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Abstract

Aberrant DNA methylation affects carcinogenesis of
colorectal cancer. Folate metabolizing enzymes may
influence the bioavailability of methyl groups, where-
as DNA and histone methyltransferases are involved
in epigenetic regulation of gene expression. We stud-
ied associations of genetic variants of folate metabo-
lizing enzymes (MTHFR, MTR, and MTRR), DNA
methyltransferase DNMT3b, and histone methyltrans-
ferases (EHMT1, EHMT2, and PRDM2), with colorectal
cancers, with or without the CpG island methylator
phenotype (CIMP), MLH1 hypermethylation, or micro-
satellite instability. Incidence rate ratios were calculat-
ed in case-cohort analyses, with common homozygotes
as reference, among 659 cases and 1,736 subcohort
members of the Netherlands Cohort Study on diet
and cancer (n = 120,852). Men with the MTHFR
677TT genotype were at decreased colorectal cancer
risk (incidence rate ratio, 0.49; P = 0.01), but the T
allele was associated with increased risk in women
(incidence rate ratio, 1.39; P = 0.02). The MTR
2756GG genotype was associated with increased

colorectal cancer risk (incidence rate ratio, 1.58; P =
0.04), and inverse associations were observed among
women carrying DNMT3b C→T (rs406193; incidence
rate ratio, 0.72; P = 0.04) or EHMT2 G→A (rs535586;
incidence rate ratio, 0.76; P = 0.05) polymorphisms.
Although significantly correlated (P < 0.001), only
41.5% and 33.3% of CIMP tumors harbored MLH1
hypermethylation or microsatellite instability, respec-
tively. We observed inverse associations between
MTR A2756G and CIMP among men (incidence rate ra-
tio, 0.58; P = 0.04), and between MTRR A66G and
MLH1 hypermethylation among women (incidence rate
ratio, 0.55; P = 0.02). In conclusion, MTHFR, MTR,
DNMT3b, and EHMT2 polymorphisms are associated
with colorectal cancer, and rare variants of MTR and
MTRR may reduce promoter hypermethylation. The
incomplete overlap between CIMP, MLH1 hyper-
methylation, and microsatellite instability indicates
that these related “methylation phenotypes” may
not be similar and should be investigated separately.
(Cancer Epidemiol Biomarkers Prev 2009;18(11):3086–96)

Introduction

Aberrant DNA methylation is an important epigenetic
modification that may affect cancer susceptibility (1).
Folate metabolizing enzymes are involved in the provision
of methyl groups, and the bioavailability of methyl groups
is dependent on the activity of these enzymes. Single-
nucleotide polymorphisms in these genes have been
reported to alter enzymatic activity. For example, rare
variants of the C677T and A1298C polymorphisms in
the methylene tetrahydrofolate reductase (MTHFR) gene
result in reduced enzymatic activity (2, 3) and were
inversely associated with colorectal cancer in several

observational studies (4, 5). However, it was suggested that
subjects having the MTHFR 677TT or 1298CC genotypes
were more likely to develop colorectal cancer showing
a CpG island hypermethylation phenotype (6, 7) or micro-
satellite instability (8). Genetic variants of methionine
synthase (MTR) have been studied less extensively, but
the rare GG variant of the MTR A2756G single-nucleotide
polymorphismwas suggested to decrease colorectal cancer
risk in two studies (9, 10). In contrast, it was suggested that
some of the rare genetic variants of methionine synthase
reductase (MTRR) may be associated with an increased
risk for colorectal adenomas and carcinomas (11-13).

Whereas the aforementioned one carbon–metabolizing
enzymes are involved in the provision of methyl groups,
DNA methyltransferases catalyze the transfer of these
methyl groups from S-adenosylmethionine into CpG
dinucleotides of DNA. The DNA methyltransferase 3b
(DNMT3b) is involved in de novo methylation (14) and
may influence epigenetic regulation of gene expression
and cancer cell growth. In this respect, experimental
research suggested that DNMT3b depletion can reduce
aberrant promoter CpG island hypermethylation in
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cancer cells (15-17), whereas DNMT3b overexpression ini-
tiated promoter hypermethylation of tumor suppressor
genes and the formation of colonic miroadenomas (18).
In addition, it was observed that expression of DNMT3b
was associated with p16 and RASSF1A promoter methyl-
ation in non–small cell lung cancer (19) and with a pro-
moter hypermethylator phenotype in breast cancer (20).
Several single-nucleotide polymorphisms of the DNMT3b
gene have been identified, which may affect catalytic ac-
tivity of the DNMT3b enzyme. For example, the rare T
allele of the DNMT3b C→T (rs2424913) polymorphism
was found to significantly increase DNTM3b promoter ac-
tivity and was associated with an increased risk for lung
cancer (21), prostate cancer (22), and colorectal polyps,
including colorectal adenomas (23), or with prognosis of
head and neck cancer (24). Moreover, subjects with
hereditary nonpolyposis colorectal cancer carrying the
TT genotype developed colorectal cancer at a younger
age compared with those homozygous for the wild-type
DNMT3b CC allele (25). However, the association
between the DNMT3b C→T (rs2424913) polymorphism
and colorectal cancer risk has not previously been
investigated.

It has been hypothesized that DNA methyltransferases
may only have an effect on the chromatin if histone H3
Lys-9 is first methylated by histone methyltransferases
(Fig. 1) and that DNA methylation may thus depend on

the activity of histone methyltransferases (26). Experi-
mental research also indicated that methylation of histone
H3 Lys-9 and other histones play a critical role in main-
taining epigenetic silencing by promoter hypermethyla-
tion of genes involved in colorectal cancer (27). The
retinoblastoma protein interacting zinc finger gene (RIZ
or PRDM2) is a histone methyltransferase that may act
as a tumor suppressor, and PRDM2 frameshift mutations
have been observed in colorectal cancers showing
microsatellite instability (28). Genetic variation of
PRDM2 may be hypothesized to affect its gene activity,
and single-nucleotide polymorphisms in PRDM2 were
observed to be inversely associated with lung cancer
(29). However, an increased risk for breast cancer was
suggested (30). Other genes that have been identified as
histone methyltransferases are euchromatin histone
methyltransferase-1 (EHMT1) and -2 (EHMT2), and ge-
netic variants of these genes were modestly associated
with breast cancer risk in a large case-control study (30).
However, the potential impact of genetic variants of
PRDM2, EHMT1, and EHMT2 has not previously been
studied in relation to colorectal cancer.

