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Mesenchymal Stromal/Stem Cell–
or Chondrocyte-Seeded Microcarriers as Building

Blocks for Cartilage Tissue Engineering

Nicole Georgi, PhD,1,* Clemens van Blitterswijk, PhD,2 and Marcel Karperien, PhD1

In this study we have tested the use of mesenchymal stromal/stem cell (MSC)– or chondrocyte (hch)–laden
microcarriers as building blocks for engineered cartilage tissue. MSCs and hchs expanded on microcarriers
were used in chondrogenic coculture and compared with monoculture of MSCs or hchs. The use of cell-laden
microcarriers as building blocks for cartilage tissue engineering led to a compact tissue formation with sig-
nificant volume increase compared to the biomaterial-free approach. After 28 days of differentiation culture,
formation of cartilaginous matrix in cocultures and chondrocyte monoculture approaches was observed. Co-
culture resulted in beneficial glycosaminoglycan deposition compared with monoculture of MSCs or chon-
drocytes attached to microcarriers. Further, the microcarrier-adhered coculture displayed increased levels of the
differentiation marker ACAN and reduced levels of the dedifferentiation marker COL1A1. To our knowledge,
this is the first article that successfully combines an innovative combination of cell expansion on microcarriers
and the direct use of MSC- or hch-cell-laden microcarriers as building blocks in cartilage tissue engineering.

Introduction

In 1743, William Hunter described for the first time the
avascular structure of cartilage, as well as its limited

capacity for self-repair.1 Until today, cartilage repair and
regeneration after damage is only possible to a limited ex-
tent. Tissue engineering (TE) therefore offers possibilities
for optimization of cartilage repair by combining different
cell types, biomaterials, and growth factors for the support
of cartilage regeneration. For cellular approaches, two of the
best-described cell sources for cartilage repair are chon-
drocytes and mesenchymal stromal/stem cells (MSCs).
Human chondrocytes (hchs) for autologous chondrocyte
implantation (ACI) are mainly obtained from biopsies of the
nonweight bearing parts of the joint. After harvesting, they
need to be expanded to achieve sufficient cell numbers to fill
and regenerate critical size defects. Traditionally, monolayer
chondrocyte cell expansion is associated with the loss of
phenotype along with a decreased capacity to secrete ex-
tracellular matrix over increasing passage numbers. There-
fore, scientists look into alternative expansion and culture
strategies to overcome the described limitations.

In 1996, Frondoza et al. introduced a new culture method
for chondrocytes—the expansion on commercially available

microcarriers. This improved the yield, as well as the con-
servation of chondrogenic phenotype. Until now, micro-
carriers have been successfully used in several approaches
to expand, redifferentiate, and differentiate chondrocytes.2–5

It was shown that gelatin- or dextran-based microcarriers
with highly porous structures especially support the round
chondrocyte phenotype. Nevertheless, microcarriers are as
well used to culture other cell sources, including liver
cells,6,7 embryonic stem cells,8 and, most relevant for car-
tilage tissue engineering, MSCs.9 Notably, expansion of
MSCs on microcarriers improved proliferation and differ-
entiation and can be used to guide and improve differenti-
ation.9–11

Performance of the cell types in cartilage tissue engi-
neering can be as well augmented by exploiting coculture
strategies. Cocultures of different cell sources are based on
the idea that multisignal events in vivo cannot be perfectly
mimicked by adding a limited variety of growth factors to a
monoculture. In this way, cells are exposed to a wider va-
riety of stimuli, mimicking in vivo conditions. In cartilage
tissue engineering, MSCs were initially used to reduce the
amount of chondrocytes needed or to omit their use all to-
gether. Interestingly, chondro-induction was observed in
cocultures of chondrocytes and MSCs; superior neocartilage
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was formed by the combination of the two different cell
types as compared with either cell type alone.12,13 This
phenomenon can only to a limited extend be explained by
the induction of chondrogenic differentiation of MSCs by
articular chondrocytes.14,15 It was demonstrated that MSCs
act as trophic mediators and enhance chondrocyte prolifer-
ation and differentiation.12,15–17 This coculture strategy
reveals the possibility of omitting in vitro expansion of
chondrocytes in traditional ACI procedures. Combining
freshly harvested chondrocytes with MSCs may lead to a
single-step surgery for cartilage treatment, in which chon-
drocytes are isolated during the surgery, mixed with bone
marrow cells or expanded MSCs from the same patient,
loaded on a scaffold, and directly re-implanted into the
patient. The additional immunomodulatory role of MSCs
might even allow for allogenic coculture repair strategies.18

