
 

 

 

Pattern recognition methods to relate time profiles of
gene expression with phenotypic data: a comparative
study
Citation for published version (APA):

Hendrickx, D. M., Jennen, D. G. J., Briede, J. J., Cavill, R., de Kok, T. M., & Kleinjans, J. C. S. (2015).
Pattern recognition methods to relate time profiles of gene expression with phenotypic data: a
comparative study. Bioinformatics, 31(13), 2115-2122. https://doi.org/10.1093/bioinformatics/btv108

Document status and date:
Published: 01/07/2015

DOI:
10.1093/bioinformatics/btv108

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 04 Oct. 2023

https://doi.org/10.1093/bioinformatics/btv108
https://doi.org/10.1093/bioinformatics/btv108
https://cris.maastrichtuniversity.nl/en/publications/30c7a95e-83e6-49ee-b5f2-90f261c2cab8


Gene expression

Pattern recognition methods to relate time

profiles of gene expression with phenotypic

data: a comparative study

Diana M. Hendrickx*, Danyel G. J. Jennen, Jacob J. Briedé,
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Abstract

Motivation: Comparing time courses of gene expression with time courses of phenotypic data may

provide new insights in cellular mechanisms. In this study, we compared the performance of five

pattern recognition methods with respect to their ability to relate genes and phenotypic data: one

classical method (k-means) and four methods especially developed for time series [Short Time-ser-

ies Expression Miner (STEM), Linear Mixed Model mixtures, Dynamic Time Warping for -Omics and

linear modeling with R/Bioconductor limma package]. The methods were evaluated using data

available from toxicological studies that had the aim to relate gene expression with phenotypic end-

points (i.e. to develop biomarkers for adverse outcomes). Additionally, technical aspects (influence

of noise, number of time points and number of replicates) were evaluated on simulated data.

Results: None of the methods outperforms the others in terms of biology. Linear modeling with

limma is mostly influenced by noise. STEM is mostly influenced by the number of biological repli-

cates in the dataset, whereas k-means and linear modeling with limma are mostly influenced by

the number of time points. In most cases, the results of the methods complement each other.

We therefore provide recommendations to integrate the five methods.

Availability: The Matlab code for the simulations performed in this research is available in the

Supplementary Data (Word file). The microarray data analysed in this paper are available at

ArrayExpress (E-TOXM-22 and E-TOXM-23) and Gene Expression Omnibus (GSE39291). The phe-

notypic data are available in the Supplementary Data (Excel file). Links to the pattern recognition

tools compared in this paper are provided in the main text.

Contact: d.hendrickx@maastrichtuniversity.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Comparing time courses from different types of measurements is an

important topic in biological research (Cavill et al., 2013; Smith

et al., 2009; Tan et al., 2006), because it contributes toward under-

standing the response of complex cellular systems to perturbations.

In particular in toxicogenomics (which stands for the application of

-omics technologies to toxicology), comparing time courses of gene

expression with time courses of phenotypic endpoints (i.e. bio-

markers for the adverse outcomes induced by a chemical compound)

may help to distinguish gene expression changes related to toxicity

from changes not related to toxicity (Powell et al., 2006). The
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present study focuses on comparing time courses of gene expression

with time courses of phenotypic data, also called phenotypic anchor-

ing of gene expression data. Phenotypic anchoring may provide add-

itional insight in the response to perturbations that cannot be

generated by analyzing gene expression alone. Various statistical

tools can be used for phenotypic anchoring (Ganter et al., 2008),

including pattern recognition.

Pattern recognition includes clustering (e.g. k-means), classi-

fication (e.g. support vector machines) and model reduction

(e.g. principal component analysis) (de Ridder et al., 2013).

Biological entities belonging to the same cluster are assumed to be

functionally related (Bar-Joseph, 2004; Liao, 2005).

In this study, five representative pattern recognition methods

were chosen. First, we included a clustering method that is able to

remove random patterns, called Short Time-series Expression Miner

(STEM). Removing random patterns is important for datasets with

a high number of variables compared with the number of time

points (Ernst and Bar-Joseph, 2006). Secondly, Dynamic Time

Warping for -Omics (DTW4omics), a method that takes into ac-

count time delays in biological processes (Cavill et al., 2013), is con-

sidered. In contrast to clustering methods (which treat all variables

in the dataset as equivalent entities), DTW4omics treats the pheno-

typic data as predefined profiles and searches for genes matching

these profiles using a distance metric. Thirdly, Linear Mixed Model

(LMM) mixtures, a clustering method correcting for variability be-

tween replicates (Celeux et al., 2005), is discussed. Furthermore, we

applied k-means, a classical clustering method for static data.

