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Chapter 1

Introduction

“Reports that say that something hasn’t happened are always interesting to me,

because as we know, there are known knowns; there are things we know we know.

We also know there are known unknowns; that is to say we know there are some

things we do not know. But there are also unknown unknowns - the ones we don’t

know we don’t know. And if one looks throughout the history of our country and

other free countries, it is the latter category that tend to be the difficult ones.”

-Donald Rumsfeld (1932)
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1.1 Literature Review: Pricing Methods

Models can be wrong since models are simplifications of the real world. This simple

fact did not only serve as a foundation for an entire branch of econom(etr)ic re-

search, but also for this thesis. Admitting the limitation of models is important for

policies. How financial and economic decision making can incorporate uncertainty

is the focus of this dissertation. However, the generality of modelling and uncer-

tainty goes beyond these fields. The same procedures and methods can be utilised

in physics and engineering. Possible applications of this thesis are quantifying

the uncertainty involved in the climate change effect, the probability of disasters

happening such as earthquakes, and the safety of medicines. The recognition of

uncertainty is important for any model-based decisions. The social relevance is

described in the Valorisation (Chapter 6).

The first step we make towards a more realistic representation of the economy

is that we assume that we are in an incomplete market. In a complete market all

assets are assumed to be traded such that any cash flow can be replicated by a

combination of these assets. However, not everything is traded or fairly priced.

For instance, there is no liquid market in the number of people alive or in the pos-

sibility of an earthquake. For these two examples there are instruments available,

mortality swaps and catastrophe bonds respectively. However, these assets are in

limited amounts available and are based on a general index. Even more subtle the

assumption of no transaction costs for liquid assets is too simplistic. The market

incompleteness assumption incorporates all these frictions. This dissertation be-

gins with exploring previous literature on pricing methods in incomplete markets.

Chapter 2 and 3 contribute to this field.

Additional to the presence of unhedgeable risk factors is the acknowledgement

of model uncertainty. In this thesis we mainly concentrate on robust decisions

in financial and economic situations. This implies that the agent evaluates his

behaviour against plausible alternative models and chooses the strategy that is

least sensitive to perturbations of the model. Therefore we develop a method to

construct a set of indistinguishable models ex ante. However, before we do so in

Chapter 4, we first discuss the literature that deals with model ambiguity in the

second review of this introductory chapter.

1.1 Literature Review: Pricing Methods

The First Fundamental Theorem of Asset Pricing (FFTAP) (Harrison and Kreps,

1979) states that the market is arbitrage free if and only if at least one equiva-

3



1 Introduction

lent martingale measure (EMM) exists. Moreover, the market is complete if this

EMM is unique (A)1, whereas the market is incomplete if multiple EMM’s ex-

ist (B) (Delbaen and Schachermayer, 1994). In complete markets derivatives are

priced by replication. E.g. the price of plain vanilla options can be priced as the

discounted expectation under the unique EMM. The Black-Scholes formula (1973)

prices call and put options under additional assumptions. The uniqueness of the

EMM corresponds to a unique price that can be obtained by replication of any

payoff. However in incomplete markets many different methods are presented to

quantify the “price” because multiple measures exist.

The literature about pricing in incomplete markets can be divided in methods

that take all measures into account versus those that consider a subset of mar-

tingale measures. See Figure 1.1 for an overview of the pricing methods in the

literature.

Firstly, a well-known method from the class that takes into account “all mea-

sures” (C) when pricing in an incomplete market is superreplication or superhedg-

ing (Kreps, 1981). The infimum is taken over all hedging strategies such that the

price is larger than or equal to the liability. The minimised price is equal to the

optimal objective value obtained by maximising the expected payoff over all mea-

sures such that the observed market prices are replicated. These two optimisation

problems that lead to the same optimal solution are the primal and dual represen-

tation respectively. Duality means that an optimisation problem may be viewed

from both perspectives. Subreplication or subhedging takes the infimum over all

measures. A drawback of this pricing method are the extremely wide intervals for

the price. The large amount of initial capital implied makes this an unpractical

approach (Schied and Föllmer, 2011).

We can subdivide the class of “all measures” further into “penalty function on

the measures” and “loss functions on the replication of the shortfall”.

Secondly, Ben-Tal et al. (2013) consider all possible measures on which a

penalty function (D) is specified. Different penalty functions can be picked from

the set of φ-divergence (or f -divergence). φ-Divergence functions measure the

distance between two probability distributions weighted by the specific function.

Mostly used is the Kullback-Leibler divergence, also known as entropy. This

penalty term has gained a lot of attention because of Hansen and Sargent (2001,

2008).

Thirdly, there is the class of methods that do not state the penalty function

1Letter refers to the corresponding box in Figure 1.1.
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1.1 Literature Review: Pricing Methods

Complete
market (A)

Incomplete
market (B)

All
measures (C)

Penalty on
measure (D)

Loss function
on payoff (E)

Subset
(F)

Robust
(G)

GDB
(H)

Multiple
Prior (I)

FFTAP

Primal

Dual

Figure 1.1: Overview of Pricing Methods

directly, but specify a loss function on the payoff instead (E). Most utility functions

belong to this last category. Utility indifference pricing is based on the price of a

claim such that an agent who is maximising his utility is indifferent between having

the claim or not. The founder of this concept is Merton (1971, 1973). Hodges and

Neuberger (1989) extended this to the dynamic setting. The choice among the

different loss functions that has to be made is the challenging aspect of this class

of methods. Also part of the class of “loss functions” is mean-variance hedging

(Schweizer, 1992) which is based on the selection of a quadratic loss function. The

strategy that maximises the probability that the uncertain payoff is hedged is called

quantile hedging (Föllmer and Leukert, 1999), this corresponds with the indicator

function as loss function. The strategy that maximises the probability of success,

where success is the minimal shortfall is derived by Föllmer and Leukert (2000),

which corresponds with a put option as loss function. Also here the challenge is

to choose the appropriate loss function in whichever situation. The exponential

utility function leads to a direct penalty function, and thus belongs to the class

that considers all measures with a specific penalty term. For recent work on

utility indifference pricing, in specific exponential utility functions, see Henderson

(2002, 2005), Henderson and Hobson (2009), Miao and Wang (2007), Hu et al.

(2005), Musiela and Zariphopoulou (2004), Young and Zariphopoulou (2002) and

Zariphopoulou (2001).

The subclasses of those methods that consider a penalty on the measures and

those that consider a loss function on the hedging errors can be linked through

the fact that both subclasses are the primal and the dual of the same optimisation

problems. For a general review of duality see Rogers (2003). Schweizer (1992)

shows that the concept of mean-variance hedging corresponds with the minimal

equivalent martingale measure. Via the dual problem the link between pricing

5



1 Introduction

under the minimal entropy measure and exponential utility is shown by Delbaen

et al. (2002).

We discussed the listed methods that can be labelled as those that consider

“all measures”, thus we continue with the class of methods that consider a “subset

of measures” (F).

Firstly, the path to the optimal hedge position of Good-Deal-Bounds (GDB)

(H) (Cochrane and Saa-Requejo, 2000) is that the existence of assets with extreme

market prices of risk are unlikely to be true (“too good to be true”). By the buy

and sell imbalance these prices move towards an equilibrium, i.e. if the asset is

too good, then demand will increase, which drives up the price and decreases the

market price of risk and vice versa. Amongst others, Björk and Slinko (2006),

Černỳ and Hodges (2002), Becherer (2009) and Klöppel and Schweizer (2007)

extended this concept. Shen et al. (2014) consider an optimal control problem

under parameter uncertainty, where the uncertainty set is based on a Good-Deal-

Bound approach. The numerical results are obtained based on the utility function

specified as the positive part of the surplus.

Secondly, additional to different methods of pricing in incomplete markets,

the ambiguity that is involved when making decisions or during the process of

pricing, can be implemented by a wide variety of different models. To define our

concept of pricing under ambiguity note the difference between risk and ambiguity.

Risk stands for uncertainty about an event that might happen while knowing the

probability whereas ambiguity indicates the nescience of the probabilities itself.

Since incompleteness corresponds to a set of martingale measures rather than

one unique measure, ambiguity can be interpreted as the uncertainty among the

different measures, i.e. ambiguity is equivalent to the set of martingale measures.

The idea of robustness (G) we adhere to in this thesis is that the robust price

and the robust optimal hedging strategy are the ones that are least sensitive to

perturbations of the model. Barrieu and El Karoui (2005) consider a buyer and

seller perspective in the two player game, where the pricing measure is known

as the solution of an inf-convolution problem. Gundel and Weber (2007) and

Goldfarb and Iyengar (2003) deal with robustness linked to portfolio optimisation.

A literature review on ambiguity in asset pricing is performed by Guidolin and

Rinaldi (2013).

Thirdly, the multiple prior (I) model from Gilboa and Schmeidler (1989) comes

from a Bayesian approach where a set of priors are specified over a subset of

measures. More robust control literature in mathematical finance can be found by

6



1.1 Literature Review: Pricing Methods

work of Garlappi et al. (2007) who extended the standard multiple prior approach.

They consider a robust portfolio rather than the price. Although these three

methods (robust optimisation, GDB and multiple priors) are in the literature

presented as completely different methods they are actually based on one similar

idea that given a subset one is not able to distinguish between the models within

the set.

The question that pops up in this class of pricing methods is which subset

should one take? Firstly, the model confidence set methodology introduced by

Hansen et al. (2011) is a recursive method that tests which models to keep in

the set of indistinguishable models and which ones to eliminate according to some

loss function. By these decisional criteria the size of the set of alternatives can

be chosen. Secondly, the size of the subset that consists of all plausible measures

implied by the GDB methodology is determined by the bound on the market

price of risk that is set. Those measures that are “too good to be true” are

excluded from this set. Thirdly, the size determination issue discussed here is

bypassed for the class of methods that consider “all measures”. The penalty

and loss function methods build upon the assumption that it is possible to rank

models. The literature review in Section 1.2 discusses these methods in more

detail. Moreover, Chapter 4 contributes to the literature of quantifying model

ambiguity.

Since we discussed the overview of the different pricing methods in the liter-

ature, we briefly discuss the interpretation and linkage between pricing and risk

measures. Risk measures determine the smallest amount of cash that is needed

to add to a random variable such that the risk is acceptable, i.e. such that the

random variable falls inside the acceptance set (Artzner et al., 1999, 2007). This

is equivalent to what a pricing operator does. For each risk measure a different

amount of cash is needed, i.e. for each risk measure there is a pricing operator.

Note the plus-minus sign switch in the formulation of the risk measure set-up:

the amount of money that should be added to the random variable to make it

acceptable corresponds with the price of the liability as the negative equivalent.

In the literature of risk measures, the same division as in the pricing literature

can be made. Whereas we divided the pricing methods in those that initiate

all measures versus those that initiate a subset, the risk measure literature can

be divided in convex and coherent risk measures, respectively. Specifying a set

of alternatives is mathematically equivalent to considering all measures with the

indirect implied penalty function being equal to zero inside the set (in this thesis
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we assume ellipsoid uncertainty) and being equal to plus infinity outside. The set

of convex risk measures with this specific penalty term leads to a set of coherent

risk measures. The concept of coherent risk measures was first introduced by

Huber (1981). Later this was generalised to a subset of convex risk measures, see

Cheridito et al. (2005) and Föllmer and Schied (2002) for work on this. Cont (2006)

quantifies model ambiguity by both coherent and convex sets of risk measures.

Jaschke and Küchler (2001) establish the relation that coherent risk measures are

equivalent to Good-Deal-Bounds.

1.2 Literature Review: Uncertainty Sets

As already mentioned in the paragraph about robust pricing, we would like to

highlight the difference between risk and uncertainty. First of all, in this the-

sis we use ambiguity and uncertainty interchangeably. Risk (A)2 stands for the

uncertainty that an event might happen while knowing the probability, known un-

knowns, whereas for uncertainty (B) one does not know the probability, unknown

unknowns. The Ellsberg paradox (Ellsberg, 1961) states that people prefer known

risk over unknown risk. This phenomenon is called ambiguity aversion. People

differ among their risk attitudes. If one is indifferent between the bet and the

certainty equivalent, he is risk-neutral (D). If the risk premium, the difference

between the expected payoff and the certainty equivalent, is negative, he is risk-

loving (E). Lastly, a risk-averse person (C) accepts a certain payment lower than

the expected payoff of the gamble.

Ben-Tal et al. (2013) focus on φ-divergences (F) in robust optimisation. Gen-

eral optimisation problems, examples ranging from finance to operations research,

are solved robustly over an uncertainty region. The uncertainty region is identified

by the confidence set using a specific φ-divergence function. At node (D) of the

overview of pricing methods in Figure 1.1 the concept is introduced from an in-

completeness viewpoint. The described divergence functions are Kullback-Leibler

divergence, Burg entropy, J-divergence, (modified) χ2-distance, Hellinger distance,

variation distance and χ-divergence of order θ > 1, and Cressie-Read divergence.

Breuer and Csiszár (2013b) base stress tests on plausible sets, that do not

include scenarios that are too implausible and do include the dangerous ones.

These scenarios are obtained by considering mixed scenarios, known as risk factor

distributions. The Kullback-Leibler (J) divergence from these distributions has to

2Letter refers to the corresponding box in Figure 1.2.
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Figure 1.2: Overview of Uncertainty Sets

fall within an uncertainty ball, where the radius is assumed to coincide with the

1% Tail-Value-at-Risk or the bound can be calculated based on historical data.

However, for all divergences the critical value that distinguishes a plausible from

an implausible model is not quantified. Merely the optimisation problem that

incorporates an ambiguity measure is the focus of these papers.

Hansen and Sargent (2008) (hereafter H&S) motivate their approach of uncer-

tainty to robust optimisation by choosing models with bounded entropy (i.e. with

bounded Kullback-Leibler divergence). However, when implementing their method

they make a subtle switch: they replace the endogenous Lagrange multiplier of

the entropy constraint (K), with a fixed entropy penalty (L). On the one hand

this leads to a fundamentally different class of optimisation problems on finite

horizons. On the other hand, by “giving up” the explicit entropy constraint H&S

obtain a time-consistent operator, which is a desirable property for dynamic opti-

misation problems. Still the strength of preference towards robustness has to be

determined. H&S start with an optimisation problem, then they pick a Lagrange

multiplier and calculate the worst-case path which depends on the multiplier and

the specific optimisation problem. Next they calculate the Type I and II errors

for the specific multiplier and the associated worst-case path. If the probability of

the average of the two incorrect rejections is too high, then the worst-case choice

from mother nature is too extreme, with other words too far from the approxi-

mating model. Therefore it is deemed unlikely that these two models cannot be

distinguished from each other. Hence this multiplier is rejected and will not be-
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long to the set of alternatives. By this procedure one plausible worst-case based

multiplier is selected rather than a set. The main difference with our approach

is the order of the procedure. H&S start with an explicit optimisation problem

whereas we focus on the creation of the set of plausible alternative models that

can be applied to and is independent of the particular choice of the optimisation

problem. Moreover, still the size of the uncertainty set which coincides with the

preference towards robustness has to be identified.

Hansen et al. (2011) introduce the concept of Model Confidence Set (MCS)

(G). This method, or actually algorithm, is a sequential method that starts with a

collection of possible models and ends with a subset of these that contain the best

models with a given level of confidence. Best is in terms of a chosen test statistic.

In comparison with the indistinguishable method discussed in Chapter 4, the MCS

method starts with a collection of competing models. Rather than introducing a

discrete number of both plausible and implausible models, the indistinguishable

method is exempted from this initial input.

The MCS method is based on an equivalence test and an elimination rule. If

the equivalence test indicates that the set of models at hand are not equivalent,

in our terms are not indistinguishable, then at least one of the models performs

worse than the others and should be removed. The elimination rule performs

the execution step repeatedly until the set consists of only those models that are

equivalently good for a given confidence level. Hence the MCS method uses the

data and evaluates the test sequentially at time T . The method in Chapter 4 is

based on a hypothetical test.

For all alternative models identifiable by different constant drifts, a comparison

with the confidence interval (H) of the parameter estimate can be made. For

historical data over the past T years, the estimated drift is λ̂ = W (T )/T , where

W (T ) is the realisation of the Brownian motion path at time T . The standard

error for this estimator is given by 1/
√
T , and the 95% confidence interval for λ̂

is given by [λ̂ − 1.96/
√
T , λ̂ + 1.96/

√
T ]. Hence, for the baseline model λ = 0

one would consider all models with a constant λ that satisfy |λ| < 1.96/
√
T . The

confidence interval approach is limited specifically to parameter uncertainty for the

constant drift λ. In detail, the parameter approach starts with a path of observed

W (t) for t ∈ {1, ..., T}. Based on this the λ̂ is estimated. This implies that the

test is performed ex post.

The confidence interval λ ∈ CI95%(λ̂) shows the region of acceptance. If 0 is

included, the hypothesis can be accepted. The determination which alternatives

10
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are all accepted is only composed afterwards. To prevent misunderstandings, T is

here the amount of data whereas in the indistinguishable approach of Chapter 4

it represents the point in the future at which one would have T years of additional

information.

In Bayesian statistics (I) parameters are assumed to be realisations of prob-

ability distribution. One can indicate his prior belief about the variable by a

prior distribution. The observed data is summarised by the likelihood function.

The posterior distribution combines both the prior distribution with the likeli-

hood function. Contrary to the frequentist approach that treats the parameters

as constants, the posterior distribution indicates the uncertainty of the parameter

conditionally on the data. Strictly speaking, if the prior distribution is known, the

Bayesian concept belongs to risk. Whereas if there are multiple priors, it belongs

to uncertainty. However, the strict distinction based on the definition of risk and

uncertainty is often relaxed and both terms are used interchangeably. In Chap-

ter 2 we apply the Bayesian updating procedure to a term structure model. The

max-min expected utility from Gilboa and Schmeidler (1989) is another Bayesian

method that deals with model ambiguity by allocating multiple priors to a set of

outcomes. Palm and Zellner (1992) investigated which information on the priors

of the models is required to solve the decision problem. We described the multiple

prior method in the context of market incompleteness at node (I) of the literature

review of pricing methods.

1.3 Outline

In Chapter 2 the uncertainty is quantified by Bayesian methods. The incomplete

market that underlies the term structure of interest rates is investigated by deriving

the posterior distributions of the uncertain parameters. For the mean-reverting

model we show the extrapolation based on American and European data.

The goal of Chapter 3 is to price a non-traded item robustly. The robustness is

incorporated by the max-min concept, where the malevolent mother nature selects

her model from an ellipsoid that indicates the uncertainty around the baseline

model. We prove that this price always exists and is unique.

Chapter 4 deals with the quantification of uncertainty. Ex ante, we determine

the set of models that cannot be distinguished from each other with enough power

for a given probability on the Type I error. The critical value can be used to

quantify the bounds on φ-divergences. Chapter 4 considers a fundamentally large

11
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class of models by allowing for stochastic alternatives.

Chapter 5 is a general conclusion of this thesis. The detailed conclusions can

be found at the end of each separate chapter. The valorisation in Chapter 6

states the societal relevance of this research. This is followed by the references,

a Dutch summary and Model Uncertainty: The Effect on Robustness, Estimation

and Stochastic Optimisation ends with a short curriculum vitae.
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Chapter 2

What does a Term Structure

Model imply about very

Long-Term Discount Rates?

We estimate a term structure model on interest rate data with maturities up to

20 years and then extrapolate the yield curve to maturities up to 100 years. Such

model based extrapolations are motivated by limited liquidity of very long-dated

fixed income instruments. The extrapolation appears mainly driven by the near

unit root of the level factor under the risk-neutral measure. In a no-arbitrage

term structure model this leads to a strong convexity effect, which implies that

extrapolated yield curves are generally upward sloping for maturities longer than

20 years before eventually bending steeply downwards. Our estimates use Bayesian

methods. Based on Euro swap rates from 2002 through 2013 and US swap rates

from 1998 through 2014, we identify the uncertainty at the long end of the yield

curve. The prior is informative on mean-reversion parameters and imposes a zero

lower bound on the unconditional means.1

1This chapter is based on the paper Balter et al. (2015).
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2.1 Introduction

2.1 Introduction

Long maturity discount rates are an essential input for valuing the liabilities of

pension funds and insurance companies. Life insurance or pension fund liabilities

can be as long as 100 years, whereas the available liquid instruments in the market

have much shorter maturities. In most countries market rates can only be observed

for maturities up to 20 or 30 years for government debt. Swap rates are available

for maturities up to 50 years, but there are doubts about the liquidity of the

longest maturities. Fair value, or market-consistent valuation, requires discount

rates that are close to market rates, but free of liquidity effects.2

For this purpose various methods have been proposed to extend an observed

yield curve. Assuming that market rates are liquid up to a “last liquid point” with

maturity of 20 years (say), how should such a yield curve be extended to maturities

up to 100 years? One option is the use of numerical extrapolation techniques. A

prominent example is the Smith-Wilson methodology adopted by EIOPA3, which

extrapolates the forward rate curve using exponential functions.4 The extrapola-

tion method provides a smooth extension from the yield at the last liquid point

to an externally specified ultimate forward rate (UFR) and a chosen convergence

speed parameter. Other methods, such as the Nelson-Siegel methodology, would

first fit level, slope and curvature factors using data on the liquid part of the yield

curve and then extend the yield curve with the parameters of the fitted model.5

In the Smith-Wilson methodology the yield curve always converges to the same

constant, whereas in the Nelson-Siegel model long rates converge to a time-varying

level factor estimated from the current term structure.

A problem with these methods is that the extension is based on curve fitting,

and not on a formal term structure model. The Nelson-Siegel model can be made

arbitrage free by adding a yield adjustment term, like in Christensen, Diebold, and

Rudebusch (2011), but this adjustment will push very long-term yields to minus

infinity.6 The strong downward pressure on long-term yields is caused by the unit

2Quoting from From Moody’s Analytics (May 2013): “Fair value is the price that would be
received to sell an asset or paid to transfer a liability in an orderly transaction (that is, not a
forced liquidation or distressed sale) between market participants at the measurement date under
current market conditions.”

3European Insurance and Occupational Pensions Authority
4See the EIOPA notes at eiopa.europa.eu/fileadmin/tx dam/files/consultations/QIS/

QIS5/ceiops-paper-extrapolation-risk-free-rates en-20100802.pdf for references and de-
tails of the method.

5See Diebold and Rudebusch (2013) for a textbook treatment of the Nelson-Siegel model for
fitting term structure data.

6See the leading adjustment term I1 in Appendix B in Christensen et al. (2011)
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2 Implication TSM on Long-Term Discount Rates

root of the level factor under the risk-neutral measure that drives the convexity

adjustment. The arbitrage-free Nelson-Siegel model is a member of the class of

essentially affine Gaussian term structure models (Duffee, 2002). Other models in

that class do not necessarily have a unit root in the risk-neutral dynamics, and

will thus have a smaller convexity adjustment at the very long end of the yield

curve.

The existence of a convexity effect is the main argument for using a formal term

structure model for the extrapolation. It implies that yields do not always converge

monotonically from the last liquid point towards the ultimate yield. Starting

from low interest rate levels, the convergence will follow a hump shape, in which

yields first overshoot the ultimate yield before finally decreasing slowly towards the

limit. With current low interest rates such an extrapolation will result in a much

higher level for long-term yields than either the Nelson-Siegel or the Smith-Wilson

extrapolation.

A secondary aim of the chapter is to quantify the uncertainty around extrap-

olated yields given a formal term structure model. How much can we learn from

time series of observed yields with medium to long-term maturities (5 to 20 years)

about the shape of the yield curve at very long maturities (between 20 and 100

years). More explicitly, what can we infer about the three crucial elements at

the long end of the yield curve: the ultimate forward rate, the convergence speed

towards the UFR, and the convexity?

The simplest model to estimate these quantities is a single factor Vasicek model.

The model can be parametrised by three key parameters: the ultimate yield, mean-

reversion (or convergence speed) and volatility. It therefore directly addresses the

main challenges for extrapolating a yield curve. The single factor model cannot fit

the complex curvatures at the short end (1 month to 2 years) of the yield curve,

but performs reasonably for long maturities. We therefore estimate the parameters

using data on 5- and 20-year maturities.

In a Bayesian analysis using Euro swap rate data we find that the mean-

reversion of the level factor is non-zero, but with considerable probability mass

very close to the unit root (under the risk-neutral measure). That means that

convexity effects are important, but not so large that they drive the limiting yield

to minus infinity. In our extrapolations the yield curve remains upward sloping for

maturities up to 100 years. As expected the Vasicek extrapolation leads to a higher

level of very long-term yields than the Nelson-Siegel or Smith-Wilson methods.

The uncertainty around the extrapolated yields increases with the maturity. For
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2.2 Data

Figure 2.1: Euro swap rates

In the left panel the solid line shows the average yield curve over the period from January
2002 to September 2013. The dotted line and the triangles show the yield curves with
the minimum and maximum rate at the 20 years maturity. The right panel shows the
volatility of yield level, yield changes and the one month prediction errors from an AR(1)
model. The horizontal axis in both panels is the maturity in years. The vertical axis
unit is percent per year. The right vertical axis is for levels; the left vertical axis is for
changes and prediction errors.
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market conditions prevailing in the fall of 2013 the Nelson-Siegel and Smith-Wilson

extrapolations are at the lower end of the 95% highest posterior density region.

The same analysis for the US market prevails the better fit to the one factor model.

Because the model is closer to catch the US data the errors are smaller, therefore

the mass at the unit root is much smaller than in the EU setting. However the

total uncertainty around the extrapolated yields shows to be robust.

2.2 Data

Our yield curve data consists of a monthly panel of discount rates from the website

of the Bundesbank.7 These yield curve data are constructed from Euro swap rates

with maturities ranging from 1 to 50 years. The sample period is from January

2002 to September 2013 resulting in 141 data-points per maturity.

Figure 2.1 provides an overview of the data. The average term structure is

increasing until the 20-year maturity, after which it becomes slightly downward

sloping for longer maturities. The yield curve has fluctuated substantially over the

twelve year sample period. The figure shows a curve from the beginning of the

sample (March 2002) when the curve has a similar shape as the average, but at a

7http:/www.bundesbank.de/Navigation/EN/Statistics/Time series databases
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2 Implication TSM on Long-Term Discount Rates

1.5% higher level. The lowest long-term yields are from May 2012, where the 50

years maturity yield is just below 2%. With such dominant parallel shifts of yield

curves, it will be difficult to fit a long-term common ultimate forward rate to these

data. It is definitely not reached before a 50 years maturity and convergence to a

common ultimate yield requires a very low level of implied mean-reversion.

