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We consider the problem of determining a set of optimal tariffs for an agent in the network, who owns a
subset of all the arcs, and who receives revenue by setting the tariffs on the arcs he owns. Multiple

rational clients are active in the network, who route their demands on the least expensive paths from source to
destination. The cost of a path is determined by fixed costs and tariffs on the arcs of the path. We introduce
a remodeling of the network, using shortest paths. We develop three algorithms based on this shortest-path
graph model: a combinatorial branch-and-bound algorithm, a path-oriented mixed integer program, and a
known-arc-oriented mixed integer program. Combined with reduction methods, this remodeling enables us to
solve the problem to optimality, for quite large instances. We provide computational results for the methods
developed and compare them with the results of the arc-oriented mixed integer programming formulation of
the problem, applied to the original network.
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1. Introduction
The tariff-setting problem in a network involves two
noncooperative groups, tariff-setting agents and tariff-
following clients. Each arc in the network is owned
by (at most) one agent. Being the owner of an arc,
an agent can set the price for renting capacity on the
arc freely, in order to maximize his revenues. The
clients wish to route a certain demand for flow capac-
ity on a path connecting two vertices (a commodity).
A selected route can involve connections belonging
to different agents. Clearly, each client will select
a route with minimum cost to satisfy the demand
for their commodity. This problem is essentially a
game-theoretic problem, see Fisk (1986), where the
agents decide on their prices based on (partial) knowl-
edge of the prices of competing agents. We restrict
the problem to a single agent who knows the tar-
iffs of his competitors and intends to charge revenue-
maximizing tariffs on the subset of the network arcs
he owns. This agent is generally referred to as the
leader, while the clients are referred to as followers.
The tarification problem has a wide range of appli-

cations such as tariff setting in freight transportation

and highway toll optimization; see Brotcorne et al.
(2000) and Labbé et al. (1998), respectively. Recently,
the problem has become of interest in the telecom-
munications market. Here, many operators are active,
who rent their capacity on connections to customers.
In general, a single operator does not own complete
connections between all pairs of vertices in a network.
Thus, a customer has to rent connections from differ-
ent operators to establish a complete line.
An interesting variant of the tarification problem

occurs in highway traffic routing (Jahn et al. 1999,
Roughgarden and Tardos 2000), and IP (Internet etc.)
traffic routing (Fortz and Thorup 2000). Here a single
operator is active, and tariffs are introduced with the
objective to divert traffic from areas of congestion.
A linear bilevel model is a very natural and elegant

formulation of the problem. The upper level relates
to the leader and fixes the tariffs, the lower level
belongs to the clients who, given the tariffs set by
the leader, can determine their best (shortest) path.
This model was proposed first in Labbé et al. (1998).
For the single-commodity case, primal-dual heuristics
based on a penalization of the lower-level objective
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function are proposed by Brotcorne et al. (2000). These
heuristics were extended to multiple commodities in
Brotcorne et al. (2001). Furthermore, in Labbé et al.
(1998), the problem was reformulated as a mixed inte-
ger program. This program solves up to medium-
sized instances within reasonable time.
The solution methods we propose here are all based

on a remodeling of the network that reveals the essen-
tial structure of the problem and generally reduces
its size. Concretely, we consider shortest paths that
are represented by arcs in the so called shortest-path
graph model, which is equivalent to the original prob-
lem. This model is further reduced with dedicated
processing techniques. We exploit the model in three
solution methods: a combinatorial branch-and-bound
algorithm, a path-oriented mixed integer program,
and an arc-oriented mixed integer program (Labbé
et al. 1998). All three methods allow us to solve fairly
large instances of the problem quickly.
In Section 2 we define the tarification problem,

address its complexity and introduce the necessary
notation. Then, in Section 3, the remodeling of the
network is described. In Section 4, model-specific
graph-reduction methods are given. In Section 5,
these concepts are used in a branch-and-bound algo-
rithm, while Section 6 gives a path-and-arc-oriented
mixed integer program. We present some computa-
tional results in Section 7, where we compare the three
methods developed to the arc-oriented mixed integer
program of Labbé et al. (1998) on the original net-
work, to illustrate the efficiency of our methods and
remodeling technique.

2. The Tariff-Setting Problem
Consider a network represented by a directed graph
G= �N�A� with nodes N and arcs A. The arc set A is
partitioned into two sets: the set of tariff arcs T , and
the set of fixed cost arcs F . The tariff arcs belong to the
leader in the network and incur a revenue-generating
toll for routing a unit of a client’s demand. The fixed
arcs are owned by other agents in the network, whose
tariffs are known a priori and hence can be viewed as
fixed per unit costs. The tariffs on the arcs of T are
determined such that the total revenue of the leader
is maximized. Both the tariffs and the fixed costs are
assumed to be nonnegative. The clients on the net-
work route their demands from source to destination
according to the shortest path with respect to total
cost, where the total cost of a path is defined as the
sum of all the tariffs and fixed costs on the arcs of
the path. Whenever the client has a choice among
multiple shortest paths with the same total cost but
with different revenues for the leader, we suppose the
client takes the shortest path that is most profitable
to the leader. This tie-breaking rule is justified by not-
ing that we can always decrease by 	 the tariff on

one of the arcs of the path with highest revenue for
the leader.
Labbé et al. (1998) studied the tarification problem

on a transportation network and have shown that the
related decision problem is �� -complete for a sin-
gle commodity when lower bounds on the tariffs are
given. Some variants of the tarification problem have
been shown to be solvable by polynomial-time algo-
rithms. Among these is the class of problems with
only a single tariff arc and multiple clients, and the
class of problems where the leader is dealing with
multiple tariff arcs and a single client for which the
path taken at optimality is known a priori; see Labbé
et al. (1998).
We denote by ca the cost of routing a unit demand

on a fixed cost arc a ∈ F , and by ta, to be determined
by the leader, the cost of routing a unit demand on a
tariff arc a ∈ T . The commodities are denoted by the
set K. The demand of a commodity k ∈ K is dk. The
source and destination of commodity k are the pair
�sk� tk�. The set of paths that connect sk and tk is Pk.
For each path p ∈ Pk we introduce Tp for its set of tariff
arcs, and Fp for its set of fixed cost arcs. Furthermore,
the cost of routing a unit demand on p is denoted
by its length lp�t�, which is a function of the tariffs t.
The length of p is determined by the sum of the costs
on the fixed arcs of the path, denoted by cp, and the
costs on the tariff arcs of the path, represented by
�p�t�. Thus, lp�t�= cp +�p�t�, where cp =

