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Abstract

We give an introduction to the theory of pseudorepresentations of Taylor, Rouquier, Chenevier and
Lafforgue. We refer to Taylor’s and Rouquier’s pseudorepresentations as pseudocharacters. They are
very closely related, the main difference being that Taylor’s pseudocharacters are defined for a group,
where as Rouquier’s pseudocharacters are defined for algebras. Chenevier’s pseudorepresentations are
so-called polynomial laws and will be called determinant laws. Lafforgue’s pseudorepresentations are a
generalization of Taylor’s pseudocharacters to other reductive groups G, in that the corresponding notion
of representation is that of a G-valued representation of a group. We refer to them as G-pseudocharacters.
We survey the known comparison theorems, notably Emerson’s bijection between Chenevier’s determinant
laws and Lafforgue’s GLn-pseudocharacters and the bijection with Taylor’s pseudocharacters away from
small characteristics.
We show, that duals of determinant laws exist and are compatible with duals of representations. Analo-
gously, we obtain that tensor products of determinant laws exist and are compatible with tensor products
of representations. Further the tensor product of Lafforgue’s pseudocharacters agrees with the tensor
product of Taylor’s pseudocharacters.
We generalize some of the results of [Che14] to general reductive groups, in particular we show that
the (pseudo)deformation space of a continuous Lafforgue G-pseudocharacter of a topologically finitely
generated profinite group Γ with values in a finite field (of characteristic p) is noetherian. We also show,
that for specific groups G it is sufficient, that Γ satisfies Mazur’s condition Φp.
One further goal of this thesis was to generalize parts of [BIP21] to other reductive groups. Let F/Qp
be a finite extension. In order to carry this out for the symplectic groups Sp2d, we obtain a simple and
concrete stratification of the special fiber of the pseudodeformation space of a residual G-pseudocharater
of Gal(F/F ) into obstructed subloci Xdec

Θ , Xpair
Θ , Xspcl

Θ of dimension smaller than the expected dimension
n(2n+ 1)[F : Qp].
We also prove that Lafforgue’s G-pseudocharacters over algebraically closed fields for possibly non-
connected reductive groups G come from a semisimple representation. We introduce a formal scheme
and a rigid analytic space of all G-pseudocharacters by a functorial description and show, building on
our results of noetherianity of pseudodeformation spaces, that both are representable and admit a de-
composition as a disjoint sum indexed by continuous pseudocharacters with values in a finite field up to
conjugacy and Frobenius automorphisms.
At last, in joint work with Mohamed Moakher, we give a new definition of determinant laws for symplectic
groups, which is based on adding a ’Pfaffian polynomial law’ to a determinant law which is invariant under
an involution. We prove the expected basic properties in that we show that symplectic determinant laws
over algebraically closed fields are in bijection with conjugacy classes of semisimple representation and
that Cayley-Hamilton lifts of absolutely irreducible symplectic determinant laws to henselian local rings
are in bijection with conjugacy classes of representations. We also give a comparison map with Lafforgue’s
pseudocharacters and show that it is an isomorphism over reduced rings.
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Zusammenfassung

Wir geben eine Einführung in die Theorie der Pseudodarstellungen von Taylor, Rouquier, Chenevier
und Lafforgue. Wir bezeichnen Taylor’s und Rouquier’s Pseudodarstellungen als Pseudocharaktere. Es
gibt einen engen Zusammenhang zwischen diesen Begriffen, der Hauptunterschied besteht darin, dass
Taylor’s Pseudocharaktere für eine Gruppe definiert werden, während Rouquier’s Pseudocharaktere für
Algebren definiert werden. Chenevier’s Pseudodarstellungen sind sogenannte polynomische Gesetze, die
Determinantengesetze genannt werden. Lafforgue’s Pseudodarstellungen sind eine Verallgemeinerung
von Taylor’s Pseudodarstellungen auf andere reduktive Gruppen G, d.h. der zugehörige Begriff von
Darstellung ist der einer G-wertigen Darstellung einer Gruppe. Wir nenne sie G-Pseudocharaktere.
Wir geben einen Überblick über die bekannten Vergleichssätze, wie Emerson’s Bijektion zwischen Ch-
enevier’s Determinantengesetzen und Lafforgue’s GLn-Pseudocharakteren und die Bijektion zwischen
Taylor’s Pseudocharakteren und den beiden erstgenannten Begriffen in nicht kleiner Charakteristik.
Wir zeigen, dass Duale von Determinantengesetzen existieren und verträglich mit Dualen von Darstellun-
gen sind. Analog erhalten wir, dass Tensorprodukte von Determinantengesetzen existieren und verträglich
mit Tensorprodukten von Darstellungen sind. Weiterhin stimmen Tensorprodukte von Lafforgue’s Pseu-
docharakteren mit Tensorprodukten von Taylor’s Pseudocharakteren überein.
Wir verallgemeinern einige der Ergebnisse von [Che14] auf allgemeine reduktive Gruppen. Insbeson-
dere zeigen wir, dass der Pseudodeformationsraum eines stetigen G-Pseudocharakters einer topologisch
endlich erzeugten proendlichen Gruppe Γ mit Werten in einem endlichen Körper (von Charakteristik p)
noethersch ist. Wir zeigen auch, dass es für spezielle Gruppen G genügt, dass Γ Mazur’s Bedingung Φp
erfüllt.
Ein weiteres Ziel dieser Arbeit war es, Teile von [BIP21] auf andere reduktive Gruppen zu verallgemeinern.
Sei F/Qp eine endliche Erweiterung. Um das für die symplektischen Gruppen Sp2d durchzuführen, geben
wir eine einfache und konkrete Stratifizierung der speziellen Faser des Pseudodeformationsraums eines
residuellen Sp2d-Pseudocharakters Θ von Gal(F/F ) in obstruierte Unterräume Xdec

Θ , Xpair
Θ , Xspcl

Θ an,
deren Dimension kleiner, als die erwartete Dimension n(2n+ 1)[F : Qp] des Gesamtraums ist.
Wir zeigen auch, dass Lafforgue’s G-Pseudocharaktere über algebraisch abgeschlossenen Körpern für
möglicherweise nicht-zusammenhängende reduktive Gruppen G von einer halbeinfachen Darstellung kom-
men. Wir führen ein formales Schema und einen rigid-analytischen Raum von allen G-Pseudocharakteren
durch eine funktorielle Beschreibung ein, wobei wir auf unsere Ergebnisse zur Noetherschheit der Pseu-
dodeformationsräume zurückgreifen. Wir zeigen dass beide Funktoren darstellbar sind und in eine dis-
junkte Vereinigung zerfallen, wobei die Indexmenge aus stetigen Pseudodarstellungen mit Werten in
einem endlichen Körper bis auf Konjugation und Frobeniusautomorphismen besteht.
Zuletzt geben wir in gemeinsamer Arbeit mit Mohamed Moakher eine neue Definition von Determinan-
tengesetzen für die symplektischen Gruppen, welche darauf basiert einem Determinantengesetz, welches
invariant unter einer Involution ist, ein ’Pfaffsches polynomisches Gesetz’ hinzuzufügen. Wir zeigen
die Eigenschaften die man von Pseudodarstellungen erwartet: Symplektische Determinantengesetze über
algebraisch abgeschlossenen Körpern sind in Bijektion mit Äquivalenzklassen von halbeinfachen symplek-
tischen Darstellungen und Cayley-Hamilton Lifts zu henselschen lokalen Ringen eines absolut irreduziblen
symplektischen Determinantengesetzes sind in Bijektion mit Äquivalenzklassen von Darstellugnen. Wir
geben auch eine Vergleichsabbildung mit Lafforgue’s Pseudocharakteren für GLn an und zeigen, dass
diese ein Isomorphismus über reduzierten Ringen ist.
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Weiterhin bedanke ich mich bei Vytautas Paškūnas für aufschlussreichen Austausch im Rahmen unserer
Zusammenarbeit im Laufe des letzten Jahres und bei Mohamed Moakher, der die Entwicklung der Theorie
symplektischer Determinantengesetze im letzten Teil dieser Arbeit ermöglicht hat. Nicht zuletzt sei
erwähnt, dass die Arbeit mit Moakher in einer frühen Phase von Gesprächen mit Claudio Procesi inspiriert
wurde.
Bei technischen Fragen zur Invariantentheorie und guten Filtrierungen hat ein Austausch mit Stephen
Donkin und Ariel Weiss zu entscheidenen Fortschritten geführt.
Zuletzt bedanke ich mich bei all meinen Kollegen, in deren fruchtbarem Umfeld immer ein reger Austausch
über Mathematik möglich war.
Während der Entstehung dieser Arbeit war ich in Teilen gefördert durch die Deutsche Forschungsgemein-
schaft (DFG) - Projektnummer 444845124 - TRR 326.

3



Contents

1 Motivation for pseudocharacters 11
1.1 p-adic Langlands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Foundational questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Taylor’s pseudocharacters 12
2.1 Characters of representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 The Frobenius trace relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Taylor’s definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 The characteristic polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Rouquier’s definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7 Representability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.8 Reconstruction theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.9 Kernel of Taylor’s pseudocharacters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.10 Kernel of Rouquier’s pseudocharacters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.11 Direct sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.12 Dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.13 Tensor product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.14 The semiring of pseudocharacters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.15 Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Determinant laws 28
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Polynomial laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Definition of determinant laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Representability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Reconstruction theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 The characteristic polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7 Continuous determinant laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.8 Comparison with Taylor’s pseudocharacters . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.9 Direct sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.10 Dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.11 Vaccarino’s result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.12 Tensor product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.13 Examples of tensor products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 G-pseudocharacters 37
4.1 Group schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Reductive groups over fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.2 Reductive group schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4



4.1.3 Generalized reductive group schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.4 G-valued representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.5 Topologizing point sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.6 Acyclic G-modules and good filtrations . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 G-valued pseudocharacters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1 G-pseudocharacters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.2 The kernel of a G-pseudocharacter . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.3 Direct sum, dual and tensor product . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.4 Continuous G-pseudocharacters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 C-O-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.2 G-pseudocharacters as F-O-algebra homomorphisms . . . . . . . . . . . . . . . . . 49
4.3.3 Representability of PCΓ

G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Characteristic polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5 Composition with homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 The reconstruction theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.7 Comparison with determinant laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.8 Comparison with Taylor’s pseudocharacters . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Invariant theory of algebraic groups 59
5.1 Invariant theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.1 Invariants over a field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1.2 Invariants over Z/pr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.3 Invariants over Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Alternative methods for computation of invariants . . . . . . . . . . . . . . . . . . . . . . 64
5.2.1 The successive method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.2 Matrix invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.3 Chevalley’s restriction theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.4 Group invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Deformations of G-valued pseudocharacters 68
6.1 Deformations of G-pseudocharacters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1.1 Coefficient rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.1.2 The universal deformation ring Rps

Λ,Θ
. . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1.3 Noetherianity for topologically finitely generated profinite groups . . . . . . . . . . 71
6.1.4 Noetherianity for profinite groups satisfying Φp . . . . . . . . . . . . . . . . . . . . 72

6.2 Comparing deformations and pseudodeformations . . . . . . . . . . . . . . . . . . . . . . . 73
6.3 Dimension of Rps

Θ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3.1 Symplectic representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.2 Subdivision of XΘ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.3 Dimension bounds for G = Sp2n . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5



7 The rigid analytic space of G-pseudocharacters 83
7.1 The formal scheme of G-pseudocharacters . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.2 The rigid analytic space of G-pseudocharacters . . . . . . . . . . . . . . . . . . . . . . . . 87

8 Symplectic determinant laws (joint with M. Moakher) 90
8.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.2 Polynomial laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.3 Symplectic representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.4 Symplectic determinant laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.4.1 Definition and basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.4.2 Symplectic determinant laws over Azumaya algebras . . . . . . . . . . . . . . . . . 98
8.4.3 Symplectic determinant laws over fields . . . . . . . . . . . . . . . . . . . . . . . . 100
8.4.4 Symplectic determinant laws over Henselian local rings . . . . . . . . . . . . . . . . 103

8.5 Moduli of symplectic representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.5.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.5.2 Comparison with the GIT quotient . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.6 Comparison With Lafforgue’s pseudocharacters . . . . . . . . . . . . . . . . . . . . . . . . 107
8.7 Symplectic and orthogonal matrix invariants . . . . . . . . . . . . . . . . . . . . . . . . . 110

A On common R-Levis and G-semisimplification 113

6



Introduction

The first chapter of this thesis is an introduction to the theory of pseudocharacters of Taylor, Rouquier,
Chenevier and Lafforgue. We survey the known comparison theorems, notably Emersons bijection be-
tween determinant laws and Lafforgue’s GLn-pseudocharacters and the bijection with Taylor’s pseu-
docharacters away from small characteristics.
At this early stage I also got interested in defining natural operations on pseudocharacters: Direct sum,
duals and tensor products. Their construction and compatibility with the comparison isomorphisms is
the first main result of this thesis.

Theorem A.

1. Duals of determinant laws exist and are compatible with duals of representations (Section 3.10).

2. Tensor products of determinant laws exist (Proposition 3.20) and are compatible with tensor prod-
ucts of representations (Proposition 3.21). Further the tensor product of Lafforgue’s pseudochar-
acters agrees with the tensor product of Taylor’s pseudocharacters (Proposition 4.34).

The second main goal of this thesis was to generalize [Che14] to general reductive groups. Firstly, we
prove that the deformation space of a continuous Lafforgue G-pseudocharacter of a topologically finitely
generated profinite group with values in a finite field is noetherian.

Theorem B (Theorem 6.11, Theorem 6.14). Let L be a p-adic local field with ring of integers OL and
residue field κ. Let G be a generalized reductive OL-group scheme, let Γ be a profinite group and let Θ
be a continuous G-pseudocharacter of Γ over κ.

1. If Γ is topologically finitely generated, then the G-pseudodeformation ring Rps
OL,Θ

of Θ is noetherian.

2. Assume that G ∈ {SLn,GLn,Sp2n,GSp2n,SO2n+1,O2n+1,GOn}, p > 2 in the orthogonal cases and
let ι : G → GLd be the standard representation of G. Then the canonical map Rps

OL,ι(Θ)
→ Rps

OL,Θ
is surjective. If in addition Γ satisfies Mazur’s condition Φp, then Rps

OL,Θ
is noetherian.

Secondly, we prove that the formal scheme and the rigid analytic space of pseudocharacters admit a
decomposition as a disjoint sum indexed by continuous pseudocharacters with values in a finite field up
to conjugacy and Frobenius automorphisms. See Definition 7.5 and Lemma 7.7 for a description of the
index set |PCΓ

G |.

Theorem C (Theorem 7.21). Let Γ be a topologically finitely generated profinite group. Let G be a
connected reductive group over the ring of integers of a p-adic local field. Define X̃G : Anop

K → Set as the
functor, that associates to every rigid analytic space Y ∈ AnK the set of continuous G-pseudocharacters
cPCΓ

G(O(Y )). Then X̃G is representable by the quasi-Stein space
∐
z∈| PCΓ

G
| X

rig
G,z.

One further goal of this thesis was to generalize parts of [BIP21] to other reductive groups. In order to
carry this out for the symplectic groups Sp2d, we need to analyze the special fiber of the deformation
space of Lafforgue’s Sp2d-pseudocharacters. We obtain a stratification of the pseudodeformation space
into obstructed subloci Xdec

Θ , Xpair
Θ , Xspcl

Θ of lower dimension as follows.

Theorem D (Proposition 6.33, Theorem 6.34, Corollary 6.35). Let F/Qp be a finite extension. Let Θ
be a continuous Sp2n-pseudocharacter of the absolute Galois group ΓF of F over κ.

1. dimX
dec
Θ ≤ n(2n+ 1)[F : Qp]− 4(n− 1)[F : Qp].

2. dimX
pair
Θ ≤ n2[F : Qp] + 1.

3. dimX
spcl
Θ ≤ 2n2[F : Qp] + 1.

4. dimXΘ ≤ n(2n+ 1)[F : Qp].

7



If Θ comes from an absolutely irreducible representation, then there are non-special irreducible pseudo-
deformations of Θ and in (4) equality of dimensions holds.

We expect, that Theorem D is sufficient to prove the main result of [BIP21] for symplectic groups.
However in an ongoing project with Vytautas Paškūnas, we will prove the main theorem of [BIP21] for
general disconnected reductive groups over the ring of integers of a p-adic local field. So Theorem D can
be seen as an alternative approach. It also gives a simple stratification of the pseudodeformation space,
whereas the general proof rests upon a less concrete stratification.
In the course of this collaboration we proved the reconstruction theorem for Lafforgue’s pseudocharacters
for disconnected reductive groups.

Theorem E (Theorem 4.56). Let G be a generalized reductive group scheme over a noetherian com-
mutative ring O. Let Γ be a group. Let k be an algebraically closed field over O and let Θ ∈ PCΓ

G.
Then there is a G-completely reducible representation ρ : Γ→ G(k) with Θρ = Θ, which is unique up to
G0(k)-conjugation.