Finally, we used a regression method [linear modeling with the

R/Bioconductor package limma (Ritchie et al., 2015)], to find rela-

tionships between gene expression and phenotypic endpoints.

The five methods were compared with respect to their ability to

extract functionally related groups of genes, their sensitivity to

measurement noise, the influence of the number of time points and

the influence of the number of biological replicates. The technical

aspects (influence of noise, number of time points and number of

replicates) were evaluated on simulated data, mimicking real expres-

sion and phenotypic data. The biological outcome was evaluated ex-

ploiting two public datasets from toxicogenomics.

2 Materials and methods

2.1 Pattern recognition methods
In this study, both simulated and real datasets were analyzed by

means of STEM, DTW4Omics, LMM mixtures, k-means and linear

modeling with limma. Table 1 gives an overview of the properties

of the four methods. Calculations were performed in R (http://www.

r-project.org/), except for STEM, which is a Java application.

2.1.1 Short time-series expression miner

STEM (Ernst and Bar-Joseph, 2006) is a freely available Java tool

(http://www.cs.cmu.edu/�jernst/stem/) for clustering time profiles

that run in parallel. STEM distinguishes between real and random

patterns in time series by identifying time profiles that are signifi-

cantly present in the dataset. Significance is determined by permuta-

tion testing. Phenotypic endpoints were treated as genes and added

to the study. Opposite time profiles of phenotypic endpoints were

also added to the study in order to determine negative relationships

between genes and phenotypic endpoints. The variables in the

dataset (genes, phenotypic endpoints) are assigned to the significant

profiles based on similarity (positive correlation). Genes assigned to

the same profile as a phenotypic endpoint are assumed to be related

to that endpoint. The STEM clustering algorithm is described in

detail by Ernst and coworkers (Ernst et al., 2005). STEM has been

previously applied to cluster toxicogenomics time profiles (Alm

et al., 2009; Briede et al., 2010; Hebels et al., 2013). In this study

parameters for STEM were taken as described in previous work

(Briede et al., 2010).

2.1.2 Dynamic time warping for –omics

DTW4Omics is publicly available in-house R code (http://web.tgx.

unimaas.nl/svn/public/dtw/) to detect similar patterns on different

time scales, due to delays or differences in speed (Cavill et al.,

2013). For each endpoint, a list of significant genes (false discovery

rate <0.05) is produced based on the calculation of the optimal dis-

tance between time profiles and permutation testing. All genes in

this list are supposed to be positively related to that endpoint. To de-

termine negative relationships, we repeat the previous steps for the

opposite time profiles of the phenotypic endpoints. DTW4Omics

uses the distance function from the DTW package described by

Giorgino and coworkers (Giorgino, 2009).

2.1.3 LMM mixtures

LMM mixtures is a model-based method for clustering time series

that run in parallel, taking into account variability between repli-

cates (Celeux et al., 2002). Phenotypic endpoints were treated as

genes and added to the study. Opposite time profiles of phenotypic

endpoints were also added to the study in order to determine nega-

tive relationships between genes and phenotypic endpoints. LMM

mixtures divide the dataset in an optimal number of clusters. For

each cluster, the average profile for the cluster is described by a

LMM, with the times as fixed effects and variability between repli-

cates as random effect. Genes assigned to the same cluster as a

phenotypic endpoint (respectively, the opposite profile of a pheno-

typic endpoint) are assumed to be positively (respectively, nega-

tively) related to that endpoint. The optimal number of clusters is

determined using the Bayesian Information Criterion (BIC) and

maximum-likelihood parameters are iteratively determined by an

optimization algorithm (Celeux et al., 2005). To determine a start-

ing value for the optimization algorithm for LMM mixtures, spec-

tral clustering (Ng et al., 2001) was applied. Using the cluster

solution from spectral clustering has previously been reported as an

efficient initialization strategy for LMM mixtures (Scharl et al.,

2010). Spectral clustering was performed in R using the ‘specc’ func-

tion of the ‘kernlab’ package (Zeileis et al., 2004). The mixture of

LMM was fitted with the ‘FLXMRlmm’ interface of the ‘flexmix’

package (Grün and Leisch, 2008; Leisch, 2004). Both R packages

are available on the CRAN website (http://cran.r-project.org).