∑
a∈Fp ca, and

�p�t�=
∑
a∈Tp ta. Note that our model implicitly incor-

porates arcs with both fixed and tariff costs since we
can divide such an arc a with cost ca and tariff ta into
two arcs: a fixed arc with cost ca and a tariff arc with
tariff ta. To ensure that the problem is bounded, we
assume that for each commodity there exists a path
from source to destination that uses only fixed cost
arcs. Otherwise, the leader can set arbitrarily high the
tariffs on the arcs in T . The following formulation of
the tarification problem is a direct implementation of
the above description:

max
t≥0

∑
k∈K
dk�p∗k �t�

s.t. p∗k = argmin
p∈Pk

lp�t� ∀k ∈K� (1)

Formulation (1) is a bilevel problem where at the
upper level the leader strives to maximize his rev-
enue, while at the lower level the clients (followers)
seek to minimize the cost of routing their demands.
Both objective functions are linear and hence this is
a linear-linear bilevel program. The general linear-
linear bilevel program has been shown to be ��-hard
by Jeroslow (1985). For a reference on bilevel pro-
gramming, see Vicente and Calamai (1994) who have
compiled an annotated bibliography on this subject
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containing more than 100 references. Note that the
bilevel program (1) is not polynomial in its input data,
since the set of paths for each client k ∈ K may be
exponential in the size of the problem instance. Labbé
et al. (1998) considered the following arc-oriented
bilevel model.

max
t≥0

∑
k∈K

∑
a∈T
tay

k
a

min
yk≥0

∑
k∈K

{∑
a∈T
tay

k
a+

∑
a∈F
cay

k
a

}

s.t.
∑

j��i�j�∈A
ykij−

∑
j��i�j�∈A

ykji=




dk if i=sk
−dk if i= tk ∀k∈K
0 otherwise�

(2)

In this bilevel model the yka �a ∈ A� represent the
flow on the arcs for each commodity k. This formula-
tion has been used in Brotcorne et al. (2000, 2001) for
development of primal-dual heuristics. Labbé et al.
(1998) have reformulated the bilevel model (2) as a
mixed integer program. To this end the lower problem
is separated into �K� problems, one for each commod-
ity. This is done by introducing for each commodity
its own tariff tk. Next, the LP for each commodity is
restricted to its optimal solution(s) by adding the vari-
ables and constraints of the dual LP, and a constraint
that sets the primal and dual objective at the same
value. Later, constraints are added to force equality
of tariffs for all commodities. We henceforth refer to
the single-level mixed integer program of Labbé et al.
(1998) as AMIP.

3. The Shortest-Path Graph Model
If for given tariffs a client will select the shortest path,
say p, between the two end nodes of his commod-
ity, then clearly, the subpaths of p are also shortest
paths. Consider two tariff arcs a1 = �i1� j1� and a2 =
�i2� j2� that appear consecutively on p. Then the sub-
path between j1 and i2 is a shortest path that contains
only fixed arcs. Thus any path p with tariff arcs ai,
i ∈ �1� � � � � �Tp��, taken by a client can be described as
the path

p= �sp1� a1� sp2� a2� � � � � sp�Tp �� a�Tp �� sp�Tp �+1�� (3)

where spi, i ∈ �1� � � � � �Tp� + 1� is a shortest subpath
using only fixed cost arcs to or from a tariff arc on
the path. Since such paths can be computed using the
original data, we can construct a new graph model in
which this is actually done: the shortest-path graph
model (SPGM). We will define this graph model for
a single customer first. Consider the original graph

i2

i3

i1 j1

j2

j3

ts

Figure 1 SPGM for �T � = 3

G= �N�A� with the tariff arcs in T ⊆A. For a client
with demand d from s to t, we define the graph G∗ =
�N ∗�A∗� and the tariff arcs T ∗ ⊆A∗. In this graph, the
tariff arcs are copied from G as a matching. So, arcs
with a common vertex are separated. Next, we con-
struct the following fixed cost arcs. For two tariff arcs
a1 = �i1� j1� and a2 = �i2� j2� we connect j1 with i2, if
there is a path in G that uses fixed arcs only. Similarly,
we connect j2 with i1. From the source s we construct
arcs to all the tail nodes of the tariff arcs, and from all
the head nodes we construct an arc to the destination
t, again only if paths exist using only fixed arcs in G.
Any fixed arc in A∗ has a cost equal to the length of
the shortest path between its end vertices in G, using
only fixed cost arcs in G. The new network is the
SPGM.
Example 1. Figure 1 shows the SPGM of any net-

work containing three tariff arcs for a commodity
from s to t. The tariff arcs are the (dashed) arcs �i1� j1�,
�i2� j2�, and �i3� j3�. All other arcs are representations
of the shortest path using only fixed cost arcs between
each node. The cost of the arc is the cost of the
corresponding shortest path in the original network
between the two nodes. If no path exists between two
nodes in the original network, the corresponding arc
in the SPGM is not present or has infinite cost.
The SPGM can easily be extended to multiple com-

modities. For each commodity, we create an SPGM.
The inner graph (consisting of the end vertices of
the tariff arcs, and the arcs between them) is equal
for all commodities and hence needs to be deter-
mined only once. Additional shortest-path calcula-
tions are necessary only for the arcs leaving the
source or entering the terminal of each commod-
ity. The SPGM is equivalent to the original graph in
the sense that both have an optimal solution of the
same value: If a path exists in the original graph,
then there exists a path in the SPGM that is at least
as good. Alternately, if a path exists in the SPGM,
then a path with the same cost exists in the original
graph.
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Figure 2 Detailed View of Tariff Arc

4. Reduction Methods
We can decrease the size of the SPGM considerably
by using reduction methods to limit the amount of
potentially shortest paths for a commodity. First, we
describe some techniques with which we can remove
arcs from the network. Second, we describe a dom-
inance relationship for paths that explicitly removes
paths from the set of potentially optimal paths. The
aim is to end with a manageable set of potentially
optimal paths.

4.1. Arc Reduction
Let uij be the cost of the shortest path using only fixed
arcs from node i to node j in G, i.e., uij is the length of
the arc �i� j� in G∗. Let lij denote the cost of the short-
est path from i to j in G, possibly using tariff arcs,
when the tariffs are set to zero. We restrict ourselves
to a single commodity, where node s represents the
source node and node t the destination node. In Fig-
ure 2 we depict the values defined here: the uij are arc
values, and the lij are node values. Note that lij is a
lower bound for the cost of a path from i to j , and uij
is an upper bound for the cost of a path from i to j
taken by the client.