Nevertheless, the applicability of using only cells for
filling middle-sized to large cartilage defects is limited. For
improved clinical practice it is important to transfer single-
cell models to advanced tissue engineering strategies by
including assisting biomaterials. Main purpose of the scaf-
fold is the provision of structural support by optimal filling
the entire defect and allowing attachment, proliferation, and
differentiation of cells in a three-dimensional (3D) envi-
ronment. The mechanical support provided by the scaffold
can lead to a decrease in the rehabilitation time for the
patient. Nowadays, tissue-engineered scaffolds are as well
employed to mimic the natural environment by employ-
ing natural materials (hyaluronan,19 collagens,20 and fibro-
nectin21) to create a favorable microstructure for cellular
homing. The porous gelatin microcarriers used in this article
provide supporting structures for cellular attachment and
homing22 and have been described as optimal expansion
strategy for MSCs and chondrocytes.23

Combining innovative coculture approaches and the fa-
vorable characteristics of cellular expansion of cells on
microcarriers, we demonstrate for the first time, how small
units of chondrocyte- or MSC-laden gelatin microcarriers
can directly serve as building blocks for tissue culture
constructs. Further we demonstrate, how these building
blocks serve as an easy and efficient for the transfer of
coculture approaches from single-cell level to a complete
tissue engineering strategy.

Materials and Methods

Cell culture and expansion

The use of human bone marrow aspirates and human knee
biopsies was approved by a local Medical Ethics Commit-
tee. Human primary chondrocytes (hchs) were obtained
from full-thickness cartilage dissected from total knee bi-
opsies (femoral condyle and tibial plateau) of a patient un-
dergoing knee replacement as published previously.24 In
short, the harvested cartilage was digested overnight in
0.15% collagenase type II solution. After digestion, hchs
were washed and cultured up to passage one on tissue cul-
ture plastic in chondrocyte proliferation medium (Dulbec-
co’s modified Eagle’s medium supplemented with 10% fetal
bovine serum, 1% nonessential amino acids, 0.2 mM
ascorbic acid 2-phosphate, 0.4 mM proline, 100 U penicillin/
mL, and 100 mg/mL streptomycin). Hchs were character-
ized for their ability to deposit chondrogenic matrix as well

as their mRNA expression of COL2A1. MSCs from the
bone marrow of three female donors undergoing hip re-
placements (average age = 64 years) were isolated from as-
pirates as described previously.25 MSCs were selected by
adherence in proliferation media [a-MEM, 10% fetal bovine
serum (Lonza), 0.2 mM ascorbic acid, 2 mM L-glutamine,
100 U/mL of penicillin, 100 mg/mL streptomycin, and 1 ng/
mL of basic fibroblast growth factor (Instruchemie)]. MSC
surface markers were tested CD73, CD90, and CD105
positive and negative for HLA-DR, CD45, CD34, CD11b,
and CD19.

After one passage of two-dimensional (2D) expansion,
MSCs or hchs were seeded on Cultisphere G microcarriers
(Percell) and were cultured for 10 days in proliferation
medium in stirrer flasks (500 mL). In short, for 1 · 106 cells,
0.1 g of Cultisphere-G was rehydrated in PBS and auto-
claved and then transferred to 100 mL of cell suspension in
proliferation media. For the first 48 h the cells were cultured
at 25 rpm for 30 s and 30 min pause. After 48 h, 100 mL of
proliferation media was added and stirring was changed to
continuous mode at 50 rpm. For the reference culture
without microcarriers, MSCs were cultured in monolayer at
a density of 2500 cells/cm2.

All data are averages of three separate experiments using
three different MSC donors in combination with the same
hch donor.

Microcarrier construct culture

At day 10 of culture, aliquots of the chondrocytes and
MSCs attached to microcarriers were trypsinized and counted
to determine the cell number per milliliter of microcarrier
solution. Culture conditions with 1 · 106 cells per construct
were prepared according to Table 1. Tissue culture constructs
were formed by seeding microcarrier-free single-cell suspen-
sions and cell-laden microcarrier suspensions in hanging well
inserts (Millipore; Ø 6 mm) as described previously.26 Single-
cell suspensions were derived after trypsinization of cells

Table 1. Culture Scheme for the Comparison

of Microcarrier-Cell Combinations

and Single-Cell-Seeded Constructs

Condition MSCs Chondrocytes

100% MSC mc Attached to
microcarrier

None

80% MSC
mc/20% hchs

Attached to
microcarrier

3D-expanded
single-cell
solution

100% hch mc None Attached to
microcarrier

100% MSC 2D 3D-expanded
single-cell
solution

None

80% MSC
2D/20% hchs

3D-expanded
single-cell
solution

3D-expanded
single-cell
solution

100% hchs None 3D-expanded
single-cell
solution

MSCs, mesenchymal stromal/stem cells; 3D, three-dimensional;
2D, two-dimensional.
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expanded on microcarriers. In an additional condition the
MSC-seeded microcarriers were mixed with single-cell sus-
pensions of chondrocytes in a cell–cell ratio of 4:1 to translate
the culture model into a coculture strategy. Identical cell
numbers were used in each culture condition. Our strategy is
depicted in Figure 2A.