2.1.4 k-Means clustering

Phenotypic endpoints were treated as genes and added to the study.

Opposite time profiles of phenotypic endpoints were also added to

the study in order to determine negative relationships between genes

Table 1. Properties of the four pattern recognition methods dis-

cussed in this article

Takes into account STEM DTW LMM k-Means Limma

Time dependencies Yes Yes Yes No Yes

Correction for random patterns Yes NA No No NA

Delays No Yes No No No

Variability between replicates No No Yes No Yes

Note: NA, not applicable.
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and phenotypic endpoints. k-Means then clusters profiles with an it-

erative optimization algorithm that minimizes within-cluster vari-

ability, while maximizing between-cluster variability (Kintigh and

Ammerman, 1982; Liao, 2005). Each cluster is represented by its

cluster center. Genes assigned to the same cluster as a phenotypic

endpoint (respectively, the opposite profile of a phenotypic end-

point) are assumed to be positively (respectively, negatively) related

to that endpoint. The optimal number of clusters is selected based

on the sum of squared error (SSE), the sum of squared distances be-

tween cluster members and center (Kintigh and Ammerman, 1982).

The optimal solution was calculated in R using the code available at

http://www.mattpeeples.net/kmeans.html and is the number of clus-

ters for which the SSE for the original data differs the most from the

average SSE for 250 random datasets. k-Means was performed in R

using the source code available at http://www.mattpeeples.net/

kmeans.html, which uses the ‘kmeans’ function of the ‘stats’ pack-

age (http://cran.r-project.org).

2.1.5 Linear modeling with limma

For each phenotypic endpoint, genes that vary with that endpoint

were determined by fitting a LMM to the gene expression data using

the R/Bioconductor package limma (Ritchie et al., 2015) (www.bio

conductor.org/packages/release/bioc/html/limma.html). Time, treat-

ment (exposed versus control) and the phenotypic endpoint were

taken as fixed effect, and replicates as random effect in the model.

Using the phenotypic endpoint as a contrast (coefficient in the linear

model), limma tests which genes vary significantly with the pheno-

typic endpoint. A cut-off value of 0.05 was taken for the false dis-

covery rate. The regression coefficients for the endpoints determine

whether the relationships are positive or negative.

2.2 Simulated data
Performance of statistical methods can be evaluated by checking

whether the results correspond with prior biological knowledge.

However, often our knowledge about the underlying biology is in-

complete. In this case, computer simulations are very useful to assess

how well a method works (Mendes et al., 2003). Here, the influence

on the results of making changes, for example adding noise, to a ref-

erence dataset is studied.

2.2.1 Simulation method

We simulated datasets with properties of microarray data in

MatlabVR Version 8.1.0. (r2013a) (copyrightVC , 1984–2013, The

Mathworks Inc.) applying the method described by Mendes and

coworkers (Mendes et al., 2003) and on the companion website of

Nykter et al. (2006) (http://www.cs.tut.fi/sgn/csb/mamodel/).

Thousand variables were generated for 10 time points. Each variable

in the dataset is described by a differential equation including rate

constants, affinity constants and Hill coefficients as parameters.

After simulating control samples, a perturbation was simulated by

changing one of the rate constants. Three biological replicates were

generated for both control and perturbation by adding small ran-

dom variables to the affinity constants and Hill coefficients. The ref-

erence dataset consisted of the log2-ratios for the three biological

replicates. Clusters of variables relating to variables 996–1000 were

determined applying the four pattern recognition methods, so vari-

ables 996–1000 are considered to be the endpoints. The influence of

measurement noise was studied by successively adding 15%, 20%

and 25% Gaussian noise to the reference data and comparing the so-

lutions for the pattern recognition methods with the solutions for

the reference dataset. Results of the reference dataset were also

compared with pattern recognition results when using less time

points (the first eight and six time points) and when using only two

biological replicates instead of three. Table 2 presents an overview

of the simulated data. More details about the simulation and the

Matlab code are provided in the Supplementary Data, Section 1.

2.2.2 Evaluation of pattern recognition methods

The results for the different simulated datasets were compared with

the results obtained from the reference dataset. The accuracy de-

scribes how close the results of the simulation were to the results for

the reference dataset.

