)/Xpre X 100%. Thus, six
variables were evaluated for the clinical dataset, 10 for the PET-
pre dataset and 18 for the PET-post dataset. From these sets, the
models selected subgroups of variables with significant predictive
value for pCR.

All patients underwent surgery. Pathological complete response
was defined as ypTONO, extracted from the pathologic reports of
surgical specimens. All other cases (ypT+ and/or ypN+) were con-
sidered non-responders, making the pCR a binary outcome (0/1).
The specimens were not re-evaluated centrally but the pathology
protocols were very similar between institutes (3-5 mm slices of
rectum tumour, intensified evaluation on several blocks of tissue
at the tumour site, evaluation on 2-3 sublevels when no tumour
tissue was found in initial block).

Statistical analysis

Missing values in the dataset were substituted by the mean
[31]. This method performed similar to other, more complex sub-
stitution methods for small percentages of missing values (e.g.,
expectation-maximisation imputation, regression estimation). No
variables in the datasets exceeded 5% of missing values. Patients
who missed tumour location and length in the clinical datasets
(Roma: n =132 and Maastricht: n = 29) were excluded because of
too large amounts of missing data for these variables. All patient
numbers stated in this paper were extracted after the missing va-
lue procedure. To compare the weights of significance assigned to



128 Prediction of pathologic complete response in rectal cancer

Table 1
Patient characteristics for six datasets from four different institutes. Clinical, PET-pre and PET-post groups are defined. Percentages of the total patient numbers are given for
binary or ordinal variables. Mean and standard deviation (SD) are given for continuous variables. x denotes missing values. RT = Radiotherapy, PF = per fraction.

Center Maastricht Rome Rovigo Leuven

Dataset M1 M2 R1 R2 C1 L1

Period 2004-2006 2004-2006 1984-2008 2007-2008 2003-2007 2005-2007

# Patients 114 21 677 18 107 16

Clinical Validation - Training - - -

PET-pre Training - - Validation - Validation

PET-post - Validation - Validation Training Validation

Gender (%)

Male 63 67 63 83 74 81

Female 37 33 37 17 26 19

Age

Mean 65.6 66.1 61.3 60.4 66.3 58.6

SD 10.0 10.6 10.2 7.1 10.8 10.1

cT (%)

1 0 0 0 0 0 0

2 1 0 3 11 0 0

3 68 81 86 56 90 94

4 30 14 11 33 10 6

X 1 5 0 0 0 0

cN (%)

0 25 38 23 17 51 0

1 48 48 45 33 38 62

2 26 10 30 50 10 38

X 1 4 2 0 1 0

cM (%)

0 73 71 100 94 100 100

1 25 19 0 6 0 0

X 2 10 0 0 0 0

ypTONO (%)

No 85 81 80 78 76 69

Yes 15 19 20 22 24 31

RT dose

Mean 50.4 50.4 49.0 52.7 55.7 45.7

SD 0 0 55 33 3.1 1.8

RT dose PF 1.8 1.8 1.8 1.8 2.2 1.8

# Chemo types 1 1 11 2 1 1
Table 2

Predictor selection and ROC analysis. Predictive variables are given with their corresponding assigned normalised weights from multivariate analysis (MVA). For each variable the
p-value from univariate analysis (UVA) is given. Mean AUC and standard deviation (SD) are given for each variable set. RI = response index, SUV = standard uptake value,
MaxD = maximal diameter (PET-CT).

Variable set Type Size Predictors (MVA) Weights (MVA) p-value (UVA) AUC SD
Clinical Training (R1) 677 Tumour length —0.085 <0.001 0.61 0.03
cT-stage -0.074 0.001
cN-stage —0.060 0.001
Validation (M1) 85 - - - 0.69 0.08
Clinical + PET-pre Training (M1) 114 MaxDye -0.12 0.003 0.68 0.08
cN-stage -0.12 0.001
Tumour location 0.094 0.84
SUVmax-pre —0.087 0.29
Validation (R2, L1) 34 - - - 0.68 0.10
Clinical + PET-pre + PET-post Training (C) 107 Rlsyvmax 0.20 <0.001 0.83 0.05
Tumour length -0.20 <0.001
SUVmax-post -0.14 <0.001
Validation (M2, R2, L1) 55 - - - 0.86 0.05

the variables by the model, all variables were normalised by sub-
tracting the mean, and then divided by the standard deviation.
To classify the complete responders and non-responders, a lin-
ear multivariate method suitable for binary classification from the
machine learning field was used: the support vector machine
(SVM) [32]. The SVM variant used (proximal SVM or pSVM) per-
forms equally accurately but much faster than normal support vec-
tor machines [33]. The different datasets’ performances in

predicting pCR were evaluated by analysing the area under the
curve (AUC) of the receiver operating characteristic (ROC) curve
[34]. The maximum value of the AUC is 1.0, indicating a perfect
prediction model; a value of 0.5 indicates a random chance of cor-
rect prediction.