The aim of this study was to determine the occurrence
of single-nucleotide polymorphisms in genes encoding
folate metabolizing enzymes (MTHFR, MTR, and MTRR),
the DNA methyltransferase DNMT3b, and histone
methyltransferases (EHMT1, EHMT2, and PRDM2) in a

Figure 1. Folate metabolizing enzymes, DNA methyltransferases, histone methyl transferases, and DNA methylation. Potential
targets of methyl groups are DNA, lysines (among which is histone H3 Lys-9), or other substrates, for example, proteins, RNA,
etc. DNMT3b activity and promoter CpG island hypermethylation may depend on previous methylation of histone H3 Lys-9. Ovals
represent the enzymes, of which single-nucleotide polymorphisms are investigated in this study. dUMP, deoxyuridine monopho-
sphate; dTMP, deoxythymidine monophosphate; DHF, dihydrofolate; THF, tetrahydrofolate; FAD, flavine adenine dinucleotide;
SAM, S-adenosyl methionine; SAH, S-adenosyl homocysteine; MTHFR, methylene tetrahydrofolate reductase; MTR, methionine
synthase; MTRR, methionine synthase reductase; DNMT3b, DNA methyltransferase 3b; PRDM2, PR domain 2; EHMT, euchroma-
tine histone methyltransferase.
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large population-based prospective cohort study in the
Netherlands. We estimated associations of these single-
nucleotide polymorphisms with overall colorectal cancer
risk and with colorectal cancers with or without the CpG
island methylator phenotype (CIMP), MLH1 hypermethy-
lation, or microsatellite instability.

Subjects and Methods

Study Population and Tumor Tissue Samples. Tumor
material was obtained from incident colorectal cancer
patients from theNetherlands cohort study,which has been
described in detail elsewhere (31). Briefly, this prospective
cohort study was initiated in September 1986 and includes
58,279men and 62,573womenwith the age of 55 to 69 y and
free of disease at baseline. The cohort is followed for cancer
occurrence by annual record linkage to the Netherlands
Cancer Registry and to the Pathologisch Anatomisch Land-
elijk Geautomatiseerd Archief, a nationwide network and
registry of histopathology and cytopathology reports (32,
33). At baseline, participants filled out a self-administered
food frequency questionnaire, by which information was
obtained about age, sex, family history of colorectal cancer,
smoking behavior, and body mass index. A subcohort of
5,000 subjects was randomly selected after baseline expo-
suremeasurement to estimate accumulation of person-time
in the cohort through biennial follow-up of vital status.
Cases with prevalent cancer other than nonmelanoma skin
cancer were excluded from this subcohort, which left 4,774
men and women eligible for analysis. Tumor material of
the colorectal cancer patients was collected after approval
by the ethical review boards of Maastricht University,
the Netherlands Cancer Registry, and the Pathologisch
Anatomisch Landelijk Geautomatiseerd Archief. During a
follow-up period of 7.3 y after baseline, 734 incident
colorectal cancer patients were identified who had an
available Pathologisch Anatomisch Landelijk Geautomati-
seerd Archief report of the lesion, as well as a sufficient
amount of isolated DNA.

Collection of Mouth Swabs of Subcohort Members.
Subcohort members still alive in December 2000 (n =
3,579) were contacted and asked to collect mouth swabs.
Four cotton swabs in a small nonwoven polyethylene en-
velope were mailed to each subject, including a simple
protocol on how to use them. After receipt, the swabs
were placed in a falcon tube containing 2.0 mL buffer so-
lution (100 mmol/L NaCl; 10 mmol/L EDTA; 10 mmol/L
Tris, pH 8; with 0.2 mg/mL proteinase K and 0.5% w/v
SDS). The lysed solution was kept stored at room temper-
ature in the dark. In total, 1,929 subcohort members (54%)
returned the mouth swabs with informed consent. The
average DNA yield per cotton swab was 0.1 to 10 μg,
which corresponded with data from literature (34).
DNA could successfully be isolated from 1,829 subcohort
members who also had complete follow-up information.

Genotyping Analyses. Nine fragments containing the
MTHFR, MTR, MTRR, DNMT3b, EHMT1, EHMT2, and
PRDM2 single-nucleotide polymorphisms were amplified
using multiplex PCR amplification and single-base exten-
sion reactions, as described previously by Knaapen et al.
(35). Genomic DNA (50 ng) was added to 1× PCR
buffer (Invitrogen), 1.75 mmol/L MgCl2 (Invitrogen),
0.4 μmol/L dNTPs (Amersham Bioscience), 100 nmol/L

of each primer (Eurogentec), and 0.25 U Platinum Taq
(Invitrogen) in a final volume of 10 μL. PCR conditions
were as follows: 3 min at 94°C, 35 cycles of 30 sec at
94°C, 30 sec at 62°C and 30 sec at 72°C, and a final exten-
sion for 5 min at 72°C and 4 min at 20°C. To degrade ex-
cess PCR primers and dNTPs, 5 μL multiplex PCR product
was incubated with 2 μL EXO-SAP IT (Amersham Biosci-
ence) at 37°C for 15 min, followed by 80°C for 15 min to
deactivate the enzyme. The multiplex single-base exten-
sion reaction was done using a SNaPShot multiplex kit,
as described by the manufacturer (Applied Biosystems).
single-base extension primers were designed to bind
immediately adjacent 5′ to the Single-nucleotide polymor-
phism of interest with a template-specific part of 20 to
33 bp and a temperature of 60°C. rs numbers of the
single-nucleotide polymorphisms and primer sequences
are shown in Supplementary Table S1. During thermal
cycling, the primers are extended at their 3′ end with a
single dideoxyribonucleoside triphosphate labeled with
a distinct fluorophore, revealing the genotype of the
single-nucleotide polymorphism. Single-base extension
was done using 25 cycles of 96°C for 10 s and 60°C for
30 s. Following cycling, the reaction was treated with
1 U Shrimp Alkaline Phosphatase (Amersham Bioscience)
at 37°C for 1 h to degrade the unincorporated dideoxynu-
cleotide triphosphates, followed by enzyme deactivation
at 75°C for 15 min. One microliter of single-base extension
product was mixed with 13 μL of Hi-Di formamide
(Applied Biosystems) and 0.4 μL of Genescan-120 size
standard (Applied Biosystems), subsequently denatured
at 95°C for 5 min, and then analyzed on an ABI Prism
3100 genetic analyzer using Genemapper Analysis
software (version 4.0).

To validate the genotype data, we sequenced every frag-
ment containing a specific single-nucleotide polymor-
phism in a subset of 30 samples, including 10 colorectal
cancer cases, 10 female, and 10 male subcohort members
with mouth swabs. Sequencing was done using the BigDye
Terminater v1.1 cycle sequencing kit, following the manu-
facturer's recommendations using the ABI 3700 genetic
analyzer. The sequencing results were similar to the
SNaPShot results for all but one (99.6%) of the nine sin-
gle-nucleotide polymorphisms within these 30 samples.
Reproducibility of the SNaPShot analysis was established
by subjecting 93 samples, composed of 31 colorectal cancer
cases, 31 female, and 31 male subcohort members with
mouth swabs, twice to the complete SNaPShot analysis
procedure, from multiplex PCR of genomic DNA to the
genetic analysis of the samples. We observed that the
analyses could be reproduced in 99.5% of these cases.