Proposition 1. If ljt = ujt , then any optimal path from
s to t using node j can use arc �j� t�; all other arcs leaving
j can be removed.

Proof. A lower bound on the cost of a path, possi-
bly using tariff arcs, from j to t is ljt . An upper bound
is ujt . If ljt = ujt , there is no room for taxation on any
path from j to t. Thus, �j� t� is an optimal choice. �

Proposition 2. If lsi = usi, then any optimal path from
s to t using node i can use arc �s� i�; all other arcs entering
i can be removed.

Proof. Analogous to the proof of Proposition 1. �

Proposition 3. Consider two tariff arcs �i1� j1� and
�i2� j2�. If uj1t ≤ uj1i2 + lj2t , we can delete arc �j1� i2�.

Proof. The lower bound on the cost of a path from
j1 to t taking the arc �j1� i2� is equal to uj1i2 + lj2t . An
upper bound on the cost of a shortest path is uj1t .

21
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Figure 3 A Small Network with �T � = 3 (Example 2)

Hence, there is no room for taxation on a path from j1
to t using the arc �j1� i2�. Thus, �j1� t� is an optimal
choice. �

Proposition 4. Consider two tariff arcs �i1� j1� and
�i2� j2�. If usi1 ≤ uj2i1 + lsi2 , we can delete arc �j2� i1�.

Proof. Analogous to the proof of Proposition 3. �

Proposition 5. If ust ≤ lsi1 + lj1t , we can delete the tar-
iff arc �i1� j1�.

Proof. The lower bound on the cost of a path going
through the tariff arc �i1� j1� is lsi1 + lj1t . Hence, there is
no room for taxation on the tariff arc �i1� j1�, and thus
�s� t� is always at least as good. �

Proposition 6. Consider two tariff arcs �i1� j1� and
�i2� j2�. If ust ≤ lsi1+uj1i2+lj2t , we can delete the arc �j1� i2�.

Proof. The upper bound on the cost of a shortest
path from s to t is ust . A lower bound on the cost
of a path using the tariff arc �i1� j1� and going to the
tariff arc �i2� j2� is lsi1 + uj1i2 + lj2t . Hence, there is no
room for taxation on a path from s to t using the arc
�j1� i2�. Thus, this arc need not be used in an optimal
solution. �

Example 2. Consider the network in Figure 3,
which has 14 nodes, 21 fixed cost arcs and three tariff
arcs. The tariff arcs are �1�2�, �3�4�, and �11�12�, rep-
resented by dashed arcs in Figure 3. The solid arcs in
the network represent the fixed cost arcs. The leader
on the network is dealing with one client who has a
unit demand from node 13 to node 14.
The SPGM, for each client, obtained after applica-

tion of the reduction methods, is denoted as the final
SPGM. Figure 4(a) shows the initial SPGM for the
network of Example 2. The solid arcs in the SPGM
are representations of the shortest path using no tar-
iff arcs between each node in the original network
given in Figure 3. The cost of the arc is the cost of the
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Figure 4 SPGM for Example 2

corresponding shortest path in the original network
between the two nodes. If no path exists between two
nodes in the original network, the corresponding arc
in the SPGM is not present.
To arrive at the final SPGM, we need to apply the

reduction methods described in Section 4 to the initial
SPGM. Looking at Figure 4(a), we see we can delete
arcs �4�1�, �2�3�, and �4�11� of the initial SPGM by
applying, e.g., Proposition 3 or 4. Furthermore, Propo-
sition 5 allows us to delete the tariff arc �11�12� from
the graph.
The final graph is shown in Figure 4(b). The optimal

solution is to set the tariff on the arc �1�2� to 7, while
setting all the other tariffs to a suitable large value,
e.g. 11, yielding a revenue of 7 to the leader.

4.2. Path Reduction
By applying the propositions described in Section 4.1
and finding all paths in the graph, we obtain a re-
duced set of paths that remains relevant for the com-
modity. Hopefully, this set of paths is small. It is,
however, possible to reduce the size of this set in
some instances even more by eliminating dominated
paths. The notion of path dominance is given by the
following definition.
Definition 1. If we can replace in all feasible solu-

tions the path q by the path p without violating the
feasibility constraints or decreasing the value of the
objective function, then path p dominates path q.

i1

i2

i3

j1

j2

j3

ts

10

2

4

6 1

1

4

4

1

Figure 5 Dominated-Paths Example

The following proposition allows us to eliminate
dominated paths. Recall that Tp is the set of tariff arcs
from path p, and that cp is the total cost of the fixed
arcs from p.

Proposition 7. Consider paths p and q. If Tp ⊆ Tq and
cq ≥ cp, then path p dominates path q for all tariff values.

Proof. Suppose that path q is the shortest path
taken by the client. Then

cq +
∑
a∈Tq
ta ≤ cp+

∑
a∈Tp
ta or equivalently

cq +
∑

a∈Tq\Tp
ta ≤ cp�

(4)

Since cq ≥ cp and ta ≥ 0 for all tariff arcs a ∈ T , (4)
holds only when cq = cp and ta = 0 for all a ∈ Tq\Tp.
Hence, we can replace path q by path p without vio-
lating the feasibility constraints or changing the value
of the objective function since path p has the same rev-
enue for the leader and the same cost for the client as
path q. Furthermore, (4) shows that whenever cq > cp,
path q can never be the path taken by a client in a
feasible solution, since it will always be at least as
expensive as path p. �

Example 3. An instance where this dominance of
paths occurs is in Figure 5. The tariff arcs are �i1� j1�,
�i2� j2�, and �i3� j3�. The leader is dealing with one
client who wants to route his demand from node s
to node t. For this graph, the path �s� i1� j1� i2� j2� t� is
dominated by the path �s� i1� j1� t�.
In the SPGM, the maximum number of paths for

a client k ∈ K is bounded by e�T �!, the number
of ordered subsets of the tariff arcs. The number of
undominated paths in a network is bounded by the
number of possible subsets of T , i.e., by 2�T �: If two
paths p and q have an identical set of tariff arcs, then
the undominated path is the path with smallest fixed
cost. Example 4 shows that this number of undomi-
nated paths can be reached.
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Figure 6 Network for Example 4, for �T � = 3

