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The investigation of novel drug targets for treating cognitive impairments associated with neurological and
psychiatric disorders remains a primary focus of study in central nervous system (CNS) research. Many
promising new therapies are progressing through preclinical and clinical development, and offer the potential
of improved treatment options for neurodegenerative diseases such as Alzheimer's disease (AD) as well as
other disorders that have not been particularly well treated to date like the cognitive impairments associated
with schizophrenia (CIAS). Among targets under investigation, cholinergic receptors have received much
attention with several nicotinic agonists (α7 and α4β2) actively in clinical trials for the treatment of AD, CIAS
and attention deficit hyperactivity disorder (ADHD). Both glutamatergic and serotonergic (5-HT) agonists and
antagonists have profound effects on neurotransmission and improve cognitive function in preclinical
experiments with animals; some of these compounds are now in proof-of-concept studies in humans. Several
histamine H3 receptor antagonists are in clinical development not only for cognitive enhancement, but also
for the treatment of narcolepsy and cognitive deficits due to sleep deprivation because of their expression in
brain sleep centers. Compounds that dampen inhibitory tone (e.g., GABAA α5 inverse agonists) or elevate
excitatory tone (e.g., glycine transporter inhibitors) offer novel approaches for treating diseases such as
schizophrenia, AD and Down syndrome. In addition to cell surface receptors, intracellular drug targets such as
the phosphodiesterases (PDEs) are known to impact signaling pathways that affect long-term memory
formation and working memory. Overall, there is a genuine need to treat cognitive deficits associated with
many neuropsychiatric conditions as well as an increasingly aging population.
., Grenzacherstrasse 124, Bldg 68; room 403a, CH-4070 B
Wettstein).
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1. Introduction

Research on and development of novel therapeutic agents that
improve cognitive function continues to receive much attention, not
only because of the cognitive decline inherent to an aging population,
but also because of the many neuropsychiatric conditions that have
associated cognitive impairments with little or no viable treatment
options (e.g., CIAS and Down syndrome) (Fig. 1). Cognition is a highly
complex CNS function that includes attention, learning, memory and
executive processes. Individual diseases may involve one specific
impairment (e.g., attention in ADHD) or show global cognitive
impairment (e.g., schizophrenia). As there is no consensus on optimal
disease-relevant drug targets, many promising approaches are under
study. These include research on drugs that enhance neurotransmis-
sion (e.g., acetylcholinesterase inhibitors; AChEIs), stimulate or
inhibit key brain receptors (e.g., nicotinic agonists and 5-HT6 receptor
antagonists) and activate intracellular signaling cascades (e.g., PDE
inhibitors). In addition, resurgence in the interest of herbal or
naturally occurring nootropic agents (e.g., Ginko biloba) has emerged
in recent years; this approach, however, is outside the scope of the
present review.

Although many diseases are characterized by cognitive deficits or
decline, treatments targeting AD populations have been the most
consistently investigated. Nevertheless, the current list of approved
cognitive enhancing drugs for AD is not long and traditionally has been
focused on inhibiting the hydrolysis of acetylcholine (ACh) into acetate
and choline by targeting acetylcholinesterase (AChE). Increasing ACh in
the synapse can stimulate cholinergic receptors and promote enhanced
memory function. Tacrine was the first approved AChEI in the early
1990s; second generation AChEIs such as donepezil and rivastigmine
were introduced a few years later. Galantamine acts as anAChEI yet also
has nicotinic α7 positive allosteric modulatory (PAM) properties that
may be advantageous over standard therapies. Although AChEIs can
temporarily delay the symptomatic progression of cognitive decline in
Schizophrenia
Alzheimer’s DiseaseDepression

Substance Abuse

Bipolar
Sleep-wake
disorders
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Parkinson’s
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Down
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Fig. 1. Neurological and psychiatric illnesses linked to cognition impairment (mentioned
in the current review).
AD, their effects aremodest. In addition,withAChpresent both centrally
and peripherally, AChEIs produce troubling side effects such as
gastrointestinal disturbances, bradycardia and excessive salivation
that are associated with an action on peripheral muscarinic cholinergic
receptors. These adverse effects (Bymaster et al., 2003) are often dose
limiting and theoretically can interfere with a therapeutic benefit.
Newer generation AChEIs (e.g., NP-0361) as well as modifications to
existing treatments (e.g., physostigmine) are currently in various stages
of clinical development.

Latrepirdine (Dimebolin), a drug marketed as an antihistamine for
over 25 years, showed promise as a cognitive enhancing agent in a
Phase II trial in mild to moderate AD patients (Sabbagh and Shill,
2010). In addition to its antihistamine activity, this drug also exhibits
AChEI and butyrylcholinesterase inhibitor properties, is an NMDA
receptor antagonist and 5-HT receptor antagonist, and inhibits L-type
Ca2+ channels (Wu et al., 2008). However, in a more recent Phase III
multinational trial, latrepirdine failed to improve cognition or global
function in mild-to-moderate AD (http://www.medivation.com/
product-pipeline/dimebon). Continued investigation into latrepirdi-
ne's potential therapeutic activity in AD is ongoing in patients on
background donepezil therapy and, in a separate Phase III, study in
patients diagnosed with Huntington's disease.

In addition to AChEIs, memantine has been added to the list of
available drugs to treat moderate to severe cognitive impairment in
AD. Memantine is a moderate affinity antagonist at the NMDA
receptor and appears to modulate glutamate neurotransmission in a
manner that results in the resumption of normal signal transduction
and restoration of cognitive processes. Currently, memantine is
marketed solely as a cognitive enhancing agent as claims of
neuroprotection have not been proven clinically. In addition to
memory enhancing compounds, drugs that improve attention, such as
methylphenidate and amphetamine, have been prescribed for over
40 years for conditions such as ADHD. Attention-modulating drugs
traditionally have been classified as psychostimulants because these
block the neuronal reuptake of both dopamine and norepinephrine.
Recently added to this category of attention-enhancing drugs is
atomoxetine, which inhibits the norepinephrine transporter, but is
the first marketed non-stimulant ADHD medication. Together, the
drugs identified above are now available to treat problems of
cognition. Many others representing more diverse mechanisms are
under close experimental study and will be discussed below.

2. General mechanisms underlying learning and memory

Determining the mechanisms involved in how the brain acquires,
stores and retrieves memories is one of the greatest challenges in the
field of neuroscience. Even a partial understanding of the phenomena
underlying cognitive function may lead to treatments of mental
disorders when faculties begin to fail in a disease state. Ramón y Cajal
first proposed that repeated stimulation of neuronal networks would

http://www.medivation.com/product-pipeline/dimebon
http://www.medivation.com/product-pipeline/dimebon
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strengthen synaptic connections and facilitate learning (Nestler et al.,
2001). This idea was later championed by Donald Hebb in 1949, and
confirmed using the gill withdrawal reflex of the invertebrate Aplysia
californica undergoing a sensitization paradigm by Castellucci et al.
(1970) and Kupfermann et al. (1970). Synaptic strengthening and
plasticity occurs via changes in neurotransmission and alterations in
signaling pathways.Much of thework that has aided the understanding
of themolecular aspects of synaptic plasticity comes from studies using
in vitromethods focused on long-term potentiation (LTP) in the hippo-
campus. Bliss and Gardner-Medwin (1973) demonstrated that high-
frequency stimulation of axons within the perforant pathway of the
hippocampus leads to enhanced postsynaptic responses in the dentate
gyrus following subsequent stimulation. This enhanced response is
input specific (i.e., occurring at stimulated, but not unstimulated,
synapses), long-lasting (i.e., persisting for hours toweeks depending on
induction protocol) and associative (i.e., coincident presynaptic and
postsynaptic activation). Subsequently, LTP has been observed at many
other synapses in the brain such as the lateral nucleus of the amygdala.
Using the amygdala-dependent memory paradigm of conditioned fear
provided in vivo support that LTP mechanisms may underlie long-term
memory formation (McKernan and Shinnick-Gallagher, 1997; Rogan
et al., 1997).

Enhanced glutamate release from presynaptic neurons and
subsequent activation of postsynaptic AMPA and NMDA receptors
are critical for LTP induction. In particular, once the postsynaptic
neuron is sufficiently depolarized, the Mg2+ block of the NMDA
receptor is released and an influx of Ca2+ into the cell allows
activation of Ca2+/calmodulin kinase II and protein kinase C, as well as
other secondmessenger systems (e.g., protein kinase A) that facilitate
LTP. Changes in synaptic plasticity that occur for relatively short
periods (e.g., hours) are generally considered to occur by alterations
to existing proteins, for example, via phosphorylation. Longer-term
changes in synaptic efficacy involve the synthesis of new proteins:
activation of the transcription factor, cAMP responsive element
binding protein (CREB), a critical mediator of LTP and long-term
memory in multiple species (e.g., Drosophila, Aplysia, and mice) (for
review see Frank and Greenberg, 1994). In addition, study of enhanced
CREB function (and subsequently memory function) through small
molecule approaches (e.g., PDE4 inhibitors) has been a long-standing
interest of many scientists (Barco et al., 2003; Tully et al., 2003).