Promoter Methylation Analyses. The CIMP was de-
fined by promoter hypermethylation of at least three of five
methylation markers (CACNA1G, IGF2, NEUROG1,
RUNX3, and SOCS1), as suggested by Weisenberger et al.
(36). DNA methylation in the CpG islands of these five
CIMP markers and of the MLH1 gene was determined by
Methylation Specific PCR (37). Bisulfite modification was
carried out on 500 ng DNA using a commercially available
kit (Zymo Research). To facilitate Methylation Specific PCR
analysis on DNA retrieved from formalin-fixed, paraffin-
embedded tissue, DNA was first amplified with flanking
PCR primers that amplify bisulfite modified DNA but do
not preferentially amplify methylated or unmethylated
DNA. The resulting fragment was used as a template for
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the Methylation Specific PCR reaction (38, 39). All PCRs
were done with controls for unmethylated alleles (DNA
from normal lymphocytes), methylated alleles (normal
lymphocyte DNA treated in vitro with SssI methyltransfer-
ase, New England Biolabs), and a control without DNA.
Ten microliters of each Methylation Specific PCR reaction
was directly loaded onto nondenaturing 6% polyacryl-
amide gels, stained with ethidium bromide, and visualized
under UV illumination. The Methylation Specific PCR
analyses were successful in 81%, 79%, 79%, 90%, 83%,
and 93% of the 734 patients for CACNA1G, IGF2, NEU-
ROG1, RUNX3, SOCS1, and MLH1, respectively.

Microsatellite Instability. Microsatellite instability was
determined by a pentaplex PCR, using the microsatellite
instability markers BAT-26, BAT-25, NR-21, NR-22, and
NR-24, as described in detail by Suraweera et al. (40). Mi-
crosatellite instability analyses were successful in 662
(90%) of the 734 available samples.

Statistical Analyses. Data analyses were conducted
overall and for men and women separately. The preva-
lence of the genotypes and minor allele frequencies of
the single-nucleotide polymorphisms were calculated for

subcohort members and colorectal cancer cases. χ2 Tests
were used to test differences in prevalence between colo-
rectal cancer cases and subcohort members who did not
develop colorectal cancer. The Hardy-Weinberg equilibri-
um was tested using a P value threshold of <0.05 among
subcohort members to evaluate whether, for each single-
nucleotide polymorphism, the individual alleles com-
bined into the observed genotypes in a random manner.
Although this subcohort was a random sample of the to-
tal cohort and thus selection would not be expected, the
DNA samples were collected from individuals still alive
several years after baseline. If survival of these subjects
was due to presence of specific genotypes, this may bias
the estimated associations. However, because genetic sta-
tus is unknown of the remaining subcohort members, it is
impossible to compare survival between genotypes, and
we therefore alternatively compared mean age of patients
between genotypes of each gene.

The overlap between the three methylation endpoints,
that is, CIMP, MLH1 hypermethylation, and microsatel-
lite instability, was compared and tested by χ2 tests. Cox
proportional hazards regression models were used to
estimate age-adjusted incidence rate ratios and 95%

Table 1. Prevalence of genotypes of subcohort members and colorectal cancer patients in the Netherlands cohort
study

Gene and SNP dbSNP
number

Genotype (MAF) Men and women Men Women

Subcohort
(HWE)*

CRC cases Subcohort
(HWE)*

CRC cases Subcohort
(HWE)*

CRC cases

MTHFR
C677T

rs1801133 CC 876 (48.9 %) 318 (46.2 %) 409 (45.4%) 179 (46.8%) 467 (52.3%) 139 (45.3%)
CT 750 (41.8 %) 320 (46.4 %) 405 (44.9%) 184 (48.2%) 345 (38.7%) 136 (44.3%)
TT 167 (9.3 %) 51 (7.4 %) 87 (9.7%) 19 (5.0%) 80 (9.0%) 32 (10.4%)

(0.30) (0.72) † (0.36) † (0.16)
MTHFR

A1298C
rs1801131 AA 735 (41.6%) 299 (43.7%) 345 (39.3%) 167 (43.8%) 390 (43.9%) 132 (43.6%)

AC 774 (43.8%) 275 (40.2%) 423 (48.2%) 166 (43.6%) 351 (39.5%) 109 (36.0%)
CC 258 (14.6%) 110 (16.1%) 110 (12.5%) 48 (12.6%) 148 (16.6%) 62 (20.4%)

(0.37) (0.02) (0.26) (<0.001)
MTR A2756G rs1805087 AA 1190 (65.9%) 449 (64.5%) 589 (65.1%) 257 (66.4%) 601 (66.8%) 192 (62.1%)

AG 543 (30.1%) 204 (29.3%) 281 (31.0%) 108 (27.9%) 262 (29.1%) 96 (31.1%)
GG 72 (4.0%) 43 (6.2%) 35 (3.9%) 22 (5.7%) 37 (4.1%) 21 (6.8%)
(0.19) (0.31) (0.84) (0.22)

MTRR A66G rs1801394 AA 367 (20.4%) 136 (19.5%) 193 (21.4%) 65 (16.7%) 174 (19.4%) 71 (23.0%)
AG 833 (46.4%) 338 (48.3%) 399 (44.2%) 196 (50.2%) 434 (48.5%) 142 (45.9%)
GG 597 (33.2%) 225 (32.2%) 310 (34.4%) 129 (33.1%) 287 (32.1%) 96 (31.1%)
(0.56) (0.01) (0.003) (0.67)

DNMT3b
C→T‡

rs2424913 CC 597 (32.9%) 240 (34.1%) 303 (33.4%) 132 (33.9%) 294 (32.5%) 108 (34.4%)
CT 895 (49.5%) 348 (49.5%) 449 (49.6%) 184 (47.3%) 446 (49.4%) 164 (52.2%)
TT 318 (17.6%) 115 (16.4%) 154 (17.0%) 73 (18.8%) 164 (18.2%) 42 (13.4%)

(0.42) (0.58) (0.57) (0.82)
DNMT3b

C→T‡
rs406193 CC 1331 (74.3%) 528 (75.6%) 686 (76.7%) 291 (74.6%) 645 (71.9%) 237 (76.9%)

CT 415 (23.1%) 152 (21.8%) 190 (21.2%) 88 (22.6%) 225 (25.1%) 64 (20.8%)
TT 46 (2.6%) 18 (2.6%) 19 (2.1%) 11 (2.8%) 27 (3.0%) 7 (2.3%)

(0.14) (0.05) (0.18) (0.18)
EHMT1

G→A‡
rs4634736 GG 1444 (80.6%) 568 (81.7%) 730 (81.4%) 320 (83.1%) 714 (79.8%) 248 (80.0%)