In early 2020 I turned to working on generalizing determinant laws to symplectic and orthogonal groups.
In this time I developped some theory of ∗-determinants. The problem with this definition was, that it
is not able to distinguish between symplectic and orthogonal groups, so in the pseudodeformation space
might contain both symplectic and orthogonal points.
I started a collaboration with Mohamed Moakher, who has also been working on determinant laws for
classical groups. By introducing a Pfaffian polynomial law, he has found a way of asking a ∗-determinant
law to be symplectic, which lead to our work on symplectic determinant laws. See the introduction of
Section 8 for a detailed list of results.
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Einführung

Das erste Kapitel dieser Arbeit ist eine Einführung in die Theorie der Pseudocharaktere von Taylor,
Rouquier, Chenevier und Lafforgue. Wir geben einen Überblick über die bekannten Vergleichssätze, ins-
besondere Emersons Bijektion zwischen Determinantengesetzen und Lafforgues GLn-Pseudocharakteren
und die Bijektion mit Taylors Pseudocharakteren in nicht kleiner Charakteristik.
In dieser frühen Phase begann ich, mich auch für die Definition natürlicher Operationen auf Pseudocharak-
teren zu interessieren: Direkte Summe, Duale und Tensorprodukte. Ihre Konstruktion und Kompatibilität
mit den Vergleichsisomorphismen sind das erste Hauptergebnis dieser Arbeit.

Theorem A.

1. Duale von Determinantengesetzen existieren und sind verträglich mit Dualen von Darstellungen
(Section 3.10).

2. Tensorprodukte von Determinantengesetzen existieren (Proposition 3.20) und sind verträglich mit
Tensorprodukten von Darstellungen. Weiterhin sind Tensorprodukte von Lafforgue’s Pseudocharak-
teren verträglich mit Tensorprodukten von Taylor’s Pseudocharakteren (Proposition 4.34).

Das zweite gesetzte Ziel dieser Arbeit war es, die Hauptergebnisse von [Che14] auf allgemeine reduk-
tive Gruppen zu verallgemeinen. Zuerst beweisen wir, dass der Deformationsraum eines stetigen G-
Pseudocharakters nach Lafforgue von einer topologisch endlich erzeugten proendlichen Gruppe mit Werten
in einem endlichen Körper noethersch ist.

Theorem B (Theorem 6.11, Theorem 6.14). Sei L ein p-adischer lokaler Körper mit Ganzheitsring
OL und Restklassenkörper κ. Sei G ein verallgemeinertes reduktives OL-Gruppenschema, sei Γ eine
proendliche Gruppe und sei Θ ein stetiger G-Pseudocharakter von Γ über κ.

1. Ist Γ topologisch endlich erzeugt, so ist der G-Pseudodeformationsring Rps
OL,Θ

von Θ noethersch.

2. Nehme an G ∈ {SLn,GLn,Sp2n,GSp2n,SO2n+1,O2n+1,GOn}, p > 2 in den orthogonalen Fällen
und sei ι : G→ GLd die Standarddarstellung von G. Dann ist die kanonische Abbildung Rps

OL,ι(Θ)
→

Rps
OL,Θ

surjektiv. Falls weiterhin Γ Mazur’s Bedingung Φp erfüllt, so ist Rps
OL,Θ

noethersch.

Als zweites beweisen wir, dass das formale Schema und der rigid-analytische Raum von Pseudocharakteren
eine Zerlegung als disjunkte Vereinigung indiziert von stetigen Pseudocharakteren mit Werten in einem
endlichen Körper bis auf Konjugation und Frobeniusautomorphismus besitzt. Siehe Definition 7.5 und
Lemma 7.7 für eine Beschreibung der Indexmenge |PCΓ

G |.

Theorem C (Theorem 7.21). Sei Γ eine topologisch endlich erzeugte proendliche Gruppe. Sei G
eine zusammenhängende reduktive Gruppe über dem Ganzheitsring eines p-adischen lokalen Körpers.
Definiere X̃G : Anop

K → Set als den Funktor, der einem rigid-analytischen Raum Y ∈ AnK die Menge
der stetigen G-Pseudocharaktere cPCΓ

G(O(Y )) zuordnet. Dann ist X̃G durch den quasi-Stein rigid-
analytischen Raum

∐
z∈| PCΓ

G
| X

rig
G,z darstellbar.

Ein weiteres Ziel dieser Arbeit war es [BIP21] auf andere reduktive Gruppen zu verallgemeinern. Um das
für die symplektischen Gruppen Sp2d durchführen zu können, ist es erforderlich, die spezielle Faser des
Deformationsraumes von Lafforgueschen G-Pseudocharakteren zu analysieren. Wir erhalten wie folgt eine
Stratifizierung des Pseudodeformationsraums durch obstruierte Teilräume Xdec

Θ , Xpair
Θ , Xspcl

Θ niedrigerer
Dimension.

Theorem D (Proposition 6.33, Theorem 6.34, Corollary 6.35). Sei F/Qp eine endliche Erweiterung. Sei
Θ ein stetiger Sp2n-Pseudocharakter der absoluten Galoisgruppe ΓF von F über κ.

1. dimX
dec
Θ ≤ n(2n+ 1)[F : Qp]− 4(n− 1)[F : Qp].

2. dimX
pair
Θ ≤ n2[F : Qp] + 1.

3. dimX
spcl
Θ ≤ 2n2[F : Qp] + 1.

9



4. dimXΘ ≤ n(2n+ 1)[F : Qp].

Falls Θ von einer absolut irreduziblen Darstellung kommt, dann gibt es nicht-spezielle irreduzible sym-
plektische Pseudodeformationen von Θ und (4) gilt Gleichheit der Dimensionen.

Wir denken, dass Theorem D genügt, um das Hauptresultat von [BIP21] auf symplektische Gruppen
zu übertragen. In einem laufenden Projekt mit Vytautas Paškūnas werden wir das Hauptergebnis von
[BIP21] auf allgemeine (auch unzusammenhängende) reduktive Gruppen über dem Ganzheitsring eines
p-adischen lokalen Körpers übertragen. Somit kann Theorem D als alternativer Zugang zu einem solchen
Ergebnis gesehen werden. Des weiteren liefert Theorem D eine einfache Stratifizierung des Pseudodefor-
mationsraumes, während der allgemeine Beweis auf nicht weiter konkretisierten Unterteilungen basiert.
Im Rahmen dieser Zusammenarbeit benötigen wir auch einen Rekonstruktionssatz für unzusammenhän-
gende reduktive Gruppen, welcher uns in dieser Form neu erscheint.

Theorem E (Theorem 4.56). SeiG ein verallgemeinertes reduktives Gruppenschema über einem noether-
schen kommutativen Ring O. Sei Γ eine Gruppe. Sei k ein algebraisch abgeschlossener Körper über O
und sei Θ ∈ PCΓ

G. Dann gibt es eine G-vollständig reduzible Darstellung ρ : Γ → G(k) mit Θρ = Θ,
welche eindeutig bis auf G0(k)-Konjugation ist.

Im Frühjahr 2020 begann ich damit, Determinantengesetze auf sympmlektische und orthogonale Gruppen
zu verallgemeinern. In dieser Zeit habe ich auch eine gewisse Theorie von ∗-Determinanten entwickelt.
Diese wird in dieser Arbeit nicht weiter ausgeführt. Das Problem mit einer naiven Definition von war,
dass eine ∗-Determinante nicht in der Lage dazu ist zwischen symplektischen und orthogonalen Gruppen
zu unterscheiden, insbesondere könnte der Pseudodeformationsraum sowohl symplektische, also auch
orthogonale Punkte enthalten.
Ich begann eine Zusammenarbeit mit Mohamed Moakher, der parallel und unabhängig an Determinan-
tengesetzen für die symplektische Gruppe arbeitete. Durch Einführung eines Pfaffschen polynomischen
Gesetzes gelang es ihm die Forderung an eine ∗-Determinante symplektisch zu sein zu formulieren. Das
führte zu unserer gemeinsamen Arbeit an symplektischen Determinantengesetzen. Siehe die Einführung
von Section 8 für eine detailliertere Liste der Ergebnisse.
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1 Motivation for pseudocharacters

1.1 p-adic Langlands

The p-adic Langlands correspondence for GL2(Qp) is a bijection between unitary Banach representations
of GL2(Qp) and continuous representations of the absolute Galois group ΓQp

. A proof of this correspon-
dence for all primes p was given by Colmez, Dospinescu and Paškūnas [CDP13b]. A key ingredient for
the surjectivity of this correspondence is the density of crystalline points in the deformation space of a
mod p representation of ΓQp . For p = 2 this turned out to be exceptionally difficult and was carried out
in [CDP13a].
In view of these results it makes sense to take a step back and ask for density of crystalline points in the
framed deformation space of a mod p representation ρ : ΓF → G(Fp) of the absolute Galois group ΓF
of a p-adic local field F/Qp valued in a reductive group G. For G = GLd this has recently been proved
by Böckle, Iyengar and Paškūnas [BIP21; BIP22] along with Gouvêa’s dimension conjecture [Gou01,
Lecture 4]: The universal framed deformation ring R□

ρ is a local complete intersection ring of relative
dimension (dim GLd) · (1 + [F : Qp]). The proof of the results of [BIP21] rely on a careful analysis of the
special fiber of the universal pseudodeformation space by Böckle and Juschka [BJ19]. For their work,
they use Chenevier’s notion of determinant laws for pseudocharacters.
The results of Section 6 can be seen as a step in this direction for the symplectic groups Sp2d using the
newly constructed deformation spaces of Lafforgue’s G-pseudocharacters. Since [Eme18] it is known, that
Lafforgue’s pseudocharacters are a generalization of Chenevier’s determinant laws over any base ring. We
give dimension estimates for the symplectic groups Sp2d, d ≥ 1 analogous to [BJ19]. It is sufficient to give
upper bounds for the dimension of certain obstructed subloci to carry out a proof of Gouvea’s dimension
conjecture following a stategy similar to [BIP21]. In an ongoing project with Vytautas Paškūnas we aim to
prove Gouvea’s conjecture using certain GIT quotients instead of one of the notions of pseudocharacters
discussed in this thesis.

1.2 Foundational questions

There are three fundamental requirements for a reasonable notion of pseudorepresentation over a given
commutative base ring A:

1. The functor, that maps a commutative A-algebra B to the set of pseudorepresentations over B
should be representable by an affine A-scheme.

2. The pseudorepresentations over an algebraically closed A-field k shall be in bijection with isomor-
phism classes of semisimple representations over k. We refer to such a statement as a reconstruction
theorem.

3. Over henselian local A-algebras A′ and under mild unobstructedness conditions, e.g. residual irre-
ducibility or multiplicity freeness there should be a bijection between pseudorepresentations over
A′ and isomorphism classes of representations over A′.

In this text we consider all notions of pseudorepresentation, that are avaible at this point in time:

1. Taylor’s pseudocharacters of groups for GLd. (Section 2)

2. Rouquier’s pseudocharacters of algebras (for d× d-matrices Md). (Section 2.6)

3. Chenevier’s d-dimensional determinant laws of algebras (for Md). (Section 3)

4. Lafforgue’s G-pseudocharacters of groups for general reductive groups G. (Section 4)

5. In Section 8 we introduce a new notion of pseudorepresentation of algebras with involution for
symplectic groups (or better the symplectic standard matrix algebra (M2d, j)), which is very close
to Chenevier’s determinant laws and we call them symplectic determinant laws.
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2 Taylor’s pseudocharacters

2.1 Characters of representations

Pseudorepresentations should be seen as an axiomatic generalization of the characteristic polynomial of
a representation. We approach these axioms by looking at characteristic polynomials of representations.
We first consinder only traces. Let us start with the following classical theorem.

Theorem 2.1. Let Γ be a finite group and let ρ1 : Γ→ GLd1(C) and ρ2 : Γ→ GLd2(C) for d1, d2 ∈ N0
be representations of Γ. Assume, that for all γ ∈ Γ, we have tr ρ1(γ) = tr ρ2(γ). Then ρ1 is isomorphic
to ρ2.

The trace of a representation as a function Γ → C is also known as its character. What are necessary
conditions for a map T : Γ→ C to be the character of a representation?
When T is the character of a representation ρ : Γ → GLd(C), then the following properties follow from
well-known properties of the trace.

(T2) T (1) = d.

(T3) T (γ1γ2) = T (γ2γ1) for all γ1, γ2 ∈ Γ.

There is also the Frobenius trace relation, which holds for arbitrary (d+ 1)-tuples of d× d-matrices. We
will deduce it in Section 2.2.

2.2 The Frobenius trace relation

We start with some elementary insights on matrices and traces. Let A be a commutative ring. Multi-
plicativity of the trace with respect to tensor products is well-known:

Lemma 2.2. Let V and W be free A-modules of finite rank and let f ∈ End(V ) and g ∈ End(W ). Then
f ⊗ g as an endomorphism of V ⊗W has trace tr(f ⊗ g) = tr(f) tr(g).

When V is an A-module, then Sn acts on V ⊗n by

σ · (v1 ⊗ · · · ⊗ vn) := vσ(1) ⊗ · · · ⊗ vσ(n) (Symm)

for v1, . . . , vn ∈ V . This defines a homomorphism of A-algebras A[Sn]→ End(V ⊗n) and we will identify
each σ ∈ Sn with its image under this homomorphism. When f1, . . . , fn ∈ End(V ), we obtain an
endomorphism f1 ⊗ · · · ⊗ fn ∈ End(V ⊗n) defined by

(f1 ⊗ · · · ⊗ fn)(v1 ⊗ · · · ⊗ vn) := f1(v1)⊗ · · · ⊗ fn(vn)

for v1, . . . , vn ∈ V .

Lemma 2.3. Let V be a free A-module of finite rank and f1, . . . , fn ∈ End(V ). Then for a cycle
σ = (1 2 . . . n) ∈ Sn we have tr(σ ◦ (f1 ⊗ · · · ⊗ fn)) = tr(f1 ◦ · · · ◦ fn).

Proof. Fix a basis (e1, . . . , ed) of V and denote the dual basis of V ∗ by (e∗
1, . . . , e

∗
d). As tr(σ◦(f1⊗· · ·⊗fn))

and tr(f1 ◦ · · · ◦ fn) are both multilinear in the arguments (f1, . . . , fn) we may assume fj = eij · e∗
īj
∈

End(V ). For simpler notation, we consider the indices of i and ī modulo n. We obtain

f1 ⊗ · · · ⊗ fn = (ei1 ⊗ · · · ⊗ ein) · (e∗
ī1
⊗ · · · ⊗ e∗

īn
)

and after identifying Sn with a subset of End(V ⊗n), we have

σ = (ejσ(1) ⊗ · · · ⊗ ejσ(n)) · (e∗
j1
⊗ · · · ⊗ e∗

jn
).

The composition is

σ ◦ (f1 ⊗ · · · ⊗ fn) = (eiσ(1) ⊗ · · · ⊗ eiσ(n)) · (e∗
ī1
⊗ · · · ⊗ e∗

īn
)

= (eiσ(1)e
∗
ī1

)⊗ · · · ⊗ (eiσ(n)e
∗
īn

)
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and by taking the trace and Lemma 2.2, we have

tr(σ ◦ (f1 ⊗ · · · ⊗ fn)) =
{

1, ∀k ∈ {1, . . . , n} : iσ(k) = īk,

0, else.

On the other hand

f1 ◦ · · · ◦ fn = ei1e
∗
īn
·

{
1, ∀k ∈ {1, . . . , n− 1} : īk = ik+1,

0, else,

and taking the trace gives

tr(f1 ◦ · · · ◦ fn) =
{

1, ∀k ∈ {1, . . . , n} : iσ(k) = īk,

0, else.

Proposition 2.4. Let V be a free A-module of rank d and let n ≥ d+ 1. Then∑
σ∈Sn

sign(σ)σ = 0

seen as an endomorphism V ⊗n → V ⊗n via Equation (Symm).

Proof. Let T :=
∑
σ∈Sn

sign(σ)σ ∈ End(V ⊗n). Fix a basis B = (b1, . . . , bd) of V . Let B⊗n = {bi1 ⊗ · · · ⊗
bin | i1, . . . , in ∈ {1, . . . , d}} be the associated basis of V ⊗n. In every elementary tensor b = bi1⊗· · ·⊗bin ∈
B⊗n at least one basis vector in B occurs at least twice, say bix = biy . So there is a 2-cycle µ = (xy) ∈ Sn,
such that b = µb. We have (∑

σ∈Sn

sign(σ)σ
)
b =

∑
σ∈An

(σ − σµ)b = 0

and conclude, that T = 0.

We are now ready to prove the Frobenius trace relation. To simplify the formulaion of the statement we
introduce the following notation: If T : R→ A is a map from a ring or group R into a commutative ring
A and c = (i1 . . . ir) ∈ Sn is a cycle, we define T(c)(γ1, . . . , γn) := T (γi1 · · · · · γir ). By rotation invariance
of the trace, this does not depend on the presentation of the cycle. For a general σ ∈ Sn with cycle
decomposition σ = c1 . . . ck, let Tσ(γ1, . . . , γn) :=

∏k
j=1 T(cj)(γ1, . . . , γn).

Proposition 2.5 (Frobenius trace relation). Let V be a free A-module of rank d and f1, . . . , fn ∈ End(V ).
Whenever n ≥ d+ 1 we have

trV ⊗n

(∑
σ∈Sn

sign(σ)σ ◦ (f1 ⊗ · · · ⊗ fn)
)

= 0.

Here Sn acts on V ⊗n as in Equation (Symm). In particular∑
σ∈Sn

sign(σ)trσ (f1, . . . , fn) = 0.