Cultures were maintained in chondrogenic differentiation
media (Dulbecco’s modified Eagle’s medium supplemented
with 40 mg/mL of proline, 50 mg/mL ITS-premix, 50 mg/
mL of ascorbic acid, 100 mg/mL of sodium pyruvate, 100 U
penicillin/mL and 100 mg/mL streptomycin, 10 ng/mL of
transforming growth factor-beta, and 10 - 7 M of dexa-
methasone) for 28 days. Earlier time points of the presented
constructs were not feasible, since limited tissue connec-
tivity did not allow for proper handling of the construct
before day 21.

Live–dead staining

Single microcarriers after 10 days of expansion culture or
for microcarrier constructs after 28 days of culture were
washed in PBS and stained for 30 min at 37�C in 6mM
ethidium homodimer/1 mM calcein. Images of 3D micro-
carrier constructs were taken by confocal microscopy
(LEICA LSM510) whereas images of the single micro-
carrier constructs were taken with a Nikon (E600) upright
fluorescence microscope.

Scanning electron microscopy

After 28 days in culture, samples were fixed in 10%
formalin, dehydrated in increasing series of ethanol, critical
point dried, mounted on a sample holder, and gold sputtered.
Samples were broken in half after snap freezing in liquid N2

during the dehydration procedure. Imaging acquisition was
done with Philips XL 30 ESEM-FEG scanning electron
microscope (10 V).

Rheology

After 28 days in culture, rheological experiments were
carried out with an MCR 301 rheometer (Anton Paar) using
parallel-plate (25-mm diameter) configuration at 37�C in the

oscillatory mode. The plate distance was set to 2 mm and
samples were measured at increasing frequency (1–10 Hz)
and increasing strain (1–10%). During measurements the
measuring chamber was sealed and filled with oil to avoid
drying of the sample.

Histology

After 28 days in culture, cell constructs were fixed with
10% buffered formalin for 15 min and embedded in paraffin
using routine procedures. Sections of 5 mm were cut and
stained for sulfated glycosaminoglycans (GAGs) with Al-
cian blue (0.5%, in H2O, pH = 1 adjusted with HCl, 30 min)
combined with counterstaining of nuclear fast red (0.1% in
5% aluminum sulfate, 5 min).

Wet weight and dry weight; quantitative GAG
and DNA assays

After 28 days in culture, constructs were washed with
phosphate-buffered saline and shortly dipped on filter paper
to remove excess liquid before weighing. Samples were
freeze dried overnight and weighed again to determine their
dry weight. Subsequently samples were digested and GAG
content was determined as described previously.27 Cell
number was determined via quantification of total DNA
with CyQuant DNA kit according to the manufacturer’s
description and fluorescent plate reader (Perkin Elmer).

RNA isolation and quantitative polymerase
chain reaction

Total RNA was isolated from pellet culture with the
Nucleospin RNA II kit (Bioke) after 28 days in culture. Up
to one microgram of total RNA was reverse-transcribed into
cDNA using the iScript cDNA Synthesis kit (Bio-Rad). The
primers for quantitative polymerase chain reaction (qPCR)
were designed with primer blast and are listed in Table 2.
B2M and RLP13 were used as house-keeping genes for
normalization as described earlier for chondrocyte-contain-
ing cultures.28 We used following protocol for amplifica-
tion: denaturation at 95�C for 10 min; 44 cycles of 95�C for
15 s, 60�C for 15 s, and 72�C for 15 s; and melt curve: 55�C

Table 2. Human Primers Used for Quantitative Polymerase Chain Reaction Analysis

Gene symbol Primer sequence Amplicon length T(a)