GA 334 (18.6%) 121 (17.4%) 163 (18.2%) 64 (16.6%) 171 (19.1%) 57 (18.4%)
AA 14 (0.8%) 6 (0.9%) 4 (0.4%) 1 (0.3%) 10 (1.1%) 5 (1.6%)
(0.10) (0.27) (0.11) (0.95)

EHMT2
G→A

rs535586 GG 755 (42.2%) 297 (42.9%) 390 (43.3%) 155 (40.3%) 365 (41.2%) 142 (46.3%)
GA 810 (45.3%) 311 (44.9%) 414 (45.9%) 185 (48.0%) 396 (44.6%) 126 (41.0%)
AA 223 (12.5%) 84 (12.2%) 97 (10.8%) 45 (11.7%) 126 (14.2%) 39 (12.7%)
(0.35) (0.80) (0.41) (0.27)

PRDM2
G→A‡

rs2235515 GG 1065 (59.0%) 377 (55.7%) 527 (58.5%) 210 (56.0%) 538 (59.6%) 167 (55.3%)
GA 640 (35.5%) 262 (38.7%) 320 (35.5%) 141 (37.6%) 320 (35.4%) 121 (40.1%)
AA 99 (5.5%) 38 (5.6%) 54 (6.0%) 24 (6.4%) 45 (5.0%) 14 (4.6%)
(0.23) (0.82) (0.56) (0.77)

Abbreviations: SNP, single-nucleotide polymorphism; MAF, minor allele frequency among subcohort members (men and women combined); HWE, Hardy-
Weinberg equilibrium; CRC, colorectal cancer.
*P value for test for Hardy-Weinberg equilibrium based on the distribution of genotypes among subcohort members.
†χ2 Test; P < 0.05 for the difference in genotype frequencies between colorectal cancer cases and subcohort members who did not develop colorectal cancer.
‡Single-nucleotide polymorphism occurring in an intron of the gene.
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confidence intervals (95% CI), taking homozygotes of
common alleles as reference category in all analyses.
Analyses were done overall and stratified by CIMP sta-
tus, MLH1 hypermethylation, and microsatellite instabil-

ity, allowing us to compare the effects between the
recently defined CIMP phenotype (36), the “classic”
methylation marker MLH1, and microsatellite instability,
and to account for a potential incomplete overlap that

Table 2. Associations of single-nucleotide polymorphisms in folate-metabolizing enzymes and epigenetic
regulators with colorectal cancer risk

Gene and SNP dbSNP number Genotype Men and women Men Women Interaction
with sex

n* RR (95% CI)† P n RR (95% CI)‡ P n RR (95% CI)‡ P P

MTHFR C677T rs1801133 CC 318 1.00 179 1.00 139 1.00
CT 320 1.23

(1.02-1.50)
0.04 184 1.10

(0.84-1.43)
0.49 136 1.43

(1.07-1.91)
0.02

TT 51 0.80
(0.56-1.15)

0.23 19 0.49
(0.28-0.85)

0.01 32 1.26
(0.78-2.05)

0.34 0.03

CT + TT
vs CC

371 1.15
(0.95-1.39)

0.15 203 0.98
(0.76-1.27)

0.89 168 1.39
(1.06-1.83)

0.02

MTHFR A1298C rs1801131 AA 299 1.00 167 1.00 132 1.00
AC 275 0.89

(0.72-1.09)
0.26 166 0.81

(0.62-1.07)
0.14 109 1.00

(0.73-1.35)
0.98

CC 110 1.05
(0.79-1.38)

0.74 48 0.89
(0.59-1.35)

0.58 62 1.23
(0.85-1.78)

0.28 0.42

AC + CC
vs AA

385 0.93
(0.77-1.12)

0.45 214 0.83
(0.64-1.07)

0.15 171 1.07
(0.81-1.41)

0.64

MTR A2756G rs1805087 AA 449 1.00 257 1.00 192 1.00
AG 204 1.03

(0.84-1.27)
0.77 108 0.95

(0.72-1.26)
0.73 96 1.14

(0.85-1.54)
0.38

GG 43 1.58
(1.03-2.43)

0.04 22 1.45
(0.79-2.66)

0.23 21 1.76
(0.97-3.21)

0.06 0.64

AG + GG
vs AA

247 1.10
(0.90-1.33)

0.35 130 1.01
(0.77-1.32)

0.94 117 1.22
(0.92-1.62)

0.17

MTRR A66G rs1801394 AA 136 1.00 65 1.00 71 1.00
AG 338 1.08

(0.85-1.39)
0.53 196 1.36

(0.96-1.92)
0.09 142 0.83

(0.59-1.18)
0.31

GG 225 1.03
(0.79-1.34)

0.83 129 1.23
(0.85-1.78)

0.27 96 0.85
(0.58-1.24)

0.39 0.15

AG + GG
vs AA

563 1.06
(0.84-1.34)

0.62 325 1.30
(0.94-1.81)

0.11 238 0.84
(0.60-1.16)

0.29

DNMT3b C→T rs2424913 CC 240 1.00 132 1.00 108 1.00
CT 348 0.95

(0.78-1.17)
0.66 184 0.91

(0.68-1.20)
0.50 164 1.01

(0.75-1.36)
0.94

TT 115 0.90
(0.68-1.19)

0.46 73 1.00
(0.69-1.45)

0.99 42 0.76
(0.50-1.16)

0.20 0.37

CT + TT
vs CC

463 0.94
(0.77-1.14)

0.54 257 0.93
(0.71-1.22)

0.60 206 0.95
(0.71-1.26)

0.72

DNMT3b C→T rs406193 CC 528 1.00 291 1.00 237 1.00
CT 152 0.91

(0.73-1.14)
0.43 88 1.13

(0.83-1.54)
0.43 64 0.71

(0.51-0.99)
0.05

TT 18 1.05
(0.59-1.87)

0.87 11 1.32
(0.59-2.95)

0.50 7 — — 0.10

CT + TT
vs CC

170 0.93
(0.75-1.15)

0.49 99 1.15
(0.86-1.54)

0.36 71 0.72
(0.52-0.99)

0.04

EHMT1 G→A rs4634736 GG 568 1.00 320 1.00 248 1.00
GA 121 0.93

(0.73-1.18)
0.55 64 0.92

(0.66-1.28)
0.62 57 0.95

(0.67-1.34)
0.76

AA 6 — — 1 — — 5 — — 0.41
GA + AA
vs GG

127 0.93
(0.73-1.18)

0.55 65 0.89
(0.64-1.24)

0.49 62 0.98
(0.70-1.37)

0.90

EHMT2 G→A rs535586 GG 297 1.00 155 1.00 142 1.00
GA 311 0.92

(0.76-1.13)
0.44 185 1.10

(0.84-1.44)
0.48 126 0.74

(0.55-0.99)
0.05

AA 84 1.01
(0.74-1.37)