Proof. The first identity follows from Proposition 2.4. For the second part use Lemma 2.3.

For a map T : Γ → A from a monoid Γ (later Γ might also be the multiplicative monoid of a ring)
into a commutative ring A, such that T (γ1γ2) = T (γ2γ1) for all γ1, γ2 ∈ Γ we say, that T satisfies the
d-dimensional pseudocharacter identity if

∀γ1, . . . , γd+1 ∈ Γ :
∑

σ∈Sd+1

sign(σ)Tσ(γ1, . . . , γd+1) = 0. (PC)

We write Sd+1(T )(γ1, . . . , γd+1) :=
∑
σ∈Sd+1

sign(σ)Tσ(γ1, . . . , γd+1).

When T : Γ→ A is the trace of a representation ρ : Γ→ GLd(A), then the d-dimensional pseudocharacter
identity holds:

(T4) Sd+1(T ) = 0.
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2.3 Taylor’s definition

Let Γ be a monoid and let A be a commutative ring. We first present a definition very close to the
original definition of d-dimensional pseudocharacters by Taylor [Tay91, §1.1]. It is a map T : Γ → A
into a commutative ring A satisfying the relations of a trace observed in Section 2.1 and Section 2.2. In
Section 2.6, we introduce a slightly more general definition, where T is a map from an A-algebra R to A.
Pseudocharacters as in Definition 2.6 are recovered by taking for R in Definition 2.24 the monoid ring
A[Γ].

Definition 2.6 (Taylor). Let A be a commutative ring, Γ a monoid and d ≥ 0 an integer. A d-dimensional
pseudocharacter of Γ with values in A is a map T : Γ→ A, that satisfies the following four axioms.

(T1) d! ∈ A×.

(T2) T (1) = d.

(T3) T (γ1γ2) = T (γ2γ1) for all γ1, γ2 ∈ Γ.

(T4) T satisfies the d-dimensional pseudocharacter identity, i.e.∑
σ∈Sd+1

sign(σ)Tσ(γ1, . . . , γd+1) = 0

for all γ1, . . . , γd+1 ∈ Γ.

We denote by TPCΓ
d (A) the set of d-dimensional A-valued pseudocharacters of Γ.

The following theorem justifies the term pseudocharacter. Pseudocharacters can be thought of as a
generalization of traces of representations.

Proposition 2.7. Let A be a commutative ring, d ≥ 0 an integer with d! ∈ A× and let ρ : Γ→ GLd(A)
be a homomorphism. Then T := tr ρ : Γ→ A, γ 7→ tr ρ(γ) is a d-dimensional pseudocharacter.

Proof. (T1) holds by assumption. (T2) and (T3) follow from well-known properties of the trace. (T4)
follows from Proposition 2.5.

So far (T1) is not important, but it will turn out to be relevant for identifying pseudocharacters over
algebraically closed fields with equivalence classes of semisimple representations.

Example 2.8. Over R not every pseudocharacters comes from a representation in the sense of Proposi-
tion 2.7: Let Γ = Q8 = {±1,±i,±j ± k} ⊂ H× be the quaternion group. Consider the composition

T : Γ→ H× tr→ R,

where tr is the reduced trace of the central simple R-algebra H. The reduced trace has all properties
(T2)-(T4), since its C-linear extension to H ⊗R C ∼= M2(C) is a trace. Over C, T comes from the
unique irreducible 2-dimensional representation of Q8, which is of quaternionic type. Hence there is no
representation defined over R with trace T .

2.4 Polarization

If M is a (2× 2)-matrix over a commutative ring A, then the characteristic polynomial of M is given by

det(t−M) = t2 − tr(M)t+ det(M) ∈ A[t].

A direct calculation shows, that if 2 ∈ A×, we can recover the determinant from the trace as

det(M) = tr(M)2 − tr(M2)
2 ,

so the coefficients of det(t −M) are polynomials in tr(M) and tr(M2) with coefficients in Z[ 1
2 ]. This

procedure is known as polarization and will play a central role in the theory of pseudocharacters. In
this section, we will make use of elementary symmetric polynomials to prove a more general polarization
formula.
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Definition 2.9 (Elementary symmetric polynomial). Let 0 ≤ i ≤ d be integers. We define the i-th
elementary symmetric polynomial in d variables as

ei := e
(d)
i :=

∑
S⊂{1,...,d}

|S|=i

∏
a∈S

xa

in Z[x1, . . . , xd], where S varies over all subsets of {1, . . . , d} with i elements. We omit the superscript in
contexts with no ambiguity about d.
Equivalently, they are implicitly defined by the equation

d∏
i=1

(1 + xit) =
d∑
i=0

e
(d)
i ti.

For example the elementary symmetric polynomials in d = 3 variables are

e0 = 1,
e1 = x1 + x2 + x3,

e2 = x1x2 + x1x3 + x2x3,

e3 = x1x2x3.

Elementary symmetric polynomials satisfy the following recursion formula:
Lemma 2.10. Let 1 ≤ i ≤ d be integers. Then

e
(d+1)
i = e

(d)
i + e

(d)
i−1xd+1.

Proof. Let S ⊂ {1, . . . , d + 1} be a subset with i elements. Then either S is a subset of {1, . . . , d} or
S \ {d+ 1} ⊂ {1, . . . , d} is a subset with i− 1 elements. The claim follows.

If we think of the variables x1, . . . , xd as eigenvalues of a triangular matrix

X =

x1 ∗
. . .

xd

 ,

then the next lemma tells us, that the coefficients of the characteristic polynomial of X are (up to sign)
elementary symmetric polynomials in x1, . . . , xd.
Lemma 2.11. Let 0 ≤ i ≤ d be integers. Then

det(t− X) =
d∏
i=1

(t− xi) =
d∑
i=0

(−1)ie(d)
i td−i

in Z[t, x1, . . . , xd].

Proof. We proceed by induction. For d = 0, there is nothing to prove. Assume, that the claim is true for
some d ≥ 0. Then

d+1∑
i=0

(t− xi) =
(

d∏
i=1

(t− xi)
)
· (t− xd+1)

=
(

d∑
i=0

(−1)ie(d)
i td−i

)
· (t− xd+1)

=
d∑
i=0

(−1)ie(d)
i td+1−i +

d∑
i=0

(−1)i+1e
(d)
i xd+1t

d−i

=
d∑
i=0

(−1)ie(d)
i td+1−i +

d+1∑
i=1

(−1)ie(d)
i−1xd+1t

d+1−i

=
d+1∑
i=0

(−1)ie(d+1)
i td+1−i,
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where the last step follows from Lemma 2.10, e(d)
0 = 1 = e

(d+1)
0 and e

(d)
d xd+1 = e

(d+1)
d+1 .

If X is an upper triangular (3× 3)-matrix, then the characteristic polynomial of X is

CPX(t) = t3 − tr(X)t2 + q(A)t− det(X),

where q is a 2-homogeneous polynomial in the (diagonal) entries of X.
As in dimension 2 we see, that det(X) is a polynomial in tr(X), tr(X2) and tr(X3) with coefficients in
Z[ 1

6 ]: Since we have a polarization formula

x1x2x3 = 1
6((x1 + x2 + x3)3 − 3(x1 + x2 + x3)(x2

1 + x2
2 + x2

3) + 2(x3
1 + x3

2 + x3
3)),

we get
det(X) = 1

6(tr(X)3 − 3 tr(X) tr(X2) + 2 tr(X3)).

By Lemma 2.11 have q(X) = e
(3)
2 . A polarization of e(3)

2 is given by

e
(3)
2 = x1x2 + x2x3 + x1x3 = 1

2((x1 + x2 + x3)2 − (x2
1 + x2

2 + x2
3)),

so
q(X) = 1

2(tr(X)2 − tr(X2)).

On the right hand side, we have the same formula as for the determinant in dimension 2, in fact the
general description of the coefficients of the characteristic polynomial in terms of the trace does not
depend on the dimension. We introduce a sequence of polarization polynomials:

Definition 2.12 (Polarization polynomials). Let k ≥ 0 be an integer. We define

∆k(r1, . . . , rk) := 1
k!
∑
σ∈Sk

sign(σ)
∏

c∈cycles(σ)

r|c|

in Z[ 1
k! ][r1, . . . , rk], where the product varies over the set of disjoint cycles of σ and |c| denotes the length

of a cycle.

Note, that ∆k is homogeneous of degree k, if one defines the degree of ri as i.

Example 2.13. For k = 1, 2, 3, 4 we obtain

∆1(r1) = r1

∆2(r1, r2) = 1
2(r2

1 − r2)

∆3(r1, r2, r3) = 1
6(r3

1 − 3r1r2 + 2r3)

∆4(r1, r2, r3, r4) = 1
24(r4

1 − 6r2
1r2 + 8r1r3 + 3r2

2 − 6r4)

and the polarization formulae read

e
(2)
2 = ∆2(x1 + x2, x

2
1 + x2

2)

e
(3)
2 = ∆2(x1 + x2 + x3, x

2
1 + x2

2 + x2
3)

e
(3)
3 = ∆3(x1 + x2 + x3, x

2
1 + x2

2 + x2
3, x

3
1 + x3

2 + x3
3)

Definition 2.14 (Power sums). Let 0 ≤ i ≤ d be integers. We define the i-th power sum in d variables
as

S(d)
i := xi1 + · · ·+ xid

in Z[x1, . . . , xd].
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To prove the polarization formula for elementary symmetric polynomials, we need the classical Newton
relations.

Lemma 2.15 (Newton relations). The symmetric polynomials and the power sums in Z[x1, . . . , xn]
satisfy the recursive relations

(m+ 1)e(n)
m+1 =

∑
i+j=m

(−1)iS(n)
i+1e

(n)
j (1)

for all m ≥ 0, where e(n)
i = 0 if i > n or i < 0. These relations are encoded in the coefficients of the

equation

−t
∂
∂t det(1 + tX)
det(1 + tX) =

∞∑
k=1

tr(Xk)tk (2)

in Z[x1, . . . , xn][[t]], where X := diag(x1, . . . , xn) ∈Mn(Z[x1, . . . , xn]).

Proof. We sketch the proof in [Pro07, §2.1.1]. It is clear, that det(1 + tX) =
∏n
i=1(1 + txi) =

∑n
i=0 e

(n)
i ti.

Taking the logarithmic derivative ∂
∂t log(. . . ), we obtain

∂
∂t det(1 + tX)
det(1 + tX) = ∂

∂t
log (det(1 + tX)) =

n∑
i=1

xi
1 + txi

=
n∑
i=1

xi

∞∑
k=0

(−txi)k =
∞∑
k=0

(−1)kSnk+1t
k

which proves Equation (2), since tr(Xk) = Snk .
On the other hand, we have

∂
∂t det(1 + tX)
det(1 + tX) =

∑n
i=1 ie

(n)
i ti−1∑n

i=0 e
(n)
i ti

Equation (1) follows by multiplying with
∑n
i=0 e

(n)
i ti and comparison of coefficients.

This shows, that the power sums Snk can be expressed as polynomials with integral coefficients in ele-
mentary symmetric polynomials. On the other hand the symmetric polynomial e(n)

i can be expressed
as a polynomial with coefficients in Z[ 1

i! ] in power sums. Notice, that this way we get a nontrivial, yet
canonical isomorphism between the polynomial rings Z[ 1

n! ][e
(n)
1 , . . . , e

(n)
n ] and Z[ 1

n! ][S
(n)
1 , . . . ,S(n)

n ].
We will also need the Newton relations for the polarization polynomials in the following form:

Proposition 2.16. For all i ≥ 0, we have the recursion formula

(i+ 1)∆i+1 =
∑
k+l=i

(−1)krk+1∆l (3)

in Z[ 1
i! ][r1, . . . , ri+1].

Proof. For convenience, we define Σn := n!∆n for general n, i.e.

Σn =
∑
σ∈Sn

sign(σ)
∏

c∈cycles(σ)

r|c|

Multiplying Equation (3) with i!, the claim reduces to

Σi+1
!=
∑
k+l=i

(−1)k i!
l!rk+1Σl

i.e. ∑
σ∈Si+1

sign(σ)
∏

c∈cycles(σ)

r|c|
!=
∑
k+l=i

(−1)k i!
l!rk+1

∑
σ∈Sl+1

sign(σ)
∏

c∈cycles(σ)

r|c|
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Let Ck+1 be the set of cycles c ∈ Si+1 of order k + 1 with c(1) ̸= 1. By elementary combinatorics,
|Ck+1| = i!

(i−k)! . For c ∈ Ck+1, let Ti+1,c ⊆ Si+1 be the subset of permutations σ ∈ Si+1, such that the
cycle of σ containing 1 is c. We see that Si+1 is the disjoint union of the Ti+1,c over all k = 0, . . . , i and
all c ∈ Ck+1. In particular we obtain for the left hand side:

Σi+1 =
∑
k+l=i

∑
c∈Ck+1

∑
σ∈Ti+1,c

sign(σ)
∏

c′∈cycles(σ)

r|c′|

So our claim reduces to

(−1)k i!
l!rk+1

∑
σ∈Sl+1

sign(σ)
∏

c∈cycles(σ)

r|c|
!=
∑

c∈Ck+1

∑
σ∈Ti+1,c

sign(σ)
∏

c′∈cycles(σ)

r|c′| (4)

for fixed 0 ≤ k ≤ i and fixed l = i− k. We notice, that on the right hand side of Equation (4) the term∑
σ∈Ti+1,c

sign(σ)
∏

c′∈cycles(σ)

r|c′|

does not depend on c ∈ Ck+1: Every cycle containing 1 is conjugate to (1 . . . k + 1) so every set Ti+1,c is
conjugate to Ti+1,(1...k+1). In particular there is a bijection Ti+1,c → Ti+1,(1...k+1) preserving the partition
of i+ 1 defined by the cycle structure of each σ ∈ Ti+1,c. So we have∑

c∈Ck+1

∑
σ∈Ti+1,c

sign(σ)
∏

c′∈cycles(σ)

r|c′| = i!
l!

∑
σ∈Ti+1,(1...k+1)

sign(σ)
∏

c′∈cycles(σ)

r|c′|

= i!
l! (−1)krk+1

∑
σ∈Sl

sign(σ)
∏

c′∈cycles(σ)

r|c′|

and the last expression is exactly the left hand side of Equation (4).

Now the combinatorial work is done and we can deduce the general polarization formula for elementary
symmetric polynomials:

Theorem 2.17 (Polarization formula). Let d ≥ 0 and 0 ≤ i ≤ d. Then

e
(d)
i = ∆i(S(d)

1 ,S(d)
2 , . . . ,S(d)

i )

as polynomials in Z[ 1
i! ][x1, . . . , xd].

Proof. We prove the claim by induction on i. For i = 0, there is nothing to prove. We assume, that
for all i′ < i + 1 the claim is proven. By the classical Newton relations Equation (1) and the inductive
hypothesis, the claim reduces to

(i+ 1)∆i+1(S(d)
1 , . . . ,S(d)

i+1) =
∑
k+l=i

(−1)kS(d)
k+1∆l(S(d)

1 , . . . ,S(d)
l )

which reduces formally to Proposition 2.16 by taking ra = S(d)
a for all 1 ≤ a ≤ i+ 1.

Now we can describe the coefficients of the characteristic polynomial of a matrix in terms of the trace.

Theorem 2.18. Let 0 ≤ i ≤ d be integers. Let A be a (d× d)-matrix over a commutative ring O, such
that d! ∈ O×. If O is an integral domain, let λ1, . . . , λd be the eigenvalues of A over a fixed algebraic
closure of the fraction field of O. In this case we have

e
(d)
i (λ1, . . . , λd) = ∆i(tr(A), tr(A2), . . . , tr(Ai))

If O is arbitrary, then

det(t−A) =
d∑
i=0

(−1)i∆i(tr(A), tr(A2), . . . , tr(Ai))td−i
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Proof. We first assume, that O is a field. Then A is conjugate to an upper triangular matrix Ã over an
algebraic closure of O. We may replace A by Ã since trace and determinant are invariant under conju-
gation. So wlog. A is upper triangular and O is algebraically closed. Let λ1, . . . , λd be the eigenvalues of
A. Then tr(Ai) = λi1 + · · ·+ λid. The first claim follows from Theorem 2.17 and specialization xj 7→ λj .
For the second part, we have det(t−A) = (t− λ1) · · · · · (t− λd) on the left hand side. The claim follows
by Lemma 2.11, specialization xj 7→ λj and the first part.
The case when O is an integral domain is proved by passing to the fraction field. The second formula
remains true after passing to a quotient ring. Since every commutative ring is a quotient of an integral
domain, this proves the claim for every Z[ 1

d! ]-algebra.

Corollary 2.19. Let O be a commutative ring, such that d! ∈ O× and let A ∈Md(O). Then

det(A) = 1
d!
∑
σ∈Sd

sign(σ) trσ(A, . . . , A)

Here trσ(A1, . . . , Ad) :=
∏
c∈cycles(σ) trc(A1, . . . , Ad) and trc(A1, . . . , Ad) := tr(Ai1 · · ·Ai|c|), where c =

(i1 . . . i|c|) is a cycle occurring in the cycle decomposition of σ.

Proof. Setting t = 0 in Theorem 2.18, we obtain

det(A) = ∆d(tr(A), . . . , tr(Ad)) Def. 2.12= 1
d!
∑
σ∈Sd

sign(σ)
∏

c∈cycles(σ)

tr(A|c|)

and per definition trσ(A, . . . , A) =
∏
c∈cycles(σ) tr(A|c|).