ACAN 5¢ AGGCAGCGTGATCCTTACC 3¢ 136 bp 64�C
5¢ GGCCTCTCCAGTCTCATTCTC 3¢

COL1A1 5¢ GTCACCCACCGACCAAGAAACC 3¢ 121 bp 60�C
5¢ AAGTCCAGGCTGTCCAGGGATG 3¢

COL2A1 5¢ CGTCCAGATGACCTTCCTACG 3¢ 122 bp 60�C
5¢ TGAGCAGGGCCTTCTTGAG 3¢

COL10A1 5¢ GCAACTAAGGGCCTCAATGG 3¢ 129 bp 56�C
5¢ CTCAGGCATGACTGCTTGAC 3¢

SOX9 5¢ TGGGCAAGCTCTGGAGACTTC 3¢ 98 bp 60�C
5¢ ATCCGGGTGGTCCTTCTTGTG 3¢

RPL13 5¢ AAAAAGCGGATGGTGGTTC 3¢ 101 bp 60�C
5¢ CTTCCGGTAGTGGATCTTGG 3¢

B2M 5¢ GACTTGTCTTTCAGCAAGGA 3¢ 106 bp 60�C
5¢ ACAAAGTCACATGGTTCACA 3¢
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to 95�C with 0.5�C increment for 5 s per step. QPCR results
were analyzed using the DD - ct method.

All reagents were purchased from Invitrogen unless oth-
erwise stated. Common chemicals were purchased from
Sigma-Aldrich.

Statistical analysis

Statistical analysis was performed using a one-way
ANOVA followed by a post-hoc Tukey test. Significances
of p £ 0.05 are indicated (*).

Results

Cells expanded on microcarriers can be used
as building units for cartilage TE constructs

Here we prove that chondrocytes retained their round
morphology when expanded on microcarriers in stirrer flasks
after 10 days of culture (Fig. 1A, B). During expansion on
microcarriers, both cell types maintained full viability as
shown by calcein/ethidium homodimer staining (Fig. 1C, D).
We performed kinetics of the cell culture on microcarriers
previously and compared them to 2D tissue culture plastic
culture. Cellular growth was comparable in both culture
methods within the 10 days of culture (data not shown).

We next explored whether chondrocyte- or MSC-laden
microcarriers or combinations there off could be directly
used in tissue engineering of cartilage tissue. For this, cell-
laden microcarrier constructs were cultured in hanging well
inserts. Cartilage tissue formation was compared with
single-cell-seeded wells (Fig. 2A).

After 28 days of culture, small discs of microtissues with
an average height of < 1 mm were produced in hanging
wells seeded with single-cell suspensions (Fig. 2B, bottom).
In contrast, stable microtissues with an average height of
4 mm were produced in hanging well inserts seeded with
MSC-laden microcarriers only or with MSC-laden micro-
carriers in combination with a single-cell suspension of
chondrocytes in a cell–cell ratio of 4:1 (Fig. 2A, bottom).

Macroscopically there was no obvious morphological dif-
ference between the latter two conditions. We next exam-
ined the effect of using cell-laden microcarriers to build 3D
constructs for cartilage tissue engineering on cell viability.
After 28 days of differentiation the 3D constructs were
stained for living and dead cells and cross-sectioned, and
confocal pictures of the bottom, middle, and top part were
taken. Viable cells were present in each compartment of the
tissue construct, with variation between the different zones
(Fig. 3A, B). Cell numbers in different areas of the construct
were evenly distributed in constructs containing chon-
drocytes whereas constructs consisting of MSC-laden mi-
crocarriers contained significantly lower amount of cells in
the middle part of the construct (Fig. 3C). In each of the
three seeding regimes, considerable cell death, in particular
in the middle of the construct, was noted after 28 days of
culture (Fig. 3B). Cell death was most pronounced in
constructs built of MSC-laden microcarriers. Mixing the
MSC-laden microcarriers with a single-cell suspension of
chondrocytes slightly improved cell viability particularly in
the middle compartment of the construct. Highest cell sur-
vival was observed in constructs build of chondrocyte-laden
microcarriers. Remarkably, while cell death was most pro-
nounced in the middle compartment of constructs containing
MSC-laden microcarriers, most dead cells were found in the
top and bottom compartments of the constructs build of
chondrocyte-laden microcarriers (Fig. 3B).

Cartilage, like many soft connective tissues, is exposed to
a wide spectrum of loading and shear stress. The high water
content makes cartilage a viscoelastic tissue. The elasticity
is displayed via fluid–solid frictional dissipation and pres-
surization of the fluids in the tissue. We therefore measured
the viscoelastic behavior of the hydrogel-like microcarrier
constructs by determining the storage and loss modulus that
represent values for the elastic portion and the viscous
portion of a construct. Rheological analysis revealed minor
differences between the different constructs with a storage
modulus of about 750 Pa and an about 10-fold lower loss
modulus when 10 Hz of stress or 10% strain was applied