Example 4. Consider a network with �T � tariff arcs,
denoted by a1� � � � � a�T �. A unit demand from s to t is to
be routed. The fixed cost arcs are defined as follows.
The cost of the fixed cost arcs from the source s to
the tarif arc ai, i ∈ �1� � � � � �T �� is 3i. The cost of the
fixed cost arcs from the tariff arc ai, i ∈ �1� � � � � �T ��,
to the target t is 3�T �+1−i. Furthermore, a fixed cost arc
with cost 3j−i connects a tariff arc ai to aj , where i� j ∈
�1� � � � � �T �� and i < j . Finally, the cost of the fixed cost
arc �s� t� is set to 3�T �+1. See Figure 6 for a network
with 3 tariff arcs.
As stated earlier, any path p with tariff arcs ai,

i ∈ �1� � � � � �Tp��, taken by a client can be described as
the path

p= �sp1� a1� sp2� a2� � � � � sp�Tp �� a�Tp �� sp�Tp �+1�� (5)

For the network in Example 4, any subpath of p of
the form �spm�am� spm+1�, m ∈ �Tp�, has fixed cost of the
form 3i+ 3j , where i� j ∈ �1� � � � � �T ��.
Now let 1 ≤ i < j < k ≤ �T �. The direct arc from ai

to ak has a fixed cost of 3k−i. The path using the direct
arc from ai to aj , then tariff arc aj and then the direct
arc from aj to ak, has fixed cost 3j−i + 3k−j , which is
smaller than 3k−i. Thus, replacing a fixed cost arc with
two fixed cost arcs and a tariff arc reduces the fixed
costs (also for arcs starting at s or ending at t). Thus,
for any paths p and q with Tp ⊆ Tq the fixed cost of p
is higher than the fixed cost of q. So, neither p nor q
dominates the other. Concluding, for each subset of
the tariff arcs, there is a path using them that is not
dominated.

5. Branch-and-Bound Algorithm
In this section we describe a two-phase branch-and-
bound algorithm for our tariff-setting problem that
uses the SPGM from Section 3 and the reduction
methods from Section 4. First, we create for each client
an SPGM and apply to it the reduction methods of
Section 4. For each client we thus find the relevant
shortest paths. Then, we solve the problem to opti-
mality by a classical branch-and-bound method.
As stated in Section 2, denote the clients by the set

K and the set of paths a client k ∈ K can take by Pk.
The reduction methods applied to the SPGM allow us

to determine the set of relevant paths for each com-
modity. We suppose that Pk is reduced to contain the
relevant paths only. Recall furthermore from Section 2
the linear function lp�t�= cp +�p�t� denoting the cost
of a path p as a function of all tariff values. Let plk be
the path for client k ∈ K with the smallest fixed cost,
i.e., plk = argminp∈Pk cp, and let puk be the path with the
largest fixed cost, i.e., puk = argmaxp∈Pk cp. Note that puk
has no revenues for the leader, since it denotes the
path with fixed cost arcs only. Clearly, cpuk − cplk is an
upper bound on the revenues that can be generated
from client k. This is an important measure in the
branch-and-bound algorithm.

5.1. Branching Rules
In each node of the branch-and-bound tree, we select
a client and create a branch for each of the relevant
paths of the client. The selection method of the clients
is based on the upper bound cpuk − cplk on the revenue
generated by each client for the leader: the client for
which this upper bound is highest, is selected first.
Next, we walk through the search tree in a depth-first
manner.

5.2. Node Processing
Due to our branching rules, in each node of the
branch-and-bound tree for some clients the path taken
in the solution is fixed, whereas for other clients this
choice is still to be made. In each node, we denote by
the set Kf ⊆ K the set of clients for which we have
fixed the path taken in the solution. Suppose that for
any client k ∈ Kf , we have fixed the path p∗k . We can
find the optimal, revenue-maximizing tariffs for the
problem restricted to the clients in Kf by solving the
following linear problem:

max
∑
k∈Kf

dk�p∗k �t�

s.t. lp�t�≥ lp∗k �t� ∀k ∈Kf � ∀p ∈ Pk�
ta ≥ 0 ∀a ∈ T �

(6)

The linear program (6) forces the path p∗k to be the
shortest path in Pk, while maximizing the leader’s
revenue.
We generate lower bounds in each node of the

branch-and-bound tree by computing a feasible solu-
tion. Such a feasible solution can be created by solv-
ing (6) and then adding the revenues from the tariffs
of (6) for the clients in K\Kf . However, a better lower
bound may be generated by fixing for all clients the
path taken in the solution. For each client k ∈ Kf we
already know which path is taken in the solution and
we denote it by p∗k . For the clients k ∈ K\Kf , we fix
the path to the one for which the possible revenue is
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Figure 7 Upper Bound on Revenue or Cost Is Not Reached

highest. This is the path with smallest fixed cost, i.e.,
the path plk:

max
∑
k∈Kf

dk�p∗k �t�+
∑

k∈K\Kf
dk�plk �t�

s.t. lp�t�≥ lp∗k �t� ∀k ∈Kf � ∀p ∈ Pk�
lp�t�≥ lplk �t� ∀k ∈K\Kf � ∀p ∈ Pk
ta ≥ 0 ∀a ∈ T �

(7)

If this linear program is infeasible no sensible lower
bound is generated.
For a client k ∈ K an upper bound for the revenue

generated by that client is cpuk − cplk . As is shown by
Labbé et al. (1998), this upper bound is not necessar-
ily reached. Even the upper bound on the cost of the
path, cpuk , is not tight. This is shown by the example in
Figure 7, where the tariff arcs are dashed. For a single
client with a unit demand from node 1 to 4, the opti-
mal tarification scheme is to set the tariffs on the tariff
arcs to t1 = t2 = 2. Hence, the cost of the path taken by
the client is 6, yielding a revenue of 4 for the leader.
The upper bound on the cost of the path is, however,
7, while the upper bound on the revenue is 7− 2= 5.
In each node of the branch-and-bound tree, let #∗

be the optimal value of (6), i.e., the optimal revenue
obtained from the commodities with fixed paths. The
remaining customers can contribute no more per unit
than

∑
k∈K\Kf �cpuk − cplk �. An upper bound on the total

revenue for the leader in a node is thus

#∗ + ∑
k∈K\Kf

dk�cpuk − cplk �� (8)

