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Abstract

There is an extensive literature claiming that it is often difficult to make use of arbitrage opportunities in
financial markets. This paper provides a new reason why existing arbitrage opportunities might not be seized.
We consider a world with short-lived securities, no short-selling constraints and no transaction costs. We
show that to exploit all existing arbitrage opportunities, traders should pay attention to all financial markets
simultaneously. The paper gives a general result stating that failure to do so will leave some arbitrage
opportunities unexploited with probability one.
© 2006 Elsevier B.V. All rights reserved.

JEL classification: D52; G12
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1. Introduction

One of the fundamental concepts in finance is arbitrage, defined as the simultaneous purchase
and sale of the same, or essentially similar, security in two different markets for advantageously
different prices, see Sharpe and Alexander (1990). The efficient market hypothesis relies
to a large extent on the assumption that, whenever present, arbitrage opportunities will be
exploited quickly. The behavioral finance literature as in Shleifer (2000, p. 2), questions this
hypothesis:
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The key forces by which markets are supposed to attain efficiency, such as arbitrage, are
likely to be much weaker and more limited than the efficient markets theorists have supposed.

In reality arbitrage opportunities are limited by a number of factors like the existence of
transactions costs, short-selling contraints, or mispricing of securities deepening in the short
run.

This paper claims that even under close to ideal circumstances, i.e. the case where transactions
costs are zero, short-selling constraints do not exist and securities are short-lived (so that deepening
of mispricing is impossible), existing arbitrage opportunities might not be seized. We show that
this is generally the case whenever traders restrict their attention to a subset of the securities traded
at a certain point in time.

Following Radner and Rothschild (1975), many authors have observed that attention is only
available in limited amounts. Van Zandt (1999) argues that individuals are bounded not so much
by the total amount of information processing they can handle, as by the amount they can perform
in a given amount of time. This leads to parallel or distributed processing, where information
processing tasks are broken down into steps that are shared among the members of the organization
and where each of these steps takes time.

Limits to the capability of information processing are the main reasons for traders do spe-
cialize to subsets of securities. In investment firms, for instance, analysts typically concentrate
on the stocks within a particular industry sector. In Vayanos (2003), this feature is modeled by
a processing constraint. Agents are assumed to analyze portfolios of at most a fixed number of
inputs, where an input can either be an asset examined directly, or a subordinate’s portfolio.

In this paper we incorporate information processing constraints in the finance version of the
general equilibrium model with incomplete asset markets. The model is a special case of the
restricted market participation models of Siconolfi (1988) and Polemarchakis and Siconolfi (1997).
Since we assume a two-period time horizon, all traded assets are short-lived. This is the most
favorable case for absence of arbitrage, as it makes deepening of mispricing impossible. Investors
can buy and sell assets in period 0 without being subject to short-selling constraints or transactions
costs. They are however subject to information processing constraints. An investor is assumed to
be unable to be active in the markets of all traded assets simultaneously.

Assets have payoffs in period 1, depending on the realization of the state of nature. Asset
payoffs are real, i.e. denominated in terms of the consumption good. Investors consume in both
periods. In this context, the usual definition of no-arbitrage is both the absence of a costless
portfolio with non-negative returns in each future state of nature and strictly positive returns in
at least one state, and of a portfolio yielding income in period 0 and with non-negative returns in
each future state of nature.

Since investors restrict their attention to certain subsets of assets, they might not be able to
make use of certain arbitrage opportunities. One might expect, however, that, under suitable
assumptions, they are able to do so collectively. In particular, one might expect that this is the case
as long as the subsets of assets to which investors pay attention overlap. This paper makes the
point that this intuition is wrong. For almost all asset structures, as soon as each investor is limited
in his trading opportunities to some extent, some arbitrage opportunities will be left unexploited,
even at the collective level.

A related work in the literature is the one of Basak and Croitoru (2000), who also study
the violation of no-arbitrage conditions. They consider an infinite horizon framework with three
assets, abond, a stock and a derivative. They put short-sales constraints on assets and upper bounds
on the wealth that can be spent. We, on the other hand, exclude trade in some assets by some
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individuals altogether, but do not impose any transaction costs, and in particular no short-sales
constraints, on assets individuals can trade in.

Section 2 outlines our model and derives the appropriate no-arbitrage conditions. Section 3
shows a first example that the no-arbitrage conditions in a restricted market participation model
may differ from the usual no-arbitrage conditions. Section 4 derives the main result: this is typically
the case, no matter how small the restriction in market participation.