To select the variables that contribute to pCR prediction, an
exhaustive feature search was performed, with all possible variable
combinations used as input for the pSVM model. The set of vari-
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ables resulting in the highest AUC was selected as the final predic-
tive set. To avoid over-fitting of the model through selection of the
highest AUC, the variable sets resulting in AUCs that deviated less
than 5% from the maximal AUC were compared to the final variable
set. If conflicts occurred or if variables did not contribute signifi-
cantly, selected variables were interchanged by considering their
prevalence in the highly predictive sets, the factor analysis and
the Spearman correlation coefficient (i.e., highly correlated and
dependent variables are not present in the same predictive set).
Furthermore, an extra univariate analysis was performed using
the Wilcoxon rank sum test.

Classification methods normally require at least several hun-
dred cases. Because of the relatively small number of available pa-
tients, two extra evaluation methods were used. The first was
leave-one-out (LOO) cross-validation, used to calculate an AUC
for the training set. In LOO cross-validation, a single patient is se-
lected from the original training dataset and used as the validation
dataset, while the data from the remaining patients are used to
train the model. This is repeated until all patients have been se-
lected once for validation. However, no LOO cross-validation was

used for the external dataset. The second evaluation method was
bootstrapping, which results in a more accurate approximation of
the real dataset distribution [35]. This means that 1000 datasets
are generated from the original dataset containing n patients by
selecting these n patients, but with resampling (i.e., patients can
be present in the dataset more than once). For every bootstrapped
dataset, an AUC was calculated. The mean AUC with the corre-
sponding standard deviation was then calculated with size 1000.
This non-parametric method allows comparison of the confidence
intervals of the AUCs of different datasets without making assump-
tions about the AUC distributions [36]. The distribution of the dif-
ference in mean AUC (AAUC) between the datasets was tested by
calculating the two-sided p-value, i.e., the fraction of AAUC sam-
ples smaller or larger than zero (depending on the dominant sign
of AAUC).

Nomograms can reduce statistical predictive models to a single
numerical estimate of the probability of an event, and visualise the
effect of each selected variable on this probability [37]. The model
output of the pSVM models consists of assigned weights for each
variable and an offset. The probability of a patient having a pCR
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Fig. 1. (A) Tumour contour in a fused FDG-PET-CT made pre-CRT. (B) Corresponding post-CRT FDG-PET-CT scan with tumour contour. (C) Boxplot of SUV,.x on PET-scans
made pre-CRT and post-CRT (significant decrease: p < 0.001). (D) Boxplot of the GTV for the case of pre-CRT and post-CRT (significant decrease: p < 0.001).
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directly to the probability of responding with a pCR (ypTONO). The probability scale is the only logarithmic scale.
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Fig. 4. Calibration of the nomogram for the validation data. For the four equally
numbered subgroups (vertical lined intervals in figure), the predicted probability of
a pCR and the actual fraction in the population were evaluated. The dashed line
represents perfect calibration and the solid line is the linear fit of the calibration
data.

can be calculated using logistic regression on the pSVM output
[38]. The complete procedure to convert SVM output to a nomo-
gram is described in detail elsewhere [39]. Developing a nomo-
gram requires threshold selection in the ROC curve. For response
prediction specificity is most important, because it is not preferred
to predict non-responders as responders, which would result in
under-treatment. Therefore, the threshold was selected in such a
way that at least 90% of non-responders were correctly predicted.
Partial ROC curve optimisation [40] has been tested but it had no
gain for specificity compared to overall AUC maximisation. Calibra-
tion of the nomogram, i.e., the agreement between predicted prob-
ability of complete response and true probability in the population,
was performed by an assessment of the overall agreement and the
Hosmer-Lemeshow statistic in four subgroups of patients in the
validation data. The nomogram algorithm was implemented in
MATLAB (version 7.1, MathWorks Inc., Natick, MA), as were all
algorithms described in this section.