This upper bound can be tightened by using the in-
formation we can retrieve from the constraints of the
linear program (6). These constraints must be satisfied
by any feasible solution, for all clients and their rele-
vant paths. Thus, the constraints of (6) also hold for
the commodities for which a path is not fixed yet, as
can be seen from the constraints in �7�. Each of the
constraints in (6) involves two paths, say p and q, and
states that the total cost of one path (say p) is at most
the total cost of the other path (say q): cp�t� ≤ cq�t�.
Now, let Tp be the set of tariff arcs on path p. The
constraint is, in more detail,

cp+
∑
a∈Tp
ta ≤ cq +

∑
a∈Tq
ta (9)

or equivalently,∑
a∈Tp\Tq

ta−
∑

a∈Tq\Tp
ta ≤ cq − cp� (10)

If
∑
a∈Tq\Tp ta can be bounded from above, then we

have an upper bound on the sum of a set of tariffs.
For instance, if Tq\Tp is empty, then we get cq − cp as
an upper bound. Thus, this way we find a number of
constraints of the type

∑
a∈Ti⊆T

ta ≤ bi �i ∈%�� (11)

where we define bi = cq − cp for the index set %.
Next, consider a path p ∈ Pk from commodity k ∈

K\Kf , i.e., a commodity for which no path has been
fixed yet. An upper bound on the total cost per unit
demand was previously given by the path using only
fixed arcs, i.e., the path cpuk . With the constraints of
type (11) obtained from the commodities in Kf and
by defining bi = 0 for Ti =
, the upper bound on the
total cost of a path p ∈ Pk, denoted by &�p�, is
&�p�= min

i∈%�Tp⊆Ti
�cp+ bi� ∀k ∈K\Kf � ∀p ∈ Pk� (12)

For each commodity k ∈ K, the total cost of each
path taken in a solution can be at most the minimum
cost of all other possible paths for that commodity.
Hence, an upper-bound on the total cost of any path
in Pk is

min
p∈Pk

&�p�� (13)

For each commodity k ∈K, the upper-bound on the
revenue is still highest for the path with smallest fixed
cost, i.e., the path plk. We can thus improve the upper-
bound computation in (8) by using the upper-bound

#∗ + ∑
k∈K\Kf

dk

{
min
p∈Pk

&�p�− cplk
}
� (14)

We will use (14) for our branch-and-bound algo-
rithm.

6. Mixed Integer Programming
Formulations

In the path-based branch-and-bound algorithm of the
previous section, an LP solver is called in each sub-
problem. In this section, we introduce a mixed inte-
ger programming formulation using path variables,
where the paths are generated from the SPGM. This
formulation does not incorporate all features of the
branch-and-bound algorithm of the previous section,
but it can be handed to an ILP-solver directly (we use
CPLEX 7.5). We rewrite the bilevel formulation (1) to
the following single-level program, using path vari-
ables. To this end, we introduce the binary variable hp,
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which indicates whether a given path is taken in the
optimal solution.

max
∑
k∈K

∑
p∈Pk
dk

∑
a∈Tp
hpta

s.t.
∑
p∈Pk
hp = 1 ∀k ∈K

lp�t�≥
∑
q∈Pk
hqlq�t� ∀k ∈K� ∀p ∈ Pk

hp ∈ �0�1� ∀k ∈K� ∀p ∈ Pk
ta ≥ 0 ∀a ∈ T �

(15)

The first constraint in (15) indicates that a client
selects only one path. The second constraint ensures
that the path taken by the client is indeed the least
expensive path available. Note that this formulation is
not only nonlinear in its objective function, but also in
this constraint. It is however possible to use standard
linearization techniques for (15) by introducing the
variable rpa for each path p ∈ Pk, and tariff arc a ∈ T .
The variable rpa is equal to ta if and only if client
k ∈K takes the path p ∈ Pk going through the tariff arc
a ∈ T and is equal to 0 otherwise. After adding the
constraints enforcing this relationship, we can write
the following mixed integer programming formula-
tion. We will refer to this formulation as PMIP.

max
∑
k∈K

∑
p∈Pk
dk

(∑
a∈Tp
rpa

)

s.t.
∑
p∈Pk
hp = 1 ∀k ∈K

lp ≥
∑
q∈Pk

∑
a∈Fq
hqca+

∑
q∈Pk

∑
a∈Tq
rqa ∀k ∈K� ∀p ∈ Pk

lp =
∑
a∈Fp
ca+

∑
a∈Tp
ta ∀k ∈K� ∀p ∈ Pk

rpa− ta ≤ �1−hp�M ∀k ∈K� ∀p ∈ Pk� ∀a ∈ Tp
rpa− ta ≥−�1−hp�M ∀k ∈K� ∀p ∈ Pk� ∀a ∈ Tp
rpa ≤ hpM ∀k ∈K� ∀p ∈ Pk� ∀a ∈ T
hp ∈ �0�1� ∀k ∈K� ∀p ∈ Pk
ta ≥ 0 ∀a ∈ T
rpa ≥ 0 ∀k ∈K� ∀p ∈ Pk� ∀a ∈ T �

(16)

Note that for the PMIP, in theory, there is an expo-
nential number of constraints. However, the reformu-
lation of the network into an SPGM, combined with
the reduction methods, will allow us to generate the
relevant paths for each commodity and thus reduce
the necessary variables and constraints to a manage-
able amount.
The arc-oriented bilevel program (2) is turned into

an ILP by applying the ideas of Labbé et al. (1998).

The shortest-path problems of the clients are replaced
by the shortest-path optimality conditions. This
introduces nonlinearity: product of tariff variables
(ta �a ∈ T )) and design variables (xka (a ∈ T , k ∈K)). The
product is then replaced with separate tariff variables
for all tariff arcs and for all commodities. We will
refer to the thus obtained formulation as AMIP. If
the AMIP formulation is applied to the SPGM, then
we use the notation AMIP+. The results of AMIP+
and PMIP, together with the numerical results of the
branch-and-bound algorithm developed in this paper,
will show the efficiency of the SPGM when compared
to AMIP on the original network.