Lemma 2.20. Let A ∈Md(F ) be a matrix with characteristic polynomial
∏d
i=1(t− λi), and let

∧r
A :∧r

F d →
∧r

F d be the action of A on the r-th exterior power of F d. Then

tr(
r∧
A) = e(d)

r (λ1, . . . , λd)

and moreover

det(t−A) =
d∑
i=0

(−1)i tr(
r∧
A)td−i

Proof. The first part is straightforward calculation and the second part then follows from Lemma 2.11.

Lemma 2.21. If F is a field of characteristic zero and A ∈ Md(F ), then for all i ≥ 0 the trace tr(ΛiA)
is determined by tr(A), . . . , tr(Ai).

Proof. Since F has characteristic zero the polarization Theorem 2.18 and Lemma 2.20 give

tr(
i∧
A) = e

(d)
i (λ1, . . . , λd) = ∆i(tr(A), tr(A2), . . . , tr(Ai)).

where λ1, . . . , λd ∈ F are the eigenvalues of A.

2.5 The characteristic polynomial

Suppose ρ : Γ → GLd(A) is a representation of a group and d! ∈ A×. By Theorem 2.18, the trace
tr ρ : Γ→ A remembers the entire characteristic polynomial of ρ(γ) for all γ ∈ Γ. Thanks to axiom (T1),
we can define for a general pseudocharacter T : Γ → A all coefficients of the characteristic polynomial
using the same polarization formula.
Definition 2.22. Let Γ be a group, let A be a commutative ring with d! ∈ A× and let T be a d-
dimensional pseudocharacter of Γ. We define

χT (γ, t) :=
d∑
i=0

(−1)i∆i(T (γ), T (γ2), . . . , T (γi))td−i

for all γ ∈ Γ using the polarization polynomials ∆i of Definition 2.12. We thereby obtain a map χT :
Γ→ A, γ 7→ χT (γ, t).
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Proposition 2.23. Let Γ be a group and let A be a commutative ring with d! ∈ A×. Then the map

TPCΓ
d (A)→ Map(Γ, A[t]), T 7→ χT

is injective.

Proof. For all γ ∈ Γ, we have ∆1(T (γ)) = T (γ) and −∆1(T (γ)) is the td−1-coefficient of the polynomial
χT (γ, t).

From Theorem 2.18 it is clear, that if a pseudocharacter is the trace of a representation ρ, then χT (γ, t) =
det(t−ρ(γ)) for all γ ∈ Γ. This compatibility with characteristic polynomials is a very practical property,
that will play a role in several of our arguments.

2.6 Rouquier’s definition

In [Rou96, Definition 2.1] Rouquier defines pseudocharacters for algebras in analogy to Taylor’s pseu-
docharacters of groups. Some statements will just be proved in Rouquier’s setting, as it is more general.

Definition 2.24. Let d ≥ 1 and let A be a commutative ring with d! ∈ A× and R be an A-algebra. A
pseudocharacter of R of dimension d is an A-linear map T : R→ A, such that:

(T1) d! ∈ A×.

(T2) T (1) = d.

(T3) T (xy) = T (yx) for all x, y ∈ R.

(T4) Sd+1(T ) = 0.

If R = A[Γ] is a group algebra, then T is determined by its values on Γ and T |Γ is a pseudocharacter in
the sense of Definition 2.6. Conversely any pseudocharacter of Γ extends to a pseudocharacter of A[Γ].
If R is an arbitrary A-algebra, T : R → A is a d-dimensional pseudocharacter of R and A → A′ is a
homomorphism, then T ⊗A A′ : R ⊗A A′ → A′, r ⊗ a 7→ aT (r) is a d-dimensional pseudocharacter of
R⊗AA′. Note, that this notion of base extension is compatible with base extension for pseudocharacters
as in Definition 2.6.

Remark 2.25. There are slight variations on the definition of pseudocharacters for algebras in the
literature.

1. In [BC09, §1.2.1] a pseudocharacter is required to satisfy condition (T3) plus the existence of some
d ≥ 0, such that (T1) and (T4) hold. The smallest such d is then called the ’dimension’ of T . In
[BC09, Lem. 1.2.5 (2)] it is shown, that when A is connected and T has dimension d, then (T2)
holds.

2. In [Bel12, Definition 3] under the assumption that A is connected, condition (T2) is dropped
and condition (T4) is strengthened to the requirement, that d is the smallest integer, such that
Sd+1(T ) = 0. It is then shown in [Bel12, Proposition 4], that (T2) follows from this strengthened
version of (T4). This is also the definition chosen in [Rou96, Définition 2.1].

3. In [Nys96] condition (T1) is dropped. As we will see in Example 2.29, this leads to undesired
behavior.

2.7 Representability

Lemma 2.26. Let d ≥ 0, let O be a commutative ring such that d! ∈ O× and let R be an O-algebra.
The functor

TPCRd : CAlgO → Set, A 7→ TPCRd (A),

which associates to a commutative O-algebra A the set of d-dimensional A-valued pseudocharacters of R
is representable by a commutative O-algebra BRd .
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Compare [Che14, p. 2, footnote 6].

Proof. Define BRd to be the quotient of O[Xr | r ∈ R] by the ideal generated by the following polynomials:

• Xr1+r2 −Xr1 −Xr2 for all r1, r2 ∈ R,

• Xar − aXr for all r ∈ R and all a ∈ O,

• X1 − d,

• Xr1r2 −Xr2r1 for all r1, r2 ∈ R,

•
∑
σ∈Sd+1

sign(σ)Xσ(r1, . . . , rd+1) for all r1, . . . , rd+1 ∈ R.

where for any cycle c = (i1 . . . ir) ∈ Sd+1 we define X(c)(r1, . . . , rd+1) := Xri1 ·····rir
and for any σ ∈ Sd+1

with cycle decomposition σ = c1 . . . ck we set Xσ(r1, . . . , rd+1) =
∏k
j=1 X(ck)(r1, . . . , rd+1). One checks

at once, that the universal pseudocharacter R→ BRd , r 7→ Xr represents TPCRd .

The functor TPCRd serves as a substitute for the functor RepRd : CAlgO → Set, where for any O-algebra
A, RepRd (A) is the set of GLd(A)-conjugacy classes of O-algebra homomorphisms R→Md(A). Note, that
RepRd is in general not representable. The trace induces a natural transformation tr : RepRd → TPCRd . By
the previous lemma an A-valued pseudocharacter of R is the same as an A-point Spec(A) → Spec(BRd )
over O. We define the d-dimensional pseudocharacter variety for R over O to be the O-scheme Spec(BRd ),
which represents TPCRd .

2.8 Reconstruction theorems

The reconstruction theorem tells us, when a d-dimensional pseudocharacter over an algebraically closed
field is the trace of a semisimple representation. This has been proved by Taylor for his pseudocharacters
in [Tay91, Theorem 1 (2)] in characteristic 0. It was later proved in positive characteristic p > d by
Rouquier [Rou96, Théorème 4.2].

Definition 2.27. Let k be a field and let T : R → k be a d-dimensional Rouquier pseudocharacter of
a k-algebra R. We say, that T is irreducible, if T cannot be written as a sum of two pseudocharacters
T1 + T2, of dimensions d1 and d2 respectively, with d1 + d2 = d and d1, d2 ≥ 1.

Theorem 2.28. Let k be an algebraically closed field of characteristic 0 or p > d and let R be a unital
k-algebra. Let T : R → k be a d-dimensional Rouquier pseudocharacter of R. If T is irreducible, then
R/ ker(T ) is a d2-dimensional central simple k-algebra and T is the trace of the absolutely irreducible
representation R→ R/ ker(T ) ∼= Md(k). In general, T is the trace of a semisimple representation, which
is unique up to conjugation.

Proof. See [Rou96, Théorème 4.2] in case T is irreducible. Let T = T1 + · · ·+ Tk be a decomposition of
an arbitrary T into irreducible pseudocharacters and let ρi be an irreducible representation with trace
Ti. The representation ρ := ρ1 ⊕ · · · ⊕ ρk has trace T . Uniqueness follows from the Brauer-Nesbitt
theorem.

In Theorem 2.28 the condition on the characteristic of k is necessary, which is illustrated by the following
example.

Example 2.29. In characteristic 2 and dimension 2, uniqueness of the representation fails: The repre-
sentation

ρ : C3 → GL2(F2)

of the cyclic group C3 with generator γ defined by

ρ(γ) =
(
ω 0
0 ω

)
where ω2 +ω+1 = 0 is semisimple and has the same pseudocharacter as the trivial representation, which
is 0.
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There are also reconstruction theorems over local henselian rings, which are particularly important for
comparing the pseudodeformation functor to the deformation functor.

Proposition 2.30. Let T : R→ A be a residually multiplicity-free d-dimensional pseudocharacter over
a local henselian factorial domain A. Then T is the trace of a representation ρ : R→Md(A).

Proof. See [BC09, Prop. 1.6.1].

There is a converse to this result under the assumption, that A is noetherian.

Proposition 2.31. Let d ≥ 2, let A be a noetherian local henselian ring and let R be an A-algebra. If
each d-dimensional residually multiplicity free pseudocharacter T : R→ A is the trace of a representation
ρ : R→Md(A), then A is factorial.

Proof. See [BC09, Thm. 1.6.3].

2.9 Kernel of Taylor’s pseudocharacters

Definition 2.32. Let T : Γ→ A be a d-dimensional pseudocharacter of a group Γ. We define the kernel
of T as

ker(T ) := {γ ∈ Γ | ∀δ ∈ Γ : T (γδ) = T (δ)}

Lemma 2.33. In Definition 2.32 ker(T ) is a normal subgroup of Γ.

Proof. Let γ, γ′ ∈ ker(T ). Clearly 1 ∈ ker(T ). For all δ ∈ Γ, we have T (γγ′δ) = T (γ′δ) = T (δ), so
γγ′ ∈ ker(T ). Further T (γ−1δ) = T (γγ−1δ) = T (δ), so γ−1 ∈ ker(T ). We have shown, that ker(T ) is a
subgroup of Γ. For all x ∈ Γ, we have T (xγx−1δ) = T (γx−1δx) = T (x−1δx) = T (δ), so xγx−1 ∈ ker(T )
and thus ker(T ) is a normal subgroup.

If ker(T ) = 0, we say that T is faithful.

2.10 Kernel of Rouquier’s pseudocharacters

Definition 2.34. Let T : R→ A be a d-dimensional pseudocharacter of an A-algebra R. We define the
kernel of T as

ker(T ) := {x ∈ R | ∀y ∈ R : T (xy) = 0}

The kernel is a two-sided ideal of R. If ker(T ) = 0, we say, that T is faithful. [BC09, §1.2.4]

Proposition 2.35. Let T : A[Γ]→ A be a d-dimensional pseudocharacter of a group algebra A[Γ].

1. ker(T ) ∩ (Γ− 1) = ker(T |Γ)− 1.

2. A[ker(T |Γ)− 1] ⊆ ker(T ).

Proof. Suppose γ ∈ Γ with γ − 1 ∈ ker(T ). Then for all δ ∈ Γ, we have T ((γ − 1)δ) = 0, in particular
T (γδ) = T (δ), so γ ∈ ker(T |Γ). Conversely if γ ∈ ker(T |Γ), then T ((γ − 1)y) = 0 for all y ∈ A[Γ] by
linearity. The second assertion follows from the first.

Note, that Definition 2.32 is insensitive to base extension, i.e. if f : A → A′ is an injective ring homo-
morphism, then ker(T ) = ker(f ◦ T ). It is important to notice, that the notion of kernel and faithfulness
of Taylor’s and Rouquier’s pseudocharacters need not agree. This is illustrated by the following example.

Example 2.36. Let Γ = ⟨γ⟩ be cyclic with generator γ of order 4 and let Γ act on Q2 by(
0 1
−1 0

)
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Let T : Q[Γ] → Q be the associated 2-dimensional Rouquier pseudocharacter. The fundamental matrix
of the trace pairing (x, y) 7→ T (xy) on Q[Γ] is

2 0 −2 0
0 −2 0 2
−2 0 2 0
0 2 0 −2


and it follows, that ker(T ) = (1 + γ2). In particular T is not faithful. On the other hand the Taylor
pseudocharacter T |Γ is faithful. We conclude, that the inclusion in Proposition 2.35 (2) is strict in this
case.

2.11 Direct sum

Every (d′ + 1)-tuple of d × d-matrices satisfies the d′-dimensional pseudocharacter identity (T4) for all
d′ ≥ d. This can be seen by embedding each d×d-matrix into the upper left corner of a d′×d′-matrix and
filling the rest with zeros. In the following lemma we prove, that the (d+1)-dimensional pseudocharacter
identity actually follows formally from the d-dimensional pseudocharacter identity. It is also proved in
[Bel09, Lem. 2.2].

Lemma 2.37. Let R be an A-algebra and let T : R→ A be a function, such that T (xy) = T (yx) for all
x, y ∈ R. Let d ≥ 0 be an integer. Then

Sd+2(T )(g1, . . . , gd+2) +
d+2∑
i=2

Sd+1(T )(g1gi, . . . , ĝi, . . . , gd+2)

= T (g1)Sd+1(T )(g2, . . . , gd+2),

with Sd(T ) defined as in (T4). Explicitly

∑
σ∈Sd+2

sign(σ)Tσ(g1, . . . , gd+2) +
d+2∑
i=2

∑
τ∈Sd+1

sign(τ)Tτ (g1gi, . . . , ĝi, . . . , gd+2)

= T (g1)
∑

τ∈Sd+1

sign(τ)Tτ (g2, . . . , gd+2)

for all g1, . . . , gd+2 ∈ R. In particular, if in addition T satisfies the d-dimensional pseudocharacter identity
(T4), then T satisfies the d′-dimensional pseudocharacter identity for all d′ ≥ d.

Proof. We define for all i = 2, . . . , d+ 2 a map ji : Sd+1 → Sd+2 on cycles:

ji((a1 . . . ak)) := (si(a1) . . . si(ak))

where

si(a) :=


1i, a = 1
a, 1 < a < i

a+ 1, a ≥ i

For example for d = 3 we have j3((12)(34)) = (132)(45). The ji are injective and have disjoint im-
ages. By construction for all i = 2, . . . , d + 1 and all τ ∈ Sd+1 we have sign(ji(τ)) = − sign(τ) and
Tτ (g1gi, . . . , ĝi, . . . , gd+2) = Tji(τ)(g1, . . . , gd+2). The second sum cancels entirely with the summands of
the first sum, for which σ lies in the image of some ji.
Every σ ∈ Sd+2, that does not fix 1 lies in the image of some ji, hence the complement of the union of
the images of the ji is the stabilizer of 1. We denote this stabilizer by (Sd+2)1. We are left to show the
equality ∑

σ∈(Sd+2)1

sign(σ)Tσ(g1, . . . , gd+2) = T (g1)
∑

τ∈Sd+1

sign(τ)Tτ (g2, . . . , gd+2)

which follows easily by identifying (Sd+2)1 with Sd+1.
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For two representations ρ1, ρ2 of Γ we can form the direct sum ρ1 ⊕ ρ2 and the tensor product ρ1 ⊗ ρ2.
Clearly tr(ρ1 ⊕ ρ2) = tr(ρ1) + tr(ρ2) and tr(ρ1 ⊗ ρ2) = tr(ρ1) tr(ρ2). This leads to the question, whether
for a d1-dimensional pseudocharacter T1 and a d2-dimensional pseudocharacter T2 the function T1 + T2
is a (d1 + d2)-dimensional pseudocharacter and whether T1T2 is a d1d2-dimensional pseudocharacter.

Definition 2.38 (Direct sum of pseudocharacters). Let A be a commutative ring, let T1 : R → A be a
d1-dimensional pseudocharacter and let T2 : R→ A be a d2-dimensional pseudocharacter in the sense of
Rouquier and assume (d1 + d2)! ∈ A×. We define the direct sum T1 ⊕ T2 by

(T1 ⊕ T2)(γ) := T1(γ) + T2(γ)

Proposition 2.39. Let d1, d2 ≥ 0 and A a commutative ring with (d1 + d2)! ∈ A×. Let T1 : R→ A be
a d1-dimensional pseudocharacter and T2 : R→ A a d2-dimensional pseudocharacter. Then T1 + T2 is a
(d1 + d2)-dimensional pseudocharacter.

Proof.

(T1) We have (d1 + d2)! ∈ A× by assumption.

(T2) We have (T1⊕T2)(1) = T1(1) +T2(1) = d1 + d2. Invariance under cyclic permutations is also clear.