2.3 Real datasets
The five pattern recognition methods were applied to two datasets

obtained from the human hepatoma cancer cell line HepG2: after

exposure to either benzo(a)pyrene (B(a)P), a human carcinogen, or

menadione (vitamin K3), an agent producing reactive oxygen species

(ROS). Both positive and negative associations with particular end-

points were determined.

2.3.1 Response of HepG2 to B(a)P

B(a)P is a carcinogenic polycyclic aromatic hydrocarbon, having

genotoxic and non-genotoxic properties. B(a)P exposure causes,

among others, oxidative stress, DNA adduct formation and apop-

tosis (van Delft et al., 2010). Sources of exposure are (among others)

wood burning, coal tar, vehicle exhaust and cigarette smoke

(Bostrom et al., 2002). Gene expression and phenotypic endpoints

(DNA adducts, cell cycle, apoptosis indicative of molecular re-

sponses to DNA damage induced by the carcinogen) were measured

at 12 time points after exposure to B(a)P (3, 6, 9, 12, 15, 18, 24, 30,

36, 48, 54 and 60 h). HepG2 cells were treated with 3mM B(a)P or

vehicle control. Cell cycle profiles (G1, G2/M and S phase) and

apoptotic cell levels were determined by flow cytometry. DNA ad-

duct levels were determined by 32P post-labeling. Gene expression

was determined with Agilent microarrays, labeled with cyanine 3

(Cy3) and cyanine 5 (Cy5). Two biological experiments were con-

ducted, with two hybridizations per time point for each experiment

(by swapping Cy3 and Cy5). Microarray data are available at

ArrayExpress (E-TOXM-22 and E-TOXM-23). Phenotypic data are

available in the Supplementary Data (Excel file). Detailed informa-

tion about this dataset was described earlier in van Delft et al.

(2010).

2.3.2 Response of HepG2 to menadione

Menadione (vitamin K3) is a compound causing oxidative stress

through the formation of ROS. Oxidative stress has been related to

chemically induced liver injury, chronic liver diseases and

Table 2. Overview of the simulated datasets

Measurement

noise

Number of

time points

Number of

biological

replicates

Reference data 0% 10 3

15% Noise 15% 10 3

20% Noise 20% 10 3

25% Noise 25% 10 3

8 Time points 0% 8 3

6 Time points 0% 6 3

2 Biological replicates 0% 10 2

Pattern recognition methods 2117
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hepatocellular carcinoma (Deferme et al., 2013). Menadione has

been used as a drug therapy and sometimes also as nutritional sup-

plement (Truong and Booth, 2011). Gene expression and pheno-

typic endpoints (oxidative DNA damage, protein oxidation, cell

cycle, apoptosis, which are all toxic responses inflicted by ROS)

were measured at seven time points after exposure to menadione

(0.5, 1, 2, 4, 6, 8 and 24 h). HepG2 cells were treated with 100mM

menadione or vehicle control. Cell cycle profiles (G1, G2/M and S

phase) and apoptotic cell levels were determined by flow cytometry.

Protein oxidation was determined by protein carbonyl assay, meas-

uring protein carbonyl formation by spectrophotometry. Oxidative

DNA damage was determined using the FPG-comet assay. Gene ex-

pression was determined using Affymetrix microarrays. Three biolo-

gical experiments were conducted. Microarray data are available at

Gene Expression Omnibus (GSE39291). Phenotypic data are avail-

able in the Supplementary Data (Excel file). Detailed information

about this dataset was described earlier in Deferme et al. (2013).

2.3.3 Normalization, selecting differentially expressed

genes and scaling

Normalization was conducted as described earlier in van Delft et al.

(2010) and Deferme et al. (2013) for the B(a)P and menadione

dataset, respectively.

Differentially expressed genes (DEGs) were determined using the

R/Bioconductor package limma (Ritchie et al., 2015), controlling

for dye swaps in case of two-color arrays. ‘Treatment—time-

matched control’ contrasts were fitted at each time point and with

each treatment (exposure, control). Genes with false discovery rate

lower or equal than 0.01 and absolute log fold change higher than

1.5 were selected.

Log2 ratios were taken to transform the data to be normally dis-

tributed. Data were centered and unit variance scaled to make the

values of all variables (genes and endpoints) comparable.