The right-hand panel of Figure 2.1 shows the volatility of yields. When measur-

ing volatility as the standard deviation of yield levels we see a quickly decreasing

volatility structure up to maturities of 12 years, after which the volatility stabi-

lizes. Within an affine term structure model this points to at least two factors. One

factor would be a level factor that is close to a random walk under the risk-neutral

measure, while the second factor is a stationary factor with strong mean-reversion.

Due to the strong mean-reversion the second factor has a negligible influence on

yields with maturities longer than 10 years. Since the shortest maturity in this

data set is one year, it is difficult to identify a third factor.

The same figure also shows the volatility of yield changes. In a one-factor

model it should have the same shape as the level volatility, and only the scaling

should be different. In a multi-factor model the shape for short and medium-term

maturities can be very different from the shape of the level volatilities. The figure

shows the familiar hump-shaped volatility, where the volatility peaks at the three

year maturity, and then starts a gradual decrease. The initial hump shape for

shorter to intermediate maturities can be explained by a two-factor model. The

gradual downward sloping volatility is consistent with a slowly mean-reverting

level factor. Most puzzling is the upward sloping pattern from a maturity of 15

years onwards, which cannot be explained by standard term structure models. The

affine model, for example, implies that the volatility curve is downward sloping for

longer maturities. Very long-dated swap prices may contain more noise because the

market at these long-term maturities is less liquid. This suggests that the 20- years

rate may be a good reference for the last liquid point to start the extrapolation.

In our econometric model we will work with time series data and the discount

yields for maturities 5 and 20 years. The time series are shown in Figure 2.2. The

scatter diagram suggest that the single factor assumption is not too far off. From

the time series plot it appears that both rates have a slight negative trend over

the last decade, so that it may be hard to estimate an unconditional mean from

these time series.
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2.3 Term Structure Models

Figure 2.2: Time series data

The figure shows the monthly time series data for the 5- and 20-year maturity discount
yields, both as a time series graph and as a scatter diagram for the first differences of
the yields.
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2.3 Term Structure Models

Our basic model is the essentially affine term structure model introduced by Duffee

(2002) as an extension of the Duffie and Kan (1996) class of affine term structure

models. Dai and Singleton (2000) show that the canonical structure of a Gaussian

affine model can be written as

yt(τ) = a(τ) +
K∑
j=1

bj(τ)xjt (2.1)

where yt(τ) is the yield of a discount bond at time t with time to maturity τ ; a(τ)

and bj(τ) are function of the time to maturity and the underlying parameters of

the model; and xjt are time-varying factors that follow the Ornstein-Uhlenbeck

processes

dxj = κ̃j(µ̃j − xj)dt+ σ′jdW̃ (2.2)

with W̃ a K-dimensional Brownian motion under the risk-neutral density (Q mea-

sure) that is normal distributed with mean 0 and the covariance matrix equals the

identity matrix and σj a vector of volatilities. Multiple factor term structure mod-

els are characterized by different mean-reversion parameters κ̃j that determine the
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2 Implication TSM on Long-Term Discount Rates

bj(τ) functions in (2.1)

bj(τ) =
1− e−κ̃jτ

κ̃jτ
(2.3)

The larger the κ̃j , the less the impact of the factor on long-term yields. For typical

estimates of a three factor model, more than 95% of the variation at maturities

longer than 5 years is explained by the first factor, usually referred to as the level

factor.

2.3.1 Vasicek Model

Since our aim is to extrapolate the yield curve beyond maturities of 20 years, using

data in the segment between 5 and 20 years, we specialize our model to a single

factor. For the single factor “Vasicek” model we drop the subscript j. Using the

explicit solution for a(τ) the Vasicek yield curve takes the form

yt(τ) = θ + b(τ) (xt − θ) + 1
2
ω2τb(τ)2 (2.4)

where

b(τ) =
1− e−κ̃τ

κ̃τ

ω2 =
σ2

2κ̃

θ = µ̃− ω2

κ̃

(2.5)

See Appendix 2.A for the full derivation of the expression for the yields. The

function b(τ) defines the volatility of long-term yields relative to the level factor

xt, ω
2 is the unconditional variance of the factor, and θ is the limiting yield yt(τ)

when τ → ∞. In the Vasicek model the constant θ is both the ultimate yield as

well as the ultimate forward rate. It is equal to the unconditional mean of the risk-

neutral distribution of the factor minus the infinite horizon convexity adjustment.

All zero rates are a weighted average of the factor and the ultimate long-term yield

plus a convexity adjustment.

Equation (2.4) provides the cross-sectional relation among yields with different

maturities. For the time series dynamics of the yields we need to transform from

the Q dynamics to the physical measure P. This requires an assumption on the

price of risk and a stochastic discount factor. Following Duffee (2002) we make
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2.3 Term Structure Models

the essentially affine assumption and specify the stochastic discount factor as

dΛt
Λt

= −xtdt− λtdWt (2.6)

with

λt = Λ0 + Λ1xt (2.7)

With this assumption the time series process for the factor becomes

dxt = κ(µ− xt)dt+ σdWt (2.8)

and the parameters under the P and Q measures are related by

κ̃ = κ+ σΛ1 (2.9)

µ̃κ̃ = µκ− σΛ0 (2.10)

In Appendix 2.B this relation is derived. Combining (2.4) and (2.8) provides an

expression for the time series behaviour of different yields yt(τ), which are the

starting point for the econometric analysis.

2.3.2 Extrapolation

In general extrapolation uses forward rates and the identity

yt(s) =
1

s

∫ s

0

ft(u)du (2.11)

with ft(τ) the instantaneous forward rate at time t for time t + τ . If we have

reliable data for the term structure up to the reference maturity τ∗ (“last liquid

point”) the extension to maturities s > τ∗ follows as

yt(s) =
1

s

(
τ∗y∗t +

∫ s

τ∗
f(u)du

)
(2.12)

where y∗t = yt(τ
∗) is the observed yield at maturity τ∗.8 The extrapolation ensures

continuity of the extended yield curve at the last liquid point. For the one factor

8In practice most methods replace the instantaneous forward rate by one year forward rates
Ft(τ, τ + 1) in which case the integral in (2.12) becomes the sum

∑s−1
i=τ∗ Ft(i, i+ 1). For exposi-

tional purposes we stick with the instantaneous representation.
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Vasicek model the forward rate curve itself is a function of the single state variable

xt and we can use y∗t to solve for the state variable using (2.4). Assuming that

y∗t is exactly on the Vasicek curve, we can simply use (2.4) twice to first express

yt(s) as a function of xt and then again to replace xt by the reference yield y∗t .

The result is

yt(s) =
b(s)

b∗
y∗t +

(
1− b(s)

b∗

)
θ + C∗(s) (2.13)

with b∗ a shorthand notation for b(τ∗) and where

C∗(s) = 1
2
ω2b(s) (sb(s)− τ∗b∗) (2.14)

First solving for the forward rate curve and computing (2.12) leads to the same

result as long as we use y∗t as the only input for the extrapolation. More sophis-

ticated methods allow for a slight measurement error in the observed rate y∗t and

extract the state variables from multiple maturities using a Kalman filter. Assum-

ing that the measurement error is small this will only lead to minor changes in

the estimate for the state variable xt and therefore not cause major changes in the

extrapolation.

The extrapolated yields are a weighted average of the last liquid point y∗t

and the ultimate yield θ plus a convexity adjustment. The convergence speed is

measured by the relative volatility b(s)/b∗. This is a decreasing function of s,

starting at one for s = τ∗ and gradually moving towards zero as s increases. The

convexity adjustment C∗(s) is always positive. Hence, if y∗t = θ, the extrapolation

first moves yt(s) above the ultimate yield, before slowly converging downwards

to the ultimate yield θ again. The Vasicek extrapolation will thus be markedly

different from a simple weighted average of the last liquid point and an ultimate

forward rate. It will often imply a steeper upward sloping yield curve before

eventually flattening (or decreasing) towards the ultimate yield.

In general all long-term yields have a negative convexity exposure. We obtain

the positive term in (2.14), because both the reference yield y∗t and ultimate yield

θ themselves are negatively affected by convexity and the convexity in (2.13) is

measured relative to these yields. An equivalent expression for the extrapolated

yield that explicitly shows the convexity effect in the ultimate yield is

yt(s) =
b(s)

b∗
y∗t +

(
1− b(s)

b∗

)(
µ̃− ω2

κ̃

)
+ C∗(s) (2.15)
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which uses (2.5) to replace θ by the risk-neutral mean µ̃ of the spot rate. The

convexity in θ increases with maturity and reaches a minimum of −ω2/κ̃ at infinite

maturity. The convexity term scales with the unconditional variance ω2 of the

risk-neutral factor dynamics. If the mean-reversion κ̃ goes to zero, meaning a true

level factor, the variance will tend to infinity. But even if κ̃ does not move all the

way to its limit, the convexity in the ultimate yield can be substantial due to the

additional κ̃ in the numerator. For small κ̃ it can become so big that yields will be

negative for large s and converge to a negative θ (with fixed µ̃). This will occur, for

example, in the arbitrage-free version of the Nelson-Siegel model of Christensen,

Diebold and Rudebusch (2011).

The convergence towards the ultimate forward rate is measured by how quickly

the forward rate converges to θ. For the Vasicek model the forward rates are given

by

ft(s) = θ + e−κ̃s(xt − θ) + ω2e−κ̃ssb(s) (2.16)

and thus θ is the ultimate forward rate. Using (2.16) to express the forward rate

ft(s) relative to the forward rate at maturity τ∗ we have

ft(s) = θ + eκ̃(τ∗−s)(f∗t − θ) + ω2e−κ̃s(sb(s)− τ∗b∗) (2.17)

The mean-reversion parameter κ̃ can thus alternatively be labelled as the conver-

gence rate of the forward curve. Using the forward rate f∗t to solve for the state

variable xt is equivalent to using y∗t , if the Vasicek model would fit perfectly. With

measurement errors the yield y∗t will most likely provide a more accurate estimate

of the factor than the forward rate f∗t . Since the forward rate is a function of the

derivative of the yield with respect to maturity, it is more sensitive to measurement

error than the yield itself.

2.4 Econometric Model

To extrapolate the yield curve we would only need the parameters (κ̃, µ̃, σ2) of the

risk-neutral distribution Q. These parameters can be identified from a single cross-

section, but this would be very inefficient. If these parameters are time invariant,

a panel estimate from multiple cross-sections increases efficiency.

Further information on the parameters σ2 and κ̃ can be obtained from time se-

ries data, since these two parameters determine the volatility of long-term yields.
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2 Implication TSM on Long-Term Discount Rates

Since volatility parameters are typically estimated with more precision than lo-

cation parameters, time series data may be best for estimating σ2 and κ̃. Since

κ̃ determines the relative volatility of different yields through the function b(τ),

we need time series data on at least two maturities to identify κ̃ from volatility

moments. For the estimation we use the time series data for both the 5-year and

20-year maturity discount yields. The 5-year yield is the shortest maturity that

seems uncontaminated by additional factors, while the 20-years rate is the longest

one that still is on the downward sloping part of the volatility curve in the empir-

ical data. By choosing the two maturities relatively far apart we also include as

much of the cross sectional information as possible.9

The parameters on the physical measure P are fully identified from time series

data. For a one-factor model a single time series would be enough to identify

the model parameters (κ, µ, σ). The parameters under the P and Q measures are

connected through the price of risk function λt, which contains two free parameters.

Hence there is an overlap between the two sets of parameters, which we indicate

by including the common parameter σ2 in both parameters sets. Since the relation

between the two measures depends on the market price of risk, knowing Λ0 and

Λ1 is equivalent to knowing κ̃ and µ̃. With a single interest rate time series it

is impossible to identify the cross-sectional parameters. With multiple maturities

the parameters are over-identified.

Henceforth, we consider a single factor model for two maturities as following

the restricted VAR(1) process(
yt(τ1)

yt(τ2)

)
=

(
yt−h(τ1)

yt−h(τ2)

)
− α

(
yt−h(τ1)−m(τ1)

yt−h(τ2)−m(τ2)

)
+

(
et(τ1)

et(τ2)

)
(2.18)

where h is the length of the time interval between two observations (one month,

h = 1/12), m(τ) is the unconditional mean of a discount rate with maturity τ , and

the shocks et(τ) are normally distributed with mean zero and covariance matrixΣ.

The mean-reversion parameter α is the discrete time equivalent of the continuous

time mean-reversion parameter κ,

α = 1− e−κh (2.19)

In this bivariate process the mean-reversion parameter α should be the same for

the two different interest rates.

9In the robustness analysis we analyse the effect of using different maturities.
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2.4 Econometric Model

According to (2.4) and (2.8) the error covariance matrix takes the form

Σ∗ = s2
hσ

2

(
b21 b1b2

b1b2 b22

)
(2.20)

where bi = b(τi) and where s2
h is a scaling constant that links the discrete time

model to the continuous time parametrisation through

s2
h =

1− e−2κh

2κ
(2.21)

In an Euler discretisation we would have α = κh and s2
h = h. Since we are

using a single factor model, the matrix Σ∗ has rank one. To avoid the stochastic

singularity in the estimation it is common to assume a small measurement (or

model) error. This can be done through a formal measurement equation and a

Kalman filter model as in De Jong (2000). Since here we only have two time series,

we take the simpler approach by adding a small positive variance to the diagonal

elements of Σ∗,

Σ = Σ∗ + s2
hη

2I (2.22)

With this specification the covariance matrix is a function of three parameters: σ2,

κ̃, and η2. The parameter κ̃ enters through the function b(τ). The mean-reversion

under the risk-neutral measure is identified through the covariance matrix, since

b(τ) defines the volatility of a bond with maturity τ and κ̃ is thus primarily a

volatility parameter. The parametrisation with η2 interpreted as a measurement

error variance will only be credible if η2 is small relative to the overall volatility

of the shocks et. Large measurement error would not only cast doubt on the

model specification, but would also imply that the regressors yt−h(τi) are subject

to errors-in-variables.

When we estimate the model we obtain estimates of the covariance matrix Σ.

From the three elements in Σ we solve for the three model parameters σ2, η2 and

κ̃. Estimates of κ̃ are only admissible if the implied κ̃ ≥ 0. Non-negativeness of κ̃

requires the following two conditions to hold

σ11 ≥ σ22

σ21 ≥ 0
(2.23)
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2 Implication TSM on Long-Term Discount Rates

The first condition imposes that volatility decreases monotonically with maturity.

The second condition states that shocks to long-term interest rates are positively

correlated. In Appendix 2.C we derive the further admissibility condition

σ11 − σ22 ≤
15

4
σ21 (2.24)

which is specific to the maturities τ1 = 5 and τ2 = 20.

The intercepts m(τi) in (2.18) are related to the parameters µ and µ̃ in the

Vasicek model, or equivalently µ and the ultimate forward rate θ,(
m(τ1)

m(τ2)

)
=

(
b1 1− b1
b2 1− b2

)(
µ

θ

)
+
σ2

4κ̃

(
τ1b

2
1

τ2b
2
2

)
(2.25)

Since κ̃ and σ2 are already identified from the covariance matrix Σ, these two

equations uniquely identify µ and θ. Inverting (2.25) is problematic when κ̃→ 0.

For small values of κ̃ the system becomes almost singular because b1 → b2, while

at the same time the intercepts go to infinity (unless σ2 → 0). The ultimate

yield may therefore be very difficult to identify from the data if the risk-neutral

mean-reversion is small.

Assuming normality and time series independence for the error terms, we ob-

tain a normal likelihood function from which we can estimate the six unknown

parameters κ, κ̃, µ, µ̃, σ2 and η2. The parameters are also exactly identified from

the reduced form parameters α, m and Σ.

2.5 Maximum Likelihood Estimates

For a first formal evaluation of the model we estimate the parameters by condi-

tional maximum likelihood, where we condition on the initial observation. The

results are in Table 2.1.

In contrast to many other studies the model is estimated with data on medium-

to long-term maturities. Results are similar, however, to what has been found for

other sample periods and countries. The time series mean-reversion κ, correspond-

ing to a monthly first order autocorrelation of 0.975, is not significantly different

from zero. A unit root cannot be rejected. We also find, like e.g. De Jong (2000),

that the risk-neutral mean-reversion parameter is much smaller than the time se-

ries mean-reversion. It is also not significantly different from zero, even though

the asymptotic standard error is very small. Due to the near unit root for the time
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2.5 Maximum Likelihood Estimates

Table 2.1: ML parameter estimates

The table reports conditional Maximum Likelihood estimates for the bivariate
model using interest rates with maturities of 5 and 20 years. The asymptotic
standard errors (“se”) are from the Hessian of the log-likelihood function. The
columns on the right side of the table are estimated under the restriction κ̃ = κ.
All parameters are reported in their natural units with time measured in years.
The last line is the value of the log-likelihood function.

Estimate se Estimate se

κ̃ 0.0202 0.0101 0.0210 0.0103
κ 0.3023 0.1685 = κ̃
µ̃ 0.1338 0.2677 0.2034 0.4720
µ 0.0155 0.0102 -0.1317 0.1392
θ 0.0717 0.0324 -0.1090 0.4541
Λ0 0.2940 0.7668 -1.0199 1.5508
Λ1 -40.556 24.157 0
σ2 4.710×10−5 1.313×10−5 4.744×10−5 8.374×10−6

ω2 1.190×10−3 4.928×10−4 1.113×10−3 4.568×10−4

η2 1.099×10−5 1.315×10−6 1.093×10−5 1.306×10−6

lnL 1665.10 1663.67

series, the estimate of the unconditional mean µ at the short end of the yield curve

is very imprecise. With a standard error of around 1% it is difficult to anchor an

average interest rate. The long-term yield θ is even more imprecise, partly because

of the same unit root problem, and partly because of the additional uncertainty

on the long-term convexity in the term structure. The implied parameters for the

price of risk are both insignificant. The imprecision in Λ0 and Λ1 can be reduced

by setting Λ1 = 0, which would also imply that κ̃ = κ. Since Λ1 = (κ̃− κ)/σ the

insignificance of Λ1 suggests that this restriction cannot be rejected.

Re-estimating under the restriction κ̃ = κ results in the same estimate for

mean-reversion for the Q dynamics. Therefore the time series mean-reversion κ

is much closer to the unit root than in the unrestricted case. Consistent with the

estimates of the unrestricted model, the likelihood ratio statistic shows that the

restriction cannot be rejected. A consequence of moving much closer to the unit

root under the time series measure P is that the unconditional means are much

harder to estimate and in fact almost unidentified. The ultimate yield θ becomes

negative with a much larger asymptotic standard error than in the unrestricted
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2 Implication TSM on Long-Term Discount Rates

model where κ is much larger.10 The restriction does not help in learning about

the shape of the yield curve at very long maturities.

The model error variance is so small that results cannot be affected by errors-

in-variables problems. Assuming the measurement error to be uncorrelated over

time, the measurement error in yt−h is of the order 1
2
s2
hη

2 ≈ 5 × 10−7, which is

negligible relative to its true variance b2iω
2 ≈ 10−3.

Statistically it is impossible to distinguish between the two sets of parameter

estimates. Implications of the parameters are, however, very different due to the

differences in the estimate of the ultimate yield. One element on which both

estimates agree is the convexity of the yield curve. The parameters κ̃ and σ2 are

both estimated with large precision and are independent of the estimates of the

unconditional means.

Our estimated cross-sectional mean-reversion κ̃ = 0.02 implies a convergence

of forward rates towards the ultimate forward rate θ that is much slower than the

convergence assumed in the Smith-Wilson methodology adopted by EIOPA, which

for most periods will be based on a convergence rate of 0.10.

2.6 Bayesian Analysis

Since it is hard to decide which parameters to use, and since the unconditional

mean parameters are also highly uncertain, we turn to a Bayesian analysis of the

model. This provides a way to account for the parameter uncertainty by computing

the extrapolation as a weighted average of different sets of parameters with weights

given by the posterior density of the parameters. The Bayesian analysis also allows

for informative priors, by which we can impose stationarity of the dynamics under

both P and Q and add a prior view on the unconditional mean of the interest rates

that we analyse.

2.6.1 Priors

We will use mildly informative priors on the long-term means of the interest rate

data and on the mean-reversion parameters under P and Q. We require all these

parameters to be non-negative. For the time series mean-reversion we use

10Standard errors reported in the table are from the Hessian of the log-likelihood function. Ro-
bust standard errors allowing for heteroscedasticity and non-normality do not make a difference
to the conclusions in this case.
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2.6 Bayesian Analysis

a truncated normal prior

p(α) ∼ TN(hµa, h
2ψ2

a) (2.26)

with µa = 0, ψa = 0.2, such that the truncation implies a prior mean and standard

deviation of E[α] = 0.16h and s [α] = 0.12h, respectively. With monthly data the

prior is centred around a first order autocorrelation of 0.987. The prior is centred

close to a unit root, but the relatively tight precision also ensures that the posterior

will be away from the unit unless the data are very informative on the dynamics.

To impose that the long-term means mi = m(τi) of the interest rates are

positive we also use a truncated normal. We assume independent priors for m1

and m2 that are both specified as

p(mi) ∼ TN
(
µm, h

2
m

)
(2.27)

with µm = −0.923 and h2
m = 0.2 implying E[mi] = 0.04 and s [mi] = 0.039. The

prior ensures that the unconditional means are positive at maturities τ1 and τ2,

but it does not guarantee that the unconditional mean is positive for all maturities.

Most problematic could be the ultimate yield θ, since it is extremely sensitive to

a near unit root in the risk-neutral process.11

For the covariance matrix Σ we assume a truncated inverted Wishart distri-

bution.

p
(
Σ−1

)
∼ TW(Ψ , ν) (2.28)

where

Ψ = 0.012

(
1 0.95

0.95 1

)
(2.29)

and the degrees of freedom parameter is set to ν = 3, which is slightly above

the minimum value of 2. The prior is truncated to the region that satisfies the

inequalities (2.23) and (2.24). The prior for κ̃ is implicit in the prior for Σ.

Even though the prior is almost non-informative for Σ, the prior for κ̃ is mildly

informative, since it only depends on the ratio S = σ11−σ22

σ21
. Accounting for the

truncation by the inequality constraints, the prior for κ̃ has a mean of 0.033 and

standard deviation of 0.049 (based on a numerical evaluation).

11Imposing θ > 0 introduces a highly non-linear dependence of m on Σ.
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2 Implication TSM on Long-Term Discount Rates

Since all priors are proper and have well-defined means and variances for the

reduced form parameters, the posterior moments for the reduced form parameters

also exist. The posterior is not available in closed form due to the truncation

and the non-linear parametrisation involving the product αm. Numerically the

posterior can be easily obtained through Gibbs sampling, since all conditional

posteriors are straightforward except for the truncation. When we sample from

the conditional posteriors we reject a draw if it is outside the admissible region.

In some cases the probability of accepting a draw can be extremely low. This

happens when we need to draw the unconditional means m = (m1 m2)′ at a

point where the mean-reversion parameter α is close to zero. In this case the

data are uninformative about the unconditional mean, meaning that we need to

draw m from a distribution that is approximately equal to the prior. Since this is

a truncated normal with a negative mean, the probability of obtaining a positive

number by drawing from a normal distribution becomes very small. For small α we

therefore use the exponential rejection sampling algorithm suggested by Geweke

(1991).

2.6.2 Posterior Densities

Results of the Bayesian analysis are reported in Table 2.2. Posterior moments are

based on 1 million draws12 from the MCMC sampler. See Appendix 2.D for the

relation between the simulated draws of α, m and Σ and the parameters κ̃, κ, µ̃,

µ, θ, Λ0, Λ1, σ2 and η2.

The posterior moments for κ and κ̃ are close to the maximum likelihood es-

timates. Due to the prior specification the posterior mean for the time series

mean-reversion is a bit closer to the unit root and also a bit more precise. Similar

to the ML estimates the mean-reversion under P is still substantially larger than

under Q. The risk parameter Λ1 provides a direct comparison on the equality of

the two parameters and, as for the ML estimates, the 95% credible interval for Λ1

contains zero.

Most of the differences with the ML results are in the unconditional means.

Although the prior imposes that the unconditional means of the 5- and 20-year

yields exist and are positive, this does not guarantee that the unconditional means

at other maturities are also positive. The ultimate yield θ is hard to identify from

12We checked the convergence based on the ACF, the CUSUM statistic and Geweke’s test.
The thinning procedure and the burn-in period do not play a role due the extreme choice of the
number of draws.
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2.6 Bayesian Analysis

Table 2.2: Posterior moments of parameters

Mean St. Dev. HPD95 lb HPD95 ub

κ̃ 0.0203 0.0096 1.647×10−3 0.0382
κ 0.1687 0.0915 7.534×10−7 0.3332
µ̃ 0.2017 1.2164 3.149×10−2 0.4101
µ 0.0139 0.0044 7.232×10−3 0.0212
θ -7.313 473.8 -0.4038 0.2106
Λ0 -0.0007 0.2388 -0.4957 0.4881
Λ1 -21.6018 13.5835 -47.0256 2.7775
σ2 4.850×10−5 8.395×10−6 3.301×10−5 6.520×10−5

ω2 0.0021 0.0119 4.9004×10−4 0.0039
η2 1.086×10−5 1.300×10−6 8.449×10−6 1.347×10−5

The table shows the posterior means, standard deviations and 95% highest
posterior density intervals for the parameters of the Vasicek term structure
model estimated on interest rates with maturities τ1 = 5 and τ2 = 20.
Results are based on one million draws from the Gibbs sampler for the pa-
rameters α, m and Σ, which are solved for the structural parameters in the table.

Figure 2.3: Conditional posterior draws of θ given κ̃

The figure shows a scatter plot of the draws θ(i) conditional on κ̃(i). The left-
hand panel shows all draws except the 1% smallest values of θ(i). The right-hand
panel shows the 1% smallest values of θ(i). Note the different scales for the two
panels.

the data. Its posterior mean is negative with a huge standard deviation that is

due to a few extremely negative outliers when κ̃ is close to zero. Figure 2.3 shows

a scatter plot of the posterior draws for θ conditional on κ̃. The left-side of the

figures zooms in on the 1% smallest draws for θ. All of these occur conditional

on very small values for κ̃ < 10−4. Given the large uncertainty on the ultimate

yield, it is doubtful if the posterior mean of θ exists with our prior specification.

A clear sign that the posterior mean may not exist is the fact the average of the

31



2 Implication TSM on Long-Term Discount Rates

simulated θ(i) is far below the lower bound of the 95% HPD. The posterior density

is extremely skewed with a very long left tail.13

In contrast to the ultimate yield, the posterior on the unconditional variance

under Q is well-behaved. It does have a fat right tail, but the posterior simula-

tion does not produce any of the severe outliers that we encountered for θ. The

unconditional variance depends on κ̃−1, whereas the ultimate yield depends on

κ̃−2.