(T3) Let γ1, γ2 ∈ Γ. Then

(T1 ⊕ T2)(γ1γ2) = T1(γ1γ2) + T2(γ1γ2) = T1(γ2γ1) + T2(γ2γ1) = (T1 ⊕ T2)(γ2γ1)

(T4) For some σ ∈ Sn with cycle decomposition σ = c1 ◦ · · · ◦ ck, we call t : {1, . . . , n} → {1, 2} a σ-stable
coloring, if t is constant on the supports of all ci. We denote by Cσ the set of σ-stable colorings.
For any σ-stable coloring t ∈ Cσ we define

T tσ(γ1, . . . , γn) :=
k∏
j=1

(Tt(|ci|))(ci)(γ1, . . . , γn)

where t(|ci|) is the value of t on the support of ci.
With this notation the relation we want to prove zero reads

Sd1+d2+1(T1 + T2)(γ1, . . . , γd1+d2+1) =
∑

σ∈Sd1+d2+1

sign(σ)(T1 + T2)σ(γ1, . . . , γd1+d2+1)

=
∑

σ∈Sd1+d2+1

sign(σ)
∑
t∈Cσ

T tσ(γ1, . . . , γd1+d2+1)

=
∑

t:{1,...,d1+d2+1}
→{1,2}

∑
σ∈Sd1+d2+1

Cσ∋t

sign(σ)T tσ(γ1, . . . , γd1+d2+1)

Given a map t : {1, . . . , n} → {1, 2} the σ ∈ Sn, such that t is σ-stable are exactly those lying in
the image of the injective homomorphism

Sym(t−1({1}))× Sym(t−1({2}))→ Sn, (τ1, τ2) 7→
(
x 7→

{
τ1(x), t(x) = 1
τ2(x), t(x) = 2

)

We write St−1(x) := Sym(t−1({x})). We obtain

· · · =
∑

t:{1,...,d1+d2+1}
→{1,2}

 ∑
τ1∈St−1(1)

sign(τ1)(T1)τ1((γα)α∈t−1(1))

 ∑
τ2∈St−1(2)

sign(τ2)(T2)τ2((γβ)β∈t−1(2))


and this is zero, because either #t−1(1) ≥ d1 + 1 or #t−1(2) ≥ d2 + 1 and Lemma 2.37 does apply.
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2.12 Dual

Definition 2.40. Let A be a commutative ring with d! ∈ A× and let T : Γ → A be a d-dimensional
pseudocharacter. We define the dual T∨ by

T∨(γ) := T (γ−1)

It is clear, that if T is the trace of a representation ρ, then T∨ is the trace of ρ∗.

Proposition 2.41. In Definition 2.40 T∨ is a d-dimensional pseudocharacter.

Proof. We are able to verify properties (T1)-(T4) independently.

(T1) d! ∈ A× holds by assumption.

(T2) T∨(1) = T (1) = d.

(T3) Let γ1, γ2 ∈ Γ. Then

T∨(γ1γ2) = T (γ−1
2 γ−1

1 ) = T (γ−1
1 γ−1

2 ) = T∨(γ2γ1)

(T4) Let γ1, . . . , γd+1 ∈ Γ. Let c = (i1 . . . ir) be a cycle in Sd+1. With the notation of Section 2.2, we
have

T∨
(c)(γ1, . . . , γd+1) = T∨(γi1 . . . γir )

= T (γ−1
ir
. . . γ−1

i1
)

= T(c−1)(γ−1
1 , . . . , γ−1

d+1)

The pseudocharacter relation for T∨ vanishes:∑
σ∈Sd+1

sign(σ)T∨
σ (γ1, . . . , γd+1) =

∑
σ∈Sd+1

sign(σ)
∏

c∈cycles(σ)

T∨
(c)(γ1, . . . , γd+1)

=
∑

σ∈Sd+1

sign(σ)
∏

c∈cycles(σ)

T(c−1)(γ−1
1 , . . . , γ−1

d+1)

=
∑

σ∈Sd+1

sign(σ)
∏

c∈cycles(σ−1)

T(c)(γ−1
1 , . . . , γ−1

d+1)

=
∑

σ∈Sd+1

sign(σ)Tσ−1(γ−1
1 , . . . , γ−1

d+1)

= 0

2.13 Tensor product

Definition 2.42 (Tensor product of pseudocharacters). Let A be a commutative ring, let T1 : Γ→ A be
a d1-dimensional pseudocharacter and let T2 : Γ→ A be a d2-dimensional pseudocharacter and assume,
that (2d1d2)! ∈ A×. We define the tensor product T1 ⊗ T2 by

(T1 ⊗ T2)(γ) := T1(γ)T2(γ)

Proposition 2.43. In Definition 2.42 T1 ⊗ T2 is a d1d2-dimensional pseudocharacter.

Proof.

(T1) (d1d2)! ∈ A× holds by assumption.

(T2) (T1 ⊗ T2)(1) = T1(1)T2(1) = d1d2.
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(T3) Let γ1, γ2 ∈ Γ. Then

(T1 ⊗ T2)(γ1γ2) = T1(γ1γ2)T2(γ1γ2)
= T1(γ2γ1)T2(γ2γ1)
= (T1 ⊗ T2)(γ2γ1)

(T4) By Proposition 4.59, the comparison map tr : PCΓ
GLdi

(A)→ TPCΓ
di

(A) is a bijection. We will show
independently in Proposition 4.34, that tr is compatible with formation of tensor products of Laf-
forgue’s GLd-pseudocharacters. It thus follows, that T1⊗T2 is a d1d2-dimensional pseudocharacter
and in particular satisfies (T4).

Remark 2.44. We are not able to prove directly, that the product of two pseudocharacters of dimensions
d1 and d2 satisfies (T4), but we expect that an elementary proof similar to the case of direct sums can be
given. However we are not really in need of such an argument, since Taylor’s pseudocharacters are not
well-behaved in small characteristics anyway (see Example 2.29). See also [BC09, Remark 1.2.9].

Remark 2.45. One can define Hom(T1, T2) := T∨
1 ⊗ T2.

2.14 The semiring of pseudocharacters

For any commutative monoid (M,+) the Grothendieck group (G(M),+) is an abelian group generated by
formal differences of elements of M . Any homomorphism from M into an abelian group factors uniquely
over G(M). There is a canonical homomorphism M → G(M), which is injective if and only if M has the
cancellation property.
Assume, that A is a Q-algebra. We know, that the trace gives rise to a homomorphism of commutative
semirings

tr : RepΓ(A)→ Map(Γ, A), [ρ] 7→ tr(ρ)
for all A. Here RepΓ(A) =

⋃∞
d=0 RepΓ

d (A) is the set of isomorphism classes of representations of Γ on free
A-modules of rank d endowed with the structure of a semiring given by direct sum ⊕ and tensor product
⊗A.
From the perspective just described, we would like to show, that the subset TPCΓ(A) of Map(Γ, A) given
by Taylor’s pseudocharacters is closed under addition and multiplication and that the dimension of a
sum or tensor product pseudocharacter is as expected.

Proposition 2.46. Over a Q-algebra A Taylor’s pseudocharacters form a commutative semiring

TPCΓ(A) =
∞⋃
d=0

TPCΓ
d (A)

with pointwise addition (direct sum Definition 2.38) and multiplication (tensor product Definition 2.42).
The dualizing operation (−)∨ is a semiring automorphism of order 2. Further, there is a homomorphism
of semirings

tr : RepΓ(A)→ TPCΓ(A), [ρ] 7→ tr(ρ)
compatible with the dualizing operations on both sides, where RepΓ(A) is the semiring of isomorphism
classes of representations of Γ on finitely generated free A-modules.

Proof. This is a combination of Proposition 2.39, Proposition 2.43 and Proposition 2.41.

Proposition 2.47. Let C be an algebraically closed field of characteristic 0. Let RepΓ,ss(C) be the
subsemiring of RepΓ(C) generated by semisimple representations. Then the trace map tr : RepΓ,ss(C)→
TPCΓ(C) is an isomorphism of commutative semirings.

Proof. We first note, that by a theorem of Chevalley, the tensor product of any two semisimple C[Γ]-
modules is semisimple. So RepΓ,ss(C) is indeed the subsemiring of RepΓ(C) consisting only of semisimple
representations. Surjectivity and injectivity follow from the existence and uniqueness part of Theo-
rem 2.28 applied to C[Γ].
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2.15 Induction

It seems possible to define the induction of a Taylor pseudocharacter, just as for characters of finite
groups. We first give a definition, without claiming that the result is a pseudocharacter.

Definition 2.48 (Induction). Let Γ be a group and let ∆ ≤ Γ be a subgroup of finite index n ≥ 1. Let
T : ∆ → A be a d-dimensional pseudocharacter and assume (nd)! ∈ A×. Choose a system of left coset
representatives x1, . . . , xn ∈ Γ of ∆. We define

(IndΓ
∆ T )(γ) :=

n∑
i=1

T∆(x−1
i γxi)

where

T∆(γ) :=
{
T (γ), γ ∈ ∆
0, else.

is the truncation of T to ∆.

Proposition 2.49. IndΓ
∆ T in Definition 2.48 does not depend on the choice of coset representatives.

Proof. Let yi ∈ Γ, such that yi∆ = xi∆. Let γ ∈ Γ. The elements x−1
i γxi and y−1

i γyi only differ by a
conjugation by y−1

i xi ∈ ∆. So x−1
i γxi ∈ ∆ if and only if y−1

i γyi ∈ ∆. For the same reason, since T is a
central function, T (x−1

i γxi) = T (y−1
i γyi).

Proposition 2.50. If ρ : ∆→ GLd(A) is a homomorphism, then IndΓ
∆ tr(ρ) = tr(IndΓ

∆ ρ).

Proof. The induced representation can be decomposed as IndΓ
∆ ρ =

⊕n
i=1 xiA

d as a free A-module of rank
dn. If γ ∈ ∆, then γ acts on xiAd as x−1

i γxi and the trace of this action is tr(ρ(x−1
i γxi)). If x−1

i γxi /∈ ∆,
then γxi /∈ xi∆, so γ carries xiAd into a different summand xjA

d and the trace of γ on xiA
d is 0. It

follows, that IndΓ
∆ tr(ρ) = tr(IndΓ

∆ ρ).

Proposition 2.51. If in Definition 2.48 A is a reduced ring, then IndΓ
∆ T constitutes an nd-dimensional

pseudocharacter of Γ.

Proof. We check the pseudocharacter axioms for T ′ := IndΓ
∆ T .

(T1) (nd)! ∈ A× by assumption.

(T2) T ′(1) = nT (1) = nd.

(T3) Let γ1, γ2 ∈ Γ with x−1
i γ1γ2xi ∈ ∆. Note, that γ2x1, . . . , γ2xn is also a system of left coset

representatives and by the well-definedness we have just seen, we can use it as well for computation
of T ′:

T ′(γ1γ2) =
n∑
i=1

T∆(x−1
i γ1γ2xi) =

n∑
i=1

T∆((γ2xi)−1γ2γ1(γ2xi)) = T ′(γ2γ1)

(T4) We first embed A into the ring
∏

p Quot(A/p), where p varies over all minimal primes ideals of A.
By projection to the factors we see, that it is enough to prove the claim for A an algebraically closed
field. By the reconstruction theorem Theorem 2.28, Proposition 2.50 and Proposition 2.7 the claim
follows.

We expect, that (T4) can be proved without any assumption on A, but the calculations get to complicated
to carry this out directly. If A is not reduced, it might be possible to exploit the comparison isomorphism
Proposition 4.59 between Taylor’s pseudocharacters and Lafforgue’s pseudocharacters to prove the claim
by constructing induced pseudocharacters on the Lafforgue side. We do not carry this out in this thesis.
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3 Determinant laws

Chenevier generalizes Taylor’s pseudocharacters in [Che14] to determinant laws of algebras. The key idea
is to consider homogeneous multiplicative A-polynomial laws of degree n from an arbitrary A-algebra R
to A instead of a single map R → A satisfying a certain set of identities. By doing so the formalism
is a bit thickened, but the problems one encounters with Taylor’s definition in small characteristic (see
Example 2.29) are resolved. Necessarily the definitions don’t agree in small characteristics. In addition
this ’linearization’ approach allows us to use the machinery of noncommutative algebra. We give a
summary of the theory of determinant laws following the exposition of Carl Wang-Erickson in [Wan13,
Chapter 1].

3.1 Motivation

Let Γ be a group, A a commutative ring, d ≥ 0 and ρ : Γ → GLd(A) a homomorphism. The family of
characteristic polynomials (det(T − ρ(γ)))γ∈Γ of the elements of Γ is an invariant for the representation
ρ. There is a set of relations between these characteristic polynomials, that hold for any representation.
These relations come from invariants of tuples of matrices, which we will discuss later. To express
those relations in a convenient way we extend the family of characteristic polynomials to a family of
maps indexed by all A-algebras B. A homomorphism ρ is equivalent to an A-algebra homomorphism
ρ : A[Γ]→Md(A) and we can recover the family of characteristic polynomials from the map

det ◦(ρ⊗A[T ]) : A[T ][Γ]→ A[T ]

by restricting to elements of the form T − γ ∈ A[T ][Γ]. This map makes sense for any commutative
A-algebra B, so we associate to ρ the family of maps

DB : A[Γ]⊗A B → B, x 7→ det((ρ⊗B)(γ))

By definition D satisifies the following properties:

1. D is a natural transformation from the functor

−[Γ] : CAlgA → AlgA, B 7→ B[Γ]

that maps any A-algebraB to the group algebraB[Γ] over Γ, to the inclusion functor CAlgA ⊆ AlgA.

2. DB(1) = 1 and DB(xy) = DB(x)DB(y) for all commutative A-algebras B and all x, y ∈ B[Γ].

3. DB(bx) = bdDB(x) for all commutative A-algebras B and all b ∈ B.

We will see, that these conditions mean, that D is a d-homogeneous multiplicative A-polynomial law.

3.2 Polynomial laws

Definition 3.1 (A-polynomial law). Let A be a commutative ring, let M and N be arbitrary A-modules
and let R and S be not necessarily commutative A-algebras.

1. An A-polynomial law P : M → N is a collection of maps PB : M ⊗A B → N ⊗A B for each
commutative A-algebra B, such that for each homomorphism f : B → B′ of commutative A-
algebras, the diagram

M ⊗A B

id ⊗f
��

DB // N ⊗A B

id ⊗f
��

M ⊗A B′ DB′ // N ⊗A B′

commutes.
In other words, an A-polynomial law is a natural transformation M → N , where M(B) := M ⊗AB
is the ’functor of points’ of M . We denote the set of A-polynomial laws from M to N by PA(M,N).
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2. A polynomial law P : M → N is called homogeneous of degree d ∈ N0 or d-homogeneous, if for all
commutative A-algebras B, all b ∈ B and all x ∈M ⊗A B we have PB(bx) = bdPB(x). We denote
the set of d-homogeneous A-polynomial laws from M to N by PdA(M,N).

3. A polynomial law P : R→ S is called multiplicative, if for all commutative A-algebras B, we have
PB(1R⊗AB) = 1S⊗AB and and all x, y ∈ R ⊗A B, we have PB(xy) = PB(x)PB(y). We denote the
set of d-homogeneous multiplicative A-polynomial laws from R to S by Md

A(R,S).
Remark 3.2. There is a geometric interpretation of polynomial laws. If M is a finitely generated free
A-module of rank n, then M is just the functor of points of the affine space An over A. A polynomial
law between finitely generated free A-modules is just a morphism of A-schemes. From this perspective
a polynomial law is a ’regular map’ between ’spaces’ modelled by A-modules. Just as in the case of
schemes, these ’regular maps’ are solely characterized by a naturality condition on a category of rings.
However this point of view doesn’t seem relevant to the theory of determinant laws.
Lemma 3.3. Let A be a commutative ring, let R, R′ and R′′ be A-algebras and let D : R → R′ and
D′ : R′ → R′′ be polynomial laws.

1. If D is d-homogeneous and D′ is d′-homogeneous, then D′ ◦D is dd′-homogeneous.

2. If D and D′ are multiplicative, then so is D′ ◦D.

Proof. These are easy calculations.

Definition 3.4. Let P : M → N be an A-polynomial law. The kernel of P is the set

ker(P ) := {m ∈M | ∀B ∈ CAlgA : ∀x ∈M ⊗A B : P (x+m) = P (x)}

(Compare [Wan13, Definition 1.1.5.1])

The kernel of P is a submodule of M . When ker(P ) = 0, we say that P is faithful. The kernel satisfies
the usual universal property, see [Wan13, Lemma 1.1.5.2] and [Che14, Lemma 1.18]. Basic properties of
the kernel are shown in [Che14, Lemma 1.19].

3.3 Definition of determinant laws

This focusses on [Che14, §1-§2].
Definition 3.5 (Determinant law). Let A be a commutative ring. A d-dimensional A-valued determinant
law on R is a multiplicative A-polynomial law D : R→ A, that is homogeneous of degree d ∈ N0. [Wan13,
Definition 1.1.7.1]

If B is a commutative A-algebra, we denote the set of d-dimensional B-valued determinant laws of R⊗AB
by DetRd (B). If B → B′ is a homomorphism of commutative A-algebras and D : R ⊗A B → B is a d-
dimensional B-valued determinant law, then restriction of functors defines a d-dimensional B′-valued
determinant law D ⊗B B′ : R ⊗A B′ → B′. This is the base change of D to B′ and defines a map
DetRd (B)→ DetRd (B′). Base change is functorial, so we obtain a moduli functor

DetRd : CAlgA → Set, B 7→ DetRd (B)

A determinant law can be constructed from a representation using the usual determinant: For any A-
algebra R and any A-algebra homomorphism ρ : R→Md(A) the collection of maps DB := det ◦(ρ⊗B) :
R⊗A B → B is a d-dimensional determinant D : R→ A. This defines a map

HomAlgA
(R,Md(A))→ DetRd (A)

(ρ : R→Md(A)) 7→ (B 7→ det(ρ⊗A B))

There is a unique 0-dimensional determinant law D : R→ A, that we will refer to as the trivial determi-
nant law.
If A is an infinite integral domain and D : R → A is a d-dimensional determinant law, then there is a
simpler description of the kernel of D ([Wan13, Lemma 1.1.7.2]):

ker(D) = {r ∈ R | ∀r′ ∈ R : D(1 + rr′) = 1}
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3.4 Representability

Definition 3.6 (Divided power algebra). Let A be a commutative ring. Given an A-module M we define
the divided power algebra over M as the commutative A-algebra ΓA(M) generated by symbols m[i] for
all m ∈M , i ≥ 0 satisfying the following relations:

1. m[0] = 1 for all m ∈M .