In addition to regulation of postsynaptic intracellular signaling
cascades in mediating memory processes, many neurotransmitter
systems influence learning and memory performance. As mentioned
earlier, the glutamatergic system is intimately linked with LTP
processes, and similar enhancements have been observed in in vivo
learning and memory paradigms mediated through glutamate release
and AMPA receptor activation. In addition, ACh is a critical mediator of
learning and memory, and cholinergic neurons are particularly
affected in diseases such as AD. Mildly enhanced dopamine
transmission and activation of dopamine D1 receptors in the
prefrontal cortex, in particular, has been described to mediate
working memory function (Arnsten et al., 1994). In addition, whereas
activation of certain GABA-ergic systems can impair memory,
developing drugs that act as inverse agonists at the GABAA receptor
have shown promise in enhancing memory function (Ballard et al.,
2009).

Important to the development of any new drug is its efficacy
evaluation in animal models. In particular, these preclinical assays can
help to determine which cognitive domains are most likely to be
affected by a particularmechanism of action, and ultimately will aid in
the clinical study design.Whereas testing in naive animals is essential,
it is important for new molecules to be characterized in the presence
of existing therapies relevant to the targeted patient population in
order to assess potential impact on efficacy (positive or negative). For
example, some currently marketed therapies, e.g., antipsychotic
drugs, have been reported to impair cognitive performance (Levin
and Rezvani, 2007). As this has the potential to mitigate any cognitive
improvement produced by an investigational new drug, it is critical
for the success of the clinical study to understand how the efficacy of a
novel molecule may be impacted in patients on a background therapy
prior to the initiation of the study. It is also important to evaluate drug
efficacy in animal models of disease and not only in drug naïve
animals to get information about drug action on a more predictive
CNS background. Various disease models are available, although none
is ideal. The possibilities, though, are many and are dependent on the
pathology of interest. There are, for example, transgenic animals for
AD, Rett and Down syndromes, animal models of ADHD, and
procedures such as long-term impairment after treatment with
NMDA antagonists for schizophrenia.

2.1. Cholinergic targets

ACh has long been recognized for its involvement in learning and
memory, and degeneration of the cholinergic system is part of the
pathophysiology of AD. ACh is synthesized in neurons located in the
brainstem and basal forebrain that project to brain regions involved in
regulating cognitive function such as the cerebral cortex and
hippocampus. In addition, the basal ganglia is rich in cholinergic
interneurons thatmediate some forms of implicit memory. ACh exerts
its effects at two receptor classes: (i) nicotinic receptors that are
members of a ligand-gated ion channel receptor superfamily, and
(ii) G-protein coupled muscarinic receptors. Both receptor classes are
located centrally and peripherally, however, specific receptor sub-
types within each class mediate cognitive function in the brain.

2.1.1. Nicotinic acetylcholine receptors
Nicotinic acetylcholine receptors (nAChRs) are appropriately

named because of their propensity to bind nicotine as well as the
endogenous ligand, ACh. nAChRs are comprised of five subunits with
binding sites located between subunits. Upon agonist binding, the ion
channel opens and an influx of positive cations (e.g., calcium and
sodium) enters causing neuronal depolarization. Whereas nAChRs are
located throughout the body, the two most predominant receptors
within the brain are heteropentameric α4β2nAChRs and homopen-
tameric α7nAChRs. These two nAChR subtypes are highly localized
within brain regions associated with cognitive function and have been
most intensively studied for their role in mediating cognition. Early
reports that nicotine administration improved performance in
patients with diseases characterized by cognitive impairments (e.g.,
AD, schizophrenia, and ADHD) suggested a role for nAChRs in the
pathophysiology of several disorders. To this end, drug discovery and
development efforts targeted at the α4β2nAChR and the α7nAChR
have received considerable attention.

Based on binding affinity, the α4β2nAChR is considered to have
high (nM) and theα7nAChR low (μM) sensitivity to nicotine and ACh.
Recently, the α4β2nAChR has been further classified based on the
identification of two distinct stoichiometries in which this receptor
subtype exists: (α4)2 and (β2)3 subunits (high sensitivity state) or
(α4)3 and (β2)2 subunits (low sensitivity state) that are characterized
by their binding affinity for ACh. Theα4β2nAChR has been studied for
its role in attention (Howe et al., 2010) and thus many drug
development programs have targeted ADHD populations in addition
to other disorders wherein attentional deficits are commonly
observed (e.g., schizophrenia). α4β2nAChRs are localized in the
cerebral cortex, hippocampus, ventral tegmentum and substantia
nigra (Gotti et al., 2006). These are dopaminergic-rich brain regions
and, thus,α4β2nAChRs are thought, in part, to mediate the rewarding
properties of nicotine (Walters et al., 2006), a potential liability for
drugs acting on this target.

As a treatment for smoking cessation, varenicline was the first
nAChR agonist approved by the US Food and Drug Administration.
Described as a partial α4β2nAChR agonist, it has subsequently been
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found to have full agonist properties at theα7nAChR as well (Mihalak
et al., 2006). Although there is some preclinical evidence that
varenicline can improve recognition memory in rats (Rollema et al.,
2009), it remains to be determinedwhether these resultswill translate
into a similar effect in humans. Ongoing clinical trials in patients with
AD and CIAS (www.clinicaltrials.gov; study identifiers NCT00744978
and NCT00523445) (Table 1) may help to elucidate this soon.

AstraZeneca and Targacept are collaborating on the research and
development of several α4β2nAChR agonists for the treatment of
cognitive impairment in ADHD, AD and schizophrenia. Ispronicline
(AZD3480 and TC-1734) did not have a pronounced effect on
cognition in patients with schizophrenia (HALO trial) or in mild-to-
moderate AD patients (SIROCCO trial). Data from the latter trial
were inconclusive in that the positive control (donepezil) did not
differentiate from placebo. In mid-2009, AstraZeneca and Targacept
announced they would continue evaluating ispronicline for an ADHD
indication; Phase IIb studies were projected to begin in 2010. Evaluation
of α4β2nAChR agonists for ADHD and AD indications is a rather
competitive landscape (Table 1). In addition to ispronicline, AstraZeneca
and Targacept are also pursuing a second molecule AZD1446 (TC-6683)
for both diseases and were projected to initiate Phase IIa and Phase IIb
trials, respectively, late in 2010. Abbott and Neurosearch partnered to
develop ABT-894 (sofinicline) which completed a Phase II safety and
efficacy study in adults with ADHD (www.clinicaltrials.gov; study
identifiersNCT00429091). Similarly, Abbott hasfinishedPhase IIb studies
with ABT-089 (pozanicline) for both ADHD and AD. Amgen, Suven and
AbbottwithNeurosearch haveα4β2nAChRPAMs in preclinical and early
clinical development with no specific indications stated.

In addition to the pursuit of α4β2nAChR agonists, a great deal of
effort has been devoted to developing agonist therapies targeted to
the α7nAChR. α7nAChRs are localized almost exclusively in the brain
with limited peripheral expression (Gotti et al., 2006), thus providing
the potential for a reduced side effect profile. The α7nAChR is
characterized by its high calcium permeability, which is greater than
any of the other nAChRs, and its rapid desensitization upon agonist
binding (Bertrand et al., 1993; Castro and Albuquerque, 1993, 1995;
Seguela et al., 1993). Both ACh and choline bind to the α7nAChR.
Activation of the α7nAChR produces pro-cognitive effects across
multiple domains and species and may have neuroprotective
properties (Kihara et al., 2001; Rezvani et al., 2009; Roncarati et al.,
2009; Thomsen et al., 2010). The α7nAChR is also a central mediator
of sensory gating, which is profoundly impaired in patients with
schizophrenia. Moreover, abnormal P50 suppression (a measure of
sensory gating) has been linked to genetic markers at the locus of the
α7nAChR subunit gene on chromosome 15q13-14. Administration of
nonselective α7nAChR agonists including tropisetron (also a 5-HT3
receptor antagonist) and nicotine reverse the P50 auditory gating
deficit observed in patients (Shiina et al., 2010; Simosky et al., 2002).
These data, in part, have made the α7nAChR a drug target of great
interest for treating CIAS.

GTS-21, an anabaseine derivative, is an α7nAChR partial agonist
with weak α4β2nAChR antagonist properties that has been tested in
clinical trials through Phase II for AD and CIAS (Table 1). Initial results
showed improvements in cognitive function in healthy volunteers
and in patients with schizophrenia using the Repeatable Battery for
Assessment of Neuropsychological Status (RBANS) test, and it
normalized the P50 auditory evoked potential (Kitagawa et al.,
2003; Olincy et al., 2006). However, GTS-21 did not reverse cognitive
impairments in patients in a subsequent study using the MATRICS
scale (Freedman et al., 2008).

Roche is currently in Phase IIb with RG3487, a dual α7nAChR
agonist and 5-HT3 receptor antagonist (Wallace et al., 2011), as
adjunctive therapy to donepezil for the treatment of AD. RG3487
(formerly known as MEM3454) monotherapy improved cognitive
function using the Cognitive Drug Research test battery in healthy
volunteers and in a Phase IIa mild-to-moderate AD population; it
recently completed a Phase II study in CIAS, and similar to GTS-21, did
not improve cognitive endpoints as assessed by the MATRICS test
battery. Roche also has a second molecule, RG4996, that has
completed Phase I safety and tolerability studies; it is a selective
α7nAChR agonist with no 5-HT3 receptor antagonist properties.
EnVivo Pharmaceuticals (EVP-6124) and Targacept (TC-5619) are
both in Phase IIb studies with α7nAChR agonists for AD and CIAS. Like
RG3487, EVP-6124 also has 5-HT3 receptor antagonist properties.