7. Numerical Results
The reduction methods and the branch-and-bound
algorithm (PBB) were implemented in C++. CPLEX
7.5 was used to solve the linear programs (6) in each
node of the tree. The formulations AMIP, AMIP+,
and PMIP were handed directly to CPLEX 7.5, after
application of reduction methods for AMIP+, and
PMIP. So no further processing was done on subprob-
lems created during the branch-and-bound phase. All
computational results were established on an AMD
Athlon 2400XP+ with 1 Gb RAM, running Debian
GNU/Linux 3.0 with kernel 2.4.18.
The solution methods developed here were tested

on three different types of networks: telecom net-
works, random networks, and grids. For each of the
three types of networks we provide statistics on
the problem instances and on solution times for all
methods.

7.1. Telecom Networks
The first set of instances was provided by France
Télécom Research and Development. They represent
real-life instances from the international interconnec-
tions market in which France Télécom participates.
In these instances, the graph represents a telecommu-
nications (backbone) network and the tariff arcs are
the interconnections between the different operators.
A description of these instances is in Table 1, where,
for each instance, we give the number of nodes and

Table 1 Description and SPGM Statistics of France Télécom Instances

Data #Nodes #Arcs #Tariff arcs #Clients MIN MAX AVRG

D1 29 92 6 13 2 3 2�5
D2 29 98 11 13 2 5 3�1
D3 43 176 10 20 2 8 5�5
D4 60 212 9 22 2 15 4�2
D5 60 212 10 8 2 20 5�0
D6 60 212 17 8 2 30 12�0
D7 60 212 21 18 2 9 4�8
D8 49 116 9 23 2 10 4�0
D9 33 116 15 30 2 8 3�1
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arcs in the network, the number of tariff arcs, and the
number of clients. These data determine the size of
AMIP. Table 1 also shows some statistics on the num-
ber of paths generated for each instance using the
SPGM and its reduction methods for both data sets.
In this table, the column MIN, resp. MAX, indicates
the minimum, resp. maximum, number of paths gen-
erated over all commodities. The column AVRG gives
the average number of paths generated for each com-
modity for the whole data set. The product of AVRG
and the number of commodities (the total number of
paths) gives a good idea of the size of the networks
after constructing the SPGM and application of the
reduction methods. The actual size of each instance
in number of variables and constraints is in Table 2
for all three formulations. The statistics of the solution
methods are in Table 3, which shows an overview of
the results for all algorithms for the real-life instances.
In this table, the column OPT indicates the value
of the optimal solution for the given data set. The
columns Time and Nodes indicate the execution time in
seconds, and the number of nodes in the B&B tree for
each algorithm. For the PBB algorithm, the PMIP, and
the AMIP+, the CPU time includes the time needed
for generation of the SPGM and all relevant paths.
From Table 2 it can be seen that the path model is

generally smaller than AMIP+, and AMIP+ is smaller
than AMIP. This applies to integer variables, inte-
ger plus continuous variables, and constraints. This
behavior is not surprising, given the success of the
reduction techniques on these instances. As can be
seen in Table 3, the PBB algorithm efficiently uses the
few relevant paths generated to find the optimal solu-
tion for each data set. When we compare it to AMIP,
we see that the execution time of the PBB algorithm
is less than or equal to the running time of CPLEX
for the AMIP for each data set considered. The dif-
ference is especially large for the sets D2, D3, D6,
D7, and D8. The most striking difference is for D3,
for which the execution time of the AMIP is 113,423
seconds, whereas the PBB algorithm takes only 30 sec-
onds. The PMIP and AMIP+ columns show the effi-
ciency and power of the SPGM. The execution time of

Table 2 Size Statistics for France Télécom Instances

PMIP/PBB AMIP+ AMIP

Int Total Int Total Int Total
Data OPT vars vars Cons vars vars Cons vars vars Cons

D1 6.6225 32 230 102 29 248 313 78 1,657 1,898
D2 7.7928 40 491 152 55 443 555 143 1,805 2,236
D3 728.435 109 1�209 396 147 1�110 1�414 200 4,590 5,200
D4 1�321 92 929 657 127 1�060 1�327 198 6,191 6,798
D5 995 40 450 276 41 348 428 80 2,266 2,504
D6 1�426 96 1�745 977 104 1�104 1�303 136 2,329 2,728
D7 1�565 86 1�913 737 171 1�445 1�784 378 5,295 6,426
D8 664�406 93 939 338 142 1�102 1�400 207 4,011 4,646
D9 189�180 93 1�503 408 122 1�026 1�285 450 4,935 6,300

Table 3 Solution Statistics for France Télécom Instances

PMIP PBB AMIP+ AMIP

Data Time Nodes Time Nodes Time Nodes Time Nodes

D1 0 1 0 52 1 8 2 187
D2 0 10 1 201 0 49 8 1�060
D3 1 55 30 14�856 2 786 113�423 13�619�345
D4 1 78 37 21�523 6 2�445 208 10�305
D5 1 6 0 185 1 16 1 35
D6 35 134 39 1�195 39 1�246 399 71�013
D7 3 257 25 9�689 8 1�254 1�426 76�003
D8 0 110 23 16�709 1 32 317 29�509
D9 1 112 11 6�129 1 132 56 3�141

the PMIP is 3 seconds or less for all data sets, except
the data set D6. For this data set the execution time
is, however, still much less than the execution time
of the AMIP and less than the time needed for the
PBB algorithm to execute. The AMIP+ column shows
furthermore that the AMIP formulation can benefit
very much from the SPGM: For all data sets, the time
needed for the AMIP+ formulation is a little more
than the time needed for the PMIP formulation and
much less than the time needed for the same for-
mulation on the original network (AMIP). Concern-
ing the performance difference between AMIP and
AMIP+: Although when considering the LP relax-
ation of AMIP on the original graph and on the
complete SPGM, the subpaths between the tariff arcs
are shortest paths for both methods, but the AMIP+
formulation uses more information than does AMIP.
Proposition 5 allows us to delete tariff-arcs in the net-
work for a specific client, essentially setting a lot of
tariff arc variables to zero beforehand in the AMIP+
formulation. For AMIP+, this diminishes the number
of variables on which to branch. Concluding, PMIP
does best, closely followed by AMIP+, which has
comparable computation times, but a higher number
of nodes in the B&B. Then PBB follows, with slightly
higher times, but certainly more nodes. AMIP does
considerably worse than the other algorithms.