2.7 Results

For the extrapolation we set the reference maturity as τ∗ = 20 years. This is the

longest maturity in our model and is also the choice of the “last liquid point” made

by EIOPA. Below we discuss our Vasicek extrapolation results and the different

components that determine the extrapolation, i.e. the convergence speed, the

ultimate yield and the convexity. Subsequently we compare the results to the

available market data and we compare them with the Smith-Wilson methodology

adopted by EIOPA and an extrapolation based on the Nelson-Siegel model.

2.7.1 Vasicek Extrapolation

The extrapolation formula (2.13) consists of three terms. The ratio b(s)/b∗ in the

first term defines the dependence of the extrapolated yield on the last liquid yield

y∗t and is solely a function of κ̃. Figure 2.4 shows the posterior of this ratio as a

function of s. At s = τ∗ the ratio is equal to one by construction and therefore

not subject to any uncertainty. The posterior mean of b(s)/b∗ is decreasing in s.

The uncertainty in the ratio increases with s, however. The distribution is right

skewed for large s, meaning that there is considerable probability mass for b(s)/b∗

remaining very close to one at long maturities.

The second term is the effect of the ultimate yield. It is the product of θ and

the weight of the ultimate yield. The parameter θ is very poorly determined by

the data, but the large negative outliers for θ occur when κ̃ is very close to zero.

For small κ̃ the weight (1− b(s)/b∗) will also go to zero, so that the overall effect

is unclear. Figure 2.5 shows the posterior mean of the second term. Despite the

13The parameter κ̃ depends on the error covariance matrix Σ, which follows a Wishart dis-
tribution. Since we have sufficiently many time series observations, low order moments of Σ
clearly exist. But κ̃ is an implicit non-linear function of Σ and therefore its properties cannot
be determined analytically. What matters for the existence of the mean of θ are the properties
of the ratio σ2/κ̃2, where σ2 and κ̃ are dependent functions of the same matrix Σ.
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2.7 Results

Figure 2.4: Convergence speed

The figure shows the posterior mean of b(s)/b∗ for different values of s > τ∗ = 20.
The dashed lines define the 95% HPD interval.
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Figure 2.5: Extrapolation towards the ultimate yield

The left panel shows the posterior mean of (1 − b(s)/b∗)θ for s > τ∗ = 20. The
right panel adds the 95% highest posterior density region.
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outliers in θ the product (1 − b(s)/b∗)θ has a very small posterior mean. The

total effect of θ on yields up to maturity of 60 years is less than 10 basis points

on the overall extrapolated yields yt(s). The effect becomes negative for longer

maturities. Combining the results in Figures 2.4 and Figure 2.5 implies that the

weighted average of the reference yield y∗t and the ultimate yield will thus generally

be below y∗t .

The right-hand panel in Figure 2.5 adds the 95% HPD bounds to the posterior

mean. The scaling is very different. Because the bounds are wide, the posterior

mean looks like a flat line around zero. Still the range of uncertainty in

(1−b(s)/b∗)θ is much smaller than the 95% HPD region for θ itself (see Table 2.2).
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2 Implication TSM on Long-Term Discount Rates

Figure 2.6: Convexity

The figure shows the posterior mean and 95% HPD region for the convexity
term C∗(s) in (2.14).
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The interval is also much more symmetric, showing once more that θ and κ̃ are

highly correlated in the tails.

The convexity term C∗(τ) adds positively to the extrapolated yield. Figure 2.6

shows the posterior mean of C∗(s) for τ∗ = 20. Therefore, convexity at τ∗ = 20

is zero by construction and positive for all s > τ∗. The posterior mean increases

over the entire range to the maturity of 100 years (even though it must decrease

to zero by construction as s → ∞). At the 60 years maturity it will contribute

about 2% to the yield curve on top of the weighted average of y∗t and θ; at 100

years the effect increases to 4%. As with the ultimate yield, the uncertainty in

this term is large. At the lower end of the 95% HPD region the convexity effect

is negligible. Small convexity effects coincide with relatively large values of κ̃. In

these cases the ultimate yield will contribute positively to the extrapolation.

Taking all terms in (2.13) together, Figure 2.7 shows the posterior mean and

the 95% HPD interval for the extrapolated yield curve conditional on a 20-years

rate equal to y∗t = 4%. The posterior mean shows a relatively flat yield curve

at 4%. In the posterior mean the downward effect of the ultimate yield and the

upward convexity effect balance each other. For small κ̃ we will often have a very

negative θ pushing long-term yields downward, and at the same time a very large

positive C∗(s) pulling yields upwards. For large κ̃ the opposite happens: negligible

convexity and a large θ with substantial weight.

The error bounds show the uncertainty in the extrapolation. The bounds

are wide for practical purposes: at 60 years maturity the 95% region covers an
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2.7 Results

Figure 2.7: Posterior extrapolation

The left panel shows the posterior mean of yt(s) for s > τ∗ = 20 given y∗t = 4%.
The dashed lines define the 95% highest posterior density region. The right panel
shows the posterior mean of the extrapolated term structure for different last
liquid points y∗t , being 2% (dashed), 4% (solid) and 6% (dashed) respectively.
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interval from 3.5% to 8%. The uncertainty is the joint effect of the uncertainty in

all parameters that enter the extrapolation formula. The basic uncertainty relates

to κ̃, which has strong effects on both θ and ω2 and the weights of these terms.

The extrapolation is similar for different values of y∗t . The curves in Figure 2.7

show the posterior means for three different values of y∗t . The extrapolated curves

are almost parallel consistent with a very small convergence rate. Even at the 100

year maturity the curves are still far apart. All curves are slowly upward sloping

because of the strong convexity effect (relative to θ).

2.7.2 Extrapolation Errors

Our methodology generally leads to discount yields that are above the observed

yields implied by the swap rates. The distance between the observed and extrap-

olated yield increases with maturity. The extrapolated yield curve is generally

upward sloping, whereas the observed yield curve is mostly flat for maturities

larger than 20 years. From a time series perspective the errors are positive but

small until mid 2008; thereafter they increase quickly to come down towards the

end of the sample. Figure 2.8 shows the difference for the 30 years maturity.

The most likely explanation for the positive extrapolation errors is market liq-

uidity and unbalanced demand and supply at long maturities. Pension funds and

insurance companies have a strong demand for long-dated fixed income instru-

ments, but supply for these maturities is limited. As a result yields are very low,

at a level below what one would obtain from a no-arbitrage term structure model.
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2 Implication TSM on Long-Term Discount Rates

Figure 2.8: Errors

The figure shows time series of the difference between extrapolated and observed
yield curves at the 30 years maturity. Extrapolation is based on the Vasicek
model calibrated to the yield at 20-years maturity.
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2.7.3 Alternative Extrapolations

For pension funds and insurance companies recent developments about pricing of

long-term obligations is under debate. In some countries the UFR is applied by

central banks as explained in Solvency II. We apply the Smith-Wilson smoothing

technique using Thomas and Maré (2007) and implementation notes from Norway

(2010)14 to the swap curve input data with a UFR of 4.2%, a last liquid point of

20 years and the aim of reaching the UFR in 60 years from now by approaching

it by a deviation of at most 3 basis points.

To implement the Nelson-Siegel model we run a cross-sectional regression for

each month to estimate the factors xit in the model

yt(τ) = x1t + x2t
1− e−λτ

λτ
+ x3t

(
1− e−λτ

λτ
− e−λτ

)
+ εt(τ) (2.30)

The model is estimated using data with maturities τ = 1, . . . , 20 years. We esti-

mate the convergence parameter λ once as a constant for all months in the sample.

The value λ = 0.51 minimizes the overall sum of squared errors over all maturities

and months. Conditional on the estimated factors x̂it we construct the Nelson-

14Financial Supervisory Authority of Norway: www.finanstilsynet.no/Global/Forsikring

%20og%20pensjon/Skadeforsikring/Tilsyn%20og%20overv%C3%A5king/Rapportering/A

Technical Note on the Smith-Wilson Method 100701.pdf.
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Siegel forward curve as

ft(s) = x̂1t + x̂2te
−λs + x̂3tλse

−λs (2.31)

for maturities s > τ∗ and use these to extrapolate the yield curve using (2.12).

Figure 2.9 compares the different extrapolations for September 2013, the last

month in our sample. Both the Smith-Wilson and Nelson-Siegel curve provide

a very smooth extrapolation for maturities beyond 20 years. The Nelson-Siegel

curve does not move far from the last observed yield, since the effect of the second

and third factors are already small at these long maturities. The Smith-Wilson

curve is slightly higher in order to converge to the level of 4.2%, which is above

the estimated value of the Nelson-Siegel level factor for this month. The two

Vasicek extrapolations are above the two alternatives. As discussed before, this is

related to the convexity terms in the extrapolation. The very high level of the ML

extrapolation is also due to the large, but inaccurate, estimate for the ultimate

yield θ. The Vasicek extrapolation shows a kink at the last liquid point, because

it does not take into account the local curvature at this point. It just calibrates

the single factor to the level of the 20-year rate for continuity. The kink can be

smoothed away by using the alternative calibration of the factor by the forward

rate at τ∗ instead of the yield y∗t . We show this in the next section.

Figure 2.10 adds 95% HPD bounds to the graph, which puts the differences in

perspective. Scaling on this graph is different, because the uncertainty around the

extrapolation is large. Both two alternative extrapolations as well as the observed

data are within the bounds.
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2 Implication TSM on Long-Term Discount Rates

Figure 2.9: Alternative extrapolations

The figure shows extrapolated yield curves for September 2013 using alternative
extrapolation methods. The solid blue line shows the actual discount rates ex-
tracted from the swap curve. ML refers to extrapolation based on the maximum
likelihood parameter estimated in the unrestricted model in Table 2.1.
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Figure 2.10: Extrapolation uncertainty

The dashed lines are the 95% HPD upper and lower bounds from the Bayesian
extrapolation.
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2.8 Robustness

We performed several robustness checks with respect to the Vasicek extrapolations.

One set of variations considers the maturities on which the model parameters are

estimated. Secondly, it appears that the extrapolation produces a kink at the 20

years maturity. One way to get around the discontinuity in the slope is by using

forward rates in the extrapolation. For a third robustness check we evaluate if

the same features, a strong convexity and extrapolations above the observed yield

curve, are present in US swap rate data.

2.8.1 Maturities

For the basic setting we used maturities of 5 and 20 years to estimate the para-

meters. The 5-year maturity could be too low and could be too much affected

by other less persistent factors. For this reason we also consider the combination

(τ1, τ2) = (10, 20) years. On the other hand, since most term structure models

are estimated on maturities up to 10 years we also estimate the model on the pair

(τ1, τ2) = (5, 10) years. In both cases the distance between the maturities is less

than in the basic model. As a result it turns out that the mean-reversion parameter

κ̃ is estimated with less precision and has much more probability mass around the

unit root. This further emphasises the problem of estimating the ultimate forward

rate θ. Figure 2.11 displays the resulting extrapolations. For both alternative

pairs of (τ1, τ2) the convexity effect is more important resulting in extrapolations

above that of the baseline model. The posterior moments of the parameters for

several other maturities are attached in Appendix 2.F.

Figure 2.11: Extrapolation based on alternative maturities

The figure shows yield curve extrapolations from alternative parameter es-
timates. The parameters are estimated for alternative pairs of maturities (τ1, τ2).
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2.8.2 Smoothness

From the figures it appears that the extrapolation produces a kink at the 20

years maturity. The slope of the yield curve increases abruptly at the start of the

extrapolation. The curve itself is continuous, but the slope is not. This is not an

artefact of the yield curve of the particular date of September 2013, but this holds

more generally. The observed yield curve is already almost flat at τ∗ = 20 years,

but the extrapolation implies a steep upward slope.

One way to get around the discontinuity in the slope is by using forward rates in

the extrapolation. Let f∗t be the observed instantaneous forward rate at maturity

τ∗. We can recover the unknown state variables xt using the Vasicek relation for

the forward rate

ft(τ) = θ + e−κ̃τ (xt − θ) + e−κ̃τ
1− e−κ̃τ

κ̃
ω2 (2.32)

In Appendix 2.E we derive the yield extrapolation

yt(s) = θ +
τ∗

s
(y∗t − θ) + (1− τ∗

s
)b(s− τ∗)(f∗t − θ) + c∗(s) (2.33)

where

c∗(s) = 1
2

(
e−κ̃s − e−κ̃τ

∗

κ̃

)2

ω2 1

s
(2.34)

As in the original yield extrapolation the convexity term c∗(s) is positive for all

s > τ∗ and reaches zero at s = τ∗ and as s → ∞. The extrapolation will be

much smoother than the original extrapolation, since it takes both the local level

and slope to start the extrapolation. This will avoid the kink at τ∗. Apparently

forward rates at τ∗ are on average lower than they should be according to the

Vasicek model. It is also evidence against a single factor model.

The instantaneous forward rate f∗t is not directly observable from the yield

curve data. Instead we can use the one-year forward

f∗t ≡ ft(τ∗ − 1, τ∗) = τ∗yt(τ
∗)− (τ∗ − 1)yt(τ

∗ − 1) (2.35)

as a finite difference approximation. Figure 2.12 shows the separate components of

the smooth extrapolation with the highest posterior densities. Figure 2.13 shows

the extrapolation calibrated with the forward rate and the yield.
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Figure 2.12: Smooth components

The upper left panel shows the convexity c∗(s), the middle left panel shows the theta

term θ
(

1 − τ∗

s
− (1 − τ∗

s
)b(s− τ∗)

)
, the lower left panel shows the forward term

(1 − τ∗

s
)b(s− τ∗)f∗

t and the right panels add the 95% highest posterior densities.
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2 Implication TSM on Long-Term Discount Rates

Figure 2.13: Smooth posterior extrapolation

The figure shows the extrapolated yield curve for September 2013 based on the calibration
with the forward and the yield. “Yield” refers to extrapolation based on the observed
20-year discount yield; “Forward” uses the 20-year forward rate for the extrapolation.
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2.8.3 Analysis United States

In this subsection we apply the Bayesian model to US swap rates. So far we have

shown all resulting components for the Euro swap rates. Our yield curve data

consists of a monthly panel of discount rates from the website of the FED and

LIBOR rates from Datastream. These yield curve data are constructed from US

swap rates with maturities ranging from 1 to 30 years. The sample period is from

April 1998 to May 2014 resulting in 193 data-points per maturity.

Figure 2.14 shows the overview of the US statistics. In general there are no

remarkable differences compared with the EU analysis, though the scatterplot of

the first differences shows a higher R2 than for the European data.
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Figure 2.14: Data analysis US

In the upper left panel the time series data. The upper right panel is a scatterplot of
the first differences. In the lower left panel the solid line shows the average yield curve
over the period from April 1998 to May 2014. The dotted line and the line with triangles
show the yield curves with the minimum and maximum rate at the 20 years maturity.
The lower right panel shows the volatility of yield level, yield changes and the one month
prediction errors from an AR(1) model. The horizontal axis in both panels is the maturity
in years. The vertical axis unit is percent per year. The right vertical axis is for levels;
the left vertical axis is for changes and prediction errors.
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Also here we estimate the parameters by conditional maximum likelihood first.

Table 2.3 shows the unrestricted model in the first two columns and the results of

re-estimating under the restriction that Λ1 = 0. The mean-reversion under both

measures is close to the point estimate from the European data, however note that

the standard deviation under Q is a factor 10 smaller. The parameters are to be

estimated with more precision due to the fact that a one-factor model is a better

model for the US market than for the EU market. The smaller relative size of the

error term η2 to the standard deviation σ2 reveals this as well. As a consequence

κ̃ can be better estimated and is therefore going to the unit root with a smaller

probability, which explains θ to be much less extreme.
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Table 2.3: ML parameter estimates US

The table reports conditional Maximum Likelihood estimates for the bivariate
model using interest rates with maturities of 5 and 20 years. The asymptotic
standard errors (“se”) are from the Hessian of the log-likelihood function. The
columns on the right side of the table are estimated under the restriction κ̃ = κ.
All parameters are reported in their natural units with time measured in years.
The last line is the value of the log-likelihood function.

Estimate se Estimate se

κ̃ 0.0213 6.084×10−3 0.0217 6.139×10−3

κ 0.2745 0.1301 = κ̃
µ̃ 1.182×10−3 3.71×10−3 1.761×10−3 3.704×10−3

µ 2.45×10−4 1.12×10−4 -8.61×10−4 1.326×10−3

θ 1.171×10−3 3.68×10−4 1.750×10−3 3.703×10−3

Λ0 0.4170 0.5374 -0.56935 0.9315
Λ1 -2514.61 1279.43 0
σ2 1.01×10−4 1.3×10−5 1.00×10−4 1.3×10−5

ω2 2.387×10−3 5.89×10−4 2.303×10−3 5.61×10−4

η2 1.2×10−5 1.×10−6 1.2×10−5 1.×10−6

lnL 3978.84 3976.90

The Bayesian analysis on the US data is reported in Table 2.4. Contrary to

the European case where θ was not well-behaved, here it is. Although the 95%

HPD range is still very wide, it is still economically sound. Moreover, we can see

that the distribution has a fat right tail. Hence although the standard deviation

of κ̃ reduced by a factor 2 compared to a factor 10 in the ML setting, the impact

is still evident. The spread of κ̃ going to the unit root and therefore θ going to

infinity is mitigated by the match of the one-factor model (Figure 2.15).

Figure 2.15: Conditional posterior draws of θ given κ̃ for US

The figure shows a scatter plot of the draws θ(i) conditional on κ̃(i). The vertical
axis is in natural units: −1 therefore means -100%.
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Table 2.4: Posterior moments of parameters US

Mean St. Dev. HPD95 lb HPD95 ub

κ̃ 0.0278 0.0050 1.795×10−2 0.0377
κ 0.1267 0.0758 6.012×10−6 0.2656
µ̃ 0.1076 0.0399 4.611×10−2 0.1873
µ 0.0148 0.0040 8.660×10−3 0.0208
θ 4.052×10−2 3.921×10−2 -0.0246 0.1229
Λ0 -0.1009 0.1537 -0.4317 0.1847
Λ1 -10.2142 7.8614 -24.9190 2.9799
σ2 9.490×10−5 1.134×10−5 7.374×10−5 1.177×10−4

ω2 1.751×10−3 3.1757×10−4 1.1971×10−3 2.3807×10−3

η2 6.760×10−6 6.924×10−7 5.440×10−6 8.124×10−6

The table shows the posterior means, standard deviations and 95% highest
posterior density intervals for the parameters of the Vasicek term structure
model estimated on interest rates with maturities τ1 = 5 and τ2 = 20.
Results are based on one million draws from the Gibbs sampler for the pa-
rameters α, m and Σ, which are solved for the structural parameters in the table.

The separate components of the extrapolation are displayed in Figure 2.16.

Remarkable differences are the average estimate of the posterior mean that is

positive and upward sloping whereas in the EU market this component was almost

negligible in its size. This is due to the fact that this term goes less often to zero

since also κ̃ does so less. On the other hand the convexity term is also smaller.

Hence in the EU setting the larger negative posterior mean plus the larger positive

convexity appear to result in the same size uncertainty in the US setting. Therefore

the ultimate extrapolations appear to be robust.

The extrapolation is shown in Figure 2.17 and the 95% HPD is added to

Figure 2.18. Beyond the last liquid point of 20 years, we only observe swap rates

until 30 years in the American data set. Similar as in the Euro market are the

extrapolations overestimating the data.
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Figure 2.16: US components

In the upper left panel the solid line shows the extrapolation with a last liquid yield of
4% and the 95% HPD dashed. The upper right panel is the extrapolation with a last
liquid yield of 2%, 4% and 6%. The middle left panel shows the convexity and the HPD
and on the right the speed of convergence is shown (b(s)/b∗). The lower left panel shows
the posterior mean of (1− b(s)/b∗)θ for s > τ∗ = 20, the lower right panel adds the 95%
highest posterior density region.
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Figure 2.17: Alternative extrapolations US

Observed rates from May 2014, and the described alternative methods.
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Figure 2.18: Extrapolation uncertainty US

The figure shows extrapolated yield curves for May 2014. The solid blue line
shows the actual discount rates extracted from the swap curve. The dashed lines
are the 95% HPD upper and lower bounds from the Bayesian extrapolation.
The purple triangles is the Smith-Wilson method applied to the rates from May
2014, the green squares is the Nelson-Siegel method applied to the rates from
May 2014 and the yellow and red lines are the Vasicek method based on the
Bayesian method and maximum likelihood estimation respectively.
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2.9 Conclusion

We extrapolated the yield curve using the Vasicek model. The Vasicek model

produces extrapolated yield curves that are in most cases slightly upward sloping

at very long maturities. The main difference with alternative extrapolation tech-

niques is the convexity effect in very long-term yields. The convexity effect is an

important element in no-arbitrage term structure models and can be a large com-

ponent due to the slow mean-reversion of the dominant interest rate level factor

under the risk-neutral measure.

The extrapolation based on a no-arbitrage term structure model is always above

the observed yield curve. This both underscores the importance of using a model

based yield curve for valuations of very long-dated maturities, but also raises the

issue of why observations at the very long end are so low and why they do not fit

a standard term structure model.

Moreover, by use of the Bayesian methodology we are able to construct the

credible interval to quantify the uncertainty of the extrapolations. Note that

the combination of an affine term structure model with the acknowledgement of

uncertainty could be applied to different interest rate models as well, such as the

Cox-Ingersoll-Ross model. The range of the 95% interval of the extrapolations

includes several alternatives used in the industry. Hence, the appropriateness to

rely on a single point estimate should be questioned based on this quantification

of uncertainty. Therefore in the next chapter we investigate the optimal hedging

strategy that minimises the mismatch between the assets and the liabilities.
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2.A Derivation of Yields

The Vasicek process of the factor (short rate15) under P is

dxt = κ(µ− xt)dt+ σdWt (2.36)

By Itô’s Lemma, the explicit expression under Q is

xt+s = xte
−κ̃s + µ̃(1− e−κ̃s) + σ

∫ t+s

t

e−κ̃(t+s−u)dWu (2.37)

The integral is∫ τ

0

xt+sds = (xt − µ̃)
(1− e−κ̃τ )

κ̃
+ µ̃τ + (2.38)∫ τ

0

(∫ t+s

t

σe−κ̃(t+s−u)dWu

)
ds

Changing the order of integrals gives∫ τ

0

(∫ t+s

t

σe−κ̃(t+s−u)dWu

)
ds =

∫ t+τ

t

(
−σ
κ

(1− e−κ̃(t+τ−u))
)
dWu

Let

M = E
[ ∫ τ

0

xt+sds

∣∣∣∣xt] (2.39)

= (xt − µ̃)
(1− e−κ̃τ )

κ̃
+ µ̃τ

and let

V = var

[ ∫ τ

0

xt+sds

∣∣∣∣xt] (2.40)

=
σ2

κ̃2

(
τ − 1− e−κ̃τ

κ̃
− (1− e−κ̃τ )

2

2κ̃

)

If X ∼ N(M,V ), then E[eX ] = eM+ 1
2V . Therefore

E[e−
∫ τ
0
xsds] = e−M+ 1

2V = e−τy(τ) (2.41)

15For the one-factor model, the short rate rt coincides with the factor xt.
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and

y(τ) = (xt − µ̃)
(1− e−κ̃τ )

κ̃τ
+ µ̃− σ2

2κ̃2

(
1− 1− e−κ̃τ

κ̃τ
−

(1− e−κ̃τ )
2

2κ̃τ

)
Then it follows that

y(τ) = b(τ)

[
xt − θ

]
+ θ +

1

2
τω2b(τ)

2

y(s) = b(s)

[
xt − θ

]
+ θ +

1

2
sω2b(s)

2

y(s) =
b(s)

b(τ)

[
y(τ)− θ

]
+ θ +

1

2
ω2b(s)

(
sb(s)− τb(τ)

)
(2.42)

where

b(τ) =
1− e−κ̃τ

κ̃τ
(2.43)

θ = µ̃− σ2

2κ̃2
(2.44)

ω2 =
σ2

2κ̃
(2.45)

2.B Affine Relation Between P and Q

Under the assumption that two short rate models exist under two different proba-

bility measures, risk-neutral Q and risky P, the relation between the parameters of

the different measures can be derived by use of a stochastic discount factor (SDF).

Let the SDF be

dΛt
Λt

= −xtdt− λtdWt (2.46)

where

λt = Λ0 + Λ1xt (2.47)

Since under the risk-neutral measure λ = 0 we can derive the relation between the

two probability measures. The log of the price is affine with respect to the short

50



2.C Admissability Conditions for Σ

rate x. The price at t (Cochrane (2001)) is

p(τ, t, r) = −A(τ)−B(τ)xt (2.48)

where T = t+ τ is the maturity date of the bond and τ is the remaining time to

maturity. Thus the (antilog) of the price (Duffie and Kan (1996)) is

P (τ, t, xt) = exp (−A(τ)−B(τ)xt) (2.49)

By Itô’s Lemma

dP (τ, t, xt) = −B(τ)Ptdxt +

(
∂A(τ)

∂t
+
∂B(τ)

∂t
xt

)
Ptdt+

1

2
B2(τ)σ2Ptdt

The Fundamental Pricing Equation states

Et
[
dPt
Pt

]
− xtdt = −E

[
dPt
Pt

dΛt
Λt

]
(2.50)

Selecting only those term excluding xt, leads to

∂A(τ)

∂t
= B(τ) [κµ− σΛ0]− 1

2
B2(τ)σ2 (2.51)

And the terms including xt

∂B(τ)

∂t
= 1−B(τ) [σΛ1 + κ] (2.52)

For completeness, the above formulas are all in terms of probability measure P.

The derivatives of component A and B do not depend on the probability measure.

Since under the risk-neutral measure λt = 0, we put the terms in brackets equal

to κ̃µ̃ and κ̃ respectively. Hence, we obtain the relation

κ̃ = κ+ σΛ1 (2.53)

µ̃κ̃ = µκ− σΛ0

2.C Admissability Conditions for Σ

The bivariate restricted VAR has error covariance matrix

Σ =

(
σ11 σ21

σ21 σ22

)
= s2

h

(
σ2b21 + η2 σ2b1b2

σ2b1b2 σ2b22 + η2

)
(2.54)
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Assuming τ1 < τ2 we impose σ11 > σ22 to ensure b1 > b2. Similarly, since b1 and

b2 are both positive, we also impose σ21 > 0. To solve for κ̃ we construct

S ≡ σ11 − σ22

σ21
=
b21 − b22
b1b2

(2.55)

where the scalar S is a function of the elements of Σ and where the last expression

only depends on κ̃. The conditions on Σ imply that S > 0. The condition can be

rewritten as

b2
b1

= 1
2

(√
S2 + 4 − S

)
(2.56)

Since in our application τ2 = 4τ1, the left-hand side can be rewritten as

b2
b1

= 1
4

(
1 + e−κ̃τ1

) (
1 + e−2κ̃τ1

)
(2.57)

For positive κ̃ this is a monotone decreasing function in κ̃, and hence the equation

has a unique solution for κ̃, if it exists. For S > 0 the right-hand side varies

between 0 and 1, meaning that b2 < b1 as required by positive mean-reversion

κ̃ > 0. Since the left-hand side has a lower bound of 1
4
, we must also restrict the

right-hand side to be above 1
4
, which implies the restriction S < 15

4 . This upper

bound is a third admissibility condition on Σ.
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2.D Covariance Decomposition

The relation between the draws of the MCMC sampler and the parameters of the

extrapolation are displayed in Table 2.5.