Several groups haveα7nAChR agonists and PAMs in various stages
of preclinical and early clinical development. An α7nAChR PAM will
still activate the ion channel, but limit the rapid desensitization
characteristic of this receptor and avoid any direct interaction with
nicotine in a smoking population. This latter issue may be of concern
for a disease such as schizophrenia wherein up to 88% of the
population is estimated to smoke (Moss et al., 2009). Xytis, with XY
4083, is the first company reporting a Phase I-ready α7nAChR PAM.

2.1.2. Muscarinic receptors
The five muscarinic receptor (mAChR) subtypes identified are

classified based on differing intracellular signaling pathways. The M1,
M3 and M5 mAChRs couple to Gq proteins, activate phospholipase C
and subsequently mobilize intracellular calcium. M2 and M4 mAChRs
couple to Gi/o proteins and inhibit adenylate cyclase. Whereas all of
the mAChR subtypes exist centrally, many are also localized
peripherally with the M2 and M3 mAChRs being considered the
primary systemic mediators of adverse effects associated with
currently marketed AChEIs (Bymaster et al., 2003; Wess et al., 2007).

The M1 mAChR is the predominant brain mAChR and is localized
postsynaptically within the cortex, hippocampus, striatum and
thalamus wherein it regulates the effects of ACh; this receptor
received much initial attention as a potential drug target to improve
learning and memory (Levey et al., 1991). Many companies have
brought nonselective M1 mAChR agonists (e.g., xanomeline and
cevimeline) into clinical testing based on promising pro-cognitive
effects from preclinical data. No M1 mAChR agonist, however, has
undergone successful development thus far, largely due to unaccept-
able safety profiles and minimal efficacy (Table 1). Most attribute this
class failure to the absence of subtype selective molecules in that the
orthosteric binding region of the mAChRs is rather highly conserved
(Langmead et al., 2008). The M1 mAChR allosteric site, which is not as
well conserved across mAChRs, has garnered some support and
provides an alternative approach for selectively activating the M1

mAChR. BothM1mAChR allosteric agonists (e.g., TBPB and AC-42) and
positive modulators (e.g., VU0119498 and VU0027414) have been
described in detail previously [for review, see (Conn et al., 2009;
Langmead et al., 2006)].

The M4 mAChR is also widely expressed within the CNS and has
received attention as a potential drug target for pro-cognitive activity,
but has faced similar challenges as the M1 mAChR with regard to
selectivity. Thus, the study of allosteric activation and orthosteric/
allosteric bitopic agonists is an area of active research. More recently,
the identification of a small molecule (LY2033298) that acts as both a
selective positive modulator and an agonist at the same allosteric M4

mAChR site has provided an area of significant progress in the
development of selective activators of the M4 mAChR (Nawaratne
et al., 2010).

Antagonism of the M2 mAChR has also been investigated for
potential pro-cognitive processes [for review, see (Langmead et al.,
2008)]. M2 mAChRs are located presynaptically in many brain regions
including frontal and temporal cortices, and antagonism of this
receptor elevates extracellular ACh concentrations (Billard et al.,
1995) that may improve cognitive performance. In addition to the
difficulty in developing selective molecules for the M2 mAChR,
another inherent limitation of targeting this receptor subtype is its
high expression in the heart wherein antagonism may alter
contraction force and parasympathetic control of heart rate.

http://www.clinicaltrials.gov
http://www.clinicaltrials.gov


Table 1
Drug targets for cognitive enhancement in clinical development. Source: Thomson Reuters Integrity. Key: PAM: positive allosteric modulator; NAM: negative allosteric modulator;
AD: Alzheimer's disease; ADHD: attention deficit hyperactivity disorder; CIAS: cognitive impairment associated with schizophrenia; FXS: Fragile X syndrome; MCI: mild cognitive
impairment; PD: Parkinson's disease; SZ: schizophrenia; TRD: treatment-resistant depression.

Compound name (code/generic/brand) Target Indication Highest phase Organization

Cholinergic targets: nACh and mACh receptors
CP-526555-18/varenicline/Chantix;
Champix

α4β2 partial agonist AD; CIAS Launched 2006 for
smoking cessation

Pfizera

α7 full agonist
TC-1734; AZD-3480/ispronicline α4β2 agonist AD; ADHD; MCI II AstraZeneca; Targacepta

TC-6683; AZD-1446 α4β2 agonist AD; ADHD II AstraZeneca; Targacepta

ABT-894/sofinicline α4β2 agonist ADHD II Abbotta; NeuroSearcha

A-87089; ABT-089/pozanicline α4β2 partial agonist AD; ADHD II Abbotta

ABT-560; ABT-PR2 α4β2 agonist Cognitive disorders I Abbott; NeuroSearcha

RG3487; R3487; MEM3454 α7 partial agonist AD; CIAS II Roche; Memory Pharmaceuticalsa

5-HT3 antagonist
MT-4666; EVP-6124 α7 agonist AD; CIAS II EnVivo Pharmaceuticalsa;

Mitsubishi Tanabe Pharma;5-HT3 antagonist
AZD-0328; AR-R23465XX α7 agonist AD; CIAS II AstraZenecaa

TC-5619 α7 agonist AD; ADHD; CIAS II AstraZeneca; Targacepta

RG4996; R4996; MEM63908 α7 partial agonist AD I Roche; Memory Pharmaceuticalsa

CP-810123 α7 agonist CIAS I Pfizera

XY 4083 α7 PAM Cognitive disorders I Xytis
SB-202026A/sabcomeline/Memric M1 agonist CIAS II GlaxoSmithKlinea; Minster Pharmaceuticals
MCD-389 M1 agonist AD I Mithridiona

GSK-1034702 M1 agonist AD; CIAS I GlaxoSmithKlinea

Glutamatergic targets: NMDA, AMPA and mGlu receptors
Memantine/Namenda NMDA antagonist AD Launched 2002 Merz and Lundbeck
EVT-101 NR2B antagonist TRD II Evotec; Rochea

LY-451395 AMPA PAM AD II Lillya

CX-717 AMPA PAM AD; ADHD II Biovail; Cortexa

CX-1739 AMPA PAM AD; ADHD I Biovail; Cortexa

LY-2140023 mGlu2/3 agonist SZ II Lillya

ADX-71149 mGlu2 PAM SZ I Ortho-McNeil-Janssena; Addexa

RG-1578; R-1578 mGlu2/3 NAM Depression I Rochea

NPL2009/fenobam mGlu5 NAM FXS II Ortho-McNeil-Janssena; Neuropharm
AFQ056 mGlu5 NAM FXS II Novartisa

STX107 mGlu5 NAM FXS I Merck & coa; Seaside Therapeutics

Glycine targets
D-serine Glycine site agonist CIAS; PD-cognitive impairment III NIMH; Hebrew University
RG1678 GlyT1 inhibitor SZ III Rochea; Chugaia

SCH-900435; Org-25935 GlyT1 inhibitor SZ II Merck & Coa; Organona

PF-03463275 GlyT1 inhibitor CIAS; SZ II Pfizera

DCCCyB GlyT1 inhibitor SZ I Merck Sharp & Dohmea

R-231857 GlyT1 inhibitor CIAS; SZ I Johnson & Johnsona

JNJ17305600 GlyT1 inhibitor CIAS; SZ I NPS Pharmaceuticalsa;
Johnson & Johnson

AMG747 GlyT1 inhibitor CIAS I Amgen

GABAA targets
MK-0777 α2/3 partial agonist CIAS II Mercka; UCLA
L-830982 α2/3 agonist CIAS II Mercka

RG1662 α5 inverse agonist Cognitive disorders I Rochea

PDE targets
PF-04447943 PDE9 inhibitor AD II Pfizera

PF-02545920; MP-10 PDE10 inhibitor SZ II Pfizera

Serotonergic targets
PRX-03140 5-HT4 partial agonist AD II Nanotherapeutics; Epix Pharmaceuticalsa

RQ-9; RQ-00000009 5-HT4 partial agonist AD I RaQualiaa

Lu-AE-58054; SGS-518 5-HT6 antagonist AD II Lilly; Lundbeck;
SB-742457; GSK-742457 5-HT6 antagonist AD II GlaxoSmithKlinea

SAM-531; PF-5212365; WAY-262531 5-HT6 antagonist AD; CIAS II Pfizera

AVN-211 5-HT6 antagonist CIAS II Avineuroa

SUVN-502 5-HT6 antagonist AD I Suven Life Sciencesa

SYN-114 5-HT6 antagonist Cognitive disorders I Rochea; Synosia Therapeutics
SYN-120 5-HT6 antagonist AD; CIAS I Rochea; Synosia Therapeutics
AVN-322 5-HT6 antagonist AD I ChemDiva; Avineuroa

Histaminergic targets
FUB-649; BF-2649/tiprolisant H3 inverse agonist/antagonist CIAS II Biprojeta; Ferrer
GSK-239512 H3 antagonist MCI II GlaxoSmithKlinea

S-38093 H3 antagonist AD II Motac Cognition; Serviera

SAR-110894 H3 antagonist AD I Sanofi-Aventisa

CEP-26401 H3 antagonist AD; CIAS I Cephalona

a Company where compound was discovered.