7.2. Random Networks
The second set of instances consists of randomly gen-
erated graphs. A graph G= �N�A� was generated by
taking a random subset of the edges of the complete
graph Kn. For each edge, we created two arcs, one
for each direction between the two nodes. The tariff
arcs were assigned randomly. The cost on each fixed
cost arc was uniformly generated from ,20�100-. The
source and destination of each demand was assigned
randomly, rejecting commodities for which no path
with only fixed cost arcs was available. The demand
of each commodity was uniformly generated from
,1�30-. These instances are much larger than the real-
life instances, and are used to illustrate what happens
with each algorithm when the number of (tariff) arcs
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Table 4 Solution Statistics for Random Networks

SPGM PMIP PBB AMIP+ AMIP

Data Time Time Nodes Time Nodes Time Nodes Time Nodes

Networks with 100 nodes and 2,000 arcs
20T15D 3�4 0�2 2 0�2 165 0�4 5 38.6 121
40T15D 11�6 0�2 2.2 0�4 216 0�4 3 142 934
60T15D 26�2 0�2 5 1�6 720 0�8 7�6 204 1,096
80T15D 51�4 0�4 9.6 2�4 786 0�6 29�4 773 5,764
100T15D 90 0�8 9 4�2 1�038 1�2 29�2 754 5,457

90T20D 90�4 0�6 2.8 2�6 555 1�6 9�4 856.6 3,208
90T40D 178 1�6 11 1,244 206�068 2�8 50�8 �4/5� 27�5%
90T60D 265 3�6 54 �4/5� 3.8% 5�2 163 �5/5� 31�5%
90T80D 353 5�2 378 �5/5� 10.9% 10 705 �5/5� 34�6%
90T100D 441 13 3,169 �5/5� 16.4% 51�8 7,460 �5/5� 35�4%

Networks with 75 nodes and 4,000 arcs
100T30D 317 3�2 8�6 46�8 9�717 4�8 17�4 332 179
100T40D 420 4�6 27.4 706 114�278 6�4 44 �2/5� 35�6%
100T60D 628 7 1,648 �5/5� 5.9% 8�6 193 �5/5� 26�3%
100T80D 836 12�4 2,142 �5/5� 15.2% 16�8 2,370 �5/5� 17�4%

20T20D 9�4 0�4 8�2 0�8 477 0�4 6�2 466 960
40T20D 28�4 1 10�4 2 1�129 1�2 14�8 1�268 2,909
60T20D 64�2 1�4 21�6 3�6 1�385 1�4 20�4 �1/5� 4�4%
80T20D 124 1�2 23 5�6 1�760 1�8 32�6 �2/5� 21�3%
100T20D 214 2�6 45�2 10�4 2�499 3�6 25�8 �3/5� 39�4%

or the number of clients in the network increases.
Each of these data sets has a name of the form xTyD,
where x represents the number of tariff arcs and y
the number of clients in the network. Each data set
actually consists of five instances. Statistics and exe-
cution times for each data set are averages over all
five instances. Hence, each formulation developed in
this paper has been tested on a total of 165 random
instances.
The SPGM statistics of random graphs are not inter-

esting: Average and maximum number of paths per
commodity are at most 3.5 and 8.0. Solution statistics
are in Table 4, which presents the behavior of all for-
mulations developed for larger networks. The results
are averages over five instances per size. Table 4
shows what happens when we increase the number
of tariff arcs or clients in the network. For these
instances, the CPU time of the PMIP, AMIP, and
AMIP+ does Nodesot include the time needed for the
SPGM. This value is given in the column SPGM. The
maximum execution time for each solution method
was 3,600 seconds. If, for a certain formulation or
algorithm, an instance could not be solved within
this time, the column CPU indicates the number of
instances where the time limit was exceeded, while
the column Nodes gives the average relative gap (in
percentage) between the best solution as found by any
of the algorithms within the time limit.
For the PMIP, AMIP+, and PBB algorithms, the

time needed for generation of the SPGM is the largest
part of the execution time of the algorithm. When the

size of the network increases, the SPGM takes more
time to generate, but its execution time is more depen-
dent on the number of shortest paths that need to be
calculated (depending on the number of tariff arcs or
clients in the network) than on the size of the network
on which each shortest path calculation is executed.
The execution time of the SPGM increases when the
number of clients is increased, but is especially sen-
sitive to the number of tariff arcs in the network.
We can furthermore conclude that, although the time
needed for the SPGM generation increases when the
number of tariff arcs or clients increases, the AMIP+
and PMIP formulation still use the information gen-
erated by the SPGM very efficiently when compared
to the PBB algorithm or AMIP formulation, where an
increase in the number of clients in the network is
soon a problem. For example, for the networks with
100 nodes and 2,000 arcs, the data set 90T 60D, con-
sisting thus of 90 tariff arcs and 60 clients, cannot be
solved in four out of five instances for the PBB algo-
rithm, and five out of five instances for the AMIP
formulation.
Finally, the relative behavior of the algorithms is the

same as for the telecom instances.
The numerical results show that the performance

of the algorithms developed is consistent with the
numerical results for the real-life instances: all in-
stances were solved to optimality by PMIP and
AMIP+. Moreover, PMIP and AMIP+ are fastest,
PMIP doing slightly better, followed by respectively
PBB and AMIP.
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Table 5 SPGM Statistics for Grid Graphs

36 nodes, 64 nodes, 100 nodes,
120 arcs 224 arcs 360 arcs

% �T � MIN MAX AVRG MIN MAX AVRG MIN MAX AVRG

2.5 1 3 2�00 1 4 2�25 2 6 3�25
5 1 4 2�25 4 10 6�25 4 19 13�25
7.5 3 8 7�25 3 28 15�75 5 52 27�00
10 3 25 11�25 4 81 41�25 43 114 68�75

7.3. Grids
The third data set has been constructed to see what
happens to the models when dominance criteria are
less effective. We selected grid networks, which were
created as follows. The number of clients in the net-
work (all with unit demand) was set to 4, i.e., from
each corner of the grid to the opposite corner. The
grids created are of size 6 × 6, 8 × 8, and 10 × 10.
The tariff arcs were assigned randomly in the grid.
The percentage of tariff arcs ranges from 2�5% to 10%.
There are two types of instances differing only in the
costs of the nontariff arcs. First, the costs are uni-
formly generated from ,1�50-. Second, the costs are
fixed to 1. We can expect the number of undominated
paths to be high for these instances, especially for
the set with unit fixed costs: The optimal solution for
these unit grid graphs is easy, namely set all tariffs to
1, but many paths will have the same (optimal) length
in the grid.
The data on these two sets of instances are found in