0.95 45 1.17
(0.76-1.80)

0.47 39 0.84
(0.55-1.27)

0.44 0.13

GA + AA
vs GG

395 0.94
(0.78-1.14)

0.53 230 1.12
(0.86-1.44)

0.41 165 0.76
(0.58-1.01)

0.05

PRDM2 G→A rs2235515 GG 377 1.00 210 1.00 167 1.00
GA 262 1.14

(0.93-1.38)
0.20 141 1.09

(0.83-1.43)
0.54 121 1.20

(0.90-1.60)
0.21

AA 38 1.09
(0.72-1.66)

0.67 24 1.02
(0.60-1.75)

0.93 14 1.20
(0.63-2.29)

0.58 0.85

GA + AA
vs GG

300 1.13
(0.94-1.37)

0.20 165 1.08
(0.83-1.40)

0.57 135 1.20
(0.91-1.58)

0.20

Abbreviation: RR, incidence rate ratio.
*Number of cases; subgroups of ≤10 cases were considered too small for precise estimates and were therefore omitted from the table.
†Adjusted for age and sex.
‡Adjusted for age.
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may exist between related molecular phenotypes (41).
Because two single-nucleotide polymorphisms were de-
termined for MTHFR and DNMT3b, we estimated inci-
dence rate ratios for combinations of genotypes within
these genes. In addition, incidence rate ratios for combi-
nations of genotypes per functional group (that is, based
on the number of rare alleles in any of the folate-metab-
olizing enzymes MTHFR, MTR, and MTRR, or in any of
the histone methyltransferases EHMT1, EHMT2, and
PRDM2) or the combination of all the studied genes
were estimated. SEs of the incidence rate ratios were es-
timated using the robust Huber-White sandwich estima-
tor to account for additional variance introduced by
sampling from the cohort (42). The proportional hazards
assumption was tested using the scaled Schoenfeld resi-
duals (43). Multivariate-adjusted analyses were addition-
ally conducted, including the covariates dietary folate,
vitamin B2, vitamin B6, methionine, alcohol, energy in-
take, family history of colorectal cancer, smoking behav-
ior, and body mass index. Interactions with sex were
tested for each of the single-nucleotide polymorphisms.
Statistical analyses were done with the Stata statistical
software package (version 10).

Results

The overall and gender-specific prevalences of genotypes
were calculated and compared between subcohort mem-
bers and colorectal cancer cases. We observed that the rare
MTHFR 677TT variant occurred more often in subcohort
members than in cases and that this difference was present
among men (prevalences in subcohort and cases were
9.7% and 5.0%, respectively). Prevalences of other geno-
types did not significantly differ between subcohort
members and cases (Table 1). The distribution of the
MTHFR A1298C, MTRR A66G, and DNMT3b C→T
(rs406193) genotypes deviated from the Hardy-Weinberg
equilibrium (P < 0.05). However, mean age was similar
between genotypes of any of the single-nucleotide poly-
morphisms, suggesting that there was no survivorship
effect due to genetic status.

Overall, subjects with the heterozygous MTHFR
677CT genotype were at modestly increased colorectal
cancer risk compared with participants with the com-
mon CC genotype (incidence rate ratio, 1.23; P = 0.04;
Table 2). Similarly, positive associations existed among
women with this genotype (incidence rate ratio, 1.43;
P = 0.02) and for the occurrence of the rare T allele (that

is, the combination of the CT and TT genotypes com-
pared with CC; incidence rate ratio, 1.39; P = 0.02). Con-
versely, we observed that men homozygous for the
MTHFR 677TT genotype were at reduced colorectal can-
cer risk (incidence rate ratio, 0.49; P = 0.01). There was a
significant interaction between sex and MTHFR C677T
genotypes (P = 0.03). Whereas MTHFR A1298C was
not associated with colorectal cancer, we observed that
the MTR 2756GG genotype was associated with in-
creased risk for colorectal cancer (incidence rate ratio,
1.58; P = 0.04), particularly among women (incidence
rate ratio, 1.76; P = 0.06). Among men, the MTR
2756GG genotype was associated with a nonsignificant
increase of colorectal cancer risk (incidence rate ratio,
1.45; P = 0.23). MTRR A66G genotypes were not associ-
ated with colorectal cancer.

Among women, compared with common homozy-
gotes, the rare alleles of DNMT3b C→T (rs406193) and
EHMT2 G→A (rs535586) were associated with de-
creased colorectal cancer risk [incidence rate ratio, 0.72
(P = 0.04) and 0.76 (P = 0.05), respectively], but such
associations were not observed among men. No associa-
tions were observed between individual genotypes of
the remaining genes and overall colorectal cancer risk.
Combining MTHFR and DNMT3b genotypes, genotypes

Table 3. Frequency of colorectal cancers harboring CIMP and overlap with MLH1 promoter hypermethylation and
microsatellite instability

Frequency of molecular
phenotype, n (%)

CIMP P*

CIMP+ CIMP−

CIMP
CIMP+ 167 (27.7) — — —
CIMP− 436 (72.3) — —

MLH1 promoter methylation
Methylated 152 (22.1) 68 (41.5) 59 (14.0) <0.001
Unmethylated 534 (77.9) 96 (58.5) 363 (86.0)

MSI
MSI 84 (12.7) 52 (33.3) 17 (4.2) <0.001
MSS 578 (87.3) 104 (67.7) 390 (95.8)

Abbreviations: CIMP+; three or more of five CIMP markers methylated; CIMP-, zero to two of five CIMP markers methylated; MSI, microsatellite instability;
MSS, Microsatellite Stable tumors.
*χ2 Test.

Figure 2. Overlap between CIMP, MLH1 hypermethylation,
and microsatellite instability in colorectal cancers, showing
at least one of these three aberrations. In total, there were
n = 271 colorectal cancers harboring at least one aberration.
Numbers are based on colorectal cancers with complete
analyses of all three molecular characteristics (n = 547 colorectal
cancers). The sizes of the different areas in this figure may not
exactly reflect the numbers of the applicable subsets.
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per functional group, or genotypes of all studied genes
did not reveal any clear associations with colorectal
cancer. Multivariate-adjusted analyses resulted in simi-
lar findings compared with age-adjusted analyses (data
not shown).

In total, 167 (27.7%) of the 603 colorectal cancers with
available CIMP analyses showed the CIMP phenotype
(Table 3; Fig. 2), with no significant difference between
men and women (data not shown). As reported previous-
ly for MLH1 hypermethylation, microsatellite instability,
and BRAF mutations (41), the overlap between CIMP,
MLH1 hypermethylation, and microsatellite instability
was also incomplete. Although statistically significant
(Pχ2 < 0.001), 41.5% of the colorectal cancers with CIMP
showed MLH1 methylation, whereas only 33.3% har-
bored microsatellite instability.