Table 2.5: Relation parameters

Relation

κ̃ (1−e−κ̃τ1 )τ2
(1−e−κ̃τ2 )τ1

− (1−e−κ̃τ2 )τ1
(1−e−κ̃τ1 )τ2

=
σ(11)−σ(22)

σ(21)

κ − ln(1−α)
h

µ̃ θ + σ2

2κ̃2

µ (1−b(τ2))m(τ1)−(1−b(τ1))m(τ2)
b(τ1)−b(τ2) − 1

2ω
2 τ1b(τ1)2(1−b(τ2))−τ2b(τ2)2(1−b(τ1))

b(τ1)−b(τ2)

θ b(τ2)m(τ1)−b(τ1)m(τ2)
b(τ2)−b(τ1) − 1

2ω
2b(τ1)b(τ2) τ1b(τ1)−τ2b(τ2)

b(τ2)−b(τ1)

Λ0
µκ−µ̃κ̃
σ

Λ1
κ̃−κ
σ

σ2 σ(21)

b(τ1)b(τ2)

η2 σ(11) − σ2b(τ1)2, σ(22) − σ2b(τ2)2

2.E Forward Rate Extrapolation

Let f∗t be the observed instantaneous forward rate at maturity τ∗. We can recover

the unknown state variables xt using the Vasicek relation for the forward rate

ft(τ) = θ + e−κ̃τ (xt − θ) + e−κ̃τ
1− e−κ̃τ

κ̃
ω2 (2.58)

Solving for the state variable xt at τ = τ∗

xt − θ = eκ̃τ
∗
(f∗t − θ)−

1− e−κ̃τ
∗

κ̃
ω2 (2.59)

and the extrapolated forward rates

ft(s) = θ + e−κ̃(s−τ∗)(f∗t − θ) +
e−κ̃(s+τ∗) − e−2κ̃s

κ̃
ω2 (2.60)
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For the extrapolation we use the relation

syt(s) = τ∗y∗t +

∫ s

τ∗
ft(u)du (2.61)

Integrating the different terms in (2.60) gives∫ s

τ∗
e−κ̃(u−τ∗)du =

1− e−κ̃(s−τ∗)

κ̃
(2.62)

1

κ̃

∫ s

τ∗
e−κ̃(u+τ∗)du =

e−2κ̃τ∗ − e−κ̃(s+τ∗)

κ̃2
(2.63)

1

κ̃

∫ s

τ∗
e−2κ̃udu =

e−2κ̃τ∗ − e−2κ̃s

2κ̃2
(2.64)

Subtracting (2.64) from (2.63) leads to the convexity term

c∗(s) = 1
2

(
e−κ̃s − e−κ̃τ

∗

κ̃

)2

ω2 1

s
(2.65)

Substituting these results back in (2.60) provides the cumulative forward rate

extrapolation∫ s

τ∗
ft(u)du = (s− τ∗)θ +

1− e−κ̃(s−τ∗)

κ̃
(f∗t − θ) + sc∗(s) (2.66)

and the yield extrapolation

yt(s) = θ +
τ∗

s
(y∗t − θ) + (1− τ∗

s
)b(s− τ∗)(f∗t − θ) + c∗(s) (2.67)
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2.F Sensitivity

As a sensitivity analysis we use different maturities as input, in Table 2.6 for

European data and in Table 2.7 for data from the United States. The first two

subtables in Table 2.7 show the results for different priors on m.

Table 2.6: EU sensitivity

Mean St. Dev. HPD95 lb HPD95 ub

κ̃ 0.0060 0.0044 3.361×10−8 0.0143
κ 0.0940 0.0710 2.994×10−8 0.2304
µ̃ 52.0148 4.2063×104 -0.1615 7.1668
µ 0.0031 0.0090 -0.01308 0.0130
θ -1.123×105 4.489×107 -75.1360 0.8137
Λ0 -0.4715 0.3877 -1.0647 0.0343
Λ1 -13.2024 10.6898 -34.1862 1.4707
σ2 4.527×10−5 6.373×10−6 3.368×10−5 5.812×10−5

η2 2.839×10−6 3.413×10−7 2.210×10−6 3.528×10−6

The table shows the posterior means, standard deviations and 95% highest pos-
terior density intervals for the parameters of the Vasicek term structure model
based on European swap rates with maturities τ1 = 10 and τ2 = 20.

Mean St. Dev. HPD95 lb HPD95 ub

κ̃ 0.0461 0.0168 0.01356 0.0792
κ 0.1417 0.0936 5.833×10−7 0.3121
µ̃ 0.1734 0.7167 0.02985 0.3812
µ 0.0052 0.0068 -9.516×10−3 0.0133
θ -0.1265 33.21 0.0190 0.3382
Λ0 -0.6815 0.4866 -1.6798 -0.0036
Λ1 -12.2359 12.1459 -35.4197 7.1246
σ2 6.346×10−5 1.084×10−5 4.366×10−5 8.523×10−5

η2 4.151×10−6 4.991×10−7 3.225×10−6 5.152×10−6

With maturities τ1 = 5 and τ2 = 10.
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Mean St. Dev. HPD95 lb HPD95 ub

κ̃ 0.0109 6.10×10−3 6.676×10−6 0.0219
κ 0.1721 0.0912 3.715×10−5 0.3343
µ̃ 0.3651 2.7169 0.03733 0.7732
µ 0.0155 4.80×10−3 7.789×10−3 0.0242
θ -71.33 362.0 -4.6994 0.1472
Λ0 0.1606 0.257 -0.2974 0.6953
Λ1 -24.6762 14.1726 -50.8244 1.2185
σ2 4.367×10−5 7.469×10−6 2.994×10−5 5.862×10−5

η2 1.359×10−5 1.625×10−6 1.056×10−5 1.683×10−5

With maturities τ1 = 5 and τ2 = 30.

Mean St. Dev. HPD95 lb HPD95 ub

κ̃ 0.0033 2.70×10−3 9.537×10−7 0.0086
κ 0.1070 0.0712 1.027×10−7 0.239
µ̃ 4.2149 49.6704 -0.07197 9.0853
µ 0.0104 5.60×10−3 2.481×10−3 0.0212
θ -1.025×104 4.270×105 -351.4672 0.2753
Λ0 -0.1587 0.2564 -0.5534 0.2115
Λ1 -16.1018 11.1135 -37.0919 0.7036
σ2 4.211×10−5 5.877×10−6 3.125×10−5 5.388×10−5

η2 5.802×10−6 6.972×10−7 4.510×10−6 7.204×10−6

With maturities τ1 = 10 and τ2 = 30.

Mean St. Dev. HPD95 lb HPD95 ub

κ̃ 0.0023 2.00×10−3 9.537×10−7 0.0063
κ 0.0339 0.0462 6.757×10−8 0.1184
µ̃ 14.6400 145.1763 -1.137 34.7334
µ -0.0194 0.0210 -0.05025 0.0305
θ -1.931×104 6.173×105 -1.0934×103 1.0269
Λ0 -0.7075 0.4595 -1.3337 0.2315
Λ1 -4.6955 6.8701 -17.4774 1.0469
σ2 4.601×10−5 6.102×10−6 3.463×10−5 5.809×10−5

η2 1.482×10−6 1.787×10−7 1.147×10−6 1.838×10−6

With maturities τ1 = 20 and τ2 = 30.
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Table 2.7: US sensitivity

Mean St. Dev. HPD95 lb HPD95 ub

κ̃ 0.0277 5.00×10−3 0.01784 0.0376
κ 0.1100 0.0636 2.346×10−7 0.2253
µ̃ 0.0989 0.0285 0.05025 0.1549
µ 0.0089 2.80×10−3 4.286×10−3 0.013
θ 0.03133 0.02775 -0.0181 0.0842
Λ0 -0.1743 0.0861 -0.3500 -0.0158
Λ1 -8.4931 6.6128 -20.7558 2.9676
σ2 9.495×10−5 1.136×10−5 7.387×10−5 1.18×10−4

η2 6.760×10−6 6.923×10−7 5.459×10−6 8.14×10−6

The table shows the posterior means, standard deviations and 95% highest pos-
terior density intervals for the parameters of the Vasicek term structure model
based on American swap rates with maturities τ1 = 5 and τ2 = 20 and the prior
µm = [−1.5;−1.5] which implies that the prior conditional expectation equals
0.0222.

Mean St. Dev. HPD95 lb HPD95 ub

κ̃ 0.0278 5.00×10−3 0.01807 0.0378
κ 0.1337 0.0907 3.114×10−7 0.3085
µ̃ 0.1212 0.0576 0.04078 0.2377
µ 0.0240 8.20×10−3 9.911×10−3 0.0375
θ 0.05404 0.05655 -0.0320 0.1767
Λ0 0.0025 0.2870 -0.6201 0.5782
Λ1 -10.9381 9.4029 -29.3444 3.1095
σ2 9.496×10−5 1.135×10−5 7.371×10−5 1.178×10−4

η2 6.764×10−6 6.930×10−7 5.448×10−6 8.137×10−6

With maturities τ1 = 5 and τ2 = 20 and prior µm = [−0.5;−0.5], the conditional
expectation equals 0.064549.
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Mean St. Dev. HPD95 lb HPD95 ub

κ̃ 0.0888 0.0201 0.05028 0.1289
κ 0.1371 0.0816 1.944×10−6 0.2852
µ̃ 0.1032 0.0439 0.03880 0.1824
µ 0.0038 7.80×10−3 -0.01262 0.0145
θ 0.09003 0.6391 0.0290 0.1664
Λ0 -0.6355 0.2973 -1.2490 -0.183
Λ1 -3.7753 6.4767 -16.1996 7.325
σ2 1.751×10−4 3.126×10−5 1.1179×10−4 2.378×10−4

η2 9.245×10−6 1.112×10−6 7.168×10−6 1.147×10−5

With the standard priors and maturities τ1 = 5 and τ2 = 10.

Mean St. Dev. HPD95 lb HPD95 ub

κ̃ 0.0165 3.50×10−3 9.826×10−3 0.0234
κ 0.1371 0.0816 1.388×10−7 0.2857
µ̃ 0.1701 0.0503 0.08724 0.2673
µ 0.0163 4.30×10−3 9.344×10−3 0.0239
θ -0.08742 0.1505 -0.2734 0.0585
Λ0 -0.0372 0.1479 -0.2983 0.2481
Λ1 -10.9329 7.4292 -24.6567 1.5356
σ2 1.232×10−4 1.671×10−5 9.198×10−5 1.564×10−4

η2 9.245×10−6 1.109×10−6 7.172×10−6 1.146×10−5

With maturities τ1 = 5 and τ2 = 30.

Mean St. Dev. HPD95 lb HPD95 ub

κ̃ 0.0444 0.0100 0.02509 0.0644
κ 0.1370 0.0816 3.893×10−7 0.2854
µ̃ 0.1231 0.0427 0.05453 0.2063
µ 0.0012 7.80×10−3 -0.01533 0.0119
θ 0.07324 0.03836 0.0116 0.1490
Λ0 -0.3900 0.1844 -0.7784 -0.1170
Λ1 -7.1169 6.3590 -19.0809 3.5780
σ2 1.751×10−4 3.129×10−5 1.181×10−4 2.381×10−4

η2 9.244×10−6 1.108×10−6 7.170×10−6 1.145×10−5

With maturities τ1 = 10 and τ2 = 20.
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Mean St. Dev. HPD95 lb HPD95 ub

κ̃ 0.0212 4.60×10−3 0.01230 0.0302
κ 0.1371 0.0817 4.322×10−7 0.2856
µ̃ 0.1653 0.0492 0.08545 0.2612
µ 0.0089 4.90×10−3 2.536×10−4 0.0160
θ -0.01182 0.0934 -0.1293 0.0953
Λ0 -0.1800 0.1178 -0.4122 0.0226
Λ1 -9.8792 7.0003 -22.8645 1.8594
σ2 1.400×10−4 2.065×10−5 1.016×10−4 1.812×10−4

η2 9.245×10−6 1.111×10−6 7.153×10−6 1.144×10−5

With maturities τ1 = 10 and τ2 = 30.

Mean St. Dev. HPD95 lb HPD95 ub

κ̃ 0.0501 0.0133 0.02517 0.0766
κ 0.1371 0.0817 4.247×10−6 0.2857
µ̃ 0.1440 0.0449 0.07086 0.2312
µ -0.0309 0.0193 -0.07200 -0.0027
θ 0.08026 0.03820 0.0197 0.1557
Λ0 -0.6715 0.3039 -1.2987 -0.2369
Λ1 -5.3420 5.1560 -15.0461 3.1827
σ2 2.918×10−4 8.669×10−5 1.483×10−4 4.626×10−4

η2 9.244×10−6 1.110×10−6 7.181×10−6 1.147×10−5

With maturities τ1 = 20 and τ2 = 30.
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Chapter 3

Pricing and Hedging in

Incomplete Markets with

Model Ambiguity

We search for pricing methods of assets in incomplete markets. Our set-up is that

we postulate an agent who wants to maximise the expected surplus by choosing

an optimal hedging strategy. Furthermore, we assume that the agent is concerned

about model misspecification. This robust optimal control problem based on the

assumption of model ambiguity leads to: risk-neutral pricing for the traded risky

assets and adjusting the drift from the non-traded risk drivers in the conserva-

tive direction, known as “actuarial” or “prudential” pricing. In a multivariate

incomplete market our method yields the existence and uniqueness of the robust

price.1

1This chapter is based on the paper Balter and Pelsser (2015a).
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3.1 Introduction

If markets are complete then there exists a unique pricing measure such that all

contracts have a unique price. Due to illiquidity of financial instruments multiple

equivalent martingale measures exist in an incomplete market. Pension funds,

insurance companies and many other parties need to price liabilities that are not

or only partially hedgeable. The existing literature gives many pricing and hedging

methods in incomplete markets. However, additional to pricing in an incomplete

market, there is the limitation that the underlying model can be wrong. In financial

and economic decision making allowing for model uncertainty has an impact on the

optimal strategies. Our goal is to find a pricing method for assets in incomplete

markets under the acknowledgement of model uncertainty.

Pricing in an incomplete market setting often boils down to stipulating a selec-

tion rule to pick the equivalent martingale measure that has certain characteristics

or implications. In Chapter 1, the literature on different pricing methods in in-

complete markets is discussed.

We build on the objective to minimise the discrepancy in incomplete markets by

maximising the difference between the hedge position and the liabilities. Maximis-

ing the profit is a frequently observed objective of doing business. This coincides

with a linear expectation or equivalently a risk-neutral agent. Profit maximisa-

tion in an incomplete market leads to a constrained optimisation problem. Since

insurance companies and pension funds want to offset the risk of their liabilities

that are unhedgeable, hedging constraints alter the standard delta-hedge position.

Examples of pricing in incomplete markets are; extremely long-dated obligations

such as pensions that have to be paid on a horizon up to a century (since life

expectancy increases the horizon grows even further) or insurance contracts linked

to instruments that are not or barely traded, such as the number of survivors (this

example is shown in Section 3.3.4), temperature or natural disasters. Moreover,

by considering a risk-neutral agent who is ambiguous about the model we focus

on the latter uncertainty factor.

Thus, we postulate an agent who wants to find the optimal hedge position,

or equivalently the optimal price, for the (un)hedgeable item. This is solved by

maximising the surplus between the hedge position and the item to be priced.

As he distrusts the baseline model, he intends to search for a robust decision.

The robust price is deduced from the robust optimal hedging strategy that is

least sensitive to perturbations of the underlying model. Therefore the optimal
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control problem that follows is formulated as a max-min optimisation problem.

The objective of the agent is to maximise the surplus for the worst-case model

that might happen. The worst-case is selected by a so called mother nature, who

minimises the surplus subject to the specification of the set of plausible alternative

models. Since it is difficult to estimate the return with much precision contrary

to the accuracy of the volatility estimation we still take a wide class of models

into account as alternative deviations on the baseline model. Wide in the sense

that the derivations in this chapter hold for both deterministic and stochastic

deviations, implying a change in the distribution or volatility as well. In specific, we

consider ellipsoid uncertainty. The quantification of the size of the set is extensively

investigated in the next chapter. Moreover, the uncertainty set is time-consistent

since the constant bound on the set corresponds with a Lipschitz driver. This is

also proven by the connection with the backward stochastic differential equation

(BSDE) representation.

Our contribution is that we price a contract that depends on both hedgeable

and unhedgeable risk, on which we add ambiguity of the drifts to both types of

risk. The objective is to maximise the surplus given a set of alternative models. In

terms of the overview of pricing methods discussed in Chapter 1, our approach of

“pricing under model ambiguity” belongs to the class that considers a “subset”. In

particular, we use a set of coherent risk measures. The dynamic hedging strategy

follows from the robust optimisation. Moreover, we use the concept of indifference

pricing to obtain the optimal “value” of the liability. To be exact, the utility

function we use is the linear expectation of the surplus. We assume that, although

the agent is uncertain about the true model, he can make an indication of possible

models surrounding his estimation. A risk-neutral and ambiguity averse agent

who is maximising his surplus leads to a unique time-consistent optimal price and

hedging strategy.

We illustrate our approach in the context of pensions and insurances, though

it can be applied more generally. Pricing and hedging in incomplete markets is of

great interest in financial and economic modelling. In the literature the focus lies

on pricing complex contracts and when allowed for risk aversion, model ambiguity

is often swept under the carpet.

Additional to literature review given in Chapter 1, we start with a short recap

of the associated literature. In Section 2 of Chapter 3, we deepen into the intuition

behind our approach and the derivations towards Theorem 3.1 and Lemma 3.1.

Section 3.3 describes some examples. The first two examples show the extreme
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settings of a pure complete and a pure incomplete market. The economic inter-

pretations of the optimal solutions are explained in these two subsections as well.

The third example presents two correlated factors and is rather general to show

the widespread applicability of the methodology. The last example given is related

to insurance and actuarial problems in asset-liability management.

3.1.1 Literature Review

The acknowledgement that investors are concerned and do not rely on a single

model specification, but instead act as if it is merely an approximation gains at-

tention from both academia and the applied world. Robustness is investigated

by Hansen and Sargent by a series of papers and their book Hansen and Sargent

(2008). Boyle et al. (2008) search for the robust stochastic discount factor in an

incomplete market. Maenhout (2004) extends the consumption and portfolio prob-

lem of Merton (1969) by including uncertainty on the return process. The decision

rule he uses to evaluate the different models is the one that works reasonably well

under misspecification. The misspecification is measured by a (non-symmetric)

distance measure between the baseline model and the alternative. This concept is

known as φ-divergences where Maenhout (2004) uses the Kullback-Leibler diver-

gence. Robustness is implemented by the addition of a penalty term to the utility

function. We add an uncertainty constraint.

Cao et al. (2005), Garlappi et al. (2007) and Wang (2005) approach model

uncertainty from a Bayesian perspective, which are extensions of the multiple

prior model from Gilboa and Schmeidler (1989). In the multiple prior approach

of Wang (2005) the investor is uncertain about the prior beliefs in asset-pricing

models. The tangency portfolios appear no longer to be optimal in a CAPM setting

when the investor is uncertainty averse. The uncertainty in Garlappi et al. (2007)

is characterised by confidence intervals around the estimated expected returns.

Also Cao et al. (2005) maximise the utility for the worst-case prior, though they

concentrate on the impact of market participation on the equity premium. A

combination of the classical and Bayesian robustness is what we exploit, to be

exempted from the prior specification and including the worst-case perturbation

that mother nature can select.

Basak and Chabakauri (2012) minimise the hedging preference or hedging qual-

ity in an incomplete market. They define the objective by various criteria in terms

of the means and variances of the hedging error, which is the deviation of the

hedge from the target value. The intuition coincides with our objective where the
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agent maximises the difference between the hedge position and the liability. More-

over, their explanation of incompleteness is represented from a similar viewpoint

as in this chapter. The difference between these papers and this chapter is that

we focus on the impact of model uncertainty whereas they do not include misspec-

ification. Also Chacko and Viceira (2005) work in an incomplete market setting,

where they examine consumption and portfolio-choice problems with a focus on

stochastic volatility. Cochrane and Saa-Requejo (2000) allow trades in only those

assets that have plausible mean-variances. The Good-Deal-Bounds method states

that the existence of assets with extreme market prices of risk are unlikely to be

true (“too good to be true”).

The concept of utility indifference pricing we employ is based on the price of

a claim such that an agent who is maximising his utility is indifferent between

having the claim or not. Musiela and Zariphopoulou (2004) show some recent

work on utility indifference pricing, for exponential utilities in specific.

3.2 Optimal Pricing Result

3.2.1 The Agent’s Problem

Before the derivation is obtained in the next subsection, we first introduce the

general route we will follow. The agent aims to hedge his liabilities by finding the

optimal hedging portfolio. Therefore the liability L(·) is the item to be priced, that

might depend on both hedgeable and unhedgeable risk. The hedging portfolio is

represented by the positions in the traded assets A(·). This set-up is similar as in

an asset-liability management (ALM) problem.

The liabilities may depend on both hedgeable and unhedgeable risk. Hedgeable

risk represents the risk that underlies the liquid and traded assets, i.e. the agent

can go short or long positions in these assets. That is why this market is called the

complete market. Whereas in an incomplete market, the risk factor is not traded

and therefore unhedgeable. Let there be n tradeable assets (x), l untradeable risk

factors (y) and let there be a bank account on which one can go short or long

for the risk-free rate. The goal of maximising the profit, payoff or surplus has a

widespread applicability and intuition described in the introduction. The agent’s

choice variable at every point in time is the division over the different financial

assets for the next time step. The function A(t, x̄t) is the total value of the hedge

position. The agent chooses the hedge position θ̄(t) in the financial assets that
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maximises his expected surplus at terminal time T . The liabilities may depend on

both types of risk factors. This is given by

max
θ̄(t)

E[A(T, x̄T , θ̄T )− L(T, x̄T ,yT )] (3.1)

The surplus at terminal time T is a known function. Profit maximisation without

trading constraints leads in most cases to an unbounded problem. By specifying

a utility function this problem can be overcome. However, this implies that the

risk-neutral objective of profit maximisation has been lost and the utility function

has to be specified. In the utility literature risk-aversion is heavily investigated,

though we consider model rather than risk ambiguity. The addition of ambiguity

aversion bounds the problem of the risk-neutral agent.

The robust equivalent of objective (3.1) is

max
θ̄(t)

min
Q∈Qk2

EQ[A(T, x̄T , θ̄T )− L(T, x̄T ,yT )|Ft] (3.2)

In the robust model the inner part of the optimisation is played by a so called

“mother nature” who acts as a malevolent factor and minimises the surplus by

choosing the worst-case scenario, whereas the agent searches for the best hedge

strategy that is least affected by mother nature’s choice.

We specify model uncertainty by alternative models as a set of different prob-

ability measures. By Girsanov Theorem there is a one-to-one correspondence

between probability measures and drifts. Therefore the set Q can be identified

as an ellipsoid around the baseline model. The width of this set of alternatives

indicates the amount of ambiguity and is represented by the scalar k.

K =
{
µ(t, z) + ε(t)|ε(t)′Σ−1(t)ε(t) ≤ k2

}
(3.3)

“Mother nature” chooses the worst-case model from this set in order to generate

the robust solution. The choice of k corresponds to the decision about the size of

the set of alternatives. We propose to link k to those models that are indistinguish-

able from each other. By imposing both a probability on the Type I and Type II

error, the bound on the ellipsoid can be made. We focus on the quantification of

the set of indistinguishable models in Chapter 4.

In Section 3.2.2, we explain the complete procedure and derivation of our

method. The multivariate solution is characterised by the partial differential

equation (PDE) given. The solution of this can either be obtained analytically
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or numerically. At least the existence of the unique solution is proven by the back-

ward stochastic differential equation link. An agent whose objective is to maximise

profit, but who is uncertain about the process, prices by the risk-neutral measure

if he is in a complete market setting. If no financial instruments are at his dis-

posal we show that this coincides with the idea of prudent pricing. The last two

examples are both a combination of the two types of risk. The analytical solution

exists for the described correlated risk factors and for the unit-linked contract.

3.2.2 Financial Market with Model Ambiguity

The formal specification of the model starts by some notational assumptions. Sup-

pose that there are n tradeable assets with prices x(t) = {xi(t)|i = {1, ..., n}} plus

the bank account x0 and suppose there are l different unhedgeable risk factors

which we represent by the observed values y(t) = {yi(t)|i = {1, ..., l}}. The vector

x represent the hedgeable (financial) risk and the vector y represents the unhedge-

able (insurance) risk. The column vector of the two is denoted by z = (x,y)′.

When we add the bank account to the set of hedgeable assets the specific vector

has length n + 1 and is identified by a bar. Both processes are characterised by

the multivariate stochastic differential equation

d

(
x(t)

y(t)

)
=

(
µx(t,x)

µy(t,y)

)
dt+ Σ1/2(t,x,y)d

(
Wx(t)

Wy(t)

)
(3.4)

If we vectorise this notation and add the bank account process we get

d

(
x0(t)

z(t)

)
=

(
r(t,x(t))x0(t)

µ(t, z)

)
dt+

(
0′

Σ1/2(t, z)

)
· dWz(t) (3.5)

where µ(t, z) = (µx(t,x),µy(t,y))
′
, Wz(t) = (Wx(t),Wy(t))

′
and Σ(t, z) =[

Σxx Σxy

Σyx Σyy

]
and we assume that Σ is invertible. The risk-free rate of the bank

account can either be constant or follow a stochastic process. The accumulation

over time represents the rate on the bank account.

The agent can trade in the hedgeable risk, but not in the unhedgeable risk. There-

fore the amount he invests in the first n assets can be chosen such that he maximises

the surplus, while the other l hedge positions with respect to the unhedgeable risk

are restricted to zero. Thus we get θ0,θx(t) = [

n︷ ︸︸ ︷
θ1(t), ..., θn(t)] and θy(t) = [

l︷ ︸︸ ︷
0, ..., 0],
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where θ̄(t) = [

1︷ ︸︸ ︷
θ0(t),

n︷ ︸︸ ︷
θ1(t), ..., θn(t)] and θ(t) = [

n︷ ︸︸ ︷
θ1(t), ..., θn(t)

l︷ ︸︸ ︷
0, ..., 0]. This can be

imposed by the constraint Rθ = 0, where R is an [l × (n + l)] matrix equal to[
0[l×n]|I[l×l]

]
, on the left a [l×n] zero-matrix and next to it a [l×l] identity matrix.