FIG. 1. Expansion of
chondrocytes and mesenchy-
mal stromal/stem cells
(MSCs) on microcarriers.
(A) Scanning electron mi-
croscopy picture of a micro-
carrier laden with hchs. (B)
Higher magnification of (A)
showing that hchs maintained
their round phenotype (red
arrow), (C) MSCs and (D)
hchs showing high viability
after expansion on micro-
carriers as demonstrated by a
live–dead staining, in which
living cells fluoresce green
and dead cells fluoresce red
after 28 days of expansion
culture. Color images avail-
able online at www
.liebertpub.com/tea
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(Fig. 4A, B, respectively). Similar results have been ob-
tained for gelatin gels before by Kalyanam et al.29

Microcarrier-based tissue constructs
form cartilaginous tissue

All conditions of tissue-engineered constructs using cell-
laden microcarriers as building blocks were then subjected to
scanning electron microscopy (SEM). SEM analysis displayed

compact tissue formation at the lower part of the constructs and
more loose tissue in the upper part (Fig. 5A, error indicating
bottom of the construct). All microcarrier constructs revealed
similar results. At higher magnifications the round and com-
pact structure of the microcarriers could still be recognized
easily (Fig. 5B). The cell-laden microcarriers were surrounded
and connected by extracellular matrix [Fig. 5B, C (arrow)].
The microcarriers provided cellular niches for (in) growth and
differentiation of the cells in the construct (Fig. 5D).

FIG. 2. Efficient macrotissue formation using cell-laden microcarriers as building blocks. (A) Cell-laden microcarriers
were cultured in hanging inserts alone or were mixed with single-cell suspension of three-dimensional-expanded hchs and
cultured in hanging inserts for 28 days in differentiation medium as shown in the top. Four-millimeter-thick tissue constructs
were obtained in each of the two conditions as shown at the bottom. (B) Three-dimensional-expanded single-cell MSCs
were seeded in hanging inserts and cultured in differentiation medium as shown in the top. After 28 days of culture thin
discs of tissue were obtained as shown in the bottom. Color images available online at www.liebertpub.com/tea

FIG. 3. Cell viability in the microcarrier tissue constructs. (A) Tissue constructs of cell-laden microcarriers [100% MSCs
mc (left), 80% MSCs mc mixed with 20% 3D-expanded single hch (middle), or 100% hch mc (right)] were obtained after 28
days of culture in differentiation medium in hanging inserts. A live (FDA, green) and dead (PI, red) staining of cross-
sections was performed. The top row is a representative picture out of three repeats of the top zone of the construct (a–c).
The middle row is representative for the middle section of the construct (d–f) and the bottom row is representative for living
and dead cells in the bottom zone of the tissue construct (g–i). (B) Quantification of living and dead cells in the top, middle,
and bottom zones of the tissue constructs in (A). Data represent the mean – SD of three independent experiments. (C)
Quantification of total cell numbers present in each zone of the tissue constructs. Data represent the mean – SD of at least
three independent experiments. *p < 0.05. Color images available online at www.liebertpub.com/tea
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Staining for GAG deposition demonstrated cartilaginous
matrix formation. In the single-cell-seeded constructs, a thin
layer of packed cells surrounded by Alcian-blue-positive
GAGs was observed (Fig. 6A, F, L). In all three conditions
cartilage formation was observed. The chondrocyte-based
constructs had a rather fibrous cartilage morphology with
stretched lacunae (Fig. 6L). As expected, staining appeared
more intense in the coculture of MSCs and hchs in line with
previous observations.12

In contrast to the single-cell-seeded constructs, the mi-
crocarrier constructs displayed heterogeneous extracellular
matrix deposition. Constructs solely consisting of MSC-
laden microcarriers hardly stained positive for Alcian blue,
while intense staining was found at the bottom of the con-
struct of MSC-laden microcarriers mixed with chondrocytes
or chondrocyte-laden microcarriers [Fig. 6B, G, M (arrows);
C, H, N). This staining gradually decreased when moving
from bottom to top with a slight increase in staining at the
top layer (Fig. 6E, K, P). At higher magnifications, matrix

formation inside the hollow structures of the microcarriers
was observed, indicating first signs of microcarrier degra-
dation as well as cellular ingrowth in the microcarriers (Fig.
6C, H, N). The amount of matrix formation was lower in the
MSC-laden microcarrier culture, whereas staining in co-
cultures of MSC-laden microcarriers and hchs tended to
be higher than in chondrocyte monoculture. The cell density
in the microcarrier-based constructs was lower than in
the according single-cell constructs, resembling a more
cartilage-like phenotype.