MTHFR C677T polymorphismswere not associated with
any of the methylation endpoints among men (Table 4).
However, we observed that women carrying the rare
T allele of MTHFR C677T were at significantly increased
risk for developing a tumor without CIMP (CIMP-; inci-
dence rate ratio, 1.40; P = 0.04), without MLH1 hyper-
methylation (incidence rate ratio, 1.49; P = 0.01), or
without microsatellite instability (incidence rate ratio,
1.36; P = 0.04) but also those with CIMP (CIMP+; inci-
dence rate ratio, 1.65; P = 0.04; Table 5). Among men,
the rare C allele of the MTHFR A1298C polymorphism
was inversely associated with colorectal cancers without
CIMP (incidence rate ratio, 0.72; P = 0.03). Inverse associa-
tions were also observed between MTR A2756G and

CIMP+ among men (incidence rate ratio, 0.58; P = 0.04)
and between MTRR A66G and MLH1 hypermethylation
among women (incidence rate ratio, 0.55; P = 0.02).

Among women, the rare T allele of DNMT3b C→T
(rs406193) was associated with decreased risks for colo-
rectal cancers without CIMP (incidence rate ratio, 0.67;
P = 0.04), colorectal cancers without microsatellite insta-
bility (incidence rate ratio, 0.70; P = 0.04), and a nonsignif-
icant decreased risk for colorectal cancers without MLH1
hypermethylation (incidence rate ratio, 0.73; P = 0.09).
However, although not statistically significant, incidence
rate ratios were also decreased for colorectal cancers har-
boring CIMP or MLH1 hypermethylation. Similarly, the
rare A allele of EHMT2 G→A (rs535586) was inversely as-
sociated colorectal cancers without MLH1 methylation
(incidence rate ratio, 0.73), colorectal cancers without mi-
crosatellite instability (incidence rate ratio, 0.73), or non-
significantly with colorectal cancers without CIMP
(incidence rate ratio, 0.75) in women. Conversely, we ob-
served a positive association (incidence rate ratio, 1.99) of
EHMT2 G→A with MLH1 hypermethylation among men.

Discussion

We studied associations between single-nucleotide poly-
morphisms in folate metabolizing enzymes, a DNA
methyltransferase, and histone methyltransferases with
colorectal cancer risk, accounting for related "methylation
phenotypes" in a large prospective cohort study in the

Table 4. Associations of single-nucleotide polymorphisms in folate metabolizing enzymes and epigenetic
regulators with colorectal cancer risk according to methylation status of the tumor among men

Gene and SNP Genotype CIMP MLH1 promoter hypermethylation MSI

CIMP+ CIMP− Methylated Unmethylated MSI No MSI

n* RR (95% CI)† n RR (95% CI)† n RR (95% CI)† n RR (95% CI)† n RR (95% CI)† n RR (95% CI)†

MTHFR C677T CC 43 Ref. 103 Ref. 32 Ref. 143 Ref. 21 Ref. 145 Ref.
(rs1801133)‡ CT + TT 40 0.81

(0.51-1.28)
135 1.14

(0.84-1.54)
41 1.11

(0.68-1.81)
153 0.93

(0.70-1.22)
20 0.83

(0.44-1.58)
166 0.99

(0.75-1.30)
MTHFR A1298C AA 30 Ref. 112 Ref. 32 Ref. 132 Ref. 16 Ref. 139 Ref.
(rs1801131) AC + CC 54 1.16

(0.72-1.87)
125 0.72

(0.53-0.97)
40 0.81

(0.49-1.32)
165 0.81

(0.61-1.07)
24 0.97

(0.50-1.88)
173 0.80

(0.61-1.06)
MTR A2756G AA 66 Ref. 153 Ref. 49 Ref. 199 Ref. 25 Ref. 209 Ref.
(rs1805087) AG + GG 19 0.58

(0.34-0.99)
87 1.14

(0.83-1.55)
24 0.98

(0.58-1.65)
100 1.01

(0.75-1.35)
16 1.31

(0.68-2.51)
107 1.02

(0.77-1.36)
MTRR A66G AA 10 Ref. 45 Ref. 12 Ref. 49 Ref. 5 Ref. 56 Ref.
(rs1801394) AG + GG 75 — 197 1.14

(0.79-1.66)
61 1.32

(0.69-2.52)
252 1.34

(0.93-1.92)
36 — 262 1.22

(0.87-1.72)
DNMT3b C→T CC 29 Ref. 81 Ref. 31 Ref. 95 Ref. 17 Ref. 101 Ref.
(rs2424913) CT + TT 56 0.92

(0.60-1.49)
161 0.95

(0.69-1.30)
42 0.65

(0.39-1.06)
205 1.03

(0.77-1.38)
24 0.66

(0.35-1.28)
216 1.03

(0.77-1.36)
DNMT3b C→T CC 59 Ref. 182 Ref. 54 Ref. 223 Ref. 30 Ref. 239 Ref.
(rs406193) CT + TT 26 1.49

(0.90-2.45)
60 1.11

(0.79-1.57)
19 1.19

(0.68-2.08)
78 1.18

(0.86-1.62)
11 1.25

(0.61-2.56)
79 1.12

(0.82-1.53)
EHMT1 G→A GG 74 Ref. 197 Ref. 57 Ref. 253 Ref. 36 Ref. 259 Ref.
(rs4634736) GA + AA 11 0.65

(0.34-1.26)
43 0.96

(0.65-1.40)
16 1.23

(0.69-2.22)
46 0.84

(0.58-1.21)
4 — 57 0.96

(0.68-1.36)
EHMT2 G→A GG 34 Ref. 98 Ref. 20 Ref. 130 Ref. 15 Ref. 124 Ref.
(rs535586) GA + AA 50 1.11

(0.69-1.76)
143 1.10

(0.81-1.48)
53 1.99

(1.16-3.41)
168 0.97

(0.73-1.28)
26 1.30

(0.67-2.51)
190 1.15

(0.88-1.52)
PRDM2 G→A GG 46 Ref. 126 Ref. 41 Ref. 160 Ref. 47 Ref. 166 Ref.
(rs2235515) GA + AA 36 1.07

(0.67-1.71)
109 1.19

(0.88-1.60)
31 1.04

(0.63-1.71)
130 1.11

(0.84-1.47)
34 0.73

(0.37-1.44)
140 1.16

(0.88-1.52)

Abbreviation: Ref., reference.
*Number of cases; subgroups of ≤10 cases were considered too small for precise estimates and were therefore omitted from the table.
†Age-adjusted incidence rate ratios (95% CI).
‡dbSNP number.
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Netherlands. We observed that MTHFR C677T may have
opposite effects in men and women and that MTR
A2756G potentially increases colorectal cancer risk. In ad-
dition, genetic variants of DNMT3b and EHMT2 may re-
duce colorectal cancer risk among women. Rare variants
of MTR and MTRR were inversely associated with CIMP
in men and MLH1 hypermethylation in women, respec-
tively, possibly by lowering methyl group availability. Al-
though methylation-associated characteristics were
significantly related, the overlap between CIMP and
MLH1 hypermethylation or microsatellite instability was
limited.