Tables 5 and 6. Tables 5 and 7 show that the number
of paths generated by the SPGM for the grid graphs
is higher on average than for the other two data sets.
The average number of paths is highest for the unit
grid graphs, as shown in Table 7. Tables 6 and 8 show
the performance of the algorithms developed for the

Table 6 Solution Statistics for Grid Graphs

SPGM PMIP PBB AMIP+ AMIP

% �T � Time Time Nodes Time Nodes Time Nodes Time Nodes

36 nodes, 120 arcs
2.5 0�02 0�01 0 0�05 1 0�01 0 0�03 0
5 0�03 0�01 0 0�02 9 0�01 0 0�08 1
7.5 0�04 0�08 0 0�09 33 0�03 3 0�13 7
10 0�06 0�19 23 0�48 220 0�05 16 0�19 28

64 nodes, 224 arcs
2.5 0�03 0�02 0 0�03 1 0�02 0 0�06 0
5 0�08 0�11 1 0�12 28 0�04 1 0�21 2
7.5 0�16 0�17 15 0�42 99 0�14 40 0�89 129
10 0�27 0�92 7 1�22 154 0�2 21 0�72 52

100 nodes, 360 arcs
2.5 0�06 0�01 0 0�06 1 0�01 0 0�15 0
5 0�2 0�04 0 0�33 58 0�03 0 1�27 134
7.5 0�34 0�22 0 0�52 46 0�1 0 0�6 6
10 11�3 1�64 2 20�38 646 0�78 61 10�4 1�394

Table 7 SPGM Statistics for Unit Grid Graphs

36 nodes, 64 nodes, 100 nodes,
120 arcs 224 arcs 360 arcs

% �T � MIN MAX AVRG MIN MAX AVRG MIN MAX AVRG

2.5 2 4 3 2 6 4�3 8 18 11
5.0 3 7 4�8 12 48 22�3 20 61 40
7.5 5 19 12 17 76 42�3 27 211 132�5
10 5 40 19�8 24 115 70 126 418 268�3

(unit) grid graphs. For these instances, the CPU time
of the PMIP, AMIP, and AMIP+ does Nodesot include
the time needed for the SPGM. This value is once
again given in the column SPGM. All instances were
solved to optimality for all algorithms implemented.
The first set of instances gives already an idea what

happens if dominance criteria are less successful,
and the number of undominated paths in a network
increases. The path-based algorithms take more time
to find the optimal solution than does the arc-
based algorithm: AMIP+ now outperforms PMIP, and
though AMIP is still much worse than PMIP, it does
even better than PBB now.
The second set of instances confirm this behavior.

For the 10 × 10 grid, with 10% tariff arcs, the num-
ber of undominated paths is on average 268�3 (see
Table 7) and the PMIP and PBB take respectively 29�68
and 1�79 seconds to solve. The AMIP+ and AMIP
algorithms find the optimal solution in respectively
0�39 seconds and 0�35 seconds. Note that the PBB
algorithm finds the optimal solution in the first node
of the branch-and-bound tree for these instances,
since the optimal paths are the ones with the low-
est fixed costs. Hence, instances where dominance
criteria are not very effective are better solved with

Table 8 Solution Statistics for Unit Grid Graphs

SPGM PMIP PBB AMIP+ AMIP

% �T � Time Time Nodes Time Nodes Time Nodes Time Nodes

36 nodes, 120 arcs
2.5 0.01 0�03 0 0.01 1 0.02 0 0.03 0
5 0.02 0�01 0 0.02 1 0.04 0 0.04 0
7.5 0.04 0�06 0 0.14 1 0.06 0 0.05 0
10 0.08 0�08 0 0.06 1 0.03 0 0.03 0

64 nodes, 224 arcs
2.5 0.03 0�10 0 0.03 1 0.04 0 0.07 0
5 0.09 0�23 0 0.09 1 0.15 0 0.15 0
7.5 0.17 0�35 0 0.17 1 0.03 0 0.06 0
10 0.26 1�06 0 0.29 1 0.08 0 0.13 0

100 nodes, 360 arcs
2.5 0.06 0�08 0 0.09 1 0.11 0 0.17 0
5 0.22 0�48 0 0.24 1 0.36 3 0.22 0
7.5 0.76 3�20 0 0.77 1 0.15 1 0.36 0
10 1.76 29�68 0 1.79 1 0.39 7 0.35 0
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arc-oriented formulations, where AMIP+ does better
than AMIP if the SPGM is smaller than the original
network, i.e., the number of tariff arcs is small com-
pared to the size of the network.

8. Conclusions and Final Remarks
AMIP+ shows the most stable behavior under all
circumstances. If reduction methods work well, then
PMIP is the (slightly) better choice.
Note that the PBB algorithm works well if the num-

ber of paths is limited, and the algorithm does not
need a powerful mixed integer programming solver.
Since very basic techniques have been used both with
respect to concept and implementation, there is still
room for improvement on this algorithm.
The SPGM gives deeper insight in the structure of

the problem, which can be used for more complex
situations, e.g., more general combinatorial bilevel
programs. To solve the game-theoretic version of the
pricing problem, where multiple operators can set
prices on the arcs in the network, an efficient method
to solve the pricing problem of each operator is fur-
thermore needed. France Télécom uses the SPGM for
strategic studies, such as finding new profitable con-
nections in their network.
Our problem assumes that the capacity on the arcs

in the network is unlimited. For certain networks
in telecommunications, the capacity available on the
arcs in the network is very large in comparison with
the amount of data needed to be routed on the net-
work. This is often the case for telecommunications
backbone networks where, for some applications, an
operator may therefore consider his network to be
uncapacitated. For the case of leased lines, customers
request capacity from point to point in the network.
Their demand usually varies from 2 Mbps to 30 Mbps,
while the capacity of the fiber-optic network currently
ranges from 2.5 Gbps to 40 Gbps times the number
of wavelengths that can be sent over a fiber simul-
taneously (currently 100). However, the capacitated
version of the problem has important applications as
well. The SPGM is less suitable in its current form

to solve the capacitated tariff-setting problem for two
reasons. First, bifurcation may occur: a commodity
may see its demand routed over multiple paths. Sec-
ond, even if one disallows bifurcation, then the SPGM
has the problem that its arcs represent paths. Thus, it
may be the case that two arcs in the SPGM contain
the same arc in the original network. This causes the
need for capacity restrictions on multiple arcs simul-
taneously. In other words, arc capacities complicate
the problem considerably.
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