2. Arbitrage

We consider the case that is most favorable to arbitrage. In particular, we consider a model with
two time periods, =0, 1, and one state of nature s out of S possible states of nature realizing at
t=1. At each time period, in each state of nature, there is a single good available, called income.

There is a finite number of investors i=1, . . ., I. At =0 investors allocate their money between
consumption and investment in one of the available assets j=1, ..., J. Throughout we restrict
attention to the case J < §. The symbols Z, 7, and S denote the sets {1, ..., I}, {1, ..., J}, and
{1, ..., S}, respectively.

Assets payoff in period 1. The payoff of asset j in state s is given by AJ. Investor i has a utility
function U’ and an initial income stream o' € Rfﬁ'l. The set of possible income streams is given
by X' = Rf‘l.

Investor i has only access to a limited set of asset markets. Cognitive restrictions require him
to restrict attention to the set J' C J of assets. In reality, investors do indeed concentrate on a
limited set of assets. The literature on information processing constraints explains why this is so.

Let g € R’ denote the asset prices and #' € R’ the net asset portfolio of agent i, i.e. nega-
tive components of &’ denote sales of the corresponding assets and positive components denote
purchases.

The optimization problem of investor i is given by

max U i(xi)
0 eRY xi e RST!

subject to

=)0 d=00 jens

X — o

Investor 7 has arbitrage opportunities if he can purchase a portfolio at no cost today, with non-
negative payoffs at each state s and a strictly positive payoff in at least one state, or if he can
purchase a portfolio yielding positive income in period 0 and non-negative payoffs at each future
state. For investor i this leads to the following no-arbitrage condition, which is labelled NAC':

(NACY) there is no 6" € R” such that 0; =Oforall j € 7\J and -1

g e RS\ {0}
It is well-known that NAC' is satisfied if and only if g € Q', where

Q0'={qgeR!|3ne R_SH such that for every j € T, qj= ZnsAg
seS
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The following result is obvious
.1 2 2 .1
J cJ =0 co
Asset prices are said to satisfy the no-arbitrage condition NAC if the no-arbitrage condition is

satisfied for all investors. So asset prices ¢ satisfy NAC if and only if NACi is satisfied for every
i € Z. This is easily seen to be equivalent to the statement that g € N; < 7QO".

3. Networks of agents

Another interesting no-arbitrage condition is the one which follows if some omniscient investor
could oversee all the possibilities offered in the market. This leads to the market no-arbitrage
condition NAC™:

(NAC™) there is no 6 € R’ such that ( _Aq> o' e RS\ {0}

It is well-known that NAC™ is satisfied if and only if ¢ € Q™, where

o™ = {qeR’HneRL such thatg = ZnSAS}
seS

The following proposition is easily shown.
Proposition 3.1. It holds that Q™ C N;c70Q".

Proposition 3.1 states that NAC™ implies NAC. Of course, if some agent can trade in all
markets, then the concepts of NAC and NAC™ coincide.

Proposition 3.2. If for some investor i € T it holds that J' = 7, then Q™ = N c7Q".

Investor i in the proposition is omniscient, so the result follows trivially.

A first intuition would be that if the 7' overlap, then NAC implies NAC™. The market of asset
7 is said to be related to the market of asset j” if for some agent i € Z it holds that j/, j” € J'. The
market of asset j’ is said to be indirectly related to the market of asset j” if there is a sequence of
markets j', ..., /" such that j' =j and j” =;” and j* and j**! are directly related for all k€ {1, .. .,
n—1}

Neither direct relatedness nor indirect relatedness of all markets is sufficient for the sets N; ¢ 7O’
and Q™ to coincide. In fact, consider the following example where it holds that all markets are
directly related. Notice that one needs at least three assets for an interesting example.

Example 3.1. Suppose that /=3, S=3, /=3, and the matrix of asset payoffs is given by

2 1 1
A=1|1 2 1
1 1 2

Assume that investor i € Z cannot trade in asset i. So, (71 =1{2,3}, ]2 ={1,3}and f ={1,2}.
Consider the asset price system g =(5, 3, 5). We claim that ¢ ¢ Q™. Indeed, 6=(—1, +3, —1) is
an arbitrage portfolio. However, g belongs to ﬂieIQi because for J! = {2, 3}, m=(1/2, 1/6,
13/6), for P = {1,3},7=(1,2, 1) and for P = {1, 2}, m=(13/6, 1/6, 1/2) are state price vectors
demonstrating the absence of arbitrage opportunities.
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The example is the strongest example possible in the sense that adding one market to one agent
gives equivalence between NAC and NAC™ by Proposition 3.2.