134 T.L. Wallace et al. / Pharmacology, Biochemistry and Behavior 99 (2011) 130–145



135T.L. Wallace et al. / Pharmacology, Biochemistry and Behavior 99 (2011) 130–145
2.2. Glutamatergic targets

Glutamate, the major excitatory neurotransmitter in the mamma-
lian CNS, has long been known to play a major role in learning and
memory processes. Glutamate activates both ionotropic (ligand-gated
cation channels) and G-protein-coupledmetabotropic receptors (Kew
and Kemp, 2005). Fast excitatory transmission is mediated via
ionotropic receptors whereas metabotropic glutamate receptors
(mGluRs) modulate neuronal excitability and synaptic transmission.
There is evidence that abnormalities of the glutamatergic system,
particularly hypofunction of NMDA receptor signaling, are important
for the underlying pathophysiology of schizophrenia. Moreover,
dysfunction of the glutamatergic system has been implicated in
disorders such as AD, ADHD and depression. The development of
selective pharmacological tools has permitted exploration, primarily
in animals, of the roles of different glutamatergic receptor subtypes on
cognitive processes. In some cases, this has led to the clinical study of
compounds acting at some of these molecular targets both in healthy
volunteers and in patient populations (Table 1).

2.2.1. Ionotropic glutamate receptors
There are three main types of ionotropic receptors that have been

named after the compounds which were originally identified as
selective agonists for each receptor: N-methyl-D-aspartate (NMDA),
α-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid (AMPA) and
2-carboxy-3-carboxymethyl-4-isopropenylpyrrolidine (kainate).

2.2.1.1. NMDA receptors. The NMDA receptor family is composed of
seven subunits (NR1, NR2A–D, and NR3A–B) that are all products of
separate genes. NMDA receptors are tetrameric structures likely
composed of pairs of dimers such as an NR1 dimer in combination
with an NR2x or NR3x dimer. For activation, the NMDA receptor
requires two co-agonists, glycine and glutamate, binding at the NR1
and NR2 subunits, respectively. Blockade of NMDA receptors, for
example by MK 801, leads to impairment of LTP and spatial learning
and memory in rodents. However, as mentioned earlier, compounds
that moderately block the NMDA receptor, such as memantine, may
modulate excessive glutamate neurotransmission leading to improve-
ments in cognition. Interestingly, compounds that are potent NR2B
subunit selective antagonists do not impair spatial learning and
memory in rodents (Guscott et al., 2003; Higgins et al., 2003;
Willmore et al., 2002). This subunit is of interest with respect to
cognition because over-expression of NR2B receptors in the mouse
forebrain is associated with enhanced LTP and improved performance
in learning and memory tasks, including spatial paradigms (Tang
et al., 1999), which is still notable in aged transgenic mice (Cao et al.,
2007). Further evidence for a role of NR2B receptors in hippocampal
LTP and spatial learning has been supported by studies in aged rats
(Clayton and Browning, 2001), anti-sense studies in young rats
(Clayton et al., 2002) and a recent study in NR2B forebrain over-
expressing transgenic rats (Wang et al., 2009).

In contrast, one study showed that Ro 25-6981, an antagonist of
NR2B receptors, enhanced neurogenesis and spatial memory (Hu et al.,
2008) and under certain test conditions some of these compounds,
particularly CP-101,606 (traxoprodil), improved performance of work-
ing memory and attention tasks (Higgins et al., 2005). However, NR2B
antagonists such as CP-101,606 and Ro 63-1908, also promoted
impulsive-type responding in a five-choice serial reaction time task
(Higgins et al., 2005). In humans, variability in the genes encoding the
2A and 2B subunits of the NMDA receptor (GRIN2A and GRIN2B) are
associated with poorer performance in tests of episodic memory
coupled with changes in hippocampal activity (de Quervain and
Papassotiropoulos, 2006). There is clearly a role for NR2B receptors in
cognitive processes although furtherwork is required to understand the
effects of positive and negative modulation of this receptor subtype on
different cognitive domains and in different pathologies. Regarding
clinical studies, EVT-101 is a potent and selective NR2B subtype specific
antagonist originating from Roche with an improved side effect profile
compared to nonselective NMDA receptor antagonists. EVT-101, now
withEvotec,wasfirst indevelopment for the treatmentofADand is now
in Phase II for treatment-resistant depression (Table 1).

2.2.1.2. AMPA receptors. The AMPA receptor family is composed of four
subunits, GluR1–4, which are products of separate genes. Alternative
splicing of RNA gives rise to flip and flop variants of each subunit.
Native AMPA receptors are believed to assemble as tetramers and are
likely heteromeric. It has been shown that there are regional
differences in the expression of AMPA receptor subunits throughout
the rodent and non-human primate brain (Black, 2005) and different
combinations of these subunits may result in functional diversity of
the AMPA receptor (Ward et al., 2010). Glutamate-induced activation
of postsynaptic AMPA receptors leads to an induction of LTP and, as
mentioned previously, induces a change in synaptic morphology and
strength that likely underlies learning and memory (Bliss and
Gardner-Medwin, 1973).

Positive modulation of AMPA receptors may enhance cognition by
modulating glutamatergic transmission, promoting synaptic plasticity
and enhancing production of trophic factors such as brain derived
neurotrophic factor (BDNF) (Lynch, 2004). Compounds from this class
that enhance cognition in rodents include pyrroliddones (piracetam
and aniracetam), benzothiazides (cyclothiazide), benzylpiperidines
(CX-516 and CX-546) and biarylpropylsulfonamides (LY392098,
LY404187, and LY503430) (Black, 2005; O'Neill et al., 2004). These
compounds have no intrinsic activity yet enhance glutamate
transmission via AMPA receptors by changing the rate of receptor
desensitization. However, the activity of these compounds may
depend on splice variant or subunit composition (Black, 2005).

CX516 was the first AMPA receptor positive modulator assessed
for cognitive enhancement in schizophrenia. The compound was
generally well tolerated but did not have an effect on cognition when
combined with clozapine, olanzapine or risperidone (Goff et al.,
2008b). CX516 had previously improved cognitive performance in
healthy and elderly subjects but the lack of efficacy in the former
study is thought to be due to weak potency and a short half-life in
humans (Ward et al., 2010). Another modulator, LY451395, was
studied in mild to moderate AD patients and although it was well
tolerated there was no improvement in cognition after eight weeks of
treatment (Chappell et al., 2007); this compound remains in clinical
development for the treatment of AD (Table 1). Cortex Pharmaceu-
ticals is conducting Phase II clinical trials with CX-717 for the
treatment of cognition dysfunction associated with ADHD, AD and
for the treatment of sleep deprivation.

2.2.2. Metabotropic glutamate receptors
The family of mGluRs consists of eight members classified by

molecular and pharmacological properties into three main groups:
group I (mGlu1 and 5), group II (mGlu2 and 3) and group III (mGlu4,
6, 7 and 8) (Kew and Kemp, 2005). Whereas group I mGlu receptors
are primarily localized postsynaptically, group II and group III
receptors are typically presynaptic and can regulate neurotransmitter
release (Cartmell and Schoepp, 2000). Evidence for the therapeutic
potential of mGluRs, particularly group I and II, for the treatment of
CIAS, Fragile X syndrome, AD, Parkinson's disease and posttraumatic
stress disorder has been reviewed previously (Gravius et al., 2010;
Spooren et al., 2003).

2.2.2.1. Group I: mGlu1 and mGlu5 receptors. Both mGlu1 and mGlu5
receptors are expressed in neurons postsynaptically yet have different
expression patterns in the brain suggesting that these receptors have
different functions. mGlu1 receptors are expressed in the hippocam-
pus, hypothalamus, thalamus, amygdala, basal ganglia, cerebellum
and spinal cord (Fotuhi et al., 1993; Shigemoto et al., 1992). mGlu5
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receptors are expressed in the cerebral cortex, hippocampus,
amygdala, cortical areas (subiculum, entorhinal, cingulate and piri-
form cortices), basal ganglia, septum and olfactory bulb (Romano
et al., 1995; Shigemoto et al., 1993). mGlu1 antagonists impair
cognition in aversive learning paradigms such as the water maze and
fear conditioning yet have equivocal effects in appetitively motivated
tasks (see Lesage and Steckler, 2010 for review of data). Enhancement
of glutamatergic transmission by positive allosteric modulation of
mGlu1 receptors should result in enhanced cognition. However, to
date there are no published reports on the effects of mGlu1 PAMs in
learning and memory procedures. Like mGlu1, mGlu5 receptor
antagonists also impair performance in aversively motivated cogni-
tion tests (Simonyi et al., 2010). The cognitive impairment noted with
mGlu5 antagonists appears to be task- or context-dependent since not
all cognitive tests are affected following blockade of this receptor.

mGlu5 receptor signaling has been implicated in the pathogen-
esis of fragile X syndrome (FXS) which is the leading inherited cause
of mental retardation and the predominant identified cause of
autism (Bear et al., 2004; Dolen and Bear, 2008). FXS is caused by
transcriptional silencing of the FMR1 gene that encodes the fragile X
mental retardation protein (FMRP). The hypothesis is that in the
absence of FMRP, there is increased signaling via mGlu5 receptors
leading to excessive protein synthesis and thus the clinical symptoms
of the disorder, which include cognitive impairment (Bear et al.,
2004; Dolen and Bear, 2008). Dolen et al. (2007) generated
Fmr1 mutant mice with a 50% reduction in mGlu5 receptors and
demonstrated that there was rescue of the Fmr1 phenotype,
including reversal of the cognitive impairment. Therefore, mGlu5
receptor antagonists may provide an effective treatment for FXS. An
initial evaluation has been completed with an mGlu5 receptor
antagonist, fenobam, in an open-label single dose trial in twelve adult
male and female patients with FXS (Berry-Kravis et al., 2009). There
was a slight improvement in prepulse inhibition in six of the
individuals and no significant adverse events were noted. Currently
there are two clinical trials ongoing in FXS, with STX107 under
evaluation for safety and tolerability in Phase I by Seaside
Therapeutics and AFQ056 for safety and efficacy (behavior and
cognition) in Phase II by Novartis (Table 1).