How much the agent goes long or short on the bank account is captured by the

position θ0(t). We do not assume any short selling constraints. Each θi(t) with

i > 0 represents the number of assets the agents buys of asset xi(t) (the amount

invested is θi(t) · xi(t) at time t). The total value of the assets A(t) includes the

bank account. At every point in time a change in the value of the assets can only

occur due to a change in the underlying values, no gain or loss is attainable by

a re-allocation over the different assets. We incorporate this in the model by the

assumption of the self-financing condition

dA(t) = θ̄(t)′dx̄(t) (3.6)

where the first term of x̄t is represented by the bank account dx0 = r(t,x(t))x0dt,

accordingly x̄ is a vector of size [(1 + n)× 1]. By Itô’s Lemma one can see that a

change in asset value may not be caused by a re-allocation of the value over the

available assets indirectly follows from the second term of dA(t) = θ̄(t)′dx̄(t) +

x̄(t)′dθ̄(t) being to be zero. The definition of A is

A(t) = θ̄(t)′x̄(t) (3.7)

Rewriting the amount invested in the bank account in terms of the self-financing

condition yields

A(t) = θ0(t)x0(t) + θ′x(t)x(t) (3.8)

dA(t) = (θ0(t)r(t,x(t))x0(t) + θ′x(t)µx(t,x))dt+

θ′x(t)Σ1/2
xx (t,x)dWx(t) (3.9)

Let the bank account x0(t) be the numéraire, then by Itô’s Lemma the following

holds

dÃ(t) = d

(
A

x0

)
(t) (3.10)

=
1

x0(t)

{
(θ0(t)r(t,x)x0 + θ′x(t)µx(t,x)−A(t)r(t,x)) dt+

θ′x(t)Σ1/2
xx (t,x)dWx(t)

}
(3.11)
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3 Pricing in Incomplete Markets with Model Ambiguity

The definition (3.8) as function for the amount invested in the bank account

(θ0(t) = 1
x0(t) (A(t)− θ′(t)x(t))) can be substituted in (3.11)

dÃ(t) = θ̃
′
(t)dx(t) (3.12)

where

θ̃(t) =
θx(t)

x0(t)
(3.13)

Ambiguity in the mean is added by a combined set for the means of the vector

process z,

K =
{
µ(t, z) + ε(t)|ε(t)′Σ−1(t)ε(t) ≤ k2

}
(3.14)

where ε(t) = (εx(t,x), εy(t,y))
′
. The motivation behind the ellipsoid specifica-

tion is that the financial or economic agent indicates his ambiguity of the point-

estimation by a region around it. The drift adjustments are proportional to the

covariance matrix since by Girsanov Theorem the change of measure results in

a change in the drift multiplied by the covariance matrix of the baseline model.

The agent believes that the true value of the drift parameters lies in the set K.

Moreover, we assume that k2 is larger than the Sharpe ratio that is obtained from

the baseline model. The theorem derived only holds while

k2 − q′xΣ−1
xxqx ≥ 0 (3.15)

is satisfied. The assumption is equivalent to stating that the risk-free rate should

be included among the set of plausible models. This implies that model uncertainty

cannot vanish. The geometric interpretation in a two dimensional case is an ellipse,

in a three dimensional case an ellipsoid, and in general it has the form that the

dot-product of a vector is bounded.2

3.2.3 Optimisation

As an intermediate step we consider the Feynman-Kaç equation (FK) where-

after we proceed with the optimisation of it. First we divide the liability by

the numéraire as well L̃(t, zt) = L(t,zt)/x0(t). The Feynman-Kaç Theorem states

2Note that throughout this thesis we use the term ellipsoid as generalisation for any dimen-
sion.
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3.2 Optimal Pricing Result

that the conditional expectation is

E∗[Ã(T )− L̃(T, zT )|Ft] = v̄(t, Ã,x,y) (3.16)

where the star (∗) represents the measure{
dWx(t) + εx(t)dt

dWy(t) + εy(t)dt
(3.17)

and v̄(t, Ã,x,y) satisfies the PDE

v̄t + θ̃
′
(t)(qx(t,x) + εx(t))v̄Ã + (µx(t,x) + εx(t))

′
v̄x +

(µy(t,y) + εy(t))
′
v̄y + 1

2 tr(Hv̄(z)Σv̄) = 0 (3.18)

where Hv̄ =

v̄ÃÃ v̄Ãx v̄Ãy
v̄xÃ v̄xx v̄xy

v̄yÃ v̄yx v̄yy

, Σv̄ =

θ
′Σxxθ̃ θ̃

′
Σxx θ̃

′
Σxy

Σxxθ̃ Σxx Σxy

Σyxθ̃ Σyx Σyy

 and where

the subscripts on Σ represent covariance matrices consisting of the block covari-

ances related to x and y, and q = (qx, qy)′ = µ(t, z)− r(t,x(t))z(t).

For every state of the world ω, the PDE remains linear in Ã. Because for every

θ(t, ω) and every εx(t, ω) as fixed stochastics the PDE is linear in all directions of

v̄(·) and its derivatives.

By adding ambiguity to the PDE, the optimised function is obtained by

maxθ(t) minε(t) v̄(t, Ã,x,y) = v(t, Ã,x,y). The robust optimisation problem can

be interpreted as a two player game where the agent wants to maximise the surplus

whereas the robustness role is played by the counter player “mother nature” who

minimises the surplus. The robustly optimised value v(t, Ã,x,y) is given by the

Hamilton-Jacobi-Bellman (HJB) equation,

vt + max
θ(t)

min
ε(t)

{
θ̃(t)′(qx(t,x) + εx(t))vÃ + v′z(µ(t, z) + ε(t)) +

1
2vÃÃθ̃(t)′Σxxθ̃ + v′

Ãx
Σxxθ̃(t) + v′

Ãy
Σyxθ̃(t)

}
+

1
2 tr(Hv(z)(t)Σ) = 0 (3.19)

s.t. ε(t)′Σ−1ε(t) ≤ k2 (3.20)

Rθ = 0

with v(T, Ã,x,y) = Ã(T,x)− L̃(T, z) (3.21)

where (3.21) is the boundary condition at time T and Hv(z)(t) is the lower right
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3 Pricing in Incomplete Markets with Model Ambiguity

second order derivative matrix with respect to the variables z only (no Ã terms).

The HJB is intuitively equal to “the Feynman-Kaç with optimal θ̃(t) and ε(t)

per ∆t”. The difference between FK and HJB is that now θ̃(t) and ε(t) may

depend on the value function and its derivatives which makes the PDE non-linear.

Therefore the value function v(t, Ã,x,y) can no longer be represented by a linear

expectation. We will prove in Theorem 3.1 that the value for v(t, Ã,x,y) can be

represented by a non-linear expectation E [·]. Since the terminal condition is linear

in Ã, we propose the Ansatz that v(·) is linear in Ã

v(t, Ã,x,y) = Ã(t)− w̃(t,x,y) (3.22)

Despite the non-linearity caused by the max-min the linearity in Ã remains

due to the specific boundary condition of the surplus. The function w̃(·) satisfies

−w̃t + max
θ(t)

min
ε(t)

{
θ̃(t)′(qx(t,x) + εx(t))

−w̃′z(µ(t, z) + ε(t))

}
− 1

2 tr(Hw̃(z)(t)Σ) = 0 (3.23)

s.t. ε(t)′Σ−1ε(t) ≤ k2

Rθ̃ = 0

with w̃(T,x,y) = L̃(T, z) (3.24)

The agent maximises for −w̃(t,x,y) which is the difference between the non-linear

expectation of the surplus and the value of the assets. At time T , w̃(T,x,y) is

exactly the liability value divided by the numéraire. Note that w̃ depends also on

θ(t) and ε(t). Supporting the mindset of the agent he maximises minus w̃ which

can be interpreted as an equivalent for the discounted value of the liabilities. Since

the only variables that depend on the maximin problem are θ(t) and µ(t, z) where

µ(t, z) can be rewritten in µ(t, z)+ε(t), and ε is the dependent variable, the above

objective function can be simplified by eliminating the terms that are independent

of the decision variables. We concentrate first on the max-min, which we define

by

m(t,x,y) = max
θ(t)

min
ε(t)

{
θ̃(t)′(qx(t,x) + εx(t))− w̃′z(µ(t,z) + ε(t))

}
(3.25)

We optimise m(t,x,y) for every time step ∆t and plug the optimal m∗(t,x,y) in
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PDE (3.23) to obtain a new non-linear PDE

−w̃t +m∗(t,x,y)− 1
2 tr
(
Hw̃(z)(t)Σ

)
= 0 (3.26)

Maximising v(·) corresponds with minimising w̃(·), which is equivalent with max-

imising m(·). We concentrate on the max-min part m(·).

max
θ(t)

min
ε(t)

θ̃(t)′ · (qx(t,x) + εx(t))− w̃′zε(t) (3.27)

s.t. ε(t)′Σ−1ε(t) ≤ k2

For ease of exposition we suppress the dependence from θ and ε of t in the deriva-

tion. Moreover, maximising over θ is equivalent with maximising over θ̃. Thus,

the vectorised objective reads as

max
θ̃

min
ε

θ̃
′
· q + ε′(θ̃ − w̃z) (3.28)

s.t. ε′Σ−1ε ≤ k2

Rθ̃ = 0

By the constraint that the last l θis are zero, also the last l components of q drop

out (qy). Where θ, q, ε are vectors of dimension [(n+ l)× 1].

We solve this optimisation in two steps. First consider the inner minimisation

min
ε

θ̃
′
· q + ε′(θ̃ − w̃z) (3.29)

s.t. ε′Σ−1ε ≤ k2

This is a linear objective with a quadratic constraint, from which we know that it

has a unique minimum. The optimal strategy of mother nature is

ε∗ = −k Σ(θ̃−w̃z)√
(θ̃−w̃z)′Σ(θ̃−w̃z)

. The objective for the agent is

max
θ̃

θ̃
′
q − k

√
(θ̃ − w̃z)′Σ(θ̃ − w̃z) (3.30)

s.t. Rθ̃ = 0

This is a quadric objective with linear constraints. The covariance matrix Σ is

per definition semi positive-definite. Moreover, since we assume the matrix to

be invertible the matrix is positive definite and thus the square root is a convex

function. Since the optimal ε is the negative root, the agent maximises a concave

function which results in a unique maximum (take θ̂ = θ̃ − w̃z, then maxθ̂(θ̂ +
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3 Pricing in Incomplete Markets with Model Ambiguity

w̃z)′q− k
√
θ̂′Σθ̂ s.t. Rθ̂ = Rw̃z). See Appendix 3.A for the full derivation. For

both control variables we obtain a candidate solution that satisfies the first order

conditions (FOC). Since we have shown that the minimisation and maximisation

both yield a unique solution the optimal strategies are

θ̃
∗

=

[
w̃x + Σ−1

xxΣxyw̃y + h̃Σ−1
xx qx

0

]
(3.31)

ε∗ =

[
−qx(

Σyy −Σ′xyΣ
−1
xxΣxy

)
h̃−1w̃y −Σ′xyΣ

−1
xxqx

]

where h̃ =

√
w̃′y(Σyy−Σ′xyΣ−1

xxΣxy)w̃y

k2−q′xΣ−1
xxqx

. Hence, without dividing by the numéraire,

the optimal hedging strategy and drift distortions are

θ∗ =

[
wx + Σ−1

xxΣxywy + hΣ−1
xx qx

0

]
(3.32)

ε∗ =

[
−qx(

Σyy −Σ′xyΣ
−1
xxΣxy

)
h−1wy −Σ′xyΣ

−1
xxqx

]

where h =

√
w′y(Σyy−Σ′xyΣ−1

xxΣxy)wy

k2−q′xΣ−1
xxqx

. This proves Lemma 3.1. Since the optimisa-

tion problem is expressed dependent on the numéraire we continue the derivation

of the indifference price including the numéraire. The optimal m∗(t,x,y) is

m∗(t,x,y) = −w̃′xr(t,x)x− w̃′y
(
µy −Σ′xyΣ

−1
xxqx

)
−c
√
w̃′y
(
Σyy −Σ′xyΣ

−1
xxΣxy

)
w̃y (3.33)

Plugging this into PDE (3.26) results in the non-linear PDE

−w̃t − w̃′xr(t,x(t))x− w̃′y
(
µy −Σ′xyΣ

−1
xxqx

)
− 1

2 tr
(
Hw̃(z)Σ

)
−c
√
w̃′y
(
Σyy −Σ′xyΣ

−1
xxΣxy

)
w̃y = 0 (3.34)

where c =
√
k2 − q′xΣ−1

xxqx and Hw̃(z) =

[
w̃xx w̃xy

w̃yx w̃yy

]
and Σ =

[
Σxx Σxy

Σ′xy Σyy

]
.

The fact that the square root has to be positive leads to the assumption that the

bank account is prevented to be strictly better or worse than the risky asset.

k2 − q′xΣ−1
xxqx ≥ 0 (3.35)
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If this is violated, then in the agent’s worst-case model the excess return is still

positive therefore he shall always invest as much as possible in the financial world,

because in his belief he faces no model uncertainty and shall never use the bank

account. Note that the risk-neutral agent is indifferent with respect to risk since

he is maximising the surplus. We concentrate on model misspecification purely.

If there is only one hedgeable risk factor in the economy the condition states

that the Sharpe ratio should be within the agent’s set of alternatives. Then, this

corresponds with the idea of the Good-Deal-Bounds methodology to exclude the

deals that are overperforming, but here also those that underperform.

Because the financial components x of the risk vector are perfectly replicated

by the delta-hedge, the ambiguity regarding the mean of the hedgeable risk is

eliminated and replaced by the risk-free return r(t,x). The ambiguity for the

mean of the unhedgeable processes y are decomposed in the part consisting of the

variance of each component of y plus terms consisting of the covariances with all

risk factors. This is known as the Schur complement (Σyy −Σ′xyΣ
−1
xxΣxy) which

is the conditional variance of the unhedgeable risk given the hedgeable risk.

Remember the Ansatz of (3.19) to be

v(t, Ã,x,y) = Ã(t)− w̃(t,x,y) (3.36)

The indifference price of the agent between investing the initial value of assets on

the bank account without liability contract and the initial value plus the equivalent

that is needed to be indifferent to writing the contract is π(t,x,y). Since from

(3.36) the growth of the bank account is known, without contract we get an ex-

pected surplus of v(t, Ã,x,y) = Ã(t) at time t (since without contract L̃(T,x,y) =

0 the non-linear expectation becomes linear). While the indifference price, the ex-

tra cash needed to make the agent indifferent between the liability contract or not,

is π̃(t,x,y). The expected surplus is v(t, Ã,x,y) = Ã(t) + π̃(t,x,y) − w̃(t,x,y).

Hence by the equality condition the indifference price is determined.

Ã(t) = Ã(t) + π̃(t,x,y)− w̃(t,x,y) (3.37)

π̃(t,x,y) = w̃(t,x,y)

Where w̃(t,x,y) = w(t,x,y)/x0(t) = e−
∫ t
0
r(s,x(s))dsw(t,x,y) and π(t,x,y) =

w(t,x,y).
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3 Pricing in Incomplete Markets with Model Ambiguity

Rephrasing the PDE in terms of π(t,x,y) gives

πt + π′xr(t,x(t))x+ π′y
(
µy −Σ′xyΣ

−1
xxqx

)
(3.38)

+ 1
2 tr (πxxΣxx + 2πxyΣxy + πyyΣyy)

−r(t,x(t))π + c
√
π′y
(
Σyy −Σ′xyΣ

−1
xxΣxy

)
πy = 0

Note, that the equation is a semi-linear partial differential equation that describes

the behaviour of the liability π(t, z) as a function of t and z. The PDE is subject

to the boundary condition π(T, z) = L(T,x,y) which is the value of the insurance

contract at time T . Thus we derived the optimal PDE for which we can prove

existence and uniqueness of the solution. The following theorem is proven based

on the auxiliary representation of the semi-linear PDE as a BSDE problem.

Theorem 3.1 (Existence and uniqueness)

Let π(t,x,y) be the indifference price of an agent that maximises the expected sur-

plus E [A(T,x)− L(T,x,y)|Ft] under model ambiguity in an incomplete market,

then the indifference price π is given by the PDE

πt + π′xr(t,x(t))x+ π′y
(
µy −Σ′xyΣ

−1
xxqx

)
+ (3.39)

c
√
π′y
(
Σyy −Σ′xyΣ

−1
xxΣxy

)
πy +

1
2 tr (πxxΣxx + 2πxyΣxy + πyyΣyy)− r(t,x(t))π = 0

with terminal value π(T,x,y) = L(T,x,y), where c =
√
k2 − q′xΣ−1

xxqx.

The solution π of the semi-linear PDE exists and is unique.

Proof of Theorem 3.1 In case of a semi-linear multivariate PDE we can interpret

it as a backward stochastic differential equation (BSDE) from which we know the

existence and uniqueness of the solution by Pardoux and Peng (1990). We can

express the PDE by

πt +

[
πx

πy

]′ [
r(t,x(t))x(

µy −Σ′xyΣ
−1
xxqx

)]+ 1
2 tr

([
πxx πxy

π′xy πyy

]
Σ

)
− (3.40)

r(t,x(t))π +

c

√√√√[πx
πy

]′ [
0 0

0
(
Σyy −Σ′xyΣ

−1
xxΣxy

)] [πx
πy

]
= 0

76



3.2 Optimal Pricing Result

where the linear, the Feynman-Kaç part can be denoted by the operator

Lµ,σπ =

(
∂

∂t
+ r(t,x(t))x′

∂

∂x
+ (µy −Σ′xyΣ

−1
xxqx)′

∂

∂y
+ (3.41)

1
2 tr

(
∂2

∂xx′
Σxx + 2

∂2

∂xy′
Σxy +

∂2

∂yy′
Σyy

))
π

and the non-linear part by g(·). Moreover, both representations are linked by

X =

[
x

y

]
and Y = π. Hence,

PDE

Lµ,σπ+

g(t,Xt, Yt,Zt) = 0

π(T,X) = L(T,X)


⇔



BSDE

dXt = µdt+ Σ1/2dWt

dYt = −g(t,Xt, Yt,Zt) +ZtdWt

g(t,Xt, Yt,Zt) = c
√
π′ySπy − r(t,x(t))Yt

YT = L(T,X)

The first equation is the forward process where µ are the drifts of x and y under

the optimal measure, Σ is the covariance matrix that belongs to the trace terms

of the PDE. The second equation is the backward process with the driver g(·),
c is a scalar, the square root of restriction (3.35), S is the Schur complement

and Z = ∇XYt · Σ(t,Xt). Since g(·) is Lipschitz continuous as g(t,Z) ≤ C|Z|,
g(·,y, Y,Z) is an Ft-adapted process and

∫ T
0
|g(t,y, 0,0)| dt ∈ L2(Ω,FT ,P) the

L2 space, the BSDE has a solution which is unique. By applying Itô’s Lemma to

π under the new measure we get

dπ = πtdt+ π′x(rxdt+ ΣxdWx) + π′y((µy −Σ′xyΣ
−1
xx qx)dt+ (3.42)

ΣydWy) + 1
2 tr (πxxΣxx + 2πxyΣxy + πyyΣyy)

Furthermore there is the relation given

dY = −g(t,Xt, Yt,Zt)dt+ZtdW (3.43)

The terms related to the Brownian motions are combined into the Zt term. Thus

Zt = (π′xΣx,π
′
yΣy)′. Since we have set π = Y , the definition of Z as the

derivatives of Y is fulfilled. The g-function equals

−g(t,Xt, Yt,Zt) = πt + π′xrx+ π′y((µy −Σ′xyΣ
−1
xx qx) + (3.44)

1
2 tr (πxxΣxx + 2πxyΣxy + πyyΣyy)
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By (3.38) the driver equals

g(t,Xt, Yt,Zt) = r(t,x(t))π − c
√
π′y
(
Σyy −Σ′xyΣ

−1
xxΣxy

)
πy (3.45)

�

A shorthand notation for the BSDE solution and the indifference price is

π(t,x,y) = e−
∫ T
t
r(s,x(s))dsEg [L(T,x,y)|Ft] (3.46)

Moreover, we also know the optimal hedging portfolio θ∗ and the robust deviations

ε∗ that belongs to optimisation problem of Theorem 3.1.

Lemma 3.1 (Optimal hedging portfolio and robustness adjustments)

Let π(t,x,y) be the indifference price of an agent that maximises the expected sur-

plus E [A(T,x)− L(T,x,y)|Ft] under model ambiguity in an incomplete market,

then the agent’s robust optimal dynamic hedging portfolio is

θ∗ =

[
πx + Σ−1

xxΣxyπy + hΣ−1
xx qx

0

]
(3.47)

and the ambiguity ensures the optimal solution to be robust for drift adjustments

ε∗ =

[
−qx(

Σyy −Σ′xyΣ
−1
xxΣxy

)
h−1πy −Σ′xyΣ

−1
xxqx

]
(3.48)

where h =

√
π′y(Σyy−Σ′xyΣ−1

xxΣxy)πy

k2−q′xΣ−1
xxqx

.

Proof of Lemma 3.1 Expression (3.31) is obtained by solving the first order con-

ditions implied by the Lagrangian of the optimisation problem. Subsequently, w

and its derivatives are expressed in term of π by relation (3.38). �

The connection between PDE’s and BSDE’s proves the uniqueness and solv-

ability of the theorem. Algorithms to find numerical solutions of BSDE’s are well-

known (Gobet et al., 2005; Gobet and Labart, 2007, 2010), see for applications

of BSDE’s El Karoui et al. (2009). Time-consistent ambiguity averse preferences

including jump processes are priced by Laeven and Stadje (2014). Pelsser and

Stadje (2014) arrive at the same class of pricing operators by imposing time- and

market-consistency. The time-consistency is in our case directly fulfilled by the ini-
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tial HJB formulation of the optimisation problem. Time-consistent coherent risk

measures have a Lipschitz driver which coincides with the ellipsoid uncertainty

constraint.

The agent who wants to maximise his surplus and acknowledges the ambiguity

of the underlying model, acts by the “robust method of pricing” we derived. A

practitioner’s methodology to price in incomplete markets is the industry stan-

dardised Cost-of-Capital method (Keller and Luder, 2004). This method, that

insurance companies use, quantifies the market value of the replicating portfo-

lio plus a mark-up for the unhedgeable risks. It relies mostly on the subjective

quantification of risk. Therefore see Filipović and Vogelpoth (2008) for a critical

discussion of the Swiss Solvency Test on which the Cost-of-Capital method (CoC)

is based. The CoC method leads to a pricing operator that has similar charac-

teristics as our result. The indifference pricing operator from Theorem 3.1 can be

interpreted as a best estimate, which is the conditional expectation (if g(·) = 0

then we have a linear PDE), plus a constant (c) times the standard deviation of

the unhedgeable component. The standard deviation per ∆t is a penalty that is

added. If ∆t → 0 this is normally distributed and hence the penalty consists of

the quantiles from the normal distribution. The normality assumption is fulfilled

since we are in a diffusion setting. The decomposition of the result from Theo-

rem 3.1 corresponds with the interpretation of the Cost-of-Capital method, where

c
√
π′ySπy = “CoC” per ∆t. Ghalehjooghi and Pelsser (2014) shows that in a dif-

fusion setting the CoC method and the standard deviation pricing principle have

the same limit. The interpretation of Lemma 3.1 is discussed in detail in the next

section. Each part gets more or less attention is the specific set-up of the examples

considered.

3.3 Examples

We show four examples implied by the theorem and lemma derived. The first two

examples are the extreme boundary cases. On the one hand we consider a market

with only hedgeable risk and on the other hand we consider a market with purely

unhedgeable risk. The third example is based on an underlying asset that can be

quite general, from real estate to weather indicators. This generality goes beyond

the asset-liability management of insurance companies or pension funds only. The

fourth example is an insurance contract.
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3 Pricing in Incomplete Markets with Model Ambiguity

3.3.1 Example I: Pure Hedgeable Risk

The two most extreme cases we can encounter is either purely hedgeable risk or

purely unhedgeable risk. The first case is the complete market setting, where

we assume that the bank account generates a constant risk-free rate r and thus

dx0 = rx0dt. If we assume that there are no untradeable assets in the market,

l = 0. The indifference pricing operator is given by the linear PDE

πt + π′xrx+ 1
2 tr (πxxΣxx)− rπ = 0 (3.49)

Note that the drift of the process x is r, the constant risk-free rate, and not µx.

The pricing process of the replicating portfolio is what is known as “risk-neutral

pricing”. By Lemma 3.1 the optimal hedging strategy is

θ∗ = πx (3.50)

which is the delta-hedging strategy that perfectly replicates the derivative contract.

The optimal robustness factors are

ε∗x = −qx (3.51)

which imply the change of the drift to the risk-free rate.

3.3.2 Example II: Pure Unhedgeable Risk

The other extreme is the case when there are no tradeable assets at the agent’s

disposal, then n = 0. This implies that there are no assets available to hedge.

The agent has only the bank account and unhedgeable assets at his disposal. The

agent’s best indifference price is to solve the PDE

πt + π′yµy + k
√
π′yΣyyπy + 1

2 tr (πyyΣyy)− rπ = 0 (3.52)

The optimal hedging portfolio is zero, since the agent is unable to invest in the

tradeable assets since there are none. Whereas the unhedgeable risk cannot be

traded by definition. The response of mother nature is

ε∗y =
k√

π′yΣyyπy
Σyyπy (3.53)
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The drift adjustment ε∗ is the adjustment of the drift of the unhedgeable process

(µy) in the “prudent” direction. Mother nature adds a penalty term to the drift

proportional to the standard deviation of the unhedgeable risk multiplied by the

ambiguity specification k. The adjusted drift is equivalent to the robust pricing

method that is known as “actuarial pricing”.

3.3.3 Example III: Correlated Risk

In some cases, if there is only one risk of each type and the partial derivative πy is

either monotonically increasing or decreasing, then the absolute sign of
√
π2
y = |πy|

can be replaced by ±πy depending on the sign of πy. The PDE becomes linear

and we can express the solution, using the Feynman-Kaç formula

π(t, x, y) = e−r(T−t)EM [L(T, x, y)|Ft] (3.54)

where M is the measure with the adjusted means for both risk factors, i.e. r · x
for the x process and µy + εy for the y process. The terminal condition is

π(T, x, y) = L(T, x, y). In the general multidimensional case, the new measure

M can be interpreted as the intersection of the ellipsoid and the risk-neutral mea-

sures Qk2∩QRN , corresponding with the inf-convolution of Barrieu and El Karoui

(2005). By specifying the ellipsoid this intersection determines the optimal solu-

tion.