Results

The occurrence of pCR in the patient population varied between
15% and 31% (mean: 21.8%, SD: 5.4%) depending on the dataset (Ta-
ble 1). A first evaluation of CRT’s effect on the tumour demon-
strated significant downsizing of the tumour in the PET-CT, and a
significant decrease in metabolic activity within the tumour
(Fig. 1). Both gross tumour volume and maximal SUV decreased
significantly between the pre- and post-CRT PET-CT scans
(p <0.001).

Table 2 shows the predictor selection results and the ROC curve
analysis. For the clinical dataset, the univariate analysis reveals
three variables significantly associated with pCR (95% confidence
interval): tumour length (p <0.001), cN-stage (p = 0.001), and cT-
stage (p = 0.001). These variables were also selected in the multi-
variate analysis. The normalised weights assigned to them by the
pSVM model are tumour length (—0.085), cT-stage (—0.074), and
cN-stage (—0.060). The selected variables were ranked in impor-
tance (i.e., weights). The sign of the weights can be interpreted
by the effect on the probability of a pCR. For a negative sign, this
probability decreases when the variable increases. For the clinical
dataset, this means that the probability of a pCR increases for small
tumour lengths and low cT- and cN-stages. The predictive perfor-

mance of the clinical dataset for pCR, expressed by the AUC of
the ROC curve, is 0.61 £ 0.03 (mean * SD) for the training set and
0.69 + 0.08 for the external validation set.

For the dataset with pre-CRT PET data, the multivariate analysis
selected these variables (ranked by weight): maximal diameter
(—0.12), cN-stage (—0.12), tumour location (0.094), and SUV,.x
(—0.087). This resulted in a high probability of pCR for patients
with small maximal tumour diameters, low cN-stage, high tumour
locations, and small maximal metabolic activity. Maximal diameter
(p=0.003) and cN-stage (p=0.001) were selected by univariate
analysis, while the other two variables were not. The AUCs for
the training and validation sets were both 0.68, but the SD differed
(0.08 and 0.10, respectively).

The dataset including the post-CRT PET data resulted in the
highest performance: AUCi,=0.83+0.05 and AUC,ajidation =
0.86 + 0.05. The response index for SUV.x (0.20), the tumour
length (—0.20), and the post-CRT SUV,,x were found to be predic-
tive for pCR and significantly associated with pCR in the univariate
analysis (p < 0.001).

In evaluating the predictive value of the additional PET data to
the clinical data, only the AUCs of the post-CRT PET data differed
significantly from the clinical dataset AUC (Fig. 2). The p-value
for the AUC difference for the training set was <0.001, while that
for the validation sets was 0.056 (just outside the 95% confidence
interval). When only post-CRT PET data were used for the models
(i.e., no clinical variables), the significant difference between the
AUCs and the clinical dataset was no longer observed (training:
p=0.47, validation: p=0.58). This indicated that a combination
of both clinical and PET data was required to reach a significantly
higher performance when using PET as a predictive imaging
modality.

The assigned weights for all the predictors formed the basis for
the construction of the nomogram. The nomogram based on the
post-CRT dataset is provided in Fig. 3. The nomogram performs
with a sensitivity of 0.62 and a specificity of 0.88 for the validation
data. In the training phase these were respectively 0.65 and 0.90.
The calibration of the nomogram (Fig. 4) with the validation data
reveals that the overall predicted and the actual probability are
equal (23.6%, OR = 1.0). If the validation data are divided into four
equally numbered groups, the Hosmer-Lemeshow test results in a
p-value of 0.78, which means a good calibration in this test
(p > 0.05). The linear fit through these probabilities results in a
slope of 1.02 with R? of 0.99, confirming a good balance between
calibration and discrimination.

Discussion

We have developed predictive models based on clinical and
PET-based data for pathologic complete response in patients diag-
nosed with rectal cancer. The performance of these models was
externally validated using patient cohorts from different institutes
treated with long-course preoperative chemoradiotherapy. The
models showed that the accuracy of the predictions increased over
time, i.e., when more information became available. Information
from PET-CT scans significantly improved the performance of the
models.