Positive allosteric modulation of mGlu5 receptors results in
enhanced synaptic plasticity (Ayala et al., 2009) and cognition (Liu
et al., 2008; Uslaner et al., 2009) in rodents. There is evidence for a
functional interaction between mGlu5 receptors and NMDA receptors
and this has been further substantiated by electrophysiological and
behavioral studies withmGlu5 PAMs (Lecourtier et al., 2007; Liu et al.,
2008; Rosenbrock et al., 2010; Stefani andMoghaddam, 2010; Uslaner
et al., 2009). Therefore, mGlu5 PAMs may provide an alternative
therapeutic approach for the treatment of CIAS.

2.2.2.2. Group II: mGlu2 and mGlu3 receptors. Of the group II mGlu
receptors, mGlu3 is highly expressed in glia and mGlu2 is largely
neuronal (Ohishi et al., 1994; Yokoi et al., 1996). In situ hybridization,
immunohistochemical and autoradiography studies indicate that the
mGlu2 receptor exhibits a regionally distinct expression pattern in
adult brain with high levels in areas including the olfactory bulb,
cerebellar cortex, caudate-putamen, cerebral cortex and the terminal
fields of the perforant path input from the entorhinal cortex in the
hippocampus (Mutel et al., 1998; Ohishi et al., 1993; Schaffhauser
et al., 1998; Shigemoto and Mizuno, 2000). Considerable pharmaco-
logical evidence suggests that activation of group II mGlu receptors
can markedly inhibit synaptic transmission (Anwyl, 1999; Cartmell
and Schoepp, 2000) and thus can limit excitatory neurotransmission
under conditions of high frequency repetitive activation (Kew et al.,
2001; Scanziani et al., 1997). Furthermore, it has been shown in
human hippocampal slices that group II mGlu receptor activity can
modulate presynaptic glutamate release (Dietrich et al., 2002). It has
been difficult to differentiate the actions of mGlu2 and mGlu3 due to
the lack of selective pharmacological tools. Nonetheless, modulation
of group II mGlu receptors may have therapeutic potential for
cognitive impairment associated with AD, depression and
schizophrenia.

Early stage AD pathology is associated with neurodegeneration
within the entorhinal cortex, hippocampus and associated circuitry
such as the perforant pathway (Gomez-Isla et al., 1996). Results from
morphological, electrophysiological and behavioral studies associate
mGlu2/3 receptors in cognitive processes involving cortico-cortical
connections within medial–temporal lobe structures predominantly
at the perforant path inputs to the dentate gyrus (Higgins et al., 2004;
Linden et al., 2006; Spinelli et al., 2005). The notion that mGlu2/3
receptor antagonists may rescue cognitive impairment in mild to
moderate AD patients (Higgins et al., 2004) has not yet been studied
clinically.

Preclinical evidence suggests that mGlu2/3 receptor antagonists
induce biochemical and behavioral changes indicative of antidepres-
sant activity (Pilc et al., 2008). It was recently shown that mGlu2/3
receptors are significantly increased in the prefrontal cortex (post-
mortem) in major depressive disorder (Feyissa et al., 2010). Since
competitive mGlu2/3 receptor antagonists exhibit mild alerting,
cognitive enhancing and neurogenesis properties in preclinical
studies in rodents (Feinberg et al., 2005; Karasawa et al., 2006;
Shimazaki et al., 2007), it was proposed that mGlu2/3 receptor
antagonists would have an antidepressant profile with wake-
promoting and cognition enhancing effects (Witkin et al., 2007).
Currently, an mGlu2/3 negative allosteric modulator (NAM) from
Roche, RG1578, is undergoing Phase I trials for depression (Table 1).

Regarding schizophrenia, interest in this indication was generated
by data showing that the mGlu2/3 receptor agonist, LY354740,
reversed the behavioral effects induced by PCP, including a working
memory impairment (Moghaddam and Adams, 1998). Since then it
has been shown that mGlu2/3 receptor agonists also attenuate
cognitive impairments induced by neonatal PCP administration
(Harich et al., 2007). In contrast, LY354740 was shown to worsen
working memory, attention and spatial learning and memory when
administered to naive rats and marmoset monkeys (Aultman and
Moghaddam, 2001; Higgins et al., 2004; Spinelli et al., 2005).
However, there are no reports of cognitive impairment in healthy
volunteers. Moreover, there were modest effects of LY354740 in
attenuating the working memory impairment induced by an NMDA
receptor antagonist, ketamine, in healthy human volunteers (Krystal
et al., 2005). Genetic studies have shown that a variation in the GRM3
genotype (encoding mGlu3) is associated with poorer performance
on tests of hippocampal and prefrontal cortex function (de Quervain
and Papassotiropoulos, 2006; Egan et al., 2004). A recent review
suggested that the mGlu3 receptor may be the primary therapeutic
target for the symptomatology of schizophrenia, including cognitive
impairment (Harrison et al., 2008). However, a lack of selectivemGlu3
receptor compounds currently precludes testing this hypothesis
clinically. Cognition testing in schizophrenic patients is currently
ongoing with LY-2140023, an mGlu2/3 receptor agonist from Lilly in
Phase II trials (Table 1). Addex has an mGlu2 selective PAM, ADX-
71149, in Phase I trials for schizophrenia.

2.3. Glycine targets

There is considerable evidence, ranging from pharmacological to
imaging data, that support the notion that hypofunction of the NMDA
receptor complex contributes to the pathophysiology of schizophre-
nia (Javitt, 1999, 2009). Importantly, genetics research over the past
5 years has provided additional data implicating an important role for
glutamatergic signaling in schizophrenia, leading to the suggestion
that psychosis is secondary to NMDA receptor hypofunction with a
downstream effect on dopaminergic activity (Deutsch et al., 2001;
Javitt and Zukin, 1991; Kegeles et al., 2000). Thus, new treatment
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options for schizophrenia now focus on increasing NMDA receptor
activity as this is expected to benefit patients by improving behaviors,
particularly those mediated by the prefrontal cortex such as negative
symptoms, workingmemory and executive functions. (Section 2.2.1.1
briefly describes the NMDA receptor complex.)

One way to modulate glutamatergic tone is to target directly or
indirectly the glycine co-agonist site of the NMDA receptor. Glycine, via
binding to the NMDA complex, enhances excitatory neurotransmission
in cortical and hippocampal structures suggesting a role in cognition.
Using glycine itself, however, is not a viable option as bioavailability and
brain penetration markedly limit its utility. D-serine, which like glycine
also binds as a co-agonist at the NR1 subunit, improved executive
function in patients with schizophrenia when added to standard
antipsychotic medication (Tsai et al., 1998). Similarly, it has been
shown that treatment with agonists of the glycine site of the NMDA
receptor like D-cycloserine improved the negative symptoms of patients
with schizophrenia when given as adjunctive treatment to antipsy-
chotics (Goff et al., 1995). D-Cycloserine, however, had limited effects on
cognitive function in patients (Goff et al., 2008a; Otto et al., 2009).

Molecular, biochemical and behavioral data show that local
concentrations of glycine in the forebrain are controlled by the action
of the high-affinity glycine transporter type-1 (GlyT1) (Cubelos et al.,
2005; Harsing, 2006). Therefore, NMDA receptor function can be
enhanced by increasing glycine in the synaptic space of NMDA
receptors by inhibition of GlyT1. Based on preclinical research, various
cognitive domains appear improved by increased glycine levels. Social
memory, for example, is improved in rodents after acute treatment
with the GlyT1 inhibitor NFPS (Shimazaki et al., 2010). In this study,
NFPS reversed the impairment induced by a time delay between
session, and by MK-801. NFPS also reversed the impairment induced
by MK-801 on object recognition (Karasawa et al., 2008), a model of
short term working memory similar to the human CANTAB test,
verbal recognition memory (Barnett et al., 2010). Another GlyT1
inhibitor, SSR504734, improved working memory in delayed alter-
nation tasks in mice after sub-chronic treatment (Singer et al., 2009).
In patients, the GlyT1 inhibitor, sarcosine, ameliorated symptoms of
schizophrenia including cognitive impairment when added to
risperidone, but not clozapine (Lane et al., 2005, 2006, 2010; Tsai
et al., 1998). Moreover, PF-03463275 reversed impairment of working
memory induced in non-human primates by pre-treatment with
ketamine (Roberts et al., 2010). PF-03463275 is now in a clinical Phase
II trial for CIAS. Other potent and selective GlyT1 inhibitors currently
in clinical development are RG1678 from Roche, R-231857 from
Johnson & Johnson and AMG747 from Amgen, the latter two for CIAS
(Table 1).