4. Limits to arbitrage

This section shows that Example 3.1 is not an exceptional case. It makes the striking observation
that in finance economies with restricted market participation, forgone arbitrage opportunities are
the rule rather than the exception.

Let A denote the set of (S x J)-dimensional matrices. Let A, be the set of those matrices in
A for which there is a non-trivial asset portfolio giving non-negative returns in each state:

A = {A € Althere exists § € R”\ {0} such that A0 € R }

We will restrict attention to the set of asset return matrices .A4. Asset return matrices outside
A, are hardly interesting: as is demonstrated in the next proposition, if the asset return matrix
lies outside .4, then the conditions NAC' and NAC™ do not impose any restrictions on the asset
prices.

Proposition 4.1. Let Ac A. If A is not in Ay, then Q' =R’ for all ieT and Q™ =R".
Conversely, if Q™ = R, then A is not in A,.

Proof. The first part of the proposition is obvious: if A is not in A4, then there is no non-
zero portfolio of assets that gives a non-negative return in each state. Thus, by the definition of
no-arbitrage, any price vector g trivially satisfies conditions NAC! and NAC™.

To prove the converse, suppose there exists a price vector g € R/\ Q™. Then, {Ag|A > 0} N
{rAlr e Ri .} is an empty set. By the separating hyperplane theorem, there exists 6 € R\ {0}
such that Lg0 < A0 for all A>0 and 7 € Ri . Taking the limit for A | 0, we obtain 0 < wA6
forall w € ]R_SH. For every o € S, taking the limit 7, — 1 and 75 | 0, s € S\ {0}, we get 0 <A0.
Hence, A9 € Ri, soAeAAy. O

The next theorem is the main result of the paper. It claims that for a generic matrix in .4 there
is at least one price vector that satisfies the condition NAC' for all i but violates the condition
NAC™.

Theorem 4.1. Suppose that for all investors i € T it holds that J' # 7. Then there exists an open
subset A% of the set Ay with AL\ A% having Lebesgue measure zero such that Q™ # N 70"
forall Ae A

The proof of Theorem 4.1 consists of two steps. Step one provides a necessary and sufficient
condition for the coincidence of the sets O™ and N;c7Q’ in terms of so-called “fundamental
portfolios”. Convex analysis is employed as the main tool in the first step of the proof. As a
second step, we use the Transversality Theorem to demonstrate that this condition imposes too
many restrictions on the asset return matrix.

Let C be a closed convex cone. A half-line L emanating from the origin is called an extreme
ray of C if L C C and every closed line segment in C with a relative interior point in L has both
endpoints in L. Let K be an arbitrary subset of R”. Then, the convex cone generated by K is a subset
of R containing zero and all those vectors which can be represented as a linear combination with
positive weights of finitely many points in K. The convex cone generated by the empty set consists
of the zero vector alone.
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Given a matrix A € Ay, let ®, and ©'., be closed convex cones defined by
04 = {#eR/|A0 RS}, O, ={0e040; =0if je N\T'}

Thus, the set @, consist of all those portfolios that give a hypothetical omnipresent investor non-
negative payoff in every state. There are portfolios that can potentially violate the no-arbitrage
conditions NAC™. The set @i_ selects only those portfolios in ®, that are feasible to agent i.
These are portfolios that can potentially violate the no-arbitrage conditions NAC!.

Let T denote the set of all those vectors 6 € @, with ||6|| = 1 such that the half-line emanating
from the origin and passing through 6 is an extreme ray of the cone @,. We refer to the set T as
the set of fundamental portfolios.

Lemma 4.1. Let the matrix A € A have rank J. Then @, is the convex cone generated by T.
The set T is non-empty.

Proof. The fact that the set 7 generates the cone ®, is an immediate implication of Corollary
18.5.2 of Rockafellar (1997). Since A belongs to A4, there is a non-zero vector in .. It follows
that the set T is non-empty, for the convex cone generated by the empty set consists of the zero
vector alone. [J

Now consider the following conditions:

(C1) NiezQ' € O™
(C2) O+ €510
(C3) T C Ui 76V,

The first of these says that if none of the restricted investors 1, . . ., [ has an arbitrage opportunity,
then neither the hypothetical omniscient agent has. Condition (C3) will play a crucial role in the
rest of the proof. It says that each fundamental portfolio is feasible to some investor i € Z. Condition
(C2) can be interpreted as saying that each portfolio that gives an omniscient agent a non-negative
return in every state is jointly feasible to the restricted investors in the market, in the sense that each
such portfolio can be written as a sum of individual portfolios, where each individual portfolio is
feasible to the respective investor and gives him a non-negative return in every state.