The MTHFR C677T and A1298C polymorphisms have
previously been investigated. Rare variants of these poly-
morphisms were generally inversely associated with colo-
rectal cancer risk (4, 5, 12, 44, 45) or with colorectal
adenoma recurrence (46). Conversely, associations with
increased colorectal cancer risk (47-49), colorectal adeno-
ma risk (50), or increased risk for colorectal adenoma
recurrence (51, 52) have been observed as well. Analyses
were stratified by sex in some studies, and positive
associations with colorectal cancer were reported among
men for MTHFR C677T (47) and A1298C (48, 50). In
addition, similar to our study, the rare T allele of the
MTHFR C677T polymorphism has been observed to be
associated with increased colorectal cancer risk among
women but not among men (48). MTHFR polymorphisms
may reduce enzymatic activity and thereby decrease the
pool of 5-methyltetrahydrofolate. The resulting lower
availability of methyl groups may lead to global DNA
hypomethylation (53). It may also be associated with

increased promoter hypermethylation in colorectal cancer
(7), with CIMP (6), or with microsatellite instability (8, 54,
55), which is highly correlated with CIMP in colorectal
cancer (36). Although these two opposite methylation pat-
terns may develop independently of one another, global
DNA hypomethylation and gene promoter hypermethy-
lation are observed concurrently in colorectal cancer
(56-58). However, it is currently unknown to what extent
alterations in methyl group metabolism influence this
imbalance in the distribution of cytosine methylation,
and neither do we know to what extent this influences
colorectal carcinogenesis. Moreover, methyl groups may
have different targets, for example, DNA, RNA, or pro-
teins (Fig. 1), and the relative contribution of methyl
groups to either of these targets is unknown.

Although, in our study, MTHFR C677T tended to in-
crease overall colorectal cancer risk among women, this
effect could not be explained by a distinct positive associ-
ation with CIMP only. Among men on the other hand, the
MTHFR 677TT genotype was associated with reduced
overall colorectal cancer risk, and the C allele of MTHFR
A1298C was inversely associated with colorectal cancers
without CIMP. An increased pool of 5,10-methylenene tet-
rahydrofolate by MTHFR polymorphisms may optimize
DNA synthesis and lower the incorporation of uracil into
DNA (59). However, this may have dual consequences for
carcinogenesis because increased synthesis and stability
of DNA possibly protects against carcinogenesis but
may also increase cell proliferation in tumors. Nonethe-
less, we hypothesize that MTHFR may act as a switch be-
ing able to shift the balance between DNA methylation

Table 5. Associations of single-nucleotide polymorphisms in folate-metabolizing enzymes and epigenetic
regulators with colorectal cancer risk according to methylation status of the tumor among women

Gene and SNP Genotype CIMP MLH1 promoter hypermethylation MSI

CIMP+ CIMP− Methylated Unmethylated MSI No MSI

n* RR (95% CI)† n RR (95% CI) n RR (95% CI) n RR (95% CI) n RR (95% CI) n RR (95% CI)

MTHFR C677T CC 33 Ref. 82 Ref. 41 Ref. 94 Ref. 18 Ref. 115 Ref.
(rs1801133)‡ CT+TT 47 1.65

(1.02-2.65)
100 1.40

(1.01-1.94)
37 1.03

(0.64-1.65)
121 1.49

(1.09-2.03)
23 1.49

(0.78-2.84)
136 1.36

(1.02-1.82)
MTHFR A1298C AA 34 Ref. 80 Ref. 32 Ref. 92 Ref. 22 Ref. 102 Ref.
(rs1801131) AC+CC 46 1.12

(0.70-1.80)
99 1.01

(0.73-1.41)
45 1.15

(0.71-1.85)
120 1.08

(0.79-1.48)
19 0.73

(0.38-1.39)
146 1.18

(0.87-1.59)
MTR A2756G AA 54 Ref. 115 Ref. 47 Ref. 137 Ref. 25 Ref. 156 Ref.
(rs1805087) AG+GG 26 0.96

(0.59-1.58)
70 1.22

(0.87-1.71)
31 1.32

(0.82-2.13)
60 1.17

(0.85-2.61)
16 1.28

(0.67-2.45)
98 1.26

(0.93-1.70)
MTRR A66G AA 16 Ref. 46 Ref. 24 Ref. 44 Ref. 11 Ref. 58 Ref.
(rs1801394) AG+GG 64 1.00

(0.56-1.79)
139 0.75

(0.51-1.11)
53 0.55

(0.33-0.92)
252 0.99

(0.68-1.46)
29 0.66

(0.32-1.37)
196 0.84

(0.59-1.20)
DNMT3b C→T CC 23 Ref. 66 Ref. 23 Ref. 80 Ref. 10 Ref. 92 Ref.
(rs2424913) CT+TT 57 1.24

(0.74-2.06)
121 0.91

(0.65-1.27)
55 1.18

(0.71-1.97)
141 0.88

(0.64-1.21)
31 — 165 0.89

(0.66-1.21)
DNMT3b C→T CC 61 Ref. 145 Ref. 60 Ref. 167 Ref. 30 Ref. 196 Ref.
(rs406193) CT+TT 19 0.74

(0.43-1.29)
40 0.67

(0.45-0.98)
17 0.69

(0.39-1.21)
51 0.73

(0.51-1.05)
10 — 57 0.70

(0.50-0.98)
EHMT1 G→A GG 69 Ref. 142 Ref. 62 Ref. 175 Ref. 37 Ref. 199 Ref.
(rs4634736) GA+AA 11 0.62

(0.32-1.21)
43 1.19

(0.81-1.75)
15 1.01

(0.56-1.82)
44 0.98

(0.67-1.44)
3 — 56 1.10

(0.78-1.57)
EHMT2 G→A GG 35 Ref. 86 Ref. 35 Ref. 102 Ref. 15 Ref. 119 Ref.
(rs535586) GA+AA 44 0.82

(0.51-1.32)
143 0.75

(0.54-1.04)
42 0.80

(0.50-1.28)
114 0.73

(0.54-1.00)
25 1.07

(0.56-2.07)
132 0.73

(0.54-0.98)
PRDM2 G→A GG 49 Ref. 99 Ref. 39 Ref. 122 Ref. 21 Ref. 137 Ref.
(rs2235515) GA+AA 31 0.94

(0.58-1.51)
109 1.22

(0.87-1.69)
37 1.41

(0.88-2.26)
91 1.11

(0.81-1.51)
20 1.41

(0.75-2.66)
111 1.20

(0.90-1.61)

*Number of cases; subgroups of ≤10 cases were considered too small for precise estimates and were therefore omitted from the table.
†Age-adjusted incidence rate ratios (95% CI).
‡dbSNP number.
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and DNA synthesis (Fig. 1), both of which may have dis-
tinct consequences for carcinogenesis. Our observations
suggest that MTHFR polymorphisms, albeit in different
directions, may influence colorectal cancer risk in men
and women but that a change in promoter hypermethyla-
tion, as measured by CIMP or MLH1 hypermethylation,
may not be the primary contributor to carcinogenesis in
these individuals.