2.4. GABA targets

GABA (γ-aminobutyric acid) is the principal inhibitory neuro-
transmitter in the mammalian CNS. The GABAA receptor is the
predominant inhibitory neurotransmitter receptor in the CNS and has
been widely used as a target for neuromodulatory drugs. Many
compounds in clinical use as anxiolytics, sedatives, hypnotics or anti-
epileptics increase GABAA receptor activation via the allosteric
benzodiazepine (BZD) binding site on the receptor-chloride channel
complex. Nonselective BZD receptor inverse agonists improved
cognition in impairment paradigms in animals (Jensen et al., 1987;
McNamara and Skelton, 1993; Venault et al., 1986), and in a few
exploratory trials in healthy human volunteers (Duka et al., 1996).
However, further clinical development of these nonselective com-
pounds was prevented by anxiogenic effects seen in humans (Dorow
et al., 1983) or concerns about convulsions.

GABAA receptors are pentamers mostly consisting of two α, two
β and one γ subunits. Several gene products are available for each of
the subunits giving rise to a large number of receptor variants. The
importance of differentα subunit subtypes has been elucidated by the
generation of transgenicmice lacking the normal diazepam sensitivity
of the α1, α2, α3 or α5 subunit (α4 and α6 are diazepam-
insensitive). The results indicate that α1 is responsible for the
sedative effects, α2 and perhaps α3 for the anxiolytic effects (Low
et al., 2000;McKernan et al., 2000;Mohler, 2006; Rudolph et al., 1999)
and α5 for the cognitive effects (Collinson et al., 2006; Crestani et al.,
2002) of BZD receptor agonists.

Evidence that a disturbance in cortical GABAA receptor signaling
underlies psychiatric disorders such as schizophrenia has been
previously reviewed (Charych et al., 2009; Wassef et al., 2003), and
it has been suggested that subtype selective compounds may provide
a novel therapeutic approach. More specifically, it has been proposed
that full positive allosteric modulators of α2, α3 or α5 may have
therapeutic potential for the treatment of cognitive dysfunction
associated with schizophrenia (Guidotti et al., 2005). In contrast,
negative allosteric modulators of GABAA receptors may provide an
effective therapy for the treatment of the cognitive deficits associated
with disorders such as Down syndrome and neurofibromatosis
(Fernandez et al., 2007; Rueda et al., 2008; Cui et al., 2008). The
transgenic mouse model for Down syndrome, Ts65Dn, has been
shown to have excessive inhibitory transmission in the hippocampus
together with learning and memory deficits that can be attenuated by
compounds that block activity at GABAA at sub-convulsant doses, such
as picrotoxin (Fernandez et al., 2007) and pentylenetetrazole (Rueda
et al., 2008). Increased inhibitory transmission is also associated with
spatial learning deficits found in a mouse model of neurofibromatosis
that were attenuated by treatment with picrotoxin at sub-convulsant
doses (Cui et al., 2008). It is not yet known which receptor subtype is
responsible for alleviating the cognitive impairment in these mouse
models.

2.4.1. GABAA α2/3 receptors
A proof-of-concept trial was undertaken in a small sample of

patients with schizophrenia with a relatively selective agonist at the
α2 subtype, MK-0777 (or TPA023). MK-0777 induced improvements
in only the delayed recall tests but also enhanced synchronization of
cortical neuronal activity at gamma frequencies, which has been
proposed to be of importance in higher cognitive processes (Lewis
et al., 2008). Interestingly, MK-0777, at a dose-range which was
consistent with the study in schizophrenia patients, significantly
reversed a ketamine-induced deficit in a spatial workingmemory task
in nonhuman primates (Castner et al., 2010). With these promising
data, the University of California Los Angeles sponsored a Phase II trial
with MK-0777 for CIAS (Table 1); however, it was recently reported
that MK-0777 did not have a significant therapeutic effect (Buchanan
et al., 2011). Since this compound is a relatively weak partial agonist
at GABAA α2 receptors, Buchanan et al. proposed that one might need
compounds with greater potency and selectivity for α2 and/or α3 to
have a beneficial effect in patients.

2.4.2. GABAA α5 receptors
The preferential localization of α5 subunits is in the hippocampus

(Fritschy and Mohler, 1995) and reduced expression of this subunit
has been associated with facilitated cognition in hippocampal-
dependent tasks in mice (Collinson et al., 2006; Crestani et al.,
2002). Therefore, a BZD site ligand with inverse agonism selective for
α5-containing GABAA receptors could enhance cognitive function
without anxiogenic and pro-convulsant side effects. A number of
compounds with binding or functional selectivity for α5-containing
GABAA receptors have recently been synthesized; behavioral data
from these compounds indicate that such a pharmacological profile
can improve cognitive function without CNS-mediated adverse effects
(Atack et al., 2006; Ballard et al., 2009; Collinson et al., 2006; Dawson
et al., 2006; Savic et al., 2008). These compounds have been shown to
positively modulate hippocampal-dependent tasks, such as spatial
working memory in rodents (Atack et al., 2006; Ballard et al., 2009;
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Collinson et al., 2006; Dawson et al., 2006; Savic et al., 2008), but there
is also evidence for improved performance in a prefrontal cortex
mediated executive function task in nonhuman primates (Ballard
et al., 2009).

Since the density and pharmacology of α5 subunit-containing
GABAA receptors are preserved in the hippocampus of AD patients
(Howell et al., 2000), compounds were initially studied for their
effectiveness in AD. A preliminary report showed that CP-457,920
(NGD 97-1), a partial α5 inverse agonist (α5IA), did not differ from
placebo on cognition measures after 12 weeks of dosing (Tolar et al.,
2004). However, the structure and in vitro properties of the compound
have not been disclosed and so it is unknown whether an optimal
combination of potency, efficacy, binding and functional selectivity
was achieved. The functionally selective α5IA attenuated ethanol-
induced impairment of word recall in healthy young volunteers (Nutt
et al., 2007) and was well tolerated in a Phase I study in young and
elderly volunteers (Atack, 2010). However, development was stopped
due to renal toxicity (crystal formation) at high doses in preclinical
toxicity studies in rats (Atack, 2010). MRK-016 was the back-up
compound to α5IA; it was also well tolerated in young subjects but
unfortunately poorly tolerated in elderly patients. Together with
variable human pharmacokinetics, development of MRK-016 was
stopped in Phase I (Atack et al., 2009). RG1662, anα5 selective inverse
agonist from Roche, is currently undergoing Phase I clinical trials
(Table 1).

2.5. PDE targets

cAMP and cGMP are crucial for cell signaling, synapse communi-
cation and synaptic plasticity. Consequently, regulation of cAMP and
cGMP levels can be expected to impact cognitive function to some
degree. Among the eleven known PDE families, five are of interest in
the domain of cognition. These are PDE2, PDE4, PDE5, PDE9 and
PDE10. PDE inhibitors block the metabolism of cAMP and/or cGMP
resulting in increased CNS function particularly in areas of high
enzyme localization such as the hippocampus, cortex, striatum and
amygdala, supporting a role for these intracellular enzymes in
cognitive processing.

2.5.1. PDE2
A limited number of pharmacological studies have been focused on

the effects of PDE2 inhibitors in cognition. BAY60-7550, a selective
PDE2 inhibitor, reversed an object memory deficit in rats on a special
diet inducing low tryptophan in the CNS (van Donkelaar et al., 2008).
With a dual effect on cAMP and cGMP, PDE2 inhibitorsmay affect both
acquisition and consolidation in the memory process (Blokland et al.,
2006).

2.5.2. PDE4
PDE4 is cAMP-specific and encoded by four different genes

(PDE4A, PDE4B, PDE4C, and PDE4D). A single nucleotide polymor-
phism and haplotype association analysis in a large Finnish schizo-
phrenia family sample demonstrated a link between the gene DISC1
and both PDE4B and PDE4D haplotypes (Tomppo et al., 2009). DISC1
is currently one of the most interesting candidate genes for mental
illness and is associated with schizophrenia, bipolar disorder, major
depression, and autism susceptibility (Camargo et al., 2008; Kilpinen
et al., 2008; Palo et al., 2007) with growing evidence for a role in
dendritic spine structures (Hayashi-Takagi et al., 2010). A similar
genetic linkage between PDE4B and DISC1 was shown in a Japanese
population (Numata et al., 2008).

With respect to preclinical research, there have been many studies
performed with the non-selective PDE4 inhibitor, rolipram. In rats,
rolipram has a beneficial role in spatial memory after ischemia and
after treatment with scopolamine or NMDA antagonists (Reneerkens
et al., 2009). Rolipram also improved inhibitory avoidance learning in
rodents treated with protein synthesis inhibitors. Contextual fear
conditioning was improved by rolipram during retention in unim-
paired rats and in transgenic mice for AD. Episodic-like memory
measured via an object recognition task was improved by rolipram in
rats, and it also reversed the disruptive effects of scopolamine. Some
beneficial effects of rolipram on attentional performance were also
described in Cynomolgus monkeys studied in an object retrieval task
(Rutten et al., 2008). Another compound, RO-201724 was shown as
having a beneficial effect on information processing in mice (Halene
and Siegel, 2008). In general, however, development of PDE4
inhibitors has been compromised due to a number of target-related
side effects including nausea and emesis.