2.3.4 Evaluation of pattern recognition methods

Overrepresentation analyses (pathway and GO analysis) were per-

formed on the lists of genes related to the endpoints using

ConsensusPathDB, an interaction database containing pathways

from 32 databases (Kamburov et al., 2013). Pathways and GO

terms with at least two genes in common with the gene lists were se-

lected. To correct for multiple testing, only pathways and GO terms

with false discovery rate lower or equal than 0.05 were selected.

Overlap between the genes, pathways or GO terms was determined

using the online tool Venn Diagrams (http://bioinformatics.psb.

ugent.be/webtools/Venn/). Lists of overrepresented pathways and

GO terms were compared with prior biological knowledge, among

others from the Comparative Toxicogenomics Database (Davis

et al., 2013).

3 Results

3.1 Simulated data
LMM mixtures divided the dataset into 19 clusters (based on the

BIC), while k-means only distinguished 5 clusters (based on the

SSE). Because of their different properties and underlying assump-

tions, there is minor overlap among all of the five methods (Fig. 1

and Supplementary Fig. S1). Which methods show the largest over-

lap is different for different variables (e.g. for variable 996

DTW4omics and k-means show the largest overlap, while for vari-

able 1000 STEM and DTW4omics show the largest overlap). The

overall biggest overlap is found between DTW4omics and k-means,

followed by STEM and DTW4omics. The accuracy of the five meth-

ods for the simulated datasets is shown in Table 3. Accuracies above

80% were found for all methods after noise had been added to the

data, except for limma, where accuracies for datasets with 25%

noise were between 74% and 81%. Limma and k-means appeared

the most influenced by the number of time points. Lowering the

number of time points lowered the accuracy significantly. STEM

was most influenced by the number of biological replicates

available.

3.2 Real datasets
3.2.1 Response of HepG2 to B(a)P

Lists of genes, pathways and GO terms for each endpoint are pro-

vided in the Supplementary Excel file for each of the five methods.

Applying STEM, DTW4omics and limma resulted in a separate gene

list for each phenotypic endpoint. For LMM mixtures and k-means,

some of the clusters contained more than one phenotypic endpoint:

• DNA adducts and G1 were assigned to the same cluster by both

LMM mixtures and k-means;
• Apoptosis and S are assigned to the same cluster by LMM

mixtures;
• Apoptosis, G2 and S are assigned to the same cluster by k-means.

For DTW4omics and limma, some of the gene lists had genes in

common (see Supplementary Excel file, tab ‘B(a)P intersections gene

lists’). The other methods by definition divide a dataset into clusters

that do not have genes in common.

LMM mixtures divided the dataset into 11 clusters (based on the

BIC), while k-means only distinguished 7 clusters (based on the

SSE). Apart from a few exceptions, there was minor overlap across

the five methods when comparing lists of genes, pathways and GO

terms (Supplementary Data, Supplementary Figs. S2–S16). Figures 2

and 3 present a summary of the molecular response pathways

related to DNA adducts for the five methods. Detailed tables with

pathway lists for all endpoints, including references to prior biolo-

gical knowledge, are available in the Supplementary Data

(Supplementary Tables S2–S11). The pathway ‘direct p53 effectors’

Fig. 1. Simulated data (reference dataset)—variables related to variable 1000

for each of the five pattern recognition methods
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was found by both LMM mixtures (positive relationship, see Fig. 2

and Supplementary Table S2) and limma (negative relationship, see

Fig. 3 and Supplementary Table S3). Transcription factor p53 is im-

portant in signaling DNA damage (Hanahan and Weinberg, 2000).

Limma also found 10 pathways related to DNA damage response

(Fig. 3 and Supplementary Table S3).

3.2.2 Response of HepG2 to menadione

Lists of genes, pathways and GO terms for each endpoint are pro-

vided in the Supplementary Excel file for each of the five methods.

Apart from a few exceptions, there was minor overlap among all of

the five methods when comparing lists of genes, pathways and GO

terms (see Supplementary Data, Supplementary Figs. S17–S34).

Applying DTW4omics and limma resulted in a separate gene list for

each phenotypic endpoint, except for the G1 and S phases wherefore

DTW4omics did not find genes that were positively and negatively

related, respectively. For STEM, LMM mixtures and k-means, some

of the clusters contained more than one phenotypic endpoint:

• apoptosis and protein oxidation were assigned to the same clus-

ter by both STEM and k-means;
• protein oxidation, G1 and S were assigned to the same cluster by

LMM mixtures;
• G1 and S were assigned to the same cluster by k-means.