2. (am)[i] = aim[i] for all m ∈M , a ∈ A and i ∈ N0.

3. m[i]m[j] = (i+j)!
i!j! m

[i+j] for all m ∈M and i, j ∈ N0.

4. (m+m′)[i] =
∑
p+q=im

[p]m′[q] for all m,m′ ∈M and i ∈ N0.

The number (i+j)!
i!j! is an integer, so we don’t need an assumption on the characteristic of A. Note, that

these relations are compatible with the degree deg(m[i]) := i for m ∈ M and i ∈ N0. So ΓA(M) is
naturally N0-graded. Denote by ΓdA(M) the A-submodule generated by monomials of degree d. If R is
an A-algebra, then ΓdA(R) carries the structure of an A-algebra defined by

(x[a1]
1 · · ·x[ar]

r ) · (y[b1]
1 · · · y[bs]

s ) :=
∑
(γij)

r∏
i=1

s∏
j=1

(xi · yj)[γij ]

where x1, . . . , xr, y1, . . . , ys ∈ R,
∑r
i=1 ai = d,

∑s
j=1 bj = d and (γij) ranges over all families of integers

γij ≥ 0 with
∑r
i=1 γij = bj and

∑s
j=1 γij = ai. See [Rob80]. For background on divided power algebras,

see [Sta19, 09PD].
Theorem 3.7 (Universal homogeneous polynomial law). Let A be a commutative ring and let R be an
A-algebra. The functor Md

A(R,−) is representable by ΓdA(R), i.e. there is a natural bijection
Md

A(R,S) = HomAlgA
(ΓdA(R), S)

with universal object LdR : R→ ΓdA(R), r 7→ r[1].

Proof. See [Rob80, Théorème] or [Wan13, Theorem 1.1.6.5].

In particular, if S is commutative, there is a natural bijection
Md

A(R,S) ∼= HomCAlgA
(ΓdA(R)ab, S)

3.5 Reconstruction theorems

It is natural to ask, under what conditions a determinant law arises from a representation in the sense
described in Section 3.3. In this case we say, that D is split. Chenevier [Che14, Sec. 2.22] proves some
converse results for A an algebraically closed field and A a Henselian local ring.
Theorem 3.8. Let k be an algebraically closed field, R a k-algebra d ≥ 0. Then the natural map

RepRd (k)→ DetRd (k)
induces a bijection between the set of conjugacy classes of d-dimensional semisimple representations
R→Md(k) and the set of d-dimensional k-valued determinant laws of R. If D ∈ DetRd (k), then

ρ : R→ R/ ker(D) ∼=
∏
i

Mdi
(k)

is a semisimple representation with associated determinant law D = det ◦ρ and ker(D) = ker(ρ) and∑
i di = d.

Proof. See [Che14, Theorem 2.12] and [Wan13, Theorem 1.3.1.1].

Theorem 3.9. Let D : R → A be a Cayley-Hamilton determinant law over a henselian local ring A
with residue field k. If D ⊗A k comes from an absolutely irreducible representation, then there is an
isomorphism ρ : R ∼= Md(A), such that D = det ◦ρ.

Proof. See [Che14, Theorem 2.22 (i)].
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3.6 The characteristic polynomial

The reference for the following definition is [Che14, §1.10].
Definition 3.10. Let A be a commutative ring, let R be an A-algebra and let D : R → A be a d-
dimensional A-valued determinant law. Then we define for each r ∈ R, the characteristic polynomial
χD(r, t) ∈ A[t] by

χD(r, t) := DA(t− r)
We will understand the characteristic polynomial as a map χD : R → A[t], r 7→ χD(r, t). If R = A[Γ] is
a group ring, we also consider the restriction χD : Γ→ A[t]. We denote the negative of the coefficient of
td−1 by trD.

By [Che14, Lemma 1.12 (iii)], trD satisfies the d-dimensional pseudocharacter identity.
Proposition 3.11. Let A be a commutative ring and let Γ be group. Then the map

DetΓ
d (A)→ Map(Γ, A[t]), D 7→ χD

is injective.

Proof. By Amitsur’s formula [Che14, (1.5)] χD determines the values of the mapsDA[t1,...,tn] : A[Γ][t1, . . . , tn]→
A on elements of the form γ1t1 + · · · + γntn with γi ∈ Γ. By naturality we can replace finitely many
variables by elements of A, so that the χD determines all values of DA[t1,...,tn] : A[Γ][t1, . . . , tn] → A for
all n ≥ 1. Again by naturality this is sufficient to determine D.

Definition 3.12. Let D be an A-linear d-dimensional determinant law. We define the coefficients
Λi : R→ A of the characteristic polynomial of D by the expansion

χD(r, t) = DB[t](t− r) =
d∑
i=0

(−1)iΛi,B(r)td−i ∈ B[t]

for all B ∈ CAlgA.

One can show, that the coefficients Λi give rise to i-homogeneous A-polynomial laws.

3.7 Continuous determinant laws

Let Γ be a topological group and let A be a topological ring. We say, that a d-dimensional A-linear
determinant law D ∈ DetΓ

d (A) is continuous, if the coefficients Λi of Definition 3.12 of the characteristic
polynomial of D give rise to continuous maps Λi,A|Γ : Γ→ A. This notion of continuity is equivalent to
that defined in [Che14, §2.30]. We denote the set of continuous d-dimensional A-linear determinant laws
by cDetΓ

d (A).
If ρ : Γ→ GLd(A) is a continuous representation, then Dρ is a continuous determinant law. So we have
a map cRepΓ,□

GLd
(A)→ cDetΓ

d (A), which is natural in A and Γ.

3.8 Comparison with Taylor’s pseudocharacters

Proposition 3.13. Let A be a commutative ring with d! ∈ A× and let R be an A-algebra. Then the
map

DetRd (A)→ TPCRd (A), D 7→ trD
(see Definition 3.10) from the set DetRd (A) of d-dimensional A-valued determinant laws to the set
TPCRd (A) of d-dimensional A-valued Rouquier pseudocharacters of R is a well-defined injection. The
map is bijective, if one of the following conditions holds.

1. A is reduced.

2. 2 ∈ A× and d = 2.

3. (2d)! ∈ A×.

Proof. See [Che14, Proposition 1.27, Remark 1.28, Proposition 1.29].
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3.9 Direct sum

The direct sum of two determinant laws should be defined in such a way, that it corresponds to the direct
sum of representations. This has been done by Wang-Erickson in [Wan13, §1.1.11].

Definition 3.14 (Direct sum). Let R be an A-algebra, D1, D2 determinant laws of dimension d1, d2 of
R over A. Then we define the direct sum D := D1 ⊕D2 to be the polynomial law given by

DB(x) := D1,B(x)D2,B(x)

for all commutative A-algebas B. [Wan13, Def. 1.1.11.6]

D1 ⊕D2 is multiplicative and homogeneous of degree d1 + d2, in particular D1 ⊕D2 ∈ DetRd1+d2
(A).

Lemma 3.15 (Basic properties of the direct sum). Let R be an A-algebra, d1, d2 ≥ 0 and d := d1 + d2.
The direct sum operation

⊕ : DetRd1
×SpecA DetRd2

→ DetRd
is a morphism of affine A-schemes corresponding to the homomorphism of commuative A-algebras

ΓdA(R)ab Γd(∆)// ΓdA(R×R) // Γd1
A (R)ab ⊗A Γd2

A (R)ab

where ∆ : R→ R×R is the diagonal and the right map is induced by the isomorphism [Wan13, (1.1.11.1)].

Proof. See [Wan13, Lem. 1.1.11.7].

3.10 Dual

Suppose ρ : R → Md(A) is an A-linear representation of a unital A-algebra R. Since transposition does
not change the determinant of a matrix, we have det ◦ρ = det ◦⊤ ◦ ρ as determinant laws. We may see
det ◦ρ as a determinant law on Rop → A. It is clear, that det ◦ρ is the determinant law attached to the
action ofRop on the dual module ofAd equipped with the action ofR by ρ. In caseR = A[Γ] is a group ring
associated to a group Γ, we can compose det ◦ρ with the antihomomorphism ι : A[Γ]→ A[Γ], γ 7→ γ−1.
This leads to the following definition:

Definition 3.16 (Dual). Let D : R → A be a d-dimensional A-valued determinant law. Then the dual
of D is defined as D∨ := D ◦ ι : R→ A.

By the above discussion, we have:

Proposition 3.17. Let ρ : R → Md(A) be an A-linear representation of a unital A-algebra R. Then
(det ◦ρ)∨ = det ◦ρ∗.

3.11 Vaccarino’s result

For the construction of tensor products in Section 3.12 we will need a theorem of Vaccarino, which we
recall in this section.
For a set X, let Z{X} be the free unital ring generated by X. For d ≥ 0, there is a universal d-
dimensional representation of Z{X}: Let AX(d) be the free commutative ring generated by symbols xij
with 1 ≤ i, j ≤ d for each x ∈ X. Then the universal representation ρuniv

d : Z{X} →Md(AX(d)) maps x
to the matrix X(x) ∈ Md(AX(d)) with X(x)

ij = xij . Let R be a unital ring and let π : X → R be a map.
It extends uniquely to a ring homomorphism π : Z{X} → R. To a representation ρ : R→Md(A) over a
commutative ring A, we can associate a ring homomorphism φρ : AX(d)→ A defined by xij 7→ ρ(π(x))ij .
The following diagram commutes

Z{X}

π

��

ρuniv
d // Md(AX(d))

Md(φρ)
��

R
ρ // Md(A)
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Let EX(d) be the subring of AX(d) generated by the coefficients of the characteristic polynomial of all
elements ρuniv

d (w) for w ∈ Z{X}. The determinant law det ◦ρuniv
d : Z{X} → AX(d) attached to the

universal d-dimensional representation takes values in EX(d) [Che14, §1.10].
We recall the following deep result of Vaccarino, which ultimately relies on knowledge about relations
between the coefficients of the characteristic polynomial of d × d-matrices. From now on, for every
commutative ring A, whenever we write det : Md(A) → A we mean the d-homogeneous multiplicative
determinant law Md(A)→ A given by detB : Md(B)→ B for every commutative A-algebra B.

Theorem 3.18 (Vaccarino). Let A be a commutative ring, let X be a set and let D : Z{X} → A be a
d-homogeneous multiplicative polynomial law. Then there is a unique homomorphism φD : EX(d)→ A,
such that

φD(det(ρuniv
d (w))) = D(w)

for all w ∈ Z{X}.

Proof. See [Che14, §1.10 (1.6)] or [Vac08, Thm. 6.1] and [Vac09, Thm. 28].

For us the case when D comes from a representation will also be important. Suppse ρ : Z{X} →Md(A)
is a ring homomorphism and D = det ◦ρ. Then the diagram

Md(AX(d)) det //

Md(φρ)
��

EX(d)

φρ|EX (d)

��
Md(A) det // A

commutes. It follows from the uniqueness part of Theorem 3.18, that φD = φρ|EX (d).

3.12 Tensor product

As opposed to Section 3.9 and Section 3.10 we rely on Vaccarino’s result Theorem 3.18 to construct
tensor products of determinant laws. It is difficult to write down an explicit construction of a tensor
product determinant law D1 ⊗D2 from two determinant laws D1 and D2, but it is feasible to construct
the attached homomorphism φD1⊗D2 from φD1 and φD2 and thereby give a definition of D1 ⊗D2.
As a preparation, we define a tensor product homomorphism f⊗ : EX(d1d2)→ EX(d1)⊗EX(d2). Recall,
that AX(d) is the coordinate ring of the affine scheme MX

d
∼= (Ad2)X of X-tuples of d×d-matrices, which

carries a rational GLd,Z-action by simultaneous conjugation. Hence AX(d) is a rational GLd,Z-module. It
turns out, that EX(d) is the subring of rational GLd,Z-invariants of AX(d): From classical invariant theory
(see [DP76]) it is known, that the rational invariants when X is finite are generated by the coefficients of
the characteristic polynomial of the matrix coordinate functions of MX

d and the situation is no different,
when X is infinite, since invariants commute with filtered colimits.
From now on, we fix a bijection {1, . . . , d1} × {1, . . . , d2} ∼= {1, . . . , d1d2}, which determines an isomor-
phism Zd1 ⊗ Zd2 ∼= Zd1d2 . So the tensor product of a d1 × d1-matrix with a d2 × d2-matrix can be
identified with a well-defined d1d2× d1d2-matrix and we have a homomorphism ⊗ : Md1(A)×Md2(A)→
Md1d2(A) for every commutative ring A realizing this tensor product operation. This induces in par-
ticular a homomorphism of coordinate rings g⊗ : AX(d1d2) → AX(d1) ⊗ AX(d2) and a homomorphism
of group schemes ⊗ : GLd1 ×GLd2 → GLd1d2 again realizing the tensor product. Note, that the map
⊗ : Md1(A) ×Md2(A) → Md1d2(A) is GLd1 ×GLd2-equivariant, so it follows, that g⊗ is equivariant as
well. Taking GLd1d2-invariants on the source of g⊗ and GLd1 ×GLd2 -invariants on the target of g⊗, we
obtain a map f⊗ : EX(d1d2)→ EX(d1)⊗ EX(d2) as the restriction of g⊗.

Definition 3.19 (Tensor product on Z{X}). Let A be a commutative ring and let X be a set. Suppose
Di : Z{X} → A is a di-homogeneous multiplicative polynomial law for i = 1, 2. Let φDi

: EX(di) →
A be the homomorphisms attached to Di ◦ π for i = 1, 2 from Theorem 3.18. We define the tensor
product D1 ⊗ D2 as the d1d2-homogeneous multiplicative polynomial law Z{X} → A attached to the
homomorphism (φD1 ⊗ φD2) ◦ f⊗.
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It is clear, that by extending scalars from Z{X} to A{X}, we obtain a notion of tensor product for
A-valued determinant laws. In the next proposition we use the homomorphisms theorem to extend this
definition to general A-algebras R.

Proposition 3.20 (Tensor product). Let R be a unital A-algebra. Suppose D1 : R → A is a d1-
dimensional A-valued determinant law and that D2 : R → A is a d2-dimensional A-valued determinant
law. Let π : Z{X} → R be a homomorphism, such that π ⊗ A : A{X} → R is surjective and let
φi := φDi◦π : EX(di) → A be the homomorphisms attached to Di ◦ π for i = 1, 2 from Theorem 3.18.
Then ker(π⊗A) is contained in ker(((φ1⊗φ2)◦f⊗◦det ◦ρuniv

d1d2
)⊗A). In particular the A-valued determinant

law ((φ1 ⊗ φ2) ◦ f⊗ ◦ det ◦ρuniv
d1d2

)⊗A : A{X} → A descends to a well-defined d1d2-dimensional A-valued
determinant law D1 ⊗D2 : R→ A with φD1⊗D2 = (φ1 ⊗ φ2) ◦ f⊗.

Proof. By Theorem 3.18, we have φi ◦ det ◦ρuniv
di

= Di ◦ π for i = 1, 2, in particular ker(π ⊗ A) ⊆
ker((φi ◦ det ◦ρuniv

di
)⊗A).

This containment implies: Whenever w ∈ A{X} and s ∈ ker(π ⊗A), then

φi(χdet ◦(ρuniv
di

⊗A)(w + s, t)) = φi(χdet ◦(ρuniv
di

⊗A)(w, t))

in A[t].

The term f⊗(χdet ◦(ρuniv
d1d2

⊗A)(w + s, t)) ∈ (EX(d1) ⊗ EX(d2) ⊗ A)[t] is the characteristic polynomial of
ρuniv
d1

(w + s) ⊗ ρuniv
d2

(w + s) ⊗ A and the coefficients of the tk are polynomials in the coefficients of the
characteristic polynomials of ρuniv

di
(w + s)⊗A for i = 1, 2. It thus follows, that

(φ1 ⊗ φ2)(f⊗(χdet ◦(ρuniv
d1d2

⊗A)(w + s, t))) = (φ1 ⊗ φ2)(f⊗(χdet ◦(ρuniv
d1d2

⊗A)(w, t)))

The existence of D1 ⊗D2 such that φD1⊗D2 = (φ1 ⊗ φ2) ◦ f⊗ follows from the homomorphisms theorem
for determinant laws [Che14, Lemma 1.18] and Theorem 3.18.

If ρ1 : R→Md1(A) and ρ2 : R→Md2(A) are representations of R, we write ρ1 ⊗ ρ2 : R→Md1d2(A) for
⊗ ◦ (ρ1 × ρ2). We show, that the construction of Proposition 3.20 is compatible with the tensor product
of representations and may thus be called a tensor product of determinant laws.