For validation of histological data, biochemical quanti-
tative analysis was performed. In agreement with their
bigger size, the wet weight of microcarrier-seeded con-
structs was about 20-fold higher compared with single-
cell-seeded constructs. Also the dry weight of the micro-
carrier-containing constructs was higher (Fig. 7A, B). In
both cases the increased weight was the result of the con-
tributing mass of the microcarriers to the construct. Quan-
titative DMMB-based GAG measurements of three different

FIG. 4. Rheological analysis of the
microcarrier-based tissue constructs.
Storage and loss modulus of cell-laden
microcarrier-based tissues (various
cell combinations) were determined at
a stress of 10 Hz (A) or a strain of 10%
(B). Data represent the mean of three
independent experiments – SD.

FIG. 5. Scanning electron microscopy (SEM) of the microcarrier tissue constructs after 4 weeks of culture. (A) Scanning
electron microscopy showed compact tissue formation at the lower part of the construct (arrow) and more loose tissue with
visible single microcarriers in the upper part. (B) Higher magnification of the boxed region in A showing individual
microcarriers interconnected by cells and matrix. The arrow points to four microcarriers visibly connected by protein fibers.
(C) Further magnification of (B) showing the round outline of microcarriers (arrow) that are visibly connected by matrix (D)
whereas it is difficult to distinguish individual cells on microcarriers. SEM clearly provided evidence for the presence of
cellular niches at the surface of the microcarrier that might be favorable for growth and differentiation. The arrow points at a
cell homing in a microcarrier, whereas the light dots around the cells likely represent protein aggregates secreted by cells
homing to the microcarriers. Representative picture out of three independent experiments is shown.
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donors confirmed the lowest cartilage formation in MSC
microcarrier cultures, and revealed a trend to increased GAG
formation in the coculture approach although this did not
reach significance. Single-cell-seeded constructs displayed
the highest GAG deposition in the MSC cultures whereas
cocultures and chondrocyte cultures showed comparable
cartilaginous tissue formation after correction for DNA (Fig.
7C). DNA content of cultures could give an indication about
proliferation or cell death in the cell culture approach. Al-
though seeding same total cell numbers in the beginning, the
DNA content of single-cell-seeded constructs was always
lower than of microcarrier-seeded constructs. This suggested
that the microcarrier environment better supported cell pro-
liferation and/or cell survival than single-cell-seeded con-
structs. The DNA levels were more stable in microcarrier-
based constructs than in single-cell-based constructs.

Reduced markers of dedifferentiation and hypertrophy
in microcarrier-seeded constructs

Subsequently we analyzed gene expression levels in sin-
gle-cell- and microcarrier-seeded constructs by qPCR.
Comparison of single-cell constructs and microcarrier con-

structs showed higher mRNA expression of the marker
SOX9 (significant) and COL2A1 in single-cell-seeded con-
structs (Fig. 8A, D). ACAN was expressed to the same
amount in coculture of both culture approaches (Fig.
8E). COL1A1, a marker of dedifferentiation, was expressed
significantly higher in single-cell conditions (Fig. 8B),
compared with microcarrier-based constructs. The ratio
between COL2A1 and COL1A1 was not different (Fig. 8B).
COL10A1 mRNA was nonsignificantly reduced in MSC-
laden microcarrier-based constructs compared with single-
cell-based constructs. No COL10A1 mRNA expression was
detected in constructs based on hchs (Fig. 8F).

Discussion

Previous publications have demonstrated that MSCs and
chondrocytes can be expanded on microcarriers with the
same or even improved efficiency.5,10,30 With the here-
described microcarrier-assisted culture set-up, we enable the
transfer of MSC-and-chondrocyte coculture to a full carti-
lage tissue engineering strategy. We present a method that
offers the possibility to be applied in coculture-based single-
step cartilage repair strategies in clinical practice.

FIG. 6. Alcian blue stain of glycosaminoglycan (GAG) deposition in the microcarrier construct compared with the
cellular constructs. (A, F, L) Histological sections show that single-cell-seeded constructs result in thin layers of tissue with
Alcian blue stain in all conditions. High magnifications show more fibrous cartilage formation in the hch tissue (L) whereas
MSCs and coculture led to round chondron-like cellular morphology inside the matrix (A, F). (B–E, G–I, K, M–P)
Microcarrier constructs show cartilaginous matrix formation at the bottom of the construct and lowest abundance of staining
in the middle of the constructs. (H, N) Matrix formation inside the microcarriers is visible in the coculture of 80% MSCs
and 20% hch as well as the 100% hch culture. (F, G, H, I, K) The cocultured constructs show a more intense Alcian blue
stain in single-cell cultures as well as cell-laden microcarrier cultures. Representative pictures out of three independent
experiments are shown. Color images available online at www.liebertpub.com/tea
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The coculture approach has been described to enable
beneficial cartilage formation, namely, chondro-induction,
marked by increased GAG deposition; decreased cell dedif-
ferentiation, as measured by COL1A1 gene expression; and
decreased hypertrophic cell differentiation leading to less

calcification/endochondral bone formation in vivo.12,31,32 The
beneficial effect of coculture was assigned to soluble factors
released by MSCs. Recently, we identified the MSC-released
FGF-1 as key protein inducing the enhanced chondrogenesis
in cocultures of MSCs and hchs.17 For further improvement