For DTW4omics and limma, some of the gene lists had genes in

common (see Supplementary Excel file, tab ‘MEN intersections gene

lists’). The other methods by definition divide a dataset into clusters

that do not have genes in common.

LMM mixtures divided the dataset into 10 clusters (based on the

BIC), while k-means only distinguished four clusters (based on the

SSE). Figures 4 and 5 present a summary of the molecular response

pathways related to oxidative DNA damage for the five methods.

Detailed tables with pathway lists for all endpoints, including refer-

ences to prior biological knowledge, are available in the

Supplementary Data (Supplementary Tables S12–S23). The pathway

‘direct p53 effectors’, an important pathway in signaling DNA dam-

age (Hanahan and Weinberg, 2000), was found by LMM mixtures

(positive relationship, see Fig. 2 and Supplementary Table S12).

Furthermore, LMM mixtures found two DNA damage response

pathways (Fig. 2 and Supplementary Table S12).

3.3 Computational time
The computational time for running the analyses was about 10s for

STEM and limma, about 30–40 min for DTW4omics and about

30min for k-means (including the algorithm for determining the num-

ber of clusters) on a 64 bit Windows 7 computer, 64 GB memory, intel

i5-3320 M processor. Running LMM mixtures takes 1 day for a given

number of clusters, so it would, e.g., take 24 days to generate the clus-

ter solutions with 2, 3, . . . , 25 clusters. Therefore, the calculations for

different numbers of clusters were run in parallel on a 64-bit

Windows 7 server, 64 GB memory, intel i7-3930K(hexacore).

Table 3. Accuracy of the five methods for the simulated datasets

STEM DTW LMM k-Means Limma

15% Noise 0.83–0.96 0.93–0.94 0.91–0.93 0.80–0.90 0.80–0.81

20% Noise 0.88–0.95 0.90–0.92 0.92–0.93 0.89–0.98 0.80–0.81

25% Noise 0.82–0.94 0.87–0.93 0.90–0.94 0.89–0.98 0.74–0.81

8 Time points 0.87 0.87 0.95 0.80 0.76

6 Time points 0.87 0.79 0.91 0.66 0.68

2 Biological replicates 0.77 0.88 0.93 0.90 0.89

Note: The range of the accuracy for the influence of noise is based on three experiments per noise level.

Fig. 2. Response to B(a)P (dataset van Delft et al., 2010)—pathways positively

related to DNA adducts (ConsensusPathDB, FDR� 0.05) for LMM mixtures,

k-means and limma. Number of pathways of each kind between brackets. No

pathways were found by STEM and DTW4omics. Bold, related to cancer;

italic, apoptotic pathway; underlined, related to oxidative stress

Fig. 3. Response to B(a)P (dataset van Delft et al., 2010)—pathways negatively

related to DNA adducts (ConsensusPathDB, FDR�0.05) for STEM, LMM mix-

tures, k-means and limma. Number of pathways of each kind between brack-

ets. No pathways were found for DTW4omics. Bold, related to cancer; italic,

apoptotic pathway; underlined, related to oxidative stress; underlined

(dashed), (mitotic) cell cycle; underlined (dotted), DNA damage response/

DNA repair
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4 Discussion

Applying pattern recognition methods to toxicogenomics time series

of both microarrays and phenotypic endpoints can provide new

hypotheses about interactions of the genome with the adverse out-

come of exposure to a toxicant. These new hypotheses will guide

wet laboratory experiments (e.g. knock down experiments) that aim

to verify such new relationships.

In this study, we evaluated five pattern recognition methods. The

main focus is on methods developed for time series methods, except

k-means, which we added to the study in order to assess the impact

of time dependencies on pattern recognition. Another method for

static data, that has been frequently applied to time series, is

Weighted Correlation Network Analysis (WGCNA) (Elo and

Schwikowski, 2013), which combines correlation analysis with hier-

archical clustering (Langfelder and Horvath, 2008). Clusters ob-

tained by applying static-based methods on time series are often less

biologically coherent than clusters determined with time-series

methods (Bar-Joseph et al., 2012). However, this could not be

observed from this study.