Consider a non-traded asset that is correlated with a traded asset. Assume

there is a risky asset x, the bank account B and a non-traded asset y with the

following dynamics:

d

xtyt
Bt

 =

µxxtµyyt

rBt

 dt+


[

σ2
xx

2
t ρσxxtσyyt

ρσxxtσyyt σ2
yy

2
t

]1/2

0′

 d
[
Wx

Wy

]
(3.55)

By Theorem 3.1 we know that the process of the risky asset will be priced

by the risk-free rate, i.e. the drift term changes µx → r due to εx = −(µxxt −
rxt). However the ambiguity of the unhedgeable asset is displayed by the ellipsoid

ε′Σ−1ε ≤ k2. Now that εx is known, i.e. this corresponds with the market price

of risk, the adjusted drift term of the unhedgeable asset can be expressed in term

of the constant k2 and the market price of risk. Due to the incompleteness the

pricing operator is non-linear, therefore the drift adjustment εy determines two

prices that can be interpreted as either going long or short or as a bid-ask price.
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3 Pricing in Incomplete Markets with Model Ambiguity

In case the PDE is linear the price is uniquely determined. By Lemma 3.1 the

optimal drift adjustments are

[
ε∗x

ε∗y

]
=

 −µxxt + rxt

−ρσyyt µx−rσx
± σyyt

√
1− ρ2

√
k2 −

(
µS−r
σS

)2

 (3.56)

The optimal hedge position is

θ∗x = πx + πy
σyyt
σxxt

ρ± πy
σyyt
σxxt

√√√√ 1− ρ2

k2 −
(
µx−r
σx

)2

µx − r
σx

(3.57)

where the first term πx is the delta-hedging part linked to purely hedgeable risk,

the second term πy
σyyt
σxxt

ρ is delta-hedging for the unhedgeable risk weighted by the

relative standard deviations, and the last term is the product of the residual of the

second term, the unhedgeable risk, πy
σyyt
σxxt

√
1− ρ2 and (µx−r)/σx√

k2−(µx−rσx
)
2
. Note that

(µx−r)/σx√
k2−(µx−rσx

)
2

goes to infinity when the market price of risk approaches k, while for

small Sharpe ratio’s it is approximately the Sharpe ratio scaled down by a factor

k. Thus for Sharpe ratio’s that are approaching the ones that are extreme, the

agent invests huge amounts in the underlying asset.

Since mother nature ensures the robustness of the result, the plus sign in

the drift of (3.58) changes the drift term upwards, hence the price will be at

its highest point, whereas the minus sign leads to the lower bound. Floroiu and

Pelsser (2013) consider a call option on this non-traded asset in particular and

highlight the decreasing value of the option in incomplete markets for increasing

volatility (Miao and Wang (2007)). Depending on the position of the agent, the

robust result is either one of the two bounds. The robust price of the non-traded

asset can be characterised by the stochastic process

dyt =

µy − ρσy µx − r
σx

± σy
√

1− ρ2

√
k2 −

(
µx − r
σx

)2
 ytdt+ (3.58)

σyyt

(
ρdWx +

√
1− ρ2dWy

)
As Floroiu and Pelsser (2013) show, if the variables µy, σy and εy are constants,

the process y follows a log-normal distribution and corresponds with a dividend

paying stock from which the analytical solution is known.
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3.3.4 Example IV: Life Insurance Contract

Consider a life insurance contract with one traded and one non-traded asset. In

this unit linked contract, the survivors receive the value of the stock at time T

bounded by a minimum guarantee (g). In this case n = 1, l = 1, and S is the

stock price that follows a log-normal distribution. For ease of exposition, N , the

number of survivors in the policy, also follows a log-normal distribution.3 The

stochastic processes are

d

[
St

Nt

]
=

[
µSt

αNt

]
dt+

[
σSt 0

0 βNt

][
dWS

dWN

]
(3.59)

We assume no correlation between the two processes, that is no causal relation

between the price of the stock and the number of survivors. Since ∂π
∂N > 0 at time

T , π is monotone increasing in N . Consequently, the PDE is

πt + π′SrS + πN

(
αN +

√
k2 − qS2/(σ2S2)βN

)
+ (3.60)

1
2

(
πS2σ2S2 + πN2β2N2

)
− rπ = 0

where qS = µS − rS and the terminal condition is

L(T, ST , NT ) = max(ST , g)NT (3.61)

By Theorem 3.1, the optimal hedging portfolio is

θ∗S = πS + πN
βNt
σSt

(µ− r)/σ√
k2 −

(
µ−r
σ

)2 (3.62)

Similar as in the previous example the optimal hedging portfolio consists of a delta-

hedging part (πS), and now that there is no correlation between the hedgeable and

unhedgeable risk, the investment in the traded asset proportional to the correlation

is zero, the second term of the hedge position

(
πN

βNt
σSt

(µ−r)/σ√
k2−(µ−rσ )

2

)
is the Sharpe

ratio relation with k proportional to the relative standard deviations.

We need to solve this for the unknown function π(t, St, Nt). By solving the

PDE we can find the function of π(T −∆t, St, Nt) and its derivatives recursively

until time t. The solution can be written as a conditional expectation by the

3Assumption of log-normality for ease of exposition. Can be unrealistic since non-zero prob-
ability of N(t) < N(t+ ∆t). However, if the drift is negative (enough) this probability becomes
small.
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3 Pricing in Incomplete Markets with Model Ambiguity

Feynman-Kaç formula

π(t, S,N) = e−r(T−t)EM [π(T, ST , NT )|Ft] (3.63)

Note that the expectation is taken under the probability measure M that belongs

to the adjusted risk-neutral mean for the hedgeable component and the additional

prudence factor for the unhedgeable part. Measure M belongs to the processes

having driftsrStα0Nt + βNt

√
k2 − ((µ− r)/σ)

2
(3.64)

The interpretation of risk measure M is that the financial risk is perfectly replicated

such that the ambiguity is eliminated and the mean is replaced by the risk-free

return. The ambiguity of the unhedgeable process is now the intersection of the

ambiguity set K and the line r. The intersection of this line and the ellipsoid has

two solutions, corresponding with the sign of the liability function. In this case

the zero correlation between the two processes causes the ellipsoid to be an exact

circle. For this example, we can solve the conditional expectation analytically.

π(t, St, Nt) = e−r(T−t)EM [max(ST , g)NT |Ft] (3.65)

=
(
StΦ(d1)− e−r(T−t)gΦ(d2) + e−r(T−t)g

)
·

Nte

(
α+β
√
k2−((µ−r)/σ)2

)
(T−t)

where d1,2 = 1
σ
√
T−t

(
ln
(
St
g

)
+
(
r ± σ2

s

)
(T − t)

)
.

3.4 Conclusion

For an agent who wants to maximise his expected surplus, is uncertain about

the economy and is allowed to hedge, we obtain the following results. We find

a semi-linear PDE for the pricing operator, that can be interpreted as a BSDE

with a Lipschitz driver. Hence, the PDE is uniquely solvable for the indifference

price. The combination of model ambiguity in a complete market and hedging

leads to risk-neutral pricing, implicitly the agent’s response eliminates the model

ambiguity. Model ambiguity in combination with purely unhedgeable risk results

in the action of “actuarial pricing”. This is a conservative way of pricing where

the uncertain drift is adjusted in the “prudent” direction. The penalty term that
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3.4 Conclusion

mother nature adds is proportional to the standard deviation of the unhedgeable

risk multiplied by the ambiguity specification (the size of the ellipsoid). In a model

with both hedgeable and unhedgeable risk the agent will price market-consistently

plus actuarial prudentially. The traded risky assets are priced by the risk-free

rate. The drift adjustments of the non-traded assets are twofold, either negative

or positive. The prudent direction depends on the payoff structure of the agent

and can be interpreted as the bid or the ask price. The optimal hedging portfolio

consists of a delta-hedging part linked to the purely hedgeable risk and the same

delta-hedging term proportional to the correlation between the traded and non-

traded assets, plus the product of the residual of the correlated delta-hedging part

and a market confidence term. The market confidence term causes the hedging

portfolio in the traded risky assets to go to infinity when the Sharpe ratio’s become

extreme, while moderate market prices of risk lead to an additional term of the

Sharpe ratio itself scaled down by the size of the uncertainty set. For some special

cases we can solve the pricing semi-linear PDE explicitly.
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3 Pricing in Incomplete Markets with Model Ambiguity

3.A Optimisation

The optimisation problem from (3.28) is

max
θ̃

min
ε

θ̃
′
· q + ε′(θ̃ − w̃z)

s.t. Rθ̃ = 0

s.t. ε′Σ−1ε ≤ k2 (3.66)

The Lagrangian is

L(θ̃, ε, λ0,λ) = θ̃′q + ε′(θ̃ − w̃z)− λ0
1
2 (ε′Σ−1ε− k2)− λ′(Rθ̃ − 0)

where λ has dimension [l × 1] and λ0 is a scalar.

The FOC are

∂L

∂θ̃
= q + ε−R′λ = 0 (3.67)

∂L

∂ε
= −w̃z + θ̃ − λ0Σ

−1ε = 0 (3.68)

∂L

∂λ
= −Rθ̃ = 0 (3.69)

∂L

∂λ0
= − 1

2

(
ε′Σ−1ε− k2

)
= 0 (3.70)

The first three block of equations are linear. Note that althoughR is rank deficient,

RΣ−1R′ has full rank.

λ∗ = (RΣ−1R′)−1R(Σ−1q − λ−1
0 w̃z) (3.71)

θ̃∗ = w̃z + λ0Σ
−1(R′λ∗ − q) (3.72)

ε∗ = R′λ∗ − q (3.73)

Now we can plug in λ∗ in ε∗ and solve the constraint ε′Σ−1ε = k2 for λ0.

λ−1
0 = ±

√
q′Σ−1R′(RΣ−1R′)−1RΣ−1q − q′Σ−1q + k2

w̃′zR
′(RΣ−1R′)−1Rw̃z

(3.74)

Since mother nature is minimising the second order derivative with respect to

ε, ε has to be positive to ensure a minimum, therefore λ−1
0 = −√. Let X =

R′(RΣ−1R′)−1R be the [(n+ l)× (n+ l)] null matrix with the Schur complement
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on the lower right [l × l] block,

[
0 0

0 Σyy −Σ′xyΣ
−1
xxΣxy

]
. Then

ε∗ = X

(
−

√
q′Σ−1XΣ−1q − q′Σ−1q + k2

w̃′zXw̃z
w̃z + Σ−1q

)
− q (3.75)

=

 −qx(
Σyy −Σ′xyΣ

−1
xxΣxy

)√ k2−q′xΣ−1
xxqx

w̃′y(Σyy−Σ′xyΣ−1
xxΣxy)w̃y

w̃y −Σ′xyΣ
−1
xxqx



where the second equality follows fromXΣ−1 =

[
0 0

−Σ′xyΣ
−1
xx 1

]
and q′Σ−1XΣ−1q−

q′Σ−1q = [−q′xΣ−1
xxqx,0]′. The necessary condition, the fact that we prevent the

bank account to be strictly better or worse than the risky asset, follows from the

admissibility of the square root

k2 − q′xΣ−1
xxqx ≥ 0 (3.76)

87





Chapter 4

Sets of Indistinguishable

Models for Robust

Optimisation

Models can be wrong and recognising their limitations is important in financial

and economic decision making under uncertainty. Finding the explicit specifica-

tion of the uncertainty set has been difficult so far. We develop a method that

provides a plausible set of models to use in robust decision making. The choice

of the specific size of the uncertainty region is what we focus on. We use the

Neyman-Pearson Lemma to characterise a set of models that cannot be distin-

guished statistically from a baseline model. The set of indistinguishable models

can explicitly be obtained for a given probability on the Type I and II error.1

1This chapter is based on the paper Balter and Pelsser (2015b).
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4.1 Introduction

4.1 Introduction

Since models are simplifications of real world processes and situations, there is the

risk of a mismatch between the model and the implied strategy. In asset pricing,

model uncertainty has implications for the valuation of derivatives and long-dated

contracts. In such situations the value of an asset is not unique but falls in a

range, requiring extensions of standard pricing methods. We develop a method

that provides a plausible set of models surrounding the baseline model to use in

robust decision making. Making financial decisions robust calls for applying worst-

case scenarios. Therefore even if an optimisation problem is considered under the

allowance of model uncertainty, still the question remains how to determine the

set of alternative models. The choice of the uncertainty set is what we focus on,

contrary to most literature in which a robust control problem is solved for a given

set of alternatives. In the second review of Chapter 1 we discussed other methods

in the literature that cope with uncertainty. The shared intuition is that an agent is

concerned about model misspecification. Consequently, plausible alternatives have

to be identified to derive the impact of the uncertainty. Intuitively, these models

come from a set surrounding the baseline model. Our objective is to determine

explicitly the set that incorporates all plausible alternative models using statistical

testing theory. We use the Neyman-Pearson Lemma and impose a Type I and II

error to construct the set of indistinguishable models.

The outline is as follows, the introductory section is continued by a short recap

of the associated literature that is discussed in Section 1.2. Thereafter the intuition

underlying our contribution is described. In Section 4.2 the model is introduced

and the indistinguishable set of models is derived for deterministic alternatives that

serves as an intuitive illustration. Then an example of a stochastic alternative is

shown that fundamentally changes the probability distribution. In Section 4.3

our main contribution is presented in Theorem 4.1 where we create the set of

indistinguishable models for stochastic time-consistent alternatives ex ante. The

link to a numerical bound on several divergences is displayed in Section 4.4.

4.1.1 Literature Review

Hansen and Sargent (2008) proceed on the incorporation of model ambiguity along

with the specification of the optimisation problem. Therefore the method depends

on the initial objective whereas we concentrate on the creation of a general set of

indistinguishable models. However, the motivation is similar. Namely, that alter-
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natives surrounding the baseline model up to a constant should be evaluated by

the uncertain agent. Hansen and Sargent use bounded entropy (i.e. with bounded

Kullback-Leibler divergence).

The several φ- (i.e. f -) divergences used as constraint or penalty to admit

model uncertainty is what we quantify in Section 4.4. The founder of these func-

tions, that measure the difference between two probability distributions, is Csiszár

(1963). Breuer and Csiszár (2013a) solve robust optimal control problems for sev-

eral divergences that they translate to the moment problem. However the deter-

mination of a plausible uncertainty parameter has to be chosen by hand.

The algorithm of removing implausible models from a prespecified set is de-

veloped by Hansen et al. (2011). This concept is called the Model Confidence Set

approach. This chapter’s contribution is the creation of the set of plausible models

at time zero without the need of introducing a set of possible models. Moreover,

the specification of the test statistic is circumvented.

It is possible to simply construct a confidence interval based on the estimated

parameter around the baseline model. However, the limitation is that only a very

specific class of models are considered. Namely only those models with parame-

ters that are supposed to be constant over the observation period. The alternative

models are models with other constant parameter values. In this chapter we would

like to consider alternative models with different structures explicitly, specifically

time-dependent and stochastic parameters. By this, the set of alternatives in-

corporates a large class of different models. Moreover, the confidence interval

approach performs the test ex post and imposes a Type I error to construct the

set of alternative models. We emphasis on the construction of a set of models ex

ante by imposing both the probability on the Type I and Type II errors.

4.1.2 Intuition

Our goal is to obtain the explicit characterisation of the set of indistinguishable

models based on statistical testing theory. We use the Neyman-Pearson Lemma

(Neyman and Pearson, 1933) to characterise a set of models that cannot be distin-

guished statistically from a baseline model. Therefore the set of indistinguishable

models can explicitly be obtained ex ante, for a given Type I and II error.

Suppose we have an optimisation problem which extends over the time interval

[0, T ]. With other words, suppose there would be T years of extra information

available. Our baseline model is specified on a filtered probability space
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(
Ω, {Ft}0≤t≤T ,P

)
, where P denotes the probability measure that corresponds

to our baseline model. The idea is that we define the plausible set of alterna-

tive models, as those models that cannot be distinguished statistically from the

baseline model if one would take the observations accumulated over [0, T ] into con-

sideration. In other words, we want to exclude ex ante (at time 0) those models

which could possibly be rejected by a statistical test procedure at time T with a

reasonable level of confidence. We want to use the most powerful tests possible,

which are likelihood ratio tests, as stated by the Neyman-Pearson Lemma.

4.2 Statistically Indistinguishable Models

Let us make our model set-up more specific. We assume that we are considering

models that can be described by diffusion processes. This means that we are

considering stochastic processes X that are described by stochastic differential

equations of the form

dX(t) = µ(t, ω) dt+ σ(t, ω) dW (t) (4.1)

For the specification of possible alternative models, we consider Brownian motion

with a (stochastic) drift process dW (t) +λ(t, ω) dt. The ω indicates that λ can be

stochastic and may depend on the whole historic path. Such an alternative model

specification of the Brownian motion can be captured as a change in probability

measure from P to a new probability measure Q. With slight abuse of notation

we will denote both the alternative model and the alternative probability measure

by Q.2

The likelihood ratio H0 : P versus HA : Q (based on the information over the

interval [0, T ]) is given by the value of the Radon-Nikodym derivative R(T ) at

time T . In our diffusion model setting, we know from Girsanov’s Theorem that

the likelihood ratio (i.e. the Radon-Nikodym derivative) is a stochastic process

R(t) = dQ
dP which is given by the stochastic differential equation

dR(t) = λ(t, ω)R(t) dWP(t) (4.2)

The superscript P denotes the probability measure we are considering. The solu-

2Note that P and Q do not represent the physical and risk-neutral measure respectively. P
stands for the baseline model and Q for the alternative.
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tion to the stochastic differential equation (4.2) can be represented as

R(T ) = exp

{
− 1

2

∫ T

0

λ(t, ω)2 dt+

∫ T

0

λ(t, ω) dWP(t, ω)

}
(4.3)

Hence, the value at time T of the likelihood ratio R(T, ω) is completely determined

by the realisation ω of a path of the Brownian motion
{
WP(t, ω)

}
0≤t≤T and the

process {λ(t, ω)}0≤t≤T of the alternative model Q along this path.

Based on the realised path of the Brownian motion at time T we could test

if model P should be rejected in favour of model Q. We are testing two simple

hypotheses, and the Neyman-Pearson Lemma tells us that the most powerful test

is a likelihood ratio test. The form of the optimal test procedure is that we

reject model P if R(T ) is larger than the critical value γ. The critical value γ is

determined by the equation

P[R(T ) ≥ γ] = α (4.4)

We set the critical value γ such that probability of incorrectly rejecting model P

when model P is the true model is equal to α. This is known as the Type I error.

The probability α is the significance level of the test, and is typically set at 0.05.3

We should also be worried about the Type II error: this is the error of in-

correctly rejecting model Q when model Q is the true model. This probability is

typically denoted by β and can be computed as

Q[R(T ) < γ] = β (4.5)

The complement of the Type II error is the probability of accepting model Q when

model Q is the true model. This is known as the power of the statistical test. The

power can be computed as

Q[R(T ) ≥ γ] = 1− β (4.6)

A typical value for β is 0.20, leading to a statistical power of 0.80.

The Type I and Type II probabilities can be computed ex ante at time 0 for

a given alternative model Q. The model selection procedure we propose is based

3Inclusion or exclusion of the equality sign in the expression R(T ) ≥ γ is potentially relevant
when there are point-masses in the probability distribution of R(T ). For ease of exposition,
we assume that this is not the case. When we do have point-masses we can still handle this
mathematically by considering randomised tests.
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on the Type II error of the likelihood ratio test. The intuition is a follows. For

small values of λ(t, ω) we will have a model Q that is “close” to the baseline model

P. This closeness can be identified by the fact that the likelihood ratio R(T ) will

be a random variable with a probability distribution tightly concentrated around

the value R(T ) = 1. Even though we can define a critical value γ for any model

Q, for models that are “close” there will be almost no difference between the P-

probability and the Q-probability of the event R(T ) ≥ γ. Hence, the power of the

statistical test will be very low. In the limiting case when P = Q the power of the

(randomised) likelihood ratio test will be as low as α.

Hence, our model selection criterion will include all models for which the statis-

tical power Q[R(T ) ≥ γ] is below 1−β. We consider these models to be statistically

indistinguishable from the baseline model P. By imposing the α, for each devia-

tion λ the critical value γ is defined. If the associated power is too high the λ is

excluded from the set of indistinguishable models and vice versa.

We can express Q[R(T ) ≥ γ] also as EP[R(T )1(R(T ) ≥ γ)], and we ob-

tain an interpretation for the P-expectation as the Tail-Value-at-Risk (TVaR)

or Conditional-Value-at-Risk (CVaR) of the random variable R(T ) with a con-

fidence level of α. Hence, if we put an upper bound of 1 − β on the power of

the likelihood ratio test, this is equivalent to restricting the TVaR of the Radon-

Nikodym derivative R(T ) to 1 − β. TVaR is a coherent risk measure (Artzner

et al. (1999) and Rockafellar and Uryasev (2000, 2002)), which has attractive

properties. For example, the acceptance set (that is the set of all R(T ) for which

TVaR(R(T )) ≤ 1− β) is a closed convex set. Hence, we obtain immediately that

our set of indistinguishable models is also a closed convex set.

For deterministic λ(t) we can compute everything explicitly, though our main

goal is to find the set of indistinguishable models for stochastic λ(t, ω). To illustrate

our general idea we first consider the deterministic case.

4.2.1 Deterministic Drift Term

When mother nature is only allowed to use alternative models with a deterministic

drift term λ(t), we can compute the probability distribution of the Radon-Nikodym

derivative defined in equation (4.2) explicitly. For this case we obtain

R(T ) = exp

{
− 1

2

∫ T

0

λ(t)2 dt+

∫ T

0

λ(t) dWP(t)

}
(4.7)
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4 Indistinguishable Models

In particular, lnR(T ) has a normal distribution with mean − 1
2

∫ T
0
λ(t)2 dt and

variance
∫ T

0
λ(t)2 dt. The likelihood ratio test procedure R(T ) ≥ γ is equivalent

to performing a test on the statistic

r(T ) =

∫ T

0

λ(t) dWP(t) (4.8)

This test statistic is intuitively appealing: we compute the inner product between

the model-drift λ(t) and the realised changes dW (t) in the Brownian motion along

the whole path [0, T ]. Every time λ(t) and dW (t) have the same sign, this increases

the value of r(T ). Hence, if model Q is true, then r(T ) will on average have a

positive value. Ex post, the realisation of the path of W (T ) is observed and

indicates the likelihood whether it was generated by model P or Q. However, ex

ante the test will not be conducted but rather serves as a hypothetical test. Note

that before time T the test statistic is a random variable.

The test statistic r(T ) (under model P) has a normal distribution with mean 0

and variance
∫ T

0
λ(t)2 dt. The hypothesis P is rejected if r(T ) ≥ γ. By imposing a

significance level α the critical value γ can be derived analytically. Under the alter-

native model Q the test statistic has a normal distribution with mean
∫ T

0
λ(t)2 dt

and variance
∫ T

0
λ(t)2 dt. The power of the test can be computed explicitly as

Q[r(T ) ≥ γ] = Φ

Φ−1(α) +

(∫ T

0

λ(t)2 dt

) 1
2

 (4.9)

For the case λ(t) ≡ 0 we see that the power is Φ
(
(Φ−1(α)

)
= α. For non-zero

values of λ(t) the expression (
∫ T

0
λ(t)2 dt)

1
2 is strictly positive and therefore the

power will be larger than α. If we consider all models with a power below 1 − β
as indistinguishable, then the class of indistinguishable models (with deterministic

λ(t)) is given by all models for which the L2-norm (
∫ T

0
λ(t)2 dt)

1
2 is below a certain

threshold.

If we take for example α = 0.05, then Φ−1(α) = −1.64. If we take β = 0.20

then the power is 0.80 and we have Φ−1(0.80) = 0.84. Hence, the class of all

indistinguishable models is then given by all models that satisfy (
∫ T

0
λ(t)2 dt)

1
2 ≤

0.84− (−1.64) = 2.48, if one would have T years of extra data.

The deterministic example we have formulated can be generalised easily to the

multi-dimensional case. For a vector-valued Brownian motion all alternative mod-
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4.3 Stochasticity and Time-Consistency

els are specified by the deterministic vector-valued process λ(t). The test statistic

r(t) is then given by

r(T ) =

∫ T

0

λ(t) · dWP(t) (4.10)

This is also a random variable with mean 0 and variance
∫ T

0
|λ(t)|22 dt, where |λ(t)|2

denotes the L2-norm of the vector λ(t). Hence, in the multi-dimensional case the

set of indistinguishable models is given by all models for which (
∫ T

0
|λ(t)|22 dt)

1
2 is

below the same threshold as in the one-dimensional case (e.g. 2.48/
√
T ). We may

choose the power dependent on the number of dimensions.

4.2.2 Stochastic Drift Term

The deterministic λ(t) serves as an intuitive illustration, but our ambition is to con-

sider a much larger class of alternative models: λ(t, ω). If we allow for stochastic

λ(t, ω) then a very large class of alternative models is accessible over an interval

[0, T ]. By the Martingale Representation Theorem any probability distribution

(with support on whole <) can be attained over an interval [t, t+ ε] with ε > 0.

Let us consider a model with stochastic λ(t, ω). Suppose we consider the

random variable

R(T ) := e−
1
2
a2T cosh(aW (T )) = 1

2

(
e−

1
2
a2T+aW (T ) + e−

1
2
a2T−aW (T )

)
(4.11)

which is strictly positive and has expectation E[R(T )] = 1. Hence, this is a

valid Radon-Nikodym derivative. This R(T ) corresponds to a Q-model where the

probability distribution of W (T ) at time T is given by a mixture distribution of two

normal distributions with mean +aT and −aT , the same variance T , and mixing

probabilities 1
2
. Note that this mixture distribution is not a normal distribution,

and has mean 0 and variance equal to T + (aT )2 (see Appendix 4.A), which is

larger than the variance T under the P-model. Hence, mother nature considers

alternatives with fatter tails relative to the baseline. Mean-repelling processes are

plausible models in finance and economics.

Although this is a very simple example, it shows explicitly that with a stochastic

λ(t, ω) we can fundamentally alter the properties of the probability distribution of

W (T ), beyond only changing the mean of the normal distribution.
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4 Indistinguishable Models

4.3 Stochastic and Time-Consistent Set of Indis-

tinguishable Models

The deterministic case and the stochastic example served as an illustration of our

approach. However, we are interested in the generalisation of this method. In

other words, we would like to allow for a wide class of alternative models. Since

stochastic alternatives can lead to fundamentally different models, we would like to

characterise the set of stochastic alternative models surrounding the baseline model

that are indistinguishable based on an insufficient power and sufficient probability

on the Type I error.