FIG. 7. Biochemical anal-
ysis of the microcarrier-based
culture in comparison with
the cellular construct. (A)
Wet weight of the micro-
carrier tissues is significantly
higher than in the cellular
tissues resembling the bigger
volume of the tissues. (B)
Microcarrier tissues contain
less water than cellular con-
structs when normalized with
construct weight. (C) The
coculture approach results in
higher relative glycosamino-
glycan deposition in the mi-
crocarrier culture, whereas in
the cellular approach MSCs
seem to deposit more GAGs
(not significant). (D) Total
DNA content is in general
higher in the microcarrier-
containing constructs with
significant difference in the
MSC-containing samples.
Data represent the mean – SD
of at least three independent
experiments. *p < 0.05.

FIG. 8. Relative mRNA expression in microcarrier- and single-cell-based constructs. (A, D, E) Chondrogenesis markers
COL2A1 and SOX9 are higher in cellular constructs in all experimental conditions; whereas ACAN is expressed to the same
amount in the coculture approach of both culture approaches. (B, C) Despite the fact that COL1A1 is significantly higher
expressed in single-cell cultures, no difference between microcarrier and cellular constructs was observed when the ratio of
COL2A1/COL1A1 (ratio of differentiation vs. dedifferentiation is formed). (F) COL10A1 is only expressed in the coculture
and the MSC samples. Data represent the mean – SD of at least three independent experiments. *p < 0.05.
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of cartilage repair strategies, it is important to bring this co-
culture strategy from the bench to the bedside.

Coculture might be a suitable strategy to overcome the
low availability of chondrocytes for repair. For the im-
provement of ACI, it is favorable to omit the step of
chondrocyte expansion and assist the limited amount of
freshly isolated primary chondrocytes with a second cell
type. The here-described expansion of MSCs on hollow
microcarriers has been proven to improve MSC prolifera-
tion10 and provides microenvironments for homing of MSCs
(Fig. 5D). For microcarrier-assisted cocultures, autologous
MSCs can be taken from iliac crest, expanded on micro-
carriers, and used in the surgery with freshly isolated
chondrocytes.

We further demonstrate that microcarriers seeded with
MSCs or chondrocytes can directly serve as building blocks
for tissue-engineered cartilage constructs. In contrast to
constructs seeded with equal numbers of single cells, rela-
tively thick, up to 4 mm, cartilaginous tissue constructs can
be obtained. Currently, research groups either characterize
novel microcarriers for cartilage tissue engineering33,34 or
use the combination of previously 2D-expanded cells and
microcarriers.35,36 To the best of our knowledge, we are the
first to combine microcarrier cell expansion and their direct
use as building blocks for cartilage tissue engineering. Our
approach might be applicable for cartilage defects but also
for other trauma’s in which relatively large defects need to
be filled. A similar approach has been used before in bone
tissue engineering. Instead of gelatin-based microspheres,
cell-laden calcium phosphate particles were used to fill up
critical bone size defects.37 Thus, by selecting the appro-
priate material for microsphere generation, best fitting with
characteristics of the desired tissue, this approach could be
amenable for the tissue engineering of a wide variety of
tissues.34,38

Coculture of MSCs attached to microcarriers and 3D-
expanded chondrocytes led to improved GAG deposition, as
well as a decrease in COL1A1 expression. We were able to
confirm the nonsignificant downregulation of COL10A1 in
this culture model, whereas a decreased level of calcification
would have to be tested in an in vivo model. The combi-
nation of the superior performance of cocultures as well as
the microcarrier-based size increase of the construct makes
this concept an optimal strategy to overcome the limitations
of single-cell-based cartilage tissue engineering. The mi-
crocarrier-based culture model displayed lower expression
values for COL2A1 and SOX9 when compared with single-
cell constructs. Remarkably, the overall DNA levels re-
vealed a higher cell number in microcarrier-containing
constructs, underlining that lower per cell SOX9 and
COL2A1 levels might be compensated by more cells ex-
pressing respective genes.