STEM, LMM mixtures and k-means treat all the genes and end-

points as equivalent entities and cluster them all together. As a con-

sequence several endpoints may end up in the same cluster and some

clusters will have no endpoints. In our study, having several end-

points within the same cluster was found upon applying STEM,

LMM mixtures and k-means. Having two or more endpoints within

the same cluster has the advantage that similarity between the two

endpoints is explicitly known. A drawback of having two endpoints

in the same cluster is that one cannot really assess whether any par-

ticular gene in the cluster is more strongly associated with one end-

point than the other. Another drawback is that one can have only

certainty that the gene expressions really match the profile of the

endpoint if the endpoint is at the center of the cluster.

DTW4omics treats the endpoints as profiles and matches each of

the genes to these profiles. Limma uses the endpoints as fixed effects

in a regression model. As a consequence, for DTW4omics and

limma, each cluster has only one endpoint and a gene can match

more than one endpoint or none.

Clustering methods that do not correct for random patterns, like

LMM mixtures and k-means divide the datasets into large clusters.

This mostly leads to a large amount of pathways related to a large

number of biological processes. Correcting for random patterns

(like STEM) results in smaller gene lists, which has the advantage

that these lists are mostly easier to interpret. A disadvantage is that

if two variables are highly correlated to one of the model profiles by

coincidence, the two variables would also be in the same cluster,

which leads to false positives. Another drawback is that in cases

when the variable is not correlated to one of the model profiles, it is

not taken into account for further analysis. In this way information

may be lost. While STEM, LMM mixtures, k-means and limma find

gene expression modifications that covary simultaneously with the

investigated endpoints, DTW4omics allows time lags and delays.

Because of this property results from applying the DTW4omics ap-

proach are more influenced by the number of time points than the

two other time series methods (Table 3). Limma is more sensitive to

noise than the other methods (Table 3).

LMM mixtures and limma need biological replicates (for model-

ing the random effects), while STEM, DTW4omics and k-means in

principle can be applied without having replicates. However, this is

not recommended because it decreases the accuracy of STEM, and

to a lesser extent, of DTW4omics and limma (Table 3).

STEM and DTW4omics both use a permutation test for calculat-

ing significance. Permutation tests assume independence between

subsequent time points, which can be disadvantageous in case clear

trends are observed in the data (Xia et al., 2013).

LMM mixtures clustering and limma take into account variabil-

ity between replicates. The consequence of having a low number

(2–3) of replicates is that variability (the random effect in the model)

can be overestimated or underestimated. For LMM mixtures, under-

estimation (respectively, overestimation) of the variability between

replicates leads to clustering too strictly (respectively, not strict

enough), and as a consequence, may generate false negatives (re-

spectively, false positives). Another disadvantage of LMM mixtures,

and of model-based clustering in general, is that the algorithm is

slow compared with other methods. For limma, underestimation

(respectively, overestimation) of the variability between replicates

has influence on variance shrinkage and leads to decreased (respect-

ively, increased) sensitivity to detect relationships between genes

and phenotypic endpoints, which in its turn leads to false negatives

(respectively, false positives).

Fig. 4. Response to menadione (dataset Deferme et al., 2013)—pathways

positively related to oxidative DNA damage (ConsensusPathDB, FDR� 0.05)

for STEM, DTW4omics, LMM mixtures and k-means. Number of pathways of

each kind between brackets. No pathways were found by limma. Bold, related

to cancer; italic, apoptotic pathway; underlined, related to oxidative stress;

underlined (dashed), (mitotic) cell cycle; underlined (dotted), DNA damage re-

sponse/DNA repair

Fig. 5. Response to menadione (dataset Deferme et al., 2013)—pathways

negatively related to oxidative DNA damage (ConsensusPathDB, FDR� 0.05)

for STEM, LMM and k-means. Number of pathways of each kind between

brackets. No pathways were found by DTW4omics and limma. Bold, related

to cancer; underlined, related to oxidative stress
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For all five methods studied, pathway and GO analysis of these

gene lists provided pathways and GO terms that have been previ-

ously related with exposure to the particular toxicant or with one of

its adverse outcomes (see Supplementary Material).