4.3.1 Time-Consistency

One of the main motivations for studying the set of statistically indistinguishable

sets are robust solutions to stochastic optimal control problems in economics and

in financial markets.

When we are solving optimal control problems, we want to consider solutions

that are time-consistent. This means that the optimal solution at any time-point

0 < t < T does not depend on the history of the process between [0, t]. In other

words, the optimal policy devised at time 0 for the interval [0, T ] is still valid at

time t given the information Ft.

The set of indistinguishable models we have defined thus far is not time-

consistent: the set is defined as those models that have sufficiently low power

at time T using the information over the whole path [0, T ]. We have established

in Section 4.2 that the set of indistinguishable models defines a coherent risk mea-

sure. But, this risk measure is not time-consistent since it is “static” at time 0

and at time 0 < t < T there is no connection between the Type I and II errors

and the characterisation of the set of alternative models.

However, we can look at a smaller class of risk measures: the class of time-

consistent risk measures. This class has been extensively studied in recent years,

and we know how to characterise this class of risk measures. Delbaen (2006)

proves that time-consistent (coherent and convex) risk measures are generated

by m-stable sets of probability measures. A similar structure (albeit with less

mathematical rigour) was already proposed by Epstein and Schneider (2003). An

alternative characterisation of time-consistent risk measures has been provided by

Gianin (2006). She proves that every time-consistent risk measure is equivalent
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4.3 Stochasticity and Time-Consistency

to a g-expectation Eg[]. These non-linear g-expectations can be computed as

the solution of a backward stochastic differential equation (BSDE) with a driver

g(t, Y, Z). A further characterisation has been provided by Barrieu and El Karoui

(2009): they prove that time-consistent coherent risk measures are generated by

drivers g(t, Z) that satisfy a Lipschitz growth constraint in Z, and time-consistent

convex risk measures are generated by drivers that satisfy a quadratic growth

constraint in Z.

Hence, we propose to intersect the class of indistinguishable models (which are

coherent, but not time-consistent) with the collection of time-consistent coherent

risk measures. Since the objective can be interpreted as the coherent risk measure

TVaR/CVaR. We then obtain the set of time-consistent indistinguishable mod-

els. The question is now: how can we obtain an explicit characterisation of this

intersection?

4.3.2 Maximum Power Calculation

We obtain an explicit characterisation in the following way. The class of time-

consistent coherent risk measures are generated by BSDE’s with drivers that satisfy

the Lipschitz growth condition g(t, Y, Z) ≤ k|Z|. This is equivalent to the class

of Radon-Nikodym derivatives with kernels |λ(t, ω)| ≤ k (Barrieu and El Karoui,

2009).

We want to investigate the maximum power that can be achieved within the

class of Radon-Nikodym derivatives with |λ(t, ω)| ≤ k, such that the Type I error

is equal to α. We can formulate this as a stochastic optimisation problem of the

form

max
γ,|λ(t,ω)|≤k

E [R(T )1(R(T ) ≥ γ)] (MP)

s.t. E [1(R(T ) ≥ γ)] = α

dR = λ(t, ω)RdW,R0 = 1

The objective function is the power of the test R(T ) ≥ γ formulated as a

P-expectation. The second line gives the Type I error (also formulated as a

P-expectation), the third line describes the stochastic process for the Radon-

Nikodym derivative given the control variable λ(t, ω). The optimisation problem

is non-convex due to the indicator function. Since it is easier to work with convex
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4 Indistinguishable Models

functions, we introduce the auxiliary function

Fα(R, γ) = αγ + E
[
(R− γ)

+
]

(4.12)

= αγ + E [R1(R(T ) ≥ γ)]− γE [1(R(T ) ≥ γ)]

= E [R1(R(T ) ≥ γ)] + (α− E [1(R(T ) ≥ γ)]) γ

where (R− γ)+ denotes max(R− γ, 0). The functional Fα(R, γ) is convex in and

continuous as a function in γ ∈ R and R(T ) ∈ L2(T ) : E[R(T )2] <∞. This is also

shown by Rockafellar and Uryasev (2000, 2002) who introduce a similar auxiliary

function to minimise the Conditional-Value-at-Risk (CVaR).

In order to solve the constrained optimisation problem (MP) we solve

max
|λ(t,ω)|≤k

min
γ

Fα(R, γ) (MaMi)

s.t. dR = λ(t, ω)RdW

The optimisation (MaMi) is equivalent to (MP), this is proven by Rockafellar and

Uryasev (2000, 2002). They prove that the CVaR can be obtained by rewriting the

optimisation problem in terms of a convex auxiliary function. The Type I error

constraint is satisfied by minimisation of the auxiliary function over γ

∂Fα(R, γ)

∂γ
= α− E [1(R(T ) ≥ γ)] = 0 (4.13)

Since Fα(R, γ) is convex in γ, the extreme value is a minimum. In particular, after

minimisation we have

min
γ
Fα(R, γ) = min

γ
E [R(T )1(R(T ) ≥ γ)] + (α− α) γ (4.14)

= E [R(T )1(R(T ) ≥ γ)]

This is the power that we would like to maximise. Henceforth, we continue by

maximising the minimised Fα(R, γ). However, because this is nontrivial we would

prefer to change the order of the optimisation. Solving the initial nonconvex opti-

misation problem is identical with solving the max-min. The optimal value from

the (MaMi) is always lower than or equal to the reversed order of the optimisation,

by the max-min inequality.
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4.3 Stochasticity and Time-Consistency

Let (MiMa) be

min
γ

max
|λ(t,ω)|≤k

Fα(R, γ) (MiMa)

s.t. dR = λ(t, ω)RdW

Then, we can summarise the relations between the different optimisation formu-

lations by

(MP) = (MaMi) ≤ (MiMa) (4.15)

If we solve the (MiMa) we find an upper bound on (MaMi) and (MP). First we

solve the (MiMa). In specific, we start with the inner maximisation problem

max
|λ(t,ω)|≤k

Fα(R, γ) (4.16)

s.t. dR = λ(t, ω)RdW

The inner maximisation is solved by formulating it as a Hamilton-Jacobi-Bellman

(HJB) problem. Note that for every fixed γ ∈ R the function Fα(R, γ) is convex

in R. We introduce the value function V (t, r, γ) = E[Fα(R(T ), γ)|R(t) = r] with

boundary condition V (T, r, γ) = Fα(R(T ), γ).

For any value of α and γ the optimised function V (t, r, γ) with respect to λ(t, ω)

for t ≤ T solves the HJB-equation

Vt + max
|λ(t,r)|≤k

1
2
λ(t, r)2r2Vrr = 0 (4.17)

Optimal control problems of this sort have been studied in the literature in the con-

text of uncertain volatility models (Avellaneda et al. (1995) and Vanden (2006)),

and are called Black-Scholes-Barenblatt equations. The general solution is

|λ∗(t, r)| =

k for Vrr(t, r, γ) ≥ 0

0 for Vrr(t, r, γ) < 0
(4.18)

We propose |λ(t, ω)| = k as candidate solution. The analytical expression for the

value function is

V (t, r, γ) = αγ + rN(d1)− γN(d2) (4.19)

where d1 = 1
k
√
T−t

(
ln
(
r
γ

)
+ 1

2k
2(T − t)

)
and d2 = d1 − k

√
T − t. This function
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4 Indistinguishable Models

solves the HJB-equation for the boundary condition. The value function is convex

as

Vrr(t, r, γ) =
n(d1)

rk
√
T − t

≥ 0 ∀ r, t < T (4.20)

where n(·) is the standard normal density function.

The Verification Theorem 11.2.2 of Øksendal (2003) states that if V (t, r, γ)

is uniformly integrable then a solution of the HJB is an optimal control. The

value function V (t, r, γ) is indeed uniformly integrable. Since R(T ) itself is uni-

formly integrable for all λ(t, ω), consequently also the partial moment V (t, r, γ) =

E[Fα(R, γ)|R(t) = r] is uniformly integrable. The Radon-Nikodym derivative is

uniformly integrable because the expectation E[R(T )2] ≤ ek2T <∞ as |λ(t, ω)| ≤
k. Thus |λ(t, ω)| = k is an optimal control that leads to the maximum power of

(4.16).

The optimal value function is V (0, 1, γ) = E [Fα(R(T ), γ)|F0] = αγ+

E [(R(T )− γ)+|R(0) = 1]. Hence, this is the optimal power and can be interpreted

as a log-normal expectation equal to a constant plus the expected value of a Black-

Scholes call option.

The remaining part is the outer minimisation

min
γ
V (0, 1, γ) (4.21)

This simple calculation leads to the optimal γ∗ to be the (1−α)-quantile of the log-

normal R(T ). This proves that the Radon-Nikodym derivative with |λ(t, ω)| ≡ k

for all 0 ≤ t ≤ T achieves the highest possible power within the constraint on

the Type I error. Note that the log-normal Radon-Nikodym derivative is not

the unique solution that leads to the optimum. Though all that is needed is the

optimal value of the norm of λ(t, ω) which is unique.

We can conclude that the upper bound on (MaMi) is the log-normal power of

(MiMa). The original problem (MP) is equivalent (MaMi). Since |λ∗(t, R∗)| = k

is a feasible solution of the original problem, the upper bound on the power is

attained. Hence, the inequality between (MaMi) and (MiMa) becomes an equality

and the maximum power possible is obtained for |λ∗(t, R∗)| = k. �

Based on the derivation for the maximum power, all λ(t, ω)s that yield a lower

power are indistinguishable. We summarise this in Theorem 4.1.
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4.3 Stochasticity and Time-Consistency

Theorem 4.1 (Sets of indistinguishable models)

The set of time-consistent models on [0, T ] with

|λ(t, ω)| ≤ Φ−1(1− β)− Φ−1(α)√
T

(4.22)

is indistinguishable from the baseline model for a Type I error of α and a Type II

error of β.

Proof of Theorem 4.1 Given that the optimal R∗(T ) is a log-normal martingale

with volatility k, then the optimal value for γ is equal to the (1 − α)-quantile of

R∗(T ). The optimised power at time t = 0 with R(0) = 1 is therefore equal to

E
[
R∗(T )1

(
R∗(T ) ≥ γ∗

)]
= Q [R∗(T ) ≥ γ∗] = Φ

(
Φ−1(α) + k

√
T
)

(4.23)

If we want to construct a class of time-consistent coherent risk measures with

stochastic λ(t, ω) such that every element in the class is statistically indistin-

guishable, then a sufficient condition is to choose a k such that the “worst-case”

power (4.23) does not exceed (1− β). �

If we set α = 0.05 and β = 0.20, Theorem 4.1 implies that all λ(t, ω)’s are

considered as plausible alternatives that are in between −2.48/
√
T and 2.48/

√
T .

All previous derivations also hold for vector Brownian motions and vector λ(t, ω).

The multivariate equivalent is a bound on the L2-norm; |λ(t, ω)| ≤ 2.48√
T

.

4.3.3 Sufficiency

The log-normal Radon-Nikodym derivative with maximal power for stochastic

alternatives is a sufficient rather than a necessary condition. This implies that

there exist alternative models with a norm above k and still admit a power below

1 − β. For deterministic deviations the log-normal solution is both sufficient and

necessary. Henceforth, larger deviations are allowed in the set of indistinguishable

models.

The stochastic example of Section 4.2.2 illustrates that the bound on the norm

of the stochastic alternatives is a sufficient condition to determine the set of indis-

tinguishable models. For the hyperbolic cosine as choice for R(T ) we can explicitly

compute the conditional expectation R(t) = EP[R(T )|Ft] = e−
1
2
a2t cosh(aW (t)).
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If we apply Itô’s Lemma to R(t) we obtain the stochastic differential equation

dR(t) = ae−
1
2
a2t sinh(aW (t))dW (t) = a tanh

(
aW (t)

)
R(t)dW (t) (4.24)

Hence, this Radon-Nikodym derivative corresponds to a model where λ(t, ω) =

a tanh(aW (t)). For positive values of W (t) we have a positive and increasing drift,

and the drift is bounded by +a. For negative values of W (t) we have a negative

and increasing drift, and the drift is bounded by −a. Hence, the alternative model

Q is a “mean-repelling” process, which will increase the variance of W (T ) under

model Q.

The likelihood ratio test will reject model P if R(T ) ≥ γ. As cosh(aW (T )) is

symmetric around W (T ) = 0 and strictly increasing in |W (T )/
√
T |, the rejection

set defined by R(T ) ≥ γ is equivalent to the rejection set |W (T )/
√
T | ≥ γ′. If we

want to test at a significance level of α = 0.05 then γ′ = −Φ−1(α/2) = 1.96.

The power of the likelihood ratio test can be computed as Q[|W (T )/
√
T | ≥ γ′]

which can be expressed as EQ[1(|W (T )/
√
T | ≥ γ′)] = EP[R(T )1(W (T )/

√
T ≥

γ′)] + EP[R(T )1(W (T )/
√
T ≤ −γ′)]. A direct computation of the expectations

yields

Q
[
|W (T )/

√
T | ≥ γ′

]
= Φ

(
Φ−1(α/2) + a

√
T
)

+ Φ
(
Φ−1(α/2)− a

√
T
)

(4.25)

see Appendix 4.B for the full derivation. If we solve this last equation (numerically)

for a
√
T with α = 0.05 and 1 − β = 0.80 then we find a

√
T = 2.80. Hence, for

the tanh example we find the result that all models that are indistinguishable

from the baseline model a = 0 are given by |a
√
T | ≤ 2.80. This set is larger

than the “constant lambda” set |λ
√
T | ≤ 2.48. Thus the conclusion for this

example is that the bound |λ
√
T | ≤ 2.48 gives a sufficient condition for statistical

indistinguishability.

4.4 Bounds on Divergences

Ben-Tal et al. (2013) discuss several possible divergences (non-symmetric distance

measures) to generate robust results in optimisation problems. φ-Divergence (or f -

divergence) functions measure the distance between two probability distributions

weighted by the specific function. The choice which measure should be picked is

an unanswered issue in their and many other papers, plus the question when the

distance is too far is rarely investigated. In this chapter we explicitly focus on the
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size of the set of alternatives. We can directly link this to a critical value for each

measure. Note that Ben-Tal et al. (2013) consider the discrete versions, (4.26),

whereas we consider the continuous divergences, (4.27) and (4.28), as a function of

the Radon-Nikodym derivative. The numerical value for the set of time-consistent

models that cannot be distinguished between with a Type I error of 5% and a

power less than 80% is displayed in the last column of Table 4.1. The derivations

can be found in Appendix 4.C.

The general discrete φ-divergence is defined as

Dφ(p, q) =
m∑
i=1

qiφ

(
pi
qi

)
(4.26)

We use the continuous version

Dφ(p, q) = EQ
[
φ

(
1

R(T )

)]
(4.27)

= EP
[
R(T )φ

(
1

R(T )

)]
(4.28)

where the functions for φ(·) are given for each measure and by definition φ(·) is

convex. Note that we use φ̃(t) = tφ
(

1
t

)
which are, for the divergences considered,

convex as well as every φ̃ coincides with a φ. The variable t is set here to R(T ).

The lay-out of the proof for each divergence function is similar as the proof of the

maximum power calculation. First we postulate the log-normal Radon-Nikodym

derivative as candidate solution. Then the analytical expression for the value

function is used to prove its convexity, which implies that the proposed solution

|λ(t, ω)| = k solves the HJB. By the Verification Theorem 11.2.2 of Øksendal

(2003) and the uniform integrability of the value function the optimal control is

obtained. �
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Table 4.1: φ-Divergences

Divergence φ(t) for |λ(t, ω)| = k k
√
T = 2.48

Kullback-Leibler t ln t− t+ 1 1
2k

2T 3.08
Burg entropy − ln t+ t− 1 1

2k
2T 3.08

J-divergence (t− 1) ln t k2T 6.15

χ2-distance 1
t (t− 1)2 ek

2T − 1 467.90

Modified χ2-distance (t− 1)2 ek
2T − 1 467.90

Hellinger distance (
√
t − 1)2 2− 2e−

1
8k

2T 1.07

Variation distance |t− 1| 4N( 1
2k
√
T )− 2 1.57

χ-divergence of order θ > 1 |t− 1|θ − see Table 4.2

Cressie-Read θ 6= 0, 1 1−θ+θt−tθ
θ(1−θ) see below see Table 4.2

Both the χ-divergence of order θ > 1 and the Cressie-Read divergence depend

on the additional parameter θ. The Cressie-Read divergence can analytically be

expressed by

1

θ(1− θ)

(
1− e−

1
2k

2θ(1−θ)T
)

(4.29)

and the χ-divergence can be derived analytically for integer values of θ as well.

For k
√
T = 2.48 we get the bounds on both measures displayed in Table 4.2.

Table 4.2: Numerical bounds

Divergence θ 1.5 2.0 2.5 3.0
χ-divergence of order θ 10.40 467.90 1.02 ×106 1.03 ×108

Cressie-Read 12.05 233.95 2.72×104 1.72 ×107

Possible applications of these measures are optimal control problems where the

agent is worried about possible misspecification of the baseline model. The uncer-

tainty could be described by an additional constraint such that the Kullback-

Leibler divergence between the baseline model and all alternatives has to be

bounded. The cutoff point to differentiate plausible alternatives from implau-

sible ones is what we derived. If one would impose a probability of incorrectly

rejecting the baseline model of 5% and if one would need at least a power of 80%

to correctly accept the alternative, then for all models that yield a lower power,

the information is insufficient to distinguish between P and Q. Hence the cutoff

point on the Kullback-Leibler divergence equals 3.08. The same reasoning holds

for the other divergences.
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4.5 Conclusion

By imposing probabilities on the Type I and II error of the likelihood ratio test,

we are able to quantify uncertainty explicitly. Hence if an agent acknowledges that

his model might be misspecified, he would like to evaluate the optimal decision

rule against the worst-case model among the plausible alternatives to incorporate

robustness. Applications that build upon the uncertainty need the specific set

of indistinguishable models. Examples can be found on a wide range to price

and hedge in incomplete markets, for instance long-dated insurance contracts or

illiquid assets.

We used the Neyman-Pearson Lemma to characterise a set of models that

cannot be distinguished statistically from a baseline model. Both deterministic

and time-consistent stochastic alternatives are proven to have maximal power for

a log-normal Radon-Nikodym derivative with bounded volatility. Allowing for

stochastic alternatives yields a tremendous enlargement of the class of alternative

models that will be considered to be indistinguishable. The set of indistinguishable

models can explicitly be obtained ex ante, for given Type I and II probabilities.

The result can be linked to quantify bounds on φ-divergences such as the Kullback-

Leibler divergence.
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4.A Variance Hyperbolic Cosine

Test

H0 : P versus HA : Q

H0 : W (T ) versus HA : W (T ) +

∫ T

0

λ(s, ω)ds (4.30)

Where W (T ) ∼ N(0, T ). The moment generating function is

MP(t) = EP
[
etW (T )

]
= e

1
2Tt

2

E [W (T )] =
∂M

∂t
(0) = Tte

1
2Tt

2

∣∣∣∣
t=0

= 0

E
[
W (T )2

]
=
∂2M

∂t2
(0) = T 2t2e

1
2Tt

2

+ Te
1
2Tt

2

∣∣∣∣
t=0

= T (4.31)

And under Q

MQ(t) = EP
[
etW (T )R(T )

]
= EP

[
etW (T ) 1

2

(
e−

1
2
a2T+aW (T ) + e−

1
2
a2T−aW (T )

)]
= 1

2

(
e−

1
2
a2T+(a+t)2

1
2T + e−

1
2
a2T+(−a+t)2

1
2T

)
E [W (T )] =

∂M

∂t
(0) = 1

2

(
(a+ t)Te−

1
2
a2T+(a+t)2

1
2T

)
+

1
2

(
(−a+ t)Te−

1
2
a2T+(−a+t)2

1
2T

) ∣∣∣∣
t=0

= 0

E
[
W (T )2

]
=
∂2M

∂t2
(0) = 1

2

(
(a(a+ t)T 2 + T )e−

1
2
a2T+(a+t)2

1
2T

)
+

1
2

(
(−a(−a+ t)T 2 + T )e−

1
2
a2T+(−a+t)2

1
2T

) ∣∣∣∣
t=0

= (aT )2 + T (4.32)
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4.B Power Hyperbolic Cosine

4.B Power Hyperbolic Cosine

Under Q the probability distribution of W (T )/
√
T is the mixture distribution

W (T )/
√
T ∼ 1

2N(a
√
T , 1) + 1

2N(−a
√
T , 1). Then

Q
[
|W (T )/

√
T | ≥ γ′

]
= Q

[
W (T )/

√
T ≥ γ′

]
+Q

[
W (T )/

√
T ≤ −γ′

]
Q
[
W (T )/

√
T ≥ γ′

]
= 1

2Q
[
W (T )/

√
T − a

√
T ≥ γ′ − a

√
T
]

+

1
2Q
[
W (T )/

√
T + a

√
T ≥ γ′ − a

√
T
]

= 1
2Q
[
W (T )/

√
T − a

√
T ≤ −γ′ + a

√
T
]

+

1
2Q
[
W (T )/

√
T + a

√
T ≤ −γ′ + a

√
T
]

= 1
2Φ(−γ′ + a

√
T ) + 1

2Φ(−γ′ − a
√
T )

Q
[
W (T )/

√
T ≤ −γ′

]
= 1

2Q
[
W (T )/

√
T − a

√
T ≤ −γ′ − a

√
T
]

+

1
2Q
[
W (T )/

√
T + a

√
T ≤ −γ′ − a

√
T
]

= 1
2Φ(−γ′ − a

√
T ) + 1

2Φ(−γ′ + a
√
T )

Since λ(t, ω) = a tanh(aW (t)) and we derived that |a
√
T | ≤ 2.80, it follows that

|a| ≤ 2.80/
√
T . Because −a ≤ a tanh(aW (t)) ≤ a, the necessary condition can be

compared with the sufficient condition |λ
√
T | ≤ 2.48.

4.C Divergences

4.C.1 Kullback-Leibler

The Kullback-Leibler divergence (also known as entropy) is defined as

D (P‖Q) = EP[− lnR(T )− 1 +R(T )] = EQ
[
− lnR(T ) + 1−R(T )

R(T )

]
(4.33)

We want to investigate the maximum entropy that can be achieved within the

class of Radon-Nikodym derivatives with |λ(t, ω)| ≤ k. We can formulate this as

a stochastic optimisation problem of the form

max
|λ(t,ω)|≤k

E [− lnR(T )− 1 +R(T )] (4.34)

s.t. dR = λ(t, ω)RdW
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4 Indistinguishable Models

This optimisation problem admits the following HJB representation. If we set

V (t, r) := E [− lnR(T )− 1 +R(T ) | R(t) = r], then the optimised value function

V (t, r) for t ≤ T is given by the HJB-equation

Vt + max
|λ(t,r)|≤k

1
2
λ(t, r)2r2Vrr = 0 (4.35)

The terminal condition V (T, r) = − ln r − 1 + r is a convex payoff in r. Hence

we propose |λ(t, ω)| = k to solve the HJB. The implied value function for the

candidate solution is

V (t, r) = − ln r + 1
2k

2(T − t)− 1 + r (4.36)

This function solves the HJB-equation for the boundary condition and maximises

the objective in (4.35) as V is convex in r. Similarly as in the maximum power

calculation in Section 4.3.2, the value function V (t, r) is uniformly integrable and

thus the optimal control is |λ(t, ω)| = k. Hence, the log-normal Radon-Nikodym

derivative with |λ(t, ω)| ≡ k for all 0 ≤ t ≤ T achieves the maximal entropy of

V (0, 1) = 1
2
k2T . Thus we can characterise the class of time-consistent indistin-

guishable models with |λ(t, ω)| ≤ 2.48/
√
T by the implied maximum attainable

entropy of 1
2
(2.48)2 = 3.08.

4.C.2 Burg Entropy

Burg entropy or also called minimum discrimination information is defined as

D (Q‖P) = EQ[lnR(T ) +
1

R(T )
− 1] = EP[R(T ) lnR(T ) + 1−R(T )] (4.37)

We can formulate this as a stochastic optimisation problem of the form

max
|λ(t,ω)|≤k

E [R(T ) lnR(T ) + 1−R(T )] (4.38)

s.t. dR = λ(t, ω)RdW

This optimisation problem admits the following HJB representation. If we set

V (t, r) := E [R(T ) lnR(T ) + 1−R(T ) | R(t) = r], then the optimised value func-

tion V (t, r) for t ≤ T is given by the HJB-equation

Vt + max
|λ(t,R)|≤k

1
2
λ(t, r)2r2Vrr = 0 (4.39)
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4.C Divergences

As the terminal condition V (T, r) = r ln r+1− r is a strictly convex function in r,

we can follow the same procedure as the proof of the maximum power and entropy

calculation. The log-normal Radon-Nikodym derivative with |λ(t, ω)| ≡ k for all

0 ≤ t ≤ T achieves the maximal Burg entropy of V (0, 1) = 1
2
k2T . Since for q ∈ R

E [R(T )q | Ft] = E
[
rqe−

1
2
qk2(T−t)+qk(WP(T )−WP(t)

∣∣∣ Ft

]
(4.40)

= rqe
1
2
k2(T−t)(q2−q)

The derivative with respect to q on both sides leads to

∂E [R(T )q | Ft]

∂q
= E [R(T )q lnR(T ) | Ft] (4.41)

∂rqe
1
2
k2(T−t)(q2−q)

∂q
= rq ln re

1
2
k2(T−t)(q2−q) +

rqe
1
2
k2(T−t)(q2−q) 1

2
k2(T − t)(2q − 1)

For q = 1 we get V (t, r) = r
(
ln r + 1

2k
2(T − t)

)
+1−r. Hence, we can characterise

the class of time-consistent indistinguishable models with |λ(t, ω)| ≤ 2.48/
√
T by

the implied maximum attainable Burg entropy of 1
2
(2.48)2 = 3.08.