Among subjects in our study population, the MTR
2756GG genotype was associated with increased colorectal
cancer risk. Genetic variants of MTR were not associated
with colorectal cancer in a number of previous studies
(12, 60, 61). Modest risk reductions among MTR 2756GG
homozygotes were found in one colorectal adenoma study
(9) and in one colorectal cancer study (10), whereas also
nonsignificant increased risks were observed between this
single-nucleotide polymorphism and colorectal adenoma
(11) or colorectal cancer (13). Rare variants of MTR were
associated with lower plasma homocysteine concentra-
tions (62), suggesting lower catalytic activity of the MTR
enzyme and lower availability of methyl groups. Interest-
ingly, we observed that the MTR A2756G single-nucleotide
polymorphism was associated with reduced risk for colo-
rectal cancers with CIMP among men.

It was previously observed that rare variants of the
MTRR A66G single-nucleotide polymorphism may be in-
versely associated with colorectal adenoma recurrence
(46) but with increased colorectal cancer risk (13). In ad-
dition, other single-nucleotide polymorphisms in MTRR
were associated with an increased risk for colorectal ade-
noma (11) and colorectal cancer (12). We did not observe
an association with overall colorectal cancer risk in our
study, but the G allele of the MTRR A66G polymorphism
was associated with reduced risk for colorectal cancers
with MLH1 hypermethylation among women. The MTRR
A66G single-nucleotide polymorphism may also be
associated with reduced catalytic activity of the MTRR
enzyme (63). Our data suggest that this possibly results
in decreased promoter hypermethylation in colorectal
cancer similar to MTR A2756G, which is involved in the
same metabolic conversion in the one-carbon metabolism.

The CIMP phenotype has not uniquely been defined be-
cause various sets of promoters have previously been used
with different cutoff values (64). To investigate an optimal
set of markers for CIMP, Weisenberger et al. (36) screened
195 CpG island methylation markers and proposed a ro-
bust new panel of five markers to define CIMP in colorec-
tal cancer. This new set has been validated successfully in a
large group of incident colorectal cancer patients (65), and
we have used these new markers in our study. However,
we have shown that the overlap between CIMP and MLH1
or microsatellite instability may be incomplete. It has also
been suggested that CIMP may consist of three molecular
subtypes based on presence or absence of microsatellite in-
stability, BRAF, KRAS, or p53 mutations (66), but these
characteristics are not mutually exclusive. In addition,
we previously observed incomplete overlap between
MLH1 hypermethylation or expression, microsatellite in-
stability, and BRAF mutations (41). The current study sug-
gests that lower enzymatic activity of folate metabolizing
enzymes MTR and MTRR is inversely associated with
either CIMP or MLH1 hypermethylation. In view of
these observations, it remains important to investigate
associations with CIMP and other methylation endpoints
separately.

The DNMT3b C→T (rs2424913) single-nucleotide poly-
morphism was not associated with colorectal cancer risk.
However, an increased risk for colorectal cancer could be
expected because this polymorphism increases enzymatic
activity of DNMT3b (21), and DNMT3b overexpression
was associated with increased promoter hypermethyla-
tion in different types of cancers (15-17, 19, 20). Moreover,
positive associations were observed with colorectal
polyps and early onset of colorectal cancer in hereditary
nonpolyposis colorectal cancer patients (23, 25) and sever-
al other cancers (21, 22, 24). Other genetic variants of
DNMT3b that have been identified are the -283T→C and
-579G→T polymorphisms, of which the latter was associ-
ated with reduced colorectal cancer risk (67). In addition,
lung cancer risk was reduced in individuals carrying rare
alleles of each of these single-nucleotide polymorphisms
(68), which was contrary to the increased lung cancer
risk associated with DNMT3b C→T (rs2424913) observed
by Shen et al. (21). Interestingly, enzymatic activity of
DNMT3b was decreased when the rare allele of -283T→C
was present (68). Apparently, different polymorphisms
in DNMT3b may have opposite effects and individuals
may be more susceptible to carcinogenesis with higher
DNMT3b enzymatic activity (21-23, 25), whereas de-
creased activity may protect against carcinogenesis (67,
68). Whereas a similar but weak inverse association was
previously observed with breast cancer for the DNMT3b
C→T (rs406193) polymorphism (30), we observed an
inverse association with colorectal cancer among women.
However, this protective effectwas not substantially differ-
ent between colorectal cancers with or without CIMP,
MLH1 hypermethylation, or microsatellite instability.

For histone methyltransferases, we observed that the
rare A allele of EHMT2 G→A (rs535586) was inversely as-
sociated with colorectal cancer among women. A signifi-
cant positive association was observed with breast cancer,
although the incidence rate ratio was small for that partic-
ular polymorphism (30). These observations seem contra-
dictive but may nonetheless suggest that this EHMT2
polymorphism affects carcinogenesis of different cancer
types. Importantly, it is currently unknown to which ex-
tent single-nucleotide polymorphisms in histone methyl-
transferases such as EHMT2 lead to altered enzymatic
activity. Obviously, the exact role of EHMT2 in colorectal
carcinogenesis needs further investigation.

This is the first prospective cohort study reporting
associations between genetic variants of DNA methyl-
transferases and histone methyltransferases with colorec-
tal cancer risk, suggesting the importance of such
epigenetic regulators in the carcinogenesis of colorectal
cancer. The analyses were stratified for gender and molec-
ular phenotypes of the tumor. Therefore, several tests
were done for each single-nucleotide polymorphism,
which may have increased the danger of reporting
chance findings. It could also be argued that some of
these subgroups should preferably have been larger. For
these reasons, caution must be taken in drawing definite
conclusions, and the findings should be replicated in
future research.

In conclusion, genetic variants of methyl metabolism
enzymes and/or epigenetic regulators may affect colo-
rectal carcinogenesis, and our observations suggest
that reduced enzymatic activity of some folate metabo-
lizing enzymes may result in decreased gene promoter
hypermethylation in colorectal cancer. Hence, it would
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be interesting to study whether methyl donor intake
affects promoter hypermethylation and the potential
modifying effect of polymorphisms in folate metaboliz-
ing enzymes, DNA methyltransferases, and histone
methyltransferases. We observed that the overlap of
CpG island hypermethylation markers and associated
characteristics may be incomplete, indicating that these
characteristics should be considered separately when
studying potential causes of a methylation phenotype
in colorectal cancer.
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