Lemma 4.2. Let A € Ay have rank J. Then the conditions (C1), (C2), and (C3) are equivalent.

Proof (C1=>C2). Consider € ©,. If AO =0, then 6 =0, and 6>, _76",. Suppose that
A6 € R$\{0}. By condition (C1), the inequality 0 < g6 holds for all g € N; c7Q'. That is, 0 < ¢f
holds for all (g, 7) e R’ x RS satisfying

qj=Y mAl forallieZ, jeJ., 0<mni, forallieZ, se§ (1)
seS

It follows that the inequality O < @ holds for all (¢, 7) € R’ x RS satisfying

qj:ZnéAg, foralli e Z, jej, 0<nt, forallieZ, seS 2)

s
seS

To see this, let (g, 7) e R/ x RS be such that the conditiops in (2) are satisfied. Given an
€>0, the pair (g(€), w(e)) satisfies the conditions in (1), where i(¢) = 7} + &, s €S, and g(¢) =
qj + &> sA¥. Therefore, 0 < g(e)d. Letting € | 0, we obtain 0 < g0, as desired.
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N(_)w, we make use of Farkas’ Lemma, see'Rockafellar (1997, Corollary 22.3.1): for alli € Z,
j € J" and s € S there exist numbers 9; and p), > 0 such that

> A6, —pi =0, forallieZ, seS. > 0i=0; foralljeJ
jed {ieTlje)
Define Qi to be zero for all ie Z and je J\J and let ' = (¢, ..., 93-). Then, ¢' € ©', and

Yiegf —9 Thus,f e, eI()
(C2=C1) Given g€ N;je7Q’ we must show that g Q™. Consider # € R’ be such that

A6 € R$\{0}. By condition (C2), there exist §' € @, for i € T such that >, ;6" = 6. More-
over, there is ig € Z with A6" € R \{0}. As g € Q' for all i €T, we musthave 0 < g¢' forallieZ
and 0 < ¢0'. It follows that 0 < gf. Thus, g € Q™.

(C2=C3) Let 0 € T. As 6 is an element of ®,, condition (C2) implies that there are 0 e @’+
such that ), _,60' = 6. As 0 is a non-zero vector, there is i € Z such that 60 is a non-zero vector.
Observe that the line segment with endpoints 26 and 23", e\ 0}9’ contains the vector 6 in
its relative interior. Since 6 belongs to an extreme ray of the cone ©.., both endpoints 26" and
2> e 0}9 belong to the same extreme ray. Therefore, there exists a positive number # such that
260 = 6. This implies that 6 is an element of O’O

(C3=C2) By Lemma 4.1, ©; is the convex cone generated by 7. By condition (C3), it
is contained in the convex cone generated by U; eI@ﬂr- Clearly, the convex cone generated by
Uiez®! isequalto ), ;0. O

For each 6 € ®, with ||0] =1, let S(8) = {s € S|A;60 = 0}. Denote by codim (6) the codimen-
sion of the linear subspace of R’ spanned by the vectors Ay, s € S(6). The codimension of the
linear subspace spanned by the vectors Ay, s € S(0), together with vector 6 equals codim (6) — 1.
Moreover, observe that codim (6) > 1. The next lemma shows that portfolios in T are charac-
terized by the property that codim (€)= 1. The intuition behind this result is that otherwise an
appropriately chosen portfolio could both be added and subtracted from 6 without leaving ©,.
This contradicts 6 being a portfolio in 7.

Lemma 4.3. Let A € Ay with rank J and 6 € O, with ||60|| =1 be given. Then 6 € T if and only
if codim (6)=1.

Proof. Let L denote a half-line emanating from the origin and passing through the point
0.

Suppose that codim (6) > 1. Then, the codimension of the linear space spanned by the vectors
A, s € 8(0), together with vector 6 is non-zero. Hence, there exists a vector & € R’ \{0} such
that A& =0 for all s € S(0) and € =0. As A;60>0 for all s € S\S(H), there is an >0 such that
Ag(0+1£)>0 for all t€[—e¢, €] and s € S\S(0). Thus, the closed line segment with endpoints
(60 — €€) and (0 + €€) lies entirely in ®, and contains vector 6 in its relative interior. However,
neither of its endpoints belongs to L. Therefore, L is not an extreme ray of ®., and 6 is not an
element of the set 7.