The hallmarks of cancer (Hanahan and Weinberg, 2000, 2011)

review biological processes related to all types of cancer, and the sig-

naling pathways involved in those biological processes. Those hall-

marks are: (1) sustaining proliferative signaling; (2) evading growth

suppressors; (3) avoiding immune destruction; (4) enabling replica-

tive immortality; (5) tumor-promoting inflammation; (6) activating

invasion and metastasis; (7) inducing angiogenesis; (8) genome in-

stability and mutation; (9) resisting cell death and (10) deregulating

cellular energetics. Because B(a)P is a carcinogen and menadione

causes hepatocellular carcinoma, pathways known to be involved in

the hallmarks of cancer provide biologically relevant hypotheses to

test in follow-up experiments. For B(a)P, in particular signaling

pathways related to DNA damage response are relevant (Bolotina

et al., 2007). Examples are signaling pathways involving p53, NF-

kB and MYC (Bolotina et al., 2007; Hanahan and Weinberg, 2000).

For menadione, pathways related to oxidative stress provide rele-

vant hypotheses. Signaling pathways influenced by oxidative stress

given in Martindale and Holbrook (2002) include pathways

involved in growth arrest, cell proliferation, senescence and apop-

tosis. All five methods provide biologically relevant pathways and

GO terms that are related to the exposure to the toxicant or its ad-

verse outcomes (e.g. cancer, oxidative stress) (see Figs. 2–5 and

Supplementary Material, Section 3). Therefore, in terms of retriev-

ing biologically relevant information, there is no method that out-

performs the others.

If we compare the results of limma, the only regression-based

model in the study, with the results for the other (correlation- and

distance-based) methods, we observe the following. LMM mixtures

positively relate the pathway ‘direct p53 effectors’ to DNA adducts,

while limma finds a negative relationship. Four genes of ‘direct p53

effectors’ are in both the genes lists resulting from LMM mixtures

and limma analysis (PCNA, TNFRSF10B, LIF and BAX), which

means that these four genes have a positive correlation with DNA

adducts, but a negative regression coefficient. This can be explained

as follows. The regression coefficient of the limma model gives the

relationship between gene expression and DNA adducts, when all

other variables in the model (treatment, time) are held constant.

This means that the positive relationship observed by determining

similarities between the time profiles was due to another (confound-

ing) variable. This shows an advantageous property of limma,

namely correcting for confounding factors.

For the menadione dataset (dataset Deferme et al., 2013), limma

cannot find any pathways related to oxidative DNA damage, while

all other methods generate a pathway list. For this dataset, applying

DTW4omics results in detecting some pathways that cannot be

found without time warping. One of these pathways is related to the

hallmarks of cancer (Fig. 4). This shows the relevance of having a

method taking into account time delays.

Applying the methods for phenotypic anchoring described in this

article results in poorly overlapping gene lists. This is a general prob-

lem of clustering algorithms. There are several reasons for the lack

of consistency between methods. First, parameters (optimal number

of clusters, thresholds) are determined by statistical means and not

on biological properties (Swift et al., 2004). Second, differences in

output are due to different intrinsic properties of these methods.

Limma is a regression method, while the other methods are based on

similarity measures (correlation, distance). Other differences in in-

trinsic properties (taking into account time dependencies, delays,

variance; correcting for random patterns) are shown in Table 1. For

static-based methods, several attempts have already been under-

taken to address these issues. WGCNA selects thresholds based on

scale-free topology, a network property previously observed in bio-

logical networks (Zhang and Horvath, 2005). Consensus clustering

attempts to combine the different approaches, capturing the advan-

tageous properties of each methods (Swift et al., 2004). However, to

our knowledge, similar attempts have not been undertaken for

methods developed for time series, taking into account time depend-

encies and delays.

In summary, we conclude that all five methods are suitable for

extracting new hypotheses concerning gene-phenotypic endpoint re-

lationships and none of the five methods outperforms the others in

terms of biology. Furthermore, all methods have their limitations.

Because these methods provide complementary results, we recom-

mend developing a method that integrates the results from the differ-

ent methods. A possible way to do this is to calculate a weighted

score for the probability of each gene–endpoint relationship based

on the accuracy of the methods. Simulation experiments can guide

the choice of the weight for each method. For example, because

STEM was highly influenced by the number of biological replicates,

we decrease the weight for STEM when having less replicates. In a

similar way, we can adapt the weight of k-means and limma accord-

ing to the number of time points. We can then multiply the false dis-

covery rate for each pathway with this probability score in order to

correct for inaccuracies due to the low number of replicates and/or

time points.
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