2.5.3. PDE5
A large number of preclinical studies in rodents support the role of

PDE5 inhibitors in cognition (Reneerkens et al., 2009). Most of these
studies were performed with the PDE5 inhibitors sildanefil or
zaprinast. More specifically, the results point to a beneficial role in
episodic-like memory in unimpaired animals, as well as spatial
working memory in impaired animals. Sildenafil also reversed the
disruptive effect of a nitric oxide synthase inhibitor on spatial working
memory (Devan et al., 2006). Some beneficial effects of sildenafil were
also shown in Cynomolgusmonkeys in an object retrieval task (Rutten
et al., 2008).

With respect to clinical assessment, only studies with small
numbers of subjects are available, with limited results. Some
beneficial effect on reaction time in healthy volunteers was claimed
(Grass et al., 2001) after acute treatment with sildenafil, but other
studies in healthy volunteers only reported a limited increase on
attention and no effect on memory (Schultheiss et al., 2001). A small
clinical study in out-patients with schizophrenia stabilized on
antipsychotics did not show a beneficial effect of adjunctive acute
treatment with sildenafil on cognitive functions (Goff et al., 2009).
Thus, contrary to the preclinical data set, the few clinical reports do
not consistently support a strong role of PDE5 in attention, memory or
performance of logic tasks in healthy volunteers or patients with
schizophrenia.

2.5.4. PDE9
PDE9, a cGMP-specific PDE, is widely expressed in the brain,

particularly in the cortex, hippocampus and striatum (Schmidt, 2010).
With respect to preclinical data, the PDE9 inhibitor BAY 73-6691
improved memory consolidation in unimpaired rats and mice studied
in object and social recognition tasks (van der Staay et al., 2008).
Furthermore, this compound reversed MK-801- and scopolamine-
induced memory deficits in the T-maze and in a passive avoidance
task, respectively (van der Staay et al., 2008). With respect to clinical
trials, Pfizer has conducted a Phase II study with PF-04447943 (see
Table 1) in patients with mild to moderate AD (clinicaltrials.gov.
Identificator NCT00930059); results are not yet public. In general, the
impact of PDE9 on cognitive processing requires further investigation.

2.5.5. PDE10
PDE10, which affects both cAMP and cGMP, is highly expressed in

striatal structures. It has been proposed that PDE10 inhibitors can
treat the positive and negative symptoms as well as cognitive
dysfunction in schizophrenia (Grauer et al., 2009; Zhang, 2010).
MP10 (PF-0254920) from Pfizer is the furthest advanced PDE10
inhibitor. A Phase II study was initiated to evaluate whether MP10 is
safe and effective for the treatment of schizophrenia (Table 1). With
respect to preclinical research, several studies have been published on
the nonspecific PDE10 inhibitor papaverine as well as the specific
inhibitors TP10 (Reneerkens et al., 2009) and MP10 (Grauer et al.,
2009). Fourteen days of treatment with papaverine induced impair-
ment in spatial memory in mice when studied in the Morris water
maze task (Hebb et al., 2008). Papaverine, after sub-chronic
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treatment, also reversed PCP-induced impairment of executive
function in rats (Rodefer et al., 2005). Contrary to the effects with
papaverine, MP10 is inactive in rats when assessed for episodic-like
memory in a novel object recognition paradigm (Grauer et al., 2009).
However, these authors found papaverine and MP10 active in
reversing MK-801 impaired social memory in mice. Together, the
data suggest that specific PDE10 inhibitors have potential in treating
cognitive dysfunction specific to certain cognitive domains, particu-
larly social memory and executive function (Simson et al., 2010).

2.6. Dopaminergic targets

In the dopamine receptor family, D1, D3, and D4 receptors have
been targets for cognition enhancement. Perhaps the strongest case
can be made for dopamine D1 receptor agonists and D1 receptor
signaling within the prefrontal cortex (Goldman-Rakic et al., 2004).
However, there is no active clinical development of D1 receptor
agonists at this time (Table 1). Pro-cognitive effects have been shown
for dopamine D3 receptor antagonists. In particular, the D3 receptor
antagonists S33084 and SB277,011 improved social recognition in
rats (Loiseau and Millan, 2009). These effects seem to be linked to
increased ACh activity in prefrontal structures (Panayi et al., 2005).
Similarly, the D2/D3 receptor antagonist S33138 has pro-cognitive
effects in tests for attention and working memory. S33138 also
reversed the effect of scopolamine in social recognition (Millan et al.,
2008). With respect to the dopamine D4 receptor, preclinical data are
limited. One compound, L745,870, a D4 receptor antagonist, improved
working and episodic memory (Braszko, 2010). Clinical data with
dopamine modulators is forthcoming over the next few years, either
with D2 receptor stabilizer drugs or with D3 receptor antagonists
having mixed pharmacology.

2.7. Serotonergic targets

Malfunction of the 5-HT system has emerged as a leading
candidate cause for depression (Middlemiss et al., 2002; Naughton
et al., 2000). At the same time, several lines of evidence point to a role
for 5-HT in memory (Buhot et al., 2000). Most prominently, depletion
of tryptophan, a precursor of 5-HT, is associated with lower
performance on episodic memory retention tests in humans (Riedel
et al., 1999). Thismirrors findings in depressionwhich is accompanied
by moderate to severe memory deficits (Johnson and Magaro, 1987;
Schaub et al., 2003). However, manipulations that increase 5-HT
concentration or 5-HT receptor activation also lower memory
performance as indicated by receptor agonist studies in both humans
(Riedel et al., 2002) and animals (Normile and Altman, 1988). Both
increased and decreased 5-HT receptor activation have adverse effects
on memory due to two actions of 5-HT in the hippocampus (Meeter
et al., 2006). First, 5-HT exerts a hyperpolarizing influence on
principal cells; directly, via 5-HT1A receptors, and indirectly, via
facilitation of GABA release from local interneurons through 5-HT3
receptors (Burnet et al., 1995; Piguet and Galvan, 1994). Activation of
5-HT2A and 5-HT2C receptors induce depolarization in principal cells
(Barnes and Sharp, 1999; Piguet and Galvan, 1994), yet these effects
appear to be dominated by the depolarizing effects of 5-HT as bath
application of 5-HT will hyperpolarize principal cells in slice prepara-
tions of the dentate gyrus (Piguet and Galvan, 1994). In addition,
through 5-HT2C, 5-HT4, and 5-HT7 receptors, down-regulation of
hyperpolarizing currents leads to reduced adaptation in principal cells
(Bacon and Beck, 2000; Torres et al., 1996). The increased firing rate
observed in slices after prolonged application of 5-HThas been linked to
thismechanism(Andrade andChaput, 1991; Andrade andNicoll, 1987).
In summary, 5-HT influences memory performance through its
hyperpolarizing effects whereas changes in adaptation may not have
a large influence onmemory performance (Meeter et al., 2006). Distinct
memory profiles can be derived for low and high transmission of 5-HT
in the hippocampus: low 5-HT transmission is predicted to lead to a
relatively large amount of information being retrieved at the cost of
activating irrelevant information and of high levels of false alarms. High
5-HT transmission was predicted to lead to a reduced quantity of
retrieved information leading to lower recall scores combined with
lower levels of false alarms.

To mediate the actions of 5-HT, at least 15 distinct 5-HT receptors
have been identifiedwhich are divided into sevenmain families (5-HT1,
5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6 and 5-HT7); several families have
manymembers (e.g., 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F) (Roth
et al., 2004). Each 5-HT receptor type or subtype has a specific regional
distribution in the brain (Hoyer and Martin, 1996). In addition to the
5-HT transporter, which is widely distributed in the whole brain and
mirrors 5-HT innervation, some specific 5-HT receptors, such as the
5-HT1A, 5-HT2A, 5-HT3, 5-HT4 and5-HT6 are potentially involved or have
been implicated in memory function. One reason that 5-HT receptors
are thought to be involved in cognition is implied by their neuroana-
tomical localization, especially in brain areas linked to memory such as
the hippocampus, frontal cortex and striatum. 5-HT1A receptors are
concentrated in the hippocampus, septumand raphe nucleus, aswell as
cortical regions, the latter of which is more richly populated by 5-HT2A
receptors while 5-HT4 receptors are abundant in basal ganglia and
hippocampus. Others such as 5-HT3 and 5-HT6 receptors are abundant
in cortical and hippocampal areas. Aside from this neuroanatomical
distribution, the role of 5-HT receptors in learning and memory also
depends onwhether they are located on cholinergic septo-hippocampal
and nucleus basalis of Meynert to frontal cortex pathways, or on the
glutamatergic pyramidal cells present in the hippocampus, the
subiculum, the entorhinal and the frontal cortices, or on the GABA-
ergic interneurons in different regions, suggesting interactive influences
between 5-HT and these different neurotransmission systems (Buhot
et al., 2000).