4.C.3 J-Divergence

Jeffreys’(1946) J-divergence is D (P‖Q) +D (Q‖P) which equals EP[− lnR(T )] +

EP[R(T ) lnR(T )]. We can formulate this as a stochastic optimisation problem of

the form

max
|λ(t,ω)|≤k

E [− lnR(T )] + E [R(T ) lnR(T )] (4.42)

s.t. dR = λ(t, ω)RdW

Again the associated value function is convex in r at terminal time T , V (T, r) =

(r − 1) ln r. The log-normal candidate leads to V (t, r) = (r − 1) ln r + 1
2k

2(T −
t)(r + 1), and hence the maximum J-divergence is obtained for V (0, 1) = k2T =

(2.48)2 = 6.15.
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4 Indistinguishable Models

4.C.4 χ2-Distance

Actually for all ∂2φ(r)
∂r2 ≥ 0 the associated value function is convex for r > 0

and hence |λ(t, ω)| = 2.48/
√
T leads to the maximum attainable distance. The

P-expectation of the χ2-distance is

EP
[
R(T )φ

(
1

R(T )

)]
= EP

[
R(T )2 − 2R(T ) + 1

]
(4.43)

= EP
[
R(T )2

]
− 2EP [R(T )] + 1

For the associated optimisation problem the HJB representation is similar as the

ones before. If we set V (t, r) := E
[
R(T )2 − 2R(T ) + 1

∣∣ R(t) = r
]
, then the ter-

minal condition V (T, r) = r2−2r+1 is convex. For |λ(t, ω)| = k the value function

is

V (t, r) = r2ek
2(T−t) − 2r + 1 (4.44)

V (0, 1) = e2.482

− 1 = 467.90

4.C.5 Modified χ2-Distance

The objective function of the modified χ2-distance under P is

EP
[
R(T )φ

(
1

R(T )

)]
= EP

[
1

R(T )
− 2 +R(T )

]
(4.45)

The value function is V (t, r) := EP
[

1
R(T ) − 2 +R(T )

∣∣∣ R(t) = r
]

which has a con-

vex terminal condition. For the log-normal Radon-Nikodym derivative the modi-

fied χ2-distance’s value function is

V (t, r) =
1

r
ek

2(T−t) − 2 + r (4.46)

Henceforth, V (0, 1) = ek
2T − 1 = 467.90 is the bound that includes the indis-

tinguishable models for a 5% probability that a Type I error occurs and have a

power less than 80%. In order to derive (4.46) we applied Itô’s Lemma, d
(

1
R(t)

)
=

1
R(t)

(
k2dt− kWP(t)

)
.
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4.C Divergences

4.C.6 Hellinger Distance

The Hellinger distance equals

EP
[
R(T )φ

(
1

R(T )

)]
= EP

[
1− 2

√
R(T ) +R(T )

]
(4.47)

The associated value function is V (t, r) := EP
[
1− 2

√
R(T ) +R(T )

∣∣∣ R(t) = r
]
.

Since √
R(T ) =

√
R(t)e−

1
4k

2(T−t)+ 1
2k(WP(T )−WP(t)) (4.48)

d
√
R(T ) = − 1

8k
2
√
R(t)dt+ 1

2k
√
R(t)dWP(t)

The optimal control solves for |λ(t, ω)| = k

V (t, r) = 1− 2
√
re−

1
8k

2T + r (4.49)

V (0, 1) = 1.07

4.C.7 Variation Distance

The variation distance can be decomposed into a call and put option and is defined

as follows

EP
[
R(T )φ

(
1

R(T )

)]
= EP

[∣∣∣∣ 1

R(T )
− 1

∣∣∣∣R(T )

]
(4.50)

= EP
[
max

(
1

R(T )
− 1, 0

)
R(T )

]
+

EP
[
max

(
1− 1

R(T )
, 0

)
R(T )

]
= EP [max (1−R(T ), 0)] + EP [max (R(T )− 1, 0)]

The objective is convex by convexity of the max-operator. The associated value

function is V (t, r) := EP
[∣∣∣ 1
R(T ) − 1

∣∣∣R(T )
∣∣∣ R(t) = r

]
. Therefore we propose

dR(t) = kR(t)dWP(t) for the value function

V (t, r) = N(d1)r −N(d2) +N(−d2)−N(−d1)r (4.51)

d1 =
1

k
√
T − t

(
ln r + 1

2k
2(T − t)

)
d2 = d1 − k

√
T − t
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4 Indistinguishable Models

The second derivative is positive thus the optimal value is obtained for

V (0, 1) = N(d1)−N(d2) +N(−d2)−N(−d1) (4.52)

d1 = 1
2k
√
T

d2 = −d1

N(−d1) = 1−N(d1)

V (0, 1) = 4N(d1)− 2

For d1 = 1
2k
√
T = 1.24, the bound on the variation distance is V (0, 1) = 1.57.

4.C.8 χ-Divergence of Order θ > 1

For general θ strictly above 1 the χ-divergence can only be solved numerically,

though for integers analytically. The divergence functions is defined by

EP
[
R(T )φ

(
1

R(T )

)]
= EP

[∣∣∣∣ 1

R(T )
− 1

∣∣∣∣θ R(T )

]
(4.53)

For different values of θ = {1.5, 2, 2.5, 3} and k2T = 2.482, we integrate

EP
[∣∣∣∣ 1

R(T )
− 1

∣∣∣∣θ R(T )

]
=

∫ ∞
−∞

∣∣∣∣e 1
2k

2T−k
√
T z − 1

∣∣∣∣θ e− 1
2T+k

√
T zn(z)dz

If θ = 2 this coincides with modified χ2-divergence.

4.C.9 Cressie-Read

The Cressie-Read divergence is

EP
[
R(T )φ

(
1

R(T )

)]
= EP

1− θ + θ 1
R(T ) −

(
1

R(T )

)θ
θ(1− θ)

R(T )

 (4.54)

=
1

θ(1− θ)
EP
[
R(T )− θR(T ) + θ −R(T )1−θ]

This is convex in r therefore if R(T ) is log-normal distributed with volatility k,

V (t, r) =
1

θ(1− θ)

(
r − θ · r + θ − r1−θe−

1
2k

2θ(1−θ)(T−t)
)

(4.55)
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At time 0 this equals

V (0, 1) =
1

θ(1− θ)

(
1− e−

1
2k

2θ(1−θ)T
)

(4.56)

=
1

θ(1− θ)

(
1− e−3.08θ(1−θ)

)
=

1

θ(1− θ)

(
1− 0.05eθ(1−θ)

)
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Chapter 5

Conclusion

“Not everything that can be counted counts,

and not everything that counts can be counted.”

-Albert Einstein (1879-1955)
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5 Conclusion

This chapter provides an overall conclusion of this thesis, more detailed conclusions

can be found at the end of each individual chapter. Recognising that models serve

as approximations of the reality only, supports the acknowledgement of model un-

certainty. This in combination with robustness, has been widely used in physics

and engineering. In this research however, both subjects are used for and make use

of topics in econometrics, finance, actuarial science, game theory and operations

research. This thesis has argued that we are in an incomplete market. Incom-

pleteness itself indicates already that one is uncertain since multiple equivalent

martingale measures exist that all lead to different possible values. Models includ-

ing the incompleteness assumptions imitate real world patterns better, since not

every liability is (liquidly) traded. Moreover, the acknowledgement of uncertainty

about a single model specification diminishes the gap between practice and mod-

elling as well. A literature review on pricing in incomplete markets and on model

uncertainty is given in Chapter 1.

In Chapter 2 parameter uncertainty is implemented in a Bayesian framework,

whereas in Chapter 3 and 4 the model uncertainty is tackled from the frequentist

viewpoint. Specifically, in Chapter 2, interest rates are modelled by an affine term

structure model, namely the multivariate Vasicek process. The agent is uncertain

about the specific parameter estimations and incorporates this by assuming that

these parameters are drawn from probability distributions. By drawing many

simulations from the conditional posterior distributions we are able to indicate

the uncertainty of the specific parameters and the term structure as a whole.

Furthermore, models often used in the industry seem to undermine the convexity

effect. To find the hedge position that minimises the gap between the assets and

liabilities we solve this optimisation problem in an incomplete market setting in

the next chapter.

In Chapter 3, an optimal control problem is explored where an agent is un-

certain about a model that is represented by a stochastic differential equation.

Since he distrusts his model he would like to make a robust decision such that

in bad times the loss is limited. The following game accomplished this strategy;

the agent wants to maximise his surplus against a counter player who wants to

minimise the surplus. The counter player has a choice among a set of models to

pick the worst-case scenario. This set has to possess plausible alternatives. An

intuitive choice is a region around the baseline model, graphically interpretable by

an ellipsoid. In Chapter 3 this optimisation problem is solved for the multivariate

case. That is, mother nature picks the worst-case drift distortions whereas the
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5 Conclusion

optimal hedging portfolio is a combination of a hedging position related to both

hedgeable and unhedgeable risk and a speculative part. The specific choice of the

size of the set of plausible sets is contributed to in Chapter 4.

The fourth chapter focusses on the set of indistinguishable models. For robust

stochastic optimisation problems a set of alternatives is needed as input. However,

how this set should look like and how large it should be is often not questioned

but assumed to be given. Both deterministic and stochastic deviations from the

drift are considered. Allowing for stochastic alternatives yields a wide class of

models beyond solely changing the drift term, as these imply fundamentally dif-

ferent distributions. The deviations that cannot be distinguished from the null

hypothesis, ex ante, are included in the set. The Type I and II error are imposed

on the likelihood ratio test. The alternatives are identified by a power that is

too low to distinguish the alternative from the null hypothesis. For stochastic

deviations we have proven that the power is maximised if the volatility is equal

to the constant bound that was imposed to refrain time-inconsistency. Hence,

for both deterministic and stochastic deviations the Radon-Nikdyom derivative is

log-normal distributed. Therefore for a given Type I and II error, i.e. α = 5% and

1 − β = 80%, the deviations surrounding the main model smaller than 2.48/
√
T

are indistinguishable if one would have T years of extra data. If T increases, thus if

more information is available, the agent is less uncertain and the set of alternatives

becomes smaller.

To conclude, models are simplifications of real world processes and situations.

Therefore, there is the risk of a mismatch between the model and the implied

strategy. Yet, this risk has not often been quantified and consequently it has not

been taken into account. In this thesis several approaches are considered that allow

for the concern that models might be wrong. The impact on long-term interest

rates, on the hedging strategy and on the price is derived. Moreover, the set of

plausible alternative models is identified. Hence, the effect of Model Uncertainty

on Robustness, Estimation and Stochastic Optimisation is investigated.
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Chapter 6

Valorisation

“The policies with respect to the melting of the icebergs

face the same problem of extrapolation on the extreme long end

as those of pension funds.”

-Anne Balter (Assertions accompanying the thesis)
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6.1 Pension Funds

In this addendum I outline the knowledge valorisation of this dissertation, by dis-

cussing the (social and economic) relevance of model uncertainty and the respective

results, potential target groups, translated services, processes and activities, the

innovativeness of the research and the implementation of the valorisation plans.

Firstly, I discuss the relevance of this thesis to actuarial science, specifically to

pension funds and insurance companies. Since the concepts derived are quite gen-

eral, the usefulness extents to a wide variety of applications. After giving some

examples in which misspecification plays a role, I highlight the general applicabil-

ity once more by means of the section about climatology that serves both literally

and figuratively as the tip of the iceberg.

6.1 Pension Funds

Since pension funds have liabilities on very long horizons, they need instruments

with corresponding maturities in order to hedge the risk or at least to quantify

the present value of all outstanding liabilities. The present value of the liabilities,

together with the present value of the assets, is an indicator of the pension funds’

health. The problem is that financial instruments are liquid up to maturities of

20 years whereafter the liquidity declines rapidly, while pensioners can live as long

as a century. In the past, actuaries in The Netherlands used a fixed rate of 4%

to discount their liabilities. However, soon one realised that this might not be

market-consistent. Since then, discount curves have been used, but prices are

not quoted at the long end. The ultimate forward rate (UFR) methodology, also

proposed for insurance companies in Europe, states that in the long run, at a

maturity of 60 years, the rates should converge to a fixed UFR. These fixed values

seem to be artificial and should be investigated. The current debate is all about

how to translate the obligations that have to be paid in the future into its value

today. With other words “how much money is needed today to meet the future

obligations?”. In Chapter 2 the UFR method is implemented. Another standard

in the industry, the Nelson-Siegel method, is also implemented. Both methods are

compared with the Vasicek model.

Chapter 2 is about extrapolating the term structure of interest rates for ma-

turities with declining liquidity and especially about measuring the uncertainty.

We quantified the effect of parameter uncertainty in a one-factor affine term struc-

ture model in a Bayesian way. We applied this model to European and American

data and found that the convexity term is an important factor whose role is often
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neglected in practice. Our conclusion is that convergence happens very slowly,

implying that the convexity effect does not vanish within a century. The other

finding is that taking uncertainty into account results in an economically plausible,

though rather wide range.

The societal impact of a high curve is a low present value of the liabilities.

Therefore less is needed to save for the future and more can be spend today.

This results in either no cutting of the pension payments or an increase in the

indexation. Hence, this is beneficial for the current retirees and disadvantageous

for the younger generations. Saving less might have a negative effect for the latter

group if the model deviations are different than expected. Our simulations show

the uncertainty explicitly. Therefore we do not propose a policy that advices a

point estimate, but instead we quantify the uncertainty. The policy could use this

information to reserve a buffer. Trivially, the effect is reversed if the expected rates

are low. Moreover, irrespective of the funding ratio, which is the present value of

the assets divided by the present value of the liabilities, different divisions among

age groups harm specific cohorts at the expense of other cohorts.

So far, this has illustrated the social and economic relevance of Chapter 2 for

employees and retirees. Another “target group” are the regulators and politicians.

This research offers insight into the ongoing debate about the pension system. The

paper on which this chapter is based has been used as input for the committee

UFR. This committee1 informed the minister on the UFR policy. The Dutch

Central Bank (De Nederlandsche Bank) implemented the proposals from July 2015

onwards as mandatory discount method for pension funds. Moreover the paper

What does a term structure model imply about very long-term discount rates? has

been presented by the DNB to actuaries.

6.2 Insurance Companies

Chapter 3 specifies the effect of model uncertainty on pricing and hedging in in-

complete markets. The set-up of the optimisation problem resembles a game in

which an agent wants to maximise his surplus by choosing a hedging strategy

whereas the worst-case scenario will be picked by a so called mother nature who

minimises the surplus. This ensures a robust strategy which is the one that is least

sensitive to perturbations of the model. Intuitively, the agent proposes a region of

alternative models around his point estimate. We prove that the price of the liabil-

1Prof. dr. A.A.J. Pelsser, my promoter, is a member of the committee UFR.
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ity that may depend on both hedgeable and unhedgeable risk, is uniquely solvable.

Moreover, we explain the economic interpretation of the hedging strategy which

is identical to delta-hedging if the market is complete, i.e. risk-neutral pricing.

In case of purely unhedgeable risk, the drift is adjusted in the prudent direction

known as actuarial pricing. And in case of a mixed multivariate composition of

tradeable and untradeable assets, the hedging strategy consists of a purely delta-

hedging part, an extra delta-hedging part that captures the correlation between

the hedgeable and unhedgeable risk and a speculative part.

A practitioner’s methodology to price in incomplete markets is the industry

standardised Cost-of-Capital method. Insurance companies use this quantifies the

market value of the replicating portfolio plus a mark-up for the unhedgeable risk,

which relies mostly on the subjective quantification of risk. The CoC method leads

to a pricing operator that has similar characteristics as our result. The indifference

pricing operator from Theorem 3.1 can be interpreted as a best estimate, which

is the conditional expectation, plus a constant times the standard deviation of

the unhedgeable component. The European Insurance and Occupational Pensions

Authority (EIOPA) proposes the use of the CoC method. This is incorporated in

the guidelines for Solvency II that is scheduled to come in effect on January 1,

2016 as mandatory pricing rule for insurance companies in Europe.

Consequently actuarial practices can be justified by the theorem developed in

this chapter. Buffers imposed by regulators affect the financial behaviour of pen-

sion funds and insurance companies. But also any profit, or non-profit organisation

can utilise this to support certain decisions concerning hedging and concerning the

level of prudence or risk it wants to take. Moreover, the derivations in Chapter

3 are based on profit maximisation, resembling the core goal of many companies.

Additionally, pricing in incomplete markets implies that the value for a non-traded

item is deduced. Henceforth, not only insurance products benefit from this insight

but one may think of any item to be priced. For instance, contracts that pay

out during natural disasters, extreme low or high temperatures, the number of

survivors, etcetera. Note that catastrophe bonds and mortality swaps are traded,

which would imply the possibility to replicate cash flows. However the liquidity of

these instruments is rather limited.
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6.3 Misspecification

Chapter 4 is a theoretical chapter that serves the valorisation indirectly. It con-

tinues on the topic akin to model uncertainty. The idea that models might be

misspecified is an improvement towards approaching real world examples by math-

ematical models. Chapter 4 deals with a general method for determining all al-

ternative models that cannot be distinguished from each other. This set is widely

applicable to various problems in different areas that allow for model uncertainty.

Applying this to Chapter 3 leads to the quantification of the uncertainty bounds

on the ellipsoid. Other literature that deals with uncertainty, but remains silent

about a realistic choice of plausible models, can make use of these cutoff points.

Robust optimisation is relevant for both social and economic problems since

the quantification of uncertainty can be implemented in many social questions that

have been solved for an unknown ambiguity value. An example is the consumption

and portfolio problem, where an agent wants to maximise his final wealth or the

consumption during a specific time span and has to choose how much to consume,

how much to save on the bank account and how much to invest in the risky as-

sets. If an agent acknowledges that the underlying model might be misspecified, he

would like to evaluate the optimal decision rule such that the strategy is least sensi-

tive to perturbations of the model. As such a direct link with the constraint on the

Kullback-Leibler divergence of the investment problem is established. Moreover,

we can link this with a penalty on the entropy as well. Chapter 3 and 4 can also

be used to measure uncertainty about interest rates. Affine deviations from the

baseline model appear to be among the plausible stochastic alternatives and yield

the transition to a mean-reverting model. Ben-Tal et al. (2009) consider a robust

solution with respect to how much raw materials a company should buy to pro-

duce drugs, where the exact amount of raw material needed entails uncertainty. In

another example they optimise the location of an antenna that transmits isotropic

harmonic oscillator emitting spherical monochromatic electromagnetic waves. The

objective is to send the electromagnetic field that is invoked by the oscillator, as

close as possible to the target. Therefore uncertainty comes from both the posi-

tioning of the antenna, which is influenced by temperature, wind, etcetera, and

the actuation errors, which emerge due to fact that invoking the oscillator cannot

be implemented exactly.
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6.4 Climatology

Taking one step back, the theory of forecasting the uncertainty based on a panel

data set for an autoregressive process allows itself for more than interest rate

modelling. The mean-reverting process of Chapter 2, a process that has a level

to which it tends to move, can be applied to other fields than finance. Research

in climatology can be conducted by use of Chapter 2. The model can be applied

to a panel data set, which refers to two-dimensional data where the observations

are measured for several objects or individuals through time, such as historic

temperature or emission data. Forecasting these variables includes uncertainty

which is recognised by the approach of Chapter 2. The widespread interest in

these forecasts stems from concern about rising temperatures.

The link between Chapter 2 and the climate issue can also be drawn from

an environmental economics viewpoint. How much climate change costs and at

whose expense it is has received considerable attention in the field of environmental

economics. Since long-term interest rates have an effect on the present value of

the costs, climate change policies are influenced by these. Gollier (2013) shows in

his book Pricing the Planet’s Future the impact of the discount rate on extreme

long horizons. With a fixed interest rate of 4% the value one needs today to have

e100 in 200 years is e0.03 while for a rate of 2% one would need e1.83, almost

55 times as much. Hence, any cash flow that needs to be valued to the present,

such as in a cost-benefit analysis, can make use of Chapter 2 when the horizon

stretches until the extreme long end.
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“If you talk to a man in a language he understands, that goes to his head.

If you talk to him in his language, that goes to his heart.”

-Nelson Mandela (1918-2013)
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Modellen zijn slechts vereenvoudigingen van de werkelijkheid. Het erkennen van

modelonzekerheid is belangrijk bij economische besluitvormingen. Het doel van

dit promotieonderzoek is het karakteriseren van de set van plausibele alternatieve

modellen en het bepalen van het effect van onzekerheid op beslisregels.

Het proefschrift begint in hoofdstuk 1 met een literatuuroverzicht. Verschil-

lende mogelijke manieren van prijzen in incomplete markten worden besproken,

waarna op risico en onzekerheid dieper wordt ingegaan. In een complete markt

zijn alle toekomstige kasstromen repliceerbaar en kan er frictieloos gehandeld wor-

den. Wanneer de liquiditeit afneemt, spreken we van een incomplete markt. Risico

staat voor de onzekerheid dat een bepaalde gebeurtenis voorkomt, waarbij de kans

op deze gebeurtenis bekend is. Bij onzekerheid is deze kans onbekend.

In hoofdstuk 2 wordt parameteronzekerheid behandeld volgens de Bayesiaanse

methoden. Aangezien er geen renteproducten zijn met extreem lange looptijden,

maar deze wel nodig zijn om toekomstige obligaties te verdisconteren, bestaat er

onzekerheid met welke disconteringsvoet gerekend moet worden. De afwezigheid

van liquide middelen definieert een incomplete markt. In dit hoofdstuk extrapole-

ren we de rente op basis van een lineair rentetermijnstructuur model, specifiek het

Vasicek proces. Hierbij nemen we aan dat er onzekerheid is over de parameters

van het model, waaraan specifieke kansverdelingen ten grondslag liggen. Vervol-

gens kunnen we met behulp van simulaties de onzekerheid in kaart brengen. Het

blijkt dat een 100-jaars rente nog voor een groot deel bëınvloed wordt door het

convexiteitseffect. Dit komt voort uit de correcte afleiding van het wiskundige

model in tegenstelling tot alternatieve extrapolatie methoden die vaak gebruikt

worden in de praktijk. Daarnaast is zowel de onzekerheid per parameter, als ook

de onzekerheid van de totale rentetermijnstructuur gëıdentificeerd. De investe-

ringsstrategie, die het tekort tussen de aandelen en de obligaties in een incomplete

markt minimaliseert, wordt afgeleid in het volgende hoofdstuk.

In hoofdstuk 3 gaan we in op een optimaal controle probleem, waarbij een

agent onzeker is over het model. Hij wil een robuuste beslissing maken, zodat

ook in slechte tijden zijn verlies beperkt blijft. Dit kan worden nagebootst door

het volgende spel; de agent wilt zijn winst maximaliseren, terwijl de tegenspeler

deze wilt minimaliseren. Zij, de zogenaamde moeder natuur, kan dit bewerkstel-

ligen door het slechtste scenario te kiezen uit een set van plausibele alternatieve

modellen. Intüıtief geeft de agent de voorkeur aan alternatieve modellen in een

gebied rondom het verwachte model, grafisch voorgesteld als een ellipsöıde. In het

derde hoofdstuk wordt dit voor het multidimensionale geval opgelost. Dit houdt
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in dat moeder natuur de slechtste deviatie kiest. De optimale strategie van de

agent, die het minst gevoelig is voor perturbaties van het onderliggende model, is

een combinatie van delta-hedgen gerelateerd aan zowel de verhandelbare als niet-

verhandelbare producten en een speculatief deel proportioneel aan het vertrouwen

in de markt. De specifieke keuze van de grootte van de onzekerheidsset is het

onderwerp van hoofdstuk 4.

Voor een robuust optimalisatie probleem is het nodig dat de set van alter-

natieven gegeven is. Het karakteriseren van deze set van alternatieve plausibele

modellen is de focus van het meer theoretische hoofdstuk 4. Zowel determinis-

tische als stochastische deviaties van de drift worden bekeken. Met behulp van

stochastische deviaties is het mogelijk om alternatieven te beschouwen die funda-

menteel anders zijn dan het basis model. Het alternatief model kan een andere

distributie of variantie hebben. Het doel is om, ex ante, alle deviaties te vinden

die niet te onderscheiden zijn van het basis model. De Type I fout is het onterecht

verwerpen van de nul hypothese. Traditioneel wordt de kans op de Type I fout,

de “alpha”, gelijk aan 5% gekozen. De Type II fout is het onterecht verwerpen

van de alternatieve hypothese. Deze kans, de “beta”, wordt gewoonlijk gelijk aan

20% gekozen. De power van een test is het complement van de Type II fout, dit

is de kans waarmee de alternatieve terecht wordt geaccepteerd. De power is dus

de kracht waarmee twee hypothesen met genoeg kans juist gëıdentificeerd kunnen

worden. Wanneer deze power te laag is vinden we precies die modellen waarnaar

we op zoek zijn. Door het opleggen van de kans op de Type I fout en de mi-

nimale acceptatie voor de power, kan de set van niet-te-onderscheiden modellen

samengesteld worden. Concluderend, voor een gegeven Type I en II fout van res-

pectievelijk 5% en 20%, zijn alle afwijkingen rondom het basis model die kleiner

zijn dan 2.48/
√
T niet te onderscheiden, als er T jaar aan extra data zou zijn. Hoe

meer informatie beschikbaar is, dus hoe hoger T , des te zekerder is de agent en

des te kleiner is de set van alternatieven.

Hoofdstuk 2, 3 en 4 bevatten elk een gedetailleerde conclusie. Hoofdstuk 5

omvat de algehele conclusie van dit proefschrift.

Hoofdstuk 6 beschrijft de toepasbaarheid van dit proefschrift in de samenle-

ving. De sociale impact van hoofdstuk 2 en 3 vindt directe toepassing bij zowel

pensioenfondsen als verzekeringsmaatschappijen. De concepten zijn dermate alge-

meen waardoor deze ook voor andere sociale of economische problematiek gebruikt

kunnen worden. Om het beleid met betrekking tot klimaatverandering te bepalen,

dienen de kosten over een lange horizon verdisconteert te worden. Daarnaast kan
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het naar-het-gemiddelde-terugkerend model van hoofdstuk 2 toegepast worden op

meteorologische data. De valorisatie van hoofdstuk 4 is indirecter van aard.
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The Effect on Robustness, Estimation 
and Stochastic Optimisation

Model  
Uncertainty
This thesis considers the effect of the 
acknowledgement of model uncertainty 
in an incomplete market setting on 
robust pricing techniques. Moreover, 
it characterises the set of alternative 
models. A literature review on pricing 
in incomplete markets and on model 
uncertainty is given in the first chapter. The 
second chapter deals with extrapolating 
the term structure of interest rates on the 
extreme long end, where uncertainty 
is quantified by the Bayesian method. 
The convexity effect appears to be an 
important element in no-arbitrage term 
structure models. Theorem 3.1 states the 
existence and uniqueness of the price 
that is least sensitive to perturbations of 
the underlying model. The quantification 
of uncertainty is explored in the fourth 
chapter. Where the ellipsoid around the 
estimation was used by the agent in the 

third chapter, here the set is explicitly 
characterised. The set of alternative 
models are those models that cannot 
be distinguished from each other with 
enough power. Hence Theorem 4.1 states 
that all, both deterministic and stochastic, 
deviations from the null hypothesis for a 
given size obtain the maximal power at 
a certain level. The level is determined  
ex ante for a desired power. This thesis ends 
with a short conclusion, a valorisation sec -
tion, a Dutch summary and an academ   ic 
curriculum vitae.
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