The significant difference in AUCs that we reported between the
performance of the clinical model and the post-CRT PET data model
reflects what others have found in their post-treatment PET analy-
ses; like us, some have reported (significant) indications that the
response index and post-treatment SUV ., are predictive for re-
sponse, while the pre-treatment PET data do not provide enough
predictive power [12,19,27]. However, our PET-based models also
contain clinical variables, which appeared to be necessary to obtain
the high performance provided in Table 2. The most important
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clinical variables were tumour length and maximal diameter,
which were selected in the models and are significantly correlated
(spearman p = 0.55, p < 0.001). Overall, this means that the domi-
nant tumour dimension in combination with (differences in) the
maximal metabolic activity inside the tumour is the most predic-
tive variable set for pCR, which was confirmed in the external
datasets.

Whether the corresponding AUC of 0.86 is accurate enough for
clinical practice depends on the choice of the threshold in the ROC
curve. A high specificity is preferred over a high sensitivity to avoid
possible under-treatment (less surgery when surgery is required)
rather than over-treatment (standard treatment when less surgery
could have been considered). The provided nomogram focuses on
specificity (training: 0.90, validation 0.88). Selecting higher speci-
ficities results in fast decreasing sensitivities. Careful follow-up is
therefore necessary for the patients selected for a ‘wait-and-see’
policy to detect any possible local recurrences early on. To gain
more specificity in the future, the addition of new variables and
the other classification methods would have to be considered.

The nomogram performs well, i.e., the distribution of the prob-
ability of a pCR provided by the nomogram represents the true dis-
tribution in the data, confirmed by overall calibration, calibration
of the slope and Hosmer-Lemeshow test (Fig. 4). Because of the
number of events and the division of the patient cohorts into few
probability intervals, the higher probabilities occur much less fre-
quently and are thus the least accurate. Therefore, prospective val-
idation of the model and the nomogram is required to ensure
sufficient statistical power for clinical application of the models.
Besides the number of patients to increase the models’ accuracy,
more predictors could be added to increase the models’ perfor-
mance, including biological variables such as gene signatures
[41] and blood biomarkers, and also more imaging variables from
(perfusion) CT and (diffusion) MRI. The first indications have also
appeared that PET-CT data during CRT may be highly predictive
for response [25,26,42]. This time point is more favourable than
post-CRT because of the possibility of earlier treatment changes
and the decreased presence of inflammatory rectum cases, poten-
tially causing impaired evaluation of fused PET-CT scans. After pro-
spective validation of the model, an intervention trial with less
surgery for patients with a high probability for pCR will be
performed.

The population based collected datasets date back five years,
except for the clinical Roma database, which was collected from
1984 onward. Therefore, this dataset shows a higher variety in
treatment schemes than the other datasets. This could explain
the discrepancy of the higher prediction performance of the clinical
validation set. On the other hand, the validation set is much smal-
ler, implying that the distribution of data could not be representa-
tive of the true distribution. The consequence of population based
data collection is that treatment protocols are not well tuned. This
results in, for example, small differences in irradiation schemes
and deviations in the evaluation of pathology outcome. Ideally,
pathology is reviewed centrally to reduce the intra- and inter-ob-
server variabilities for the outcome measure. However, in this
study the quality of pathology is acceptable because of the pro-
spective nature of most datasets and because the outcome was
limited to only complete response evaluation. Also, glucose correc-
tion for SUV values was not applied to all datasets. However, minor
variation in treatment schemes can be seen as an advantage be-
cause it leads to higher generalizability for other centres. In other
words, the model still performs well, despite the disparities men-
tioned here.

In conclusion, we have shown that sequential PET-CT data in
combination with clinical variables significantly increase the per-
formance of prediction models for pathologic complete response.
So far, this is the largest study of its kind and the only one that used

external datasets for validation. The dominant tumour dimension
and the maximal uptake of radioactive isotopes in the tumour as
well as its relative difference between PET scans were found to
be the best predictors for pCR resulting in very good overall perfor-
mance AUC’s of 0.83 and 0.86 for training and validation, respec-
tively. Including also biological and other imaging variables will
probably further improve the performance. When prospectively
validated, the model and the nomogram therefore provide a valu-
able decision support for more individualised treatment ap-
proaches in the future.

Note: The predictive models in this paper are published on the
website http://www.predictcancer.org.
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