The tissue obtained by cell-laden microcarriers has a
hydrogel-like appearance (Fig. 2A), which results mainly
from the ability of the gelatin microcarrier to swell in water.
The use of microcarriers further increases the volume of the
engineered constructs and supports thereby the filling of
bigger defects. Healthy cartilage consists of 75–85% of
water and thereby it is desirable to engineer cartilage with
biomaterials that offer similar physical composition.39 The
here newly engineered tissue consists of 80–90% of water
and has thereby a desirable feature of engineered cartilage

(Fig. 7B). These characteristics are as well underlined by the
rheological measurements that are in the range of gelatin
hydrogels described in the literature.29

An often-observed problem in the use of collagen-based
hydrogels is contraction of the whole construct depending
on the forces the cells develop as well as the degradation
process of the biomaterial. Gelatin microcarriers are known
to have a highly crosslinked structure that degrades very
slowly. In histological Alcian blue staining, we observed
cartilaginous matrix formation inside the microcarriers,
which appeared more hollow and might have undergone first
degradation by enzymes secreted by the ingrowing cells
(Fig. 6H, N). Even though degradation was seen in histo-
logical stainings, the microcarriers mainly exhibited their
round morphology, in particular, in the top part of the
construct, as was seen by scanning electron micrographs
(Fig. 5A). This indicated that the highly crosslinked struc-
ture of the gelatin-based Cultisphere-G microcarriers likely
enables long lasting support and will thereby allow further
stabilization of the defect meanwhile facilitating tissue
formation. In different tissue engineering approaches using
the same type of microcarriers, degradation took about 8
weeks.3 For the proof of principle, these microcarriers
provided sufficient support in the cartilage tissue engineer-
ing construct. Nevertheless, an optimization of degradation
time might lead to even faster matrix deposition and im-
proved chondrogenesis. The production of gelatin micro-
carriers with different degrees of crosslinking has been
shown to have an influence on cell proliferation, survival,
and differentiation of mouse fibroblasts.40 Evidence sug-
gests that microspheres with longer degradation times have
a positive effect on these parameters. Reasonably lower
degrees of gelatin crosslinking will allow faster degradation
of the gelatin scaffold and thereby create more space for
chondrogenic matrix deposition. Nevertheless, it is impor-
tant to allow a certain time frame for degradation. In case,
degradation is faster than matrix deposition, the constructs
might be too fragile and lose their integrity in the defect site
during loading.41

In the here-described microcarrier constructs, viability
was lower in middle of the constructs when MSCs were
used as major cell source. Constructs consisting of single
chondrocyte had a higher viability in all areas of the con-
struct. In 3D cultures, microcarriers can be used as a poro-
gen for better nutrient supply, which enables the formation
of thicker tissue constructs. This key feature of micro-
carriers enables cells to survive in all parts of the constructs,
whereas chondrocytes seem to have an optimized range of
adaptation for reduced nutrient supply. Malda et al. de-
scribed that nutrient deprivation can activate chondrogen-
esis.42 This might indicate that chondrocytes with their
limited nutrient supply in mature cartilage are more adopted
to survival in 3D constructs than MSCs with limited nutrient
supply and waste product exchange in the center of the
constructs. By additional comparison of DNA content of the
microcarrier-assisted culture with single-cell culture con-
struct, it was clear that cell numbers in microcarrier con-
structs after 28 days of differentiation culture were higher.
Higher cell numbers were likely the result from better
proliferation conditions, offered by the presence of the mi-
crocarriers.10,30 The increased surface area minimizes
competition between cells for limited cell attachment places.
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We here underline that cell-laden microcarriers can be
used in cartilage coculture strategies. Especially for ACI
strategies, cell-laden microcarriers can assist to overcome
the limitations of chondrocyte availability, homogeneous
cell distribution in the defect, and efficient filling of the
lesion. Additionally, during ACI, the coculture set-up can
improve the quality and quantity of chondrogenic matrix
formation.

Nevertheless, for optimal cell differentiation, nutrient
supply, and degradation regimes, it is wise to optimize the
used microcarriers according to the engineered tissue re-
quirements. Solorio et al. demonstrated that the continuous
release of transforming growth factor-beta from micro-
spheres can improve chondrogenic differentiation of MSCs
and promote their survival.36 This approach might overcome
nutrient limitations in the center of the construct and further
improve the presented approach. Further, the use of less-
crosslinked gelatin or poly(lactic-co-glycolic acid) as bio-
material can reduce degradation times and might be better
for chondrogenic matrix deposition.

Conclusion

In conclusion in this article we demonstrate that cell-
laden microcarriers used for the expansion of either MSCs
or hchs can be directly used as building blocks for coculture
approaches in tissue-engineered constructs. They may have
potential for direct application in biomaterial-assisted car-
tilage repair strategies without the need of trypsinization and
isolation of microcarrier-expanded single cells.
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