2.7.1. 5-HT1A receptors
In the 1990s, several 5-HT1A agonists were studied for their effects

on cognition; results were described with buspirone, flesinoxan,
ipsapirone and umespirone (Friston et al., 1992; Grasby et al., 1992;
Hart et al., 1991; Holland et al., 1994; Riedel et al., 2002; Unrug et al.,
1997; Van Harten et al., 1996a,b) showing that 5-HT1A agonists have
very modest cognition enhancing properties in normal elderly and in
depressed patients. No significant development has resulted from
these studies. Interestingly, 5-HT1A antagonists have also been
targeted and were studied up to Phase III in AD patients, however,
at present no 5-HT1A compounds are known to be in development
(Patat et al., 2005; Pitsikas et al., 2005; Schechter et al., 2005). Several
novel antipsychotics with 5-HT1A action such as lurasidone may have
cognition-enhancing properties (Nakamura et al., 2009). Differences
with existing antipsychotics have been shown to favor cognition
enhancement in schizophrenia (Harvey et al., 2011), but there is no
clinical evidence that this is specifically due to 5-HT1A action, or any
other serotonergic action (e.g., 5-HT6 or 5-HT7). Although it is fair to
say that the latter 5-HTmechanisms cannot be ruled out, the complete
lack of anticholinergic and antihistaminergic properties provides a
potentially much more parsimonious explanation for a relatively
more cognition sparing effect of these drugs when compared to
existing antipsychotics.

2.7.2. 5-HT2A receptors
In an earlier review (Roth et al., 2004) it was suggested that drugs

with potent 5-HT2A antagonistic actions may prove beneficial at
improving cognition in schizophrenia and dementia due to a close
association betweenNMDA and 5-HT2A receptors. In linewith this, the
selective 5-HT2A antagonist, EMD 281014, improvedworkingmemory
function in both young and aged monkeys (Terry et al., 2005). It was
also demonstrated in humans and monkeys that 5-HT2A agonism
impaired working memory (Umbricht et al., 2003; Williams et al.,
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2002). However, at present no compounds aimed at 5-HT2A receptors
are known to be in development solely for cognitive benefit.

2.7.3. 5-HT4 receptors
In addition to providing symptomatic relief, 5-HT4 receptor

agonists have the potential to modify the pathogenesis of AD. In
transfected Chinese hamster ovary cells and a human neuroblastoma
cell line, 5-HT4 receptor activation not only stimulated secretion of the
soluble nonamyliodogenic form of the amyloid precursor protein
(sAPP-alpha), which has neuroprotective, neurotrophic and cognitive
enhancing effects, but also decreases extracellular accumulation of
amyloid beta (King et al., 2008). Evidence suggesting that 5-HT4
receptor polymorphisms could predispose individuals to schizophre-
nia (Suzuki et al., 2003) and ADHD (Li et al., 2006) is limited, whereas
more interest has focused on neurodegenerative disorders such as
AD, which is associated with decreased 5-HT4 receptor expression in
the hippocampus and prefrontal cortex (Reynolds et al., 1995). For
example, PRX-03140 (Table 1), a highly selective, small-molecule
5-HT4 receptor agonist, is currently being evaluated in Phase II clinical
trials for the treatment of AD (clinicaltrials.gov; study identifiers ID
NCT00384423, ID NCT00672945, and ID NCT00693004).

2.7.4. 5-HT6 receptors
Recently, 5-HT6 receptor antagonists with improved affinity and

selectivity have been developed that demonstrate better penetration
into the CNS (Russell and Dias, 2002). SB-742457 is a 5-HT6 receptor
antagonist in early clinical evaluation at GlaxoSmithKline for the
treatment of AD (Table 1). A randomized, double-blind, placebo-
controlled Phase II study investigated the efficacy and tolerability of
SB-742457 in over 300 patients with mild-to-moderate probable AD;
it was concluded that SB-742457 was generally safe and well
tolerated and may be efficacious in AD (Maher-Edwards et al.,
2010). Several other 5-HT6 receptor antagonists are in development
(Table 1) (Upton et al., 2008).

2.8. Histaminergic targets

The neurotransmitter histamine has long been implicated in
cognitive functioning. Generally, studies in animals have shown a
decline in performance after decreasing histamine neurotransmission
and improved performance after increasing histamine neurotrans-
mission. It is unclear, however, what role histamine plays in cognition
in humans, which mainly stems from studies on the effects of H1

receptor antagonists on cognitive performance. Also, the recent
interest in H3 receptors as a target has, in turn, stimulated human
cognition research with histamine H1 receptor antagonists (Turner
et al., 2006; Van Ruitenbeek et al., 2009a,b, 2008, 2010a,b). An
inventory of the literature furthermore confirmed that psychomotor
skills and attention were most frequently impaired by lowering
histamine; memory was the least impaired. Tasks assessing memory
that were affected usually required rapid responses. It was concluded
that both the complexity of the task as well as the demand for
information processing speed determines the sensitivity to the effects
of central H1 receptor antagonism (Van Ruitenbeek et al., 2010c).

2.8.1. Histamine H1 and H2 receptors
The histaminergic cells in the tuberomammillary nucleus project

to most areas of the brain where activation of postsynaptic H1 and H2

receptors leads to excitatory transmission or increased neuronal firing
(Haas et al., 2008). Histaminergic transmission is terminated
primarily by enzymatic breakdown and inhibition of synthesis and
release via activation of presynaptic H3 autoreceptors (Arrang et al.,
1983). The role of histamine in sleep/wake regulation is well
established (Monti, 1993; Saper et al., 2005). Next to its role in
arousal, the widespread presence of histaminergic projections and
receptors suggest a role in various CNS functions, including cognitive
performance. Animal studies support an important role for histamine
in cognitive functioning. A recent review of these studies (Alvarez,
2009) shows that reductions in histaminergic activity, due to lesions
of the tuberomammillary nucleus or administration of H1- and/or
H2-antagonists affect performance on tasks of learning and memory.
Relatively little is known, however, about the specific role of
histamine in human cognition, as compared to other monoamine
neurotransmitters. In spite of the large number of studies that have
been conducted assessing the effects of antihistamines or H1 receptor
antagonists on human performance, few attempts have been made to
determine the cognitive domains most vulnerable to histaminergic
dysfunction (Van Ruitenbeek et al., 2010a). It has been consistently
shown, however, that H1 receptor antagonists have no effect on
episodic memory in humans but do impair working memory,
attention, speed of processing, psychomotor processes and subjective
arousal (Curran et al., 1998; Turner et al., 2006; Van Ruitenbeek et al.,
2009a,b, 2008, 2010b,c).

2.8.2. Histamine H3 receptors
Histamine H3 receptor antagonists are currently under evaluation in

clinical trials for a number of CNS illnesses including cognitive disorders
in dementia, CIAS, narcolepsy and excessive daytime sleepiness.
Blocking the H3 receptor in animal brain leads to increased perfor-
mance on many tasks assessing cognitive functioning (Esbenshade
et al., 2008, 2006; Leurs et al., 1998; Vohora, 2004; Wijtmans et al.,
2007;Witkin and Nelson, 2004). Performance on learning andmemory
tasks were notably improved in animals that otherwise show impaired
performance. For example, mice that showed early signs of senescence
improved their performance on tasks assessing memory consolidation
after being treated with the H3 antagonist thioperamide (Meguro et al.,
1995). This drug was also able to reverse scopolamine induced spatial
orientation, working memory and passive avoidance impairments in
animals (Komater et al., 2005; Medhurst et al., 2007). In addition, H3

receptor antagonists attenuated deficits in animal models for impair-
ments seen in schizophrenia to the same degree as antipsychotic drugs
(Akhtar et al., 2006; Browman et al., 2004; Fox et al., 2005). These and
other data support the notion that H3 receptor antagonists may be
effective drugs for cognitive disturbances in humans. Further to this, a
number of H3 receptor antagonists are in clinical development for AD
and CIAS (Table 1).

3. Perspectives

It is clear that the investment in research by academia, govern-
ment and industry in the area of cognition is vast. The basic research
that is leading to a better understanding of learning andmemory itself
is quite extensive, and it is through this that drug development for
disorders of cognition will advance. It is difficult to predict which drug
targets will be most beneficial to patients. In the area of symptomatic
treatment for AD, a number of drug classes could come forward and
replace or augment AChEIs. Some are well into clinical development
and may compensate for the early cognitive deficits in patients with
AD or related disorders associated with memory decline in aging
populations (e.g., nicotinic agonists). Since the introduction in 2002 of
the National Institute of Mental Health-sponsored initiative called
Measurement and Treatment Research to Improve Cognition in
Schizophrenia (MATRICS) with collaborators from many research
sectors (Green et al., 2004), a number of experimental compounds
have entered clinical trial. To date, though, none has met with much
success perhaps because of lack of efficacy, tolerability, clinical trial
design or sensitivity of the test battery. The latter point is important to
bear in mind when testing the efficacy of novel compounds in
preclinical behavioral paradigms; for example, co-administration of a
new drug with existing medications for a disorder may markedly
modify its therapeutic effect and, thus, this should be studied prior to
clinical testing. Nonetheless, like for AD, there remains a remarkable
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push to assess the effectiveness of drugs representing different
pharmacological targets for the treatment of CIAS. Of course, there is
cognitive impairment across a wide number of other neuropsychiatric
indications, ranging from Parkinson's and ADHD to neurodevelop-
mental disorders such as Down syndrome or FXS (Fig. 1). As the
detrimental effects on attention, learning, memory and executive
processes differ across the various disorders, it is probable that future
effective drugs will be directed towards a different molecular
mechanism in each disorder.
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