Proposition 3.21. Let ρi : R → Md1(A) for i = 1, 2 be A-linear representations of a unital A-algebra
R with associated determinant laws Dρi . Then Dρ1 ⊗Dρ2 = Dρ1⊗ρ2 .

Proof. The following argument works after tensoring all algebras in sight with −⊗A, so we assume A = Z
for simplicity of notation. It is sufficient to prove, that φρ1⊗ρ2 = (φρ1 ⊗φρ2) ◦ f⊗, as the argument below
shows, this will hold after any base change.
We have

(φρ1 ⊗ φρ2) ◦ f⊗ ◦ det = (φρ1 ⊗ φρ2) ◦ det ◦Md1d2(f⊗)
= det ◦Md1d2(φρ1 ⊗ φρ2) ◦Md1d2(f⊗)
= det ◦Md1d2(φρ1⊗ρ2)

Composing with the universal representation ρuniv
d1d2

: Z{X} →Md1d2(AX(d1d2)), we obtain

(φρ1 ⊗ φρ2) ◦ f⊗ ◦ det ◦ρuniv
d1d2

= det ◦Md1d2(φρ1⊗ρ2) ◦ ρuniv
d1d2

= det ◦(ρ1 ⊗ ρ2) ◦ π
= φρ1⊗ρ2 ◦ det ◦ρuniv

d1d2

where the last equality follows from Theorem 3.18. Since by definition of EX(d1d2) is generated by the
coefficients of the characteristic polynomials of elements of Z{X} under the universal representation, we
may use the equation

((φρ1 ⊗ φρ2) ◦ f⊗ ◦ det ◦ρuniv
d1d2

)⊗ Z[t] = (φρ1⊗ρ2 ◦ det ◦ρuniv
d1d2

)⊗ Z[t]

over the single-variable polynomial ring Z[t] to deduce, that φρ1⊗ρ2 = (φρ1 ⊗ φρ2) ◦ f⊗.
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Next, we show that our construction does not depend on the choice of the presentation.

Proposition 3.22. In Proposition 3.20, the tensor product D1 ⊗D2 does not depend on π.

Proof. We may assume A = Z. It is sufficient to check, that for a surjection π′ : Z{X ′} → Z{X}, the
tensor products constructed via π and via π ◦ π′ agree. Let φi : EX(di) → A be the homomorphisms
attached to Di ◦ π and let φ′

i : EX′(di) → A be the homomorphisms attached to Di ◦ π ◦ π′. The
homomorphism π′ induces transition maps a(d) : AX′(d) → AX(d) and e(d) : EX′(d) → EX(d) for any
integer d ≥ 0. For clarity we write f⊗,X : EX(d1d2) → EX(d1) ⊗ EX(d2) and f⊗,X′ : EX′(d1d2) →
EX′(d1)⊗ EX′(d2) for f⊗ in the respective cases. Our goal is to show, that

(φ1 ⊗ φ2) ◦ f⊗,X ◦ e(d1d2) != (φ′
1 ⊗ φ′

2) ◦ f⊗,X′

from which independence of the presentation follows.
From Theorem 3.18, we get

Di ◦ π = φi ◦ det ◦ρuniv
di,X

Di ◦ π ◦ π′ = φ′
i ◦ det ◦ρuniv

di,X′

where ρuniv
di,X

: Z{X ′} → Mdi(AX(di)) and ρuniv
di,X′ : Z{X} → Mdi(AX′(di)) are the respective universal

representations. At the same time, we have by composition with π′:

Di ◦ π ◦ π′ = φi ◦ det ◦ρuniv
di,X ◦ π

′

= φi ◦ det ◦Mdi(a(di)) ◦ ρuniv
di,X′

= φi ◦ e(di) ◦ det ◦ρuniv
di,X′

In the above we used, that e(di) is the restriction of a(di).
By definition, the image generated by det ◦ρuniv

di,X′ is EX′(di). Hence φ′
i = φi ◦ e(di). We see, that

(φ′
1 ⊗ φ′

2) ◦ f⊗,X′ = (φ1 ⊗ φ2) ◦ (e(d1)⊗ e(d2)) ◦ f⊗,X′

= (φ1 ⊗ φ2) ◦ f⊗,X ◦ e(d1d2)

For the last step, we check that (a(d1)⊗ a(d2)) ◦ g⊗,X′ = g⊗,X ◦ a(d1d2).

3.13 Examples of tensor products

Assume, that X = {x} has one element.
Recall, that EX(d) is a polynomial ring over Z generated by the coefficients s1, . . . , sd of the characteristic
polynomial of a generic d × d-matrix. By restriction to diagonal matrices, we obtain a homomorphism
EX(d)→ S(d) to the ring S(d) generated by elementary symmetric polynomials in the diagonal entries of
a generic d×d-matrix. Since S(d) is known to be a polynomial ring and EX(d) is generated by s1, . . . , sd,
this map is an isomorphism. By slight abuse of notation, we write EX(d) = Z[s1(x), . . . , sd(x)] and think
of x as a single generic matrix coordinate.
We want to give a more explicit description of the map f⊗ : EX(d1d2) → EX(d1) ⊗ EX(d2) in case X
has one element. It follows from the previous paragraph, that EX(d1) ⊗ EX(d2) is a polynomial ring
in elementary symmetric polynomials of the diagonal entries of two different generic matrices x and y,
we write EX(d1) ⊗ EX(d2) = Z[s1(x), . . . , sd1(x), s1(y), . . . , sd2(y)]. So f⊗ is determined by its values
f⊗(si) on the generators s1, . . . , sd1d2 and these values have a unique presentation as polynomials in
s1(x), . . . , sd1(x), s1(y), . . . , sd2(y).
In the following examples we will compute the polynomials f⊗(si) in some special cases. An explicit
formula for these polynomials can be given in terms of generating functions for the coefficients of the
characteristic polynomial of a tensor product of two matrices, but we don’t write it down here.

Example 3.23.

1. If d1 is arbitrary and d2 = 1, our operation coincides with twisting with a character χ = s1(y) as
introduced in [BJ19, §4.5]. It is easy to see, that f⊗(si) = χisi(x).
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2. If d1 = d2 = 2 we write tr(x) = s1(x), det(x) = s2(x) and likewise for y. Using the dyadic product
g⊗ of two diagonal matrices, we see that

f⊗(s1) = tr(x) tr(y)
f⊗(s2) = (tr(x)2 − 2 det(x)) det(y) + det(x)(tr(y)2 − 2 det(y)) + 2 det(x) det(y)
f⊗(s3) = tr(x) det(x) tr(y) det(y)
f⊗(s4) = det(x)2 det(y)2

We emphasize, that the formulae given in Example 3.23 uniquely characterize the tensor product of
pseudocharacters and it is not necessary to look at sets X of cardinality > 1:
Let D : R → A be a d-dimensional A-valued determinant law. By Theorem 3.18 for every r ∈ R, the
homomorphism π : Z[x]→ R with π(x) = r induces a unique homomorphism φ : EX(d)→ R, such that
φπ ◦ det ◦ρuniv

d = D ◦ π. In particular

d∑
i=0

(−1)iφπ(si)td−i = χD(r, t)

Since determinant laws are determined by their characteristic polynomials, D is determined by φπ for
all π : Z[x] → R. Picking a presentation Π : Z{X} → R which contains some element x0 ∈ X with
Π(x0) = r, and the statement of independence Proposition 3.22, we see that χD1⊗D2(r, t) only depends
on χD1(r, t) and χD2(r, t) in the way described in Example 3.23.
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4 G-pseudocharacters

In this section we develop the basic theory of G-pseudocharacters for generalized reductive groups G. We
start with theoretical background on group schemes.

4.1 Group schemes

4.1.1 Reductive groups over fields

In this section, we fix terminology for reductive groups, that we will need lateron. Let G be a linear
algebraic group over an algebraically closed field k. Recall, that the unipotent radical Ru(G) of G is
defined as the maximal closed unipotent normal k-subgroup scheme of G and the solvable radical R(G)
is defined as the maximal closed solvable normal k-subgroup scheme of G.

Definition 4.1.

1. G is reductive, if the unipotent radical Ru(G) is trivial.

2. G is semisimple, if the solvable radical R(G) is trivial.

If G is a finite k-group scheme, then it is automatically constant and reductive. If we require G to be
connected, we will explicitly say so.

Definition 4.2. [Ser03, §3.2] Let Γ be an abstract group and G a connected reductive group over an
algebraically closed field F . Let ρ : Γ→ G(F ) be a representation. We say, that

(a) ρ is G-irreducible, if there is no proper parabolic subgroup P ⊆ G, such that the image of ρ is
contained in P (F ).

(b) ρ is G-completely reducible, if for every parabolic subgroup P ⊆ G, such that the image of ρ is
contained in P (F ), there is a Levi subgroup L ⊆ P , such that the image of ρ is contained in L(F ).

(c) ρ is G-indecomposable, if there is no proper parabolic subgroup P ⊆ G containing a Levi subgroup
L ⊆ P , such that the image of ρ is contained in L(F ).

For G = GLd this recovers the usual notions. Serre proves basic properties of these notions. The
quantities h(G) and n(V ) are defined in [Ser03, §5.1, §5.2].

Theorem 4.3. [Ser03, pp. 5.4+5.5] Let G be a connected reductive group over a field k. Let Γ ⊂ G(k)
be a subgroup and V be a rational G-module.

(a) If Γ is G-completely reducible and the characteristic of k is either 0 or p > n(V ), then V is a
semisimple Γ-representation.

(b) If the characteristic of k is either 0 or p > n(V ) and V is a presque fidèle (= kernel is of multiplicative
type) semisimple Γ-representation, then Γ is G-completely reducible.

(c) If the characteristic of k is either 0 or p > 2h(G)− 2 then the following are equivalent:

(1) Γ is G-completely reducible.
(2) Lie(G) is a semisimple Γ-module.

Suppose G is a (now possibly non-connected) reductive group over an algebraically closed field k. In
[BMR05, §6] Bate, Martin and Röhrle define a notion of complete reducibility of subgroups of G(k). For
this the notions of parabolic subgroup and Levi subgroup have to be extended to the non-connected case.
For any cocharacter λ : Gm → G, we call Pλ := {g ∈ G | limt→0 λ(t)gλ(t)−1 exists} the Richardson
parabolic (R-parabolic) attached to λ. A subgroup of the form Lλ := ZG(λ(k×)) is called a Richardson
Levi (R-Levi) subgroup of Pλ. These notions agree with the usual notions of parabolic and Levi subgroups
in case G is connected [BMR05, Lemma 2.4]. So Definition 4.2 extends to the non-connected case:
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Definition 4.4. Let Γ be an abstract group and G a reductive group over an algebraically closed field
F . Let ρ : Γ→ G(F ) be a representation. We say, that

(a) ρ is G-irreducible, if there is no proper R-parabolic subgroup P ⊆ G, such that the image of ρ is
contained in P (F ).

(b) ρ is G-completely reducible, if for every R-parabolic subgroup P ⊆ G, such that the image of ρ is
contained in P (F ), there is an R-Levi subgroup L ⊆ P , such that the image of ρ is contained in
L(F ).

(c) ρ is G-indecomposable, if there is no proper R-parabolic subgroup P ⊆ G containing an R-Levi
subgroup L ⊆ P , such that the image of ρ is contained in L(F ).

We shall also define what a G-semisimplification of a G-valued representation in the non-connected case
is. For the definition we refer to Appendix A.

4.1.2 Reductive group schemes

Working with deformations of representations valued in other algebraic groups G than GLn, we have to
decide which groups we want to allow for G. Our group G shall be naturally defined over the coefficient
ring of some deformation problem, for example the ring of integers of a p-adic local field. In [Con14b,
Definition 3.1.1] Brian Conrad introduces reductive and semisimple group schemes over arbitrary base
schemes. He requires, that the geometric fibers of G shall be connected, which in particular disallows the
orthogonal groups On.

Definition 4.5. A reductive (semisimple) group scheme over a scheme S is a smooth S-affine S-group
scheme G, such that the geometric fibers of G are connected reductive (semisimple) groups.

An S-group scheme D is of multiplicative type, if it is fppf-locally diagonalizable, i.e. there is an fppf-
covering {Si → S}, such that DSi

is isomorphic to the relative spectrum of the quasi-coherent Hopf
algebra OSi [Mi] for a finitely generated abelian group Mi, where the comultiplication is given by ∆(m) =
m ⊗ m and the antipode is given by s(m) := m−1 for m ∈ Mi. An S-torus is an S-group scheme of
multiplicative type with smooth connected fibers.
If G is a reductive S-group scheme, then a maximal torus of G is an S-torus T ⊆ G, such that for each
geometric point s of S, Ts is a maximal torus of Gs. G admits étale-locally a maximal torus [Con14b,
Corollary 3.2.7]. For the slightly technical definition of a split reductive group over S, we refer to [Con14b,
Definition 5.1.1]. If S = Spec(Z) and G admits a maximal torus, then G is split [Con14b, Example 5.1.4].

Definition 4.6. A Chevalley group is a reductive Z-group scheme, which admits a fiberwise maximal
Z-torus.

The following three sets are canonically in bijection [Con14a, Theorem 1.4].

1. Chevalley groups up to Z-isomorphism.

2. Split connected reductive groups over Q up to Q-isomorphism.

3. Root data up to isomorphism.

Every split connected reductive group G over the fraction field K of a domain O admits a model over O,
which is the base change of a Chevalley group over Z [Con14a, Theorem 1.2]. If O is a PID, then every
O-model of G is the base change of a Chevalley group [Con14a, Proposition 1.3]. We will use these facts
to reduce some of our arguments to Chevalley groups. By a Chevalley group over another base than Z
we will always mean the base change of a Chevalley group over Z.

4.1.3 Generalized reductive group schemes

The definition of G-pseudocharacters Definition 4.20 shall be given in a way that also allows for G to
be disconnected. Suppose G is a smooth affine group scheme over a commutative ring O, such that the
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geometric fibers Gs for s ∈ Spec(O) are reductive groups. There is a unique open subgroup scheme
G0 ⊆ G, such that (G0)s ∼= (Gs)0 for all s ∈ Spec(O) [Gro66, Corollaire 15.6.5]. We say, that G0

is the identity component of G. Beware, that G0 is not necessarily a connected scheme. Each G0
s is

geometrically connected [Con14b, Exercise 1.6.5] and it follows, that formation of the identity component
(−)0 commutes with any base change. In particular G0

s is a connected reductive group, G0 is an open
and closed O-subgroup scheme of G and the quotient G/G0 exists as a separated étale O-group scheme
of finite presentation [Con14b, Proposition 3.1.3]. In general G/G0 doesn’t need to be finite [Con14b,
Example 3.1.4].
This leads to the following definition, which includes the orthogonal groups On when 2 is invertible in O.

Definition 4.7. Let O be a commutative ring. A generalized reductive (generalized semisimple) O-group
scheme G is a smooth affine O-group scheme such that the geometric fibers Gs for s ∈ Spec(O) are
reductive (semisimple) groups and the component group G/G0 is finite over O.

The definition of generalized reductive group scheme is given in [FM88, Definition 2.1] in terms of a short
exact sequence.
If G is smooth and affine, G0 is a reductive group scheme and G/G0 is finite, then G is generalized
reductive. If G is generalized reductive, then G0 is a reductive group scheme.
If O is a discrete valuation ring and G is a smooth affine O-group scheme with finite component group,
such that the special fiber of G is reductive, then G is already generalized reductive [Con14b, Proposition
3.1.9].

Example 4.8. Here are the main examples we are going to consider.

1. The symplectic group Sp2n over Z is the scheme-theoretic automorphism group of the standard
symplectic bilinear form on Z2n. Sp2n is a semisimple Chevalley group with almost-simple connected
geometric fibers.

2. The orthogonal group On over Z[ 1
2 ] is the automorphism group of the standard symmetric bilinear

form on Zn. On is a non-connected generalized semisimple Z[ 1
2 ]-group scheme with almost-simple

geometric fibers. The identity component of On is the special orthogonal group SOn and the
component group On / SOn is the constant Z[ 1

2 ]-group scheme Z/2Z. [Con14b, Example 3.1.4]

4.1.4 G-valued representations

Definition 4.9. Let G be an affine group scheme over a scheme S.

1. A G-valued representation of a group Γ over an S-scheme T is a homomorphism ρ : Γ→ G(T ).

2. Denote by Rep□,Γ
G : Schop

S → Set the presheaf on the category of S-schemes, that maps an S-scheme
T to the set of homomorphisms Γ→ G(T ). The group G(T ) acts on Rep□,Γ

G (T ) by conjugation.

3. Denote by RepΓ
G(T ) the set of G(T )-conjugacy classes of homomorphisms. This also defines a

presheaf RepΓ
G : Schop

S → Set on the category of S-schemes.

Note that in the case of affine S and T this coincides with the notion of G-valued representation from
Section 4.1.1. The following lemma is standard.

Lemma 4.10. Let S be a scheme and let (Ti)i∈I be a cofiltered system of affine S-schemes. Then the
limit T = limi∈I Ti exists in the category of S-schemes. Moreover T is S-affine and if Ti = Spec

S
(Ai)

for quasi-coherent OS-algebras Ai, then T is canonically isomorphic to Spec
S

(A), where A := colim
i∈I
Ai

is the colimit in the category of quasi-coherent OS-algebras.