Suppose that codim (9)=1. Let 8’ and §” be two points in @, such that A0’ +(1 — A)0" =10
for some A € (0, 1) and > 0. We must show that 8’ and 6” both belong to L. Indeed, A0’ >0
and A,8” >0 for all s € S. If s € S(0), then A;8=0, and therefore A;0' =A,0” =0. Thus, all three
vectors 6, &', and 8” belong to a linear subspace orthogonal to the span of the vectors Ay, s € S(9).
As the dimension of this linear subspace is equal to 1, there are real numbers ¢ and ¢’ such
that &' =70 and 6" =¢"0. If the number 7 were negative, &’ would be a non-zero vector such that
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Table 1
The elements of the set T’

Element 1 Element 2 Element 3 Element 4
j=1 0 1//2 —1/4/5 0
j=2 1/3/2 0 2/V/3 —1/5
j=3 —1//2 —1v2 0 24/5

0 <A0' =rA0 <0. This would contradict the assumption that A has rank J. Therefore, ¢ > 0, and
therefore 6 € L. It follows similarly that 8" e L. O

Corollary 4.1. Let A € Ay with rank J and 6 € T be given. Then the set S(0) consists of at least
J — 1 distinct elements.

The following example illustrates the set 7.

Example 4.1. Suppose that /=3, S=4, /=3, J = J\{i} forieZ, and

B S

I
D= N =
—_—

N N = =

Observe that A is an element of the set A4 with rank J. Moreover, the matrix A is in general
position: each (3 x 3)-dimensional submatrix of A is non-singular. The set T consists of the four
elements reported in Table 1.

Elements 1 and 4 of the set T belong to @' , element 2 belongs to @2, and element 3 belongs
to @3.. Since T C U; ¢ 76, , it follows by Lemma 4.2 that the sets Q™ and N; ¢ 7Q" coincide.

Lemma 4.4. Suppose that J' # J for all i € I. Then there exists an open subset A’ of A with
A\A' having Lebesgue measure zero such that forall Ac A’ N A, TN O, =0 forallicl.

Proof. For every j € J and for every subset M of S with cardinality J — 1, define the function
FimA x RY — R+ as follows:

A, seM
Fiu(A,0)=| 6-6—1
0;

Define the sets Ay as
Ajy = {A € Althere is no 6 € R such that Fj(A, 6) = 0}

To see that Ay is open, let A, be the sequence of matrices in A\.4 ) converging to some
A € A. Then, there exists a sequence 6, in R’ such that Fiy(A), ) =0 for all n. Since the
sequence 6, is bounded, it has a convergent subsequence converging to some 6 € R’. Hence,
Fip(A, 0) =0, and the matrix A belongs to the complement of the set A iM-

The partial derivatives of the function Fjys with respect to 6 and Ay, s € M, are represented in

Table 2. For simplicity we take Mequalto {1,...,J — 1}.Itiseasy tosee thatforall (A, 6) € FJ_A,} 0)
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Table 2
Partial derivatives of the function Fjy, M={1,...,J—1}
[% Al Ay cee Ay

A0 Aq 6 0 e 0
Az0 Ar 0 6 ... 0
Aj_10 Ay 0 0 cee 0
6-0—1 20 0 0 . 0

6 e 0 0 . 0

The symbol e is a J-dimensional row-vector such that ¢; =0 for all / € J\{j} and ¢;=1.

the matrix of the partial derivatives has full row rank. That is, Fj is transversal to zero. The
Transversality Theorem implies that the complement of the set A s has Lebesgue measure zero.

Finally, define A’ as the set of matrices with rank J in the intersection of all sets A jm- Then,
A’ is open and its complement has Lebesgue measure zero.

LetAe A'N Ay andf € T. Suppose that § € @’+ forsome i € Z. Then, 6, =0 forevery j € J\.J.
Corollary 4.1 implies that there is a subset M of the set S with cardinality J — 1 such that A;6 =0
for all s € M. Therefore, Fjy(A, 0)=0 for every j € J\j’ , a contradiction to A € A’. Thus, we
have proved that TN ®, =P forallieZand Ac A/ NAL. O

Proof of Theorem 4.1. Define A7 to be the set of matrices with rank J in the intersection
of the sets Ay and A’. As both the set of matrices in A with rank J and the set A’ are open
in A, A% is open in A,. Since both the set of matrices in A with rank J and the set A’ have
full Lebesgue measure, the set A, \.A* has Lebesgue measure zero. For all A € A’ the set T'is
non-empty, whereas its intersection with the collection of cones @', is empty. By Lemma 4.2,
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