Proof. Any colimit of quasi-coherent OS-modules is quasi-coherent [Sta19, 01LA] and ⊗OX
preserves

colimits in both variables [Sta19, 05NB]. From this, we obtain that (QCoh(OX),⊗OX
) is a cocomplete

symmetric monoidal category. Its category of commutative monoids, which in this case is the category
of commutative quasi-coherent OS-algebras QCohCAlg(OX), is cocomplete, see Martin Brandenburg’s
answer to Mathoverflow question 139968 for a proof. Thus A exists.
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It can be deduced from the fact, that the inclusion functor QCoh(OS)→ Mod(OS) has a monoidal right
adjoint (combine [Sta19, 077P] with [Sta19, 01CE] (3)), that the inclusion QCohCAlg(OS)→ CAlg(OS)
has a right adjoint, which we will call the quasi-coherator (−)qcoh. Thus we can define the relative global
sections of an S-scheme f : T → S by ΓS(T,OT ) := (f∗OT )qcoh. We have the usual adjunction

HomQCohCAlgOS
(−,ΓS(T,OT )) = HomSchS

(T, Spec
S

(−))

Let U be any S-scheme. Define T := Spec
S

(colimiAi). We have

HomSchS
(U, T ) = HomQCohCAlgOS

(A,ΓS(U,OU ))
= lim

i
HomQCohCAlgOS

(Ai,ΓS(U,OU ))

= lim
i

HomSchS
(U, Ti)

which proves, that T is indeed the limit of the Ti.

Theorem 4.11. Let Γ be a group and let S be a scheme. Let G be an affine group scheme over S. The
functor Rep□,Γ

G is representable by an affine S-scheme X□,Γ
G .

1. If Γ is finitely generated and G is (locally) of finite type over S, then X□,Γ
G is (locally) of finite type

over S.

2. If Γ is finitely presented and G is (locally) of finite presentation over S, then X□,Γ
G is (locally) of

finite presentation over S.

3. If Γ is finitely generated, G is of finite type over S and S is noetherian, then X□,Γ
G is noetherian

and of finite presentation over S.

In case of a finitely generated group Γ and an affine scheme S, this has been proved by Wang-Erickson
in [Wan13, Thm. 1.4.4.5].

Proof. Let I ⊂ Γ be a family of generators of Γ and let F (I) be the free group on I. For any S-scheme
T , there is a natural isomorphism between the set of homomorphisms F (I) → G(T ) and G(T )I . The
functor T 7→ G(T )I is representable by an S-scheme GI . Here GI := limI′⊂I G

I′ is the cofiltered limit of
affine S-schemes GI′ indexed by finite subsets I ′ ⊂ I. Note, that by Lemma 4.10 this limit exists and is
represented by the quasi-coherent OS-algebra OS(G)⊗I = colim

I′⊂I
OS(G)⊗I′ . We have

GT (I) = Map(I,G(T ))
= Hom(F (I), G(T ))
= HomS(T,GI)
= HomOS

(OS(G)⊗I , f∗OT )

for any S-scheme f : T → S.
Let F (J) be another free group together with a homomorphism F (J)→ F (I), such that the sequence of
groups

F (J) // F (I) // Γ // 1

is exact. We obtain a short exact sequence of groups

1 // Hom(Γ, G(T )) // Hom(F (I), G(T )) // Hom(F (J), G(T ))

It follows, that T 7→ Hom(Γ, G(T )) is representable by the quotient R□,Γ
G of OS(G)⊗I by the image of

OS(G)⊗J under the natural map. We put X□,Γ
G := Spec

S
(R□,Γ

G ).

1. If Γ is finitely generated, then I can be taken to be finite. It follows, that OS(G)⊗I and thus R□,Γ
G

is (locally) of finite type over OS .
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2. If Γ is of finite presentation, then I and J can be taken to be finite. It follows, that OS(G)⊗I and
OS(G)⊗J are (locally) of finite presentation over OS . Thus R□,Γ

G is (locally) of finite presentation
over OS .

3. By the first step, R□,Γ
G is of finite type over OS , in particular noetherian and of finite presentation.

4.1.5 Topologizing point sets

Since we work frequently with topologies on point sets of schemes, we want to discuss the general proce-
dure by which all these topologies we are interested in can be obtained. The method is due to Grothendieck
and we follow the exposition of [Con12].

Proposition 4.12. Let A be a topological commutative ring. There is a unique way to define a topology
on X(A) for all affine A-schemes X of finite type at once, such that the following properties hold.

1. For every morphism f : X → Y of affine A-schemes of finite type, the map X(A) → Y (A) is
continuous.

2. For every cartesian diagram

X ×Z Y

��

// X

��
Y // Z

the diagram of topological spaces

(X ×Z Y )(A)

��

// X(A)

��
Y (A) // Z(A)

is cartesian.

3. For every closed immersion f : X → Y of affine A-schemes of finite type, the map X(A) → Y (A)
is a topological embedding, i.e. X(A) carries the subspace topology of Y (A).

4. The canonical bijection A→ A1(A) is a homeomorphism.

Proof. [Con12, Proposition 2.1].

For a finite type affine A-scheme X this topology can be characterized as the coarsest topology on X(A),
such that all morphisms of A-schemes X → A1 induce a continuous map X(A) → A. It can also be
defined by choosing an arbitrary closed immersion X → An and introducing the subspace topology on
X(A) with respect to the injection X(A)→ An, where An carries the product topology.
For every topological commutative A-algebra B, we have X(B) = XB(B) and we take on X(B) the
topology on XB(B). By choosing an embedding into an affine space, we see that the map X(B1)→ X(B2)
is continuous for any two topological A-algebras B1, B2 and continuous A-homomorphisms B1 → B2.
For the proof of Proposition 6.15 we will also need Proposition 4.12 in the following situation: Let κ be
a topological field and let A be a finite-dimensional local κ-algebra with residue field κ equipped with
the product topology induced by an isomorphism A ∼= κn of κ-vector spaces. If X is an affine A-scheme
of finite type, the map X(A) → X(κ) is continuous. If we now take the preimage Z ⊆ X(A) of a
Zariski-closed subset Y (κ) ⊆ X(κ) for some closed A-subscheme Y ⊆ X, it is not clear how to identify
Z with the A-points of a closed A-subscheme of X, but we still want to describe the topology of Z in
a functorial way. This can be done by Weil restriction: The functor T 7→ X(A ⊗κ T ) is representable
by an affine κ-scheme ResAκ X with (ResA/κX)(κ) = X(A) and the projection X(A) → X(κ) gives rise
to a morphism of κ-schemes ResA/κX → Xκ. We now obtain Z as the κ-points of the scheme-theoretic
preimage of Yκ in ResA/κX.
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4.1.6 Acyclic G-modules and good filtrations

Let O be a commutative ring. If V is an O-module with a rational action of an affine O-group scheme
G and O′ is an arbitrary commutative O-algebra, then the natural map V G ⊗O O′ → (V ⊗O O′)GO′ is
not always an isomorphism. The entire purpose of this section is to establish conditions under which this
map is an isomorphism.
We recall the universal coefficient theorem for rational Ext groups.

Theorem 4.13. Let G be a flat affine group scheme over a Dedekind ring O and let O′ be a commutative
O-algebra. Then for each O-flat G-module N and each finitely generated projective G-module V , we
have a short exact sequence

0→ ExtnG(V,N)⊗O O′ → ExtnGO′ (V ⊗O O′, N ⊗O O′)→ TorO
1 (Extn+1

G (V,N),O′)→ 0

of O′-modules.

Proof. By [Jan03, I.4.4 Lemma] and [Jan03, p. I.4.2], there is a natural identification ExtnG(V,N) =
ExtnG(O, V ∗ ⊗O N) = Hn(G,V ∗ ⊗O N) and similarly for the middle term. The claim follows from the
universal coefficient theorem [Jan03, I.4.18 Proposition (a)].

Corollary 4.14. Let G be a flat affine group scheme over a Dedekind ring O, let V be a G-module and
let O′ be a commutative O-algebra. Assume, that one of the following holds:

1. O′ is O-flat.

2. H1(G,V ) = 0.

Then the natural map V G ⊗O O′ → (V ⊗O O′)GO′ is an isomorphism.

Proof. By the universal coefficient theorem Theorem 4.13, there is a short exact sequence

0 // O[Gm]G ⊗O O′ // O′[Gm]G // TorO
1 (H1(G,V ),O′) // 0

Under both assumptions the claim follows.

We say, that V is acyclic, if the rational cohomology groups Hi(G,V ) vanish for all i > 0.
If G is a Chevalley group over a principal ideal domain O with fiberwise maximal O-torus T and Borel
subgroup B, we define H0(λ) := IndGB λ and V (λ) := H0(−w0λ)∗ for every dominant weight X(T )+ and
the longest element w0 of the Weyl group.
Let V be a G-module. An ascending filtration V =

⋃
i≥0 Vi of V is good, if for all i ≥ 0, Vi+1/Vi is

isomorphic to H0(λ) for some λ ∈ X(T )+.

Lemma 4.15. Let G be a Chevalley group over a principal ideal domain O. Let V be a G-module with
good filtration. Then V is acyclic.

Proof. If V has finite rank over a PID O, we have Hi(G,V ) = ExtiG(V (0), V ) = 0 for all i > 0 by [Jan03,
B.9 Lemma (iii)]. If V is not of finite rank, we can choose a good filtration V =

⋃
n Vn by G-submodules

of finite rank and calculate Hi(G,V ) = lim−→n
Hi(G,Vn) using [Jan03, p. I.4.17].

Mathieu’s tensor product theorem states, that the tensor product of two modules with good filtration
over a connected reductive group over an algebraically closed field admits a good filtration. An integral
version of this theorem also holds and we give a proof here in lack of reference.

Theorem 4.16. Let G be a Chevalley group over a principal ideal domainO. Let M and N be G-modules
with good filtration. Then M ⊗O N is a G-module with good filtration.
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Proof. We first assume, that M and N are free of finite rank. Let m be a maximal ideal of O with residue
field κ := O/m. By [Jan03, B.9 Lemma (i) ⇒ (iv)], Mκ := M ⊗O κ and Nκ := N ⊗O κ are Gκ-modules
with good filtration. Choose a split and fiberwise maximal O-torus T ⊆ G and a Borel subgroup B ⊆ G
containing T . By Theorem 4.13, there is an isomorphism Ext1

Gκ
(V (λ),Mκ)⊗κ κ ∼= Ext1

Gκ
(V (λ),Mκ) for

all dominant weights λ ∈ X(T )+, so the latter group is 0 by [Jan03, B.9 Lemma (iv) ⇒ (iii)] applied
to Mκ. So by [Jan03, B.9 Lemma (iii) ⇒ (i)] Mκ and Nκ are Gκ-modules with good filtration. By
Mathieu’s tensor product theorem [Mat90], which holds for connected reductive groups over algebraically
closed fields, see [Jan03, Proposition II.4.21][Kal93, Theorem 4.4.3] Mκ ⊗κ Nκ has a good filtration.
We now reverse the argument: By [Jan03, B.9 Lemma (i) ⇒ (iii)], we have Ext1

G(V (λ),Mκ ⊗κ Nκ),
hence Ext1

G(V (λ),Mκ ⊗κ Nκ) for all dominant weights λ ∈ X(T )+. So by [Jan03, B.9 Lemma (iii) ⇒
(i)] Mκ⊗κNκ has a good filtration. Since m is arbitrary, we can apply [Jan03, B.9 Lemma (iv) ⇒ (i)] to
conclude, that M ⊗O N is a G-module with good filtration.
Now let M and N be arbitrary with good filtrations M =

⋃∞
i=1 Mi and N =

⋃∞
j=1 Nj . Then M ⊗O N =⋃

i

⋃
jMi⊗ONi by [Sta19, 00DD]. By choosing a diagonal sequence, we can define a filtration of M⊗ON

by good submodules.

Proposition 4.17. Let G be a Chevalley group. Then for all m ≥ 1, Z[Gm] equipped with the action of
G by conjugation has a good filtration. In particular for every commutative ring O and every O-algebra
O′, the canonical map O[Gm]G ⊗O O′ → O′[Gm]G is an isomorphism.

Proof. In [Jan03, B.8] it is shown, that Z[G] has a good filtration. Here the action of G is defined by
(g · f)(h) := f(g−1hg). By Mathieu’s tensor product theorem Theorem 4.16, Z[Gm] = Z[G]⊗m has a
good filtration. This proves the first assertion. So H1(G,Z[Gm]) = 0 by Lemma 4.15. We calculate

O[Gm]G ⊗O O′ = (Z[Gm]G ⊗Z O)⊗O O′ = Z[Gm]G ⊗Z O′ = O′[Gm]G

by applying twice Corollary 4.14.

Proposition 4.18. For all m,n ≥ 1, Z[Mm
n ] equipped with the action of G = GLn (resp. G = SLn) by

conjugation has a good filtration. In particular for every commutative ring O and every O-algebra O′,
the canonical map O[Mm

n ]G ⊗O O′ → O′[Mm
n ]G is an isomorphism.

Proof. Let Std be the standard representation of G. Since the Mn
∼= Std⊗Std∗ and Std is self-dual, we

have Mm
n
∼= Std⊗2m. By Theorem 4.16 and the formula for symmetric powers of direct sums it is enough

to show, that Symd(Std) has a good filtration. But Symd(Std) is a highest weight module, so we are
done.

Proposition 4.19. Let O be a commutative ring with 2 ∈ O× and let O′ be an O-algebra. Then for all
n ≥ 0 the canonical map O[Om

2n+1]O2n+1 ⊗O O′ → O′[Om
2n+1]O2n+1 is an isomorphism.

Proof. We have O2n+1 = SO2n+1×{±1} over O, so we can explicitly compute:

O[Om
2n+1]O2n+1 = O[Om

2n+1]SO2n+1 = O[{±1}m]⊗O O[SOm
2n+1]SO2n+1

We have O[SOm
2n+1]SO2n+1 ⊗O k = k[SOm

2n+1]SO2n+1 by Proposition 4.17.

4.2 G-valued pseudocharacters

Let O be a commutative ring and let G be a generalized reductive O-group scheme. By the datum of
G, the datum of O is given and we will drop O from notations. A G-pseudocharacter will be defined
depending on both the coefficient ring O and a commutative O-algebra A, which corresponds to the base
ring A in Section 3.
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4.2.1 G-pseudocharacters

The definition of G-pseudocharacter we give is slightly more general than Lafforgue’s original definition
[Laf18, §11], in that we work over arbitrary base rings O instead of O = Z. We will later be interested
in the case, that O is the ring of integers of a p-adic field.
We introduce a special notation for substitutions, which will be particularly important in Definition 4.20
and the proofs of Theorem 4.46 and Proposition 4.47.
Let FG(m) be the free group on m generators x1, . . . , xm. Let α : FG(m) → FG(n) be a group homo-
morphism. Let Γ be an arbitrary group. Then there is a unique map (−)α : Γn → Γm, γ 7→ γα, such
that the homomorphism fγ : FG(n) → Γ, xi 7→ γi satisfies fγ(α(xj)) = (γα)j for all j ∈ {1, . . . ,m}. In
other words (−)α is the induced map Γn = Hom(FG(n),Γ) → Hom(FG(m),Γ) = Γm. More concretely
wi = α(xi) is a word in xj and x−1

j for j = 1, . . . , n and α applied to a tuple (γ1, . . . , γn) ∈ Γn is the
tuple (δ1, . . . , δm) ∈ Γm with δi the word wi with xj substituted by γj for j = 1, . . . , n.
Similarly we obtain an induced map (−)α : Gn → Gm. G0 acts onGm by g·(g1, . . . , gm) = (gg1g

−1, . . . , ggmg
−1).

This induces a rational action of G0 on the affine coordinate ring O[Gm] of Gm. The submodule
O[Gm]G0 ⊆ O[Gm] is defined as the rational invariant module of the G0-representation O[Gm]. It is an
O-subalgebra, since G0 acts by O-linear automorphisms. The map (−)α : Gn → Gm is G0-equivariant.
So there is an induced homomorphism between the algebras of rational invariants (−)α : O[Gm]G0 →
O[Gn]G0 . In the special case, that α is induced by a map of sets ζ : {1, . . . , n} → {1, . . . ,m}, such that
α(xi) = xζ(i), we also write γζ := γα for γ ∈ Γn and fζ := fα for f ∈ O[Gm]G0 .
Definition 4.20 (G-pseudocharacter). Let Γ be a group and let A be a commutative O-algebra. A
G-pseudocharacter Θ of Γ over A is a sequence of O-algebra maps

Θm : O[Gm]G
0
→ Map(Γm, A)

for each m ≥ 1, satisfying the following conditions:

1. For all n,m ≥ 1, each map ζ : {1, . . . ,m} → {1, . . . , n}, every f ∈ O[Gm]G0 and all γ1, . . . , γn ∈ Γ,
we have

Θn(fζ)(γ1, . . . , γn) = Θm(f)(γζ(1), . . . , γζ(m))
where fζ(g1, . . . , gn) = f(gζ(1), . . . , gζ(m)).

2. For all m ≥ 1, for all γ1, . . . , γm+1 ∈ Γ and every f ∈ O[Gm]G0 , we have

Θm+1(f̂)(γ1, . . . , γm+1) = Θm(f)(γ1, . . . , γmγm+1)

where f̂(g1, . . . , gm+1) = f(g1, . . . , gmgm+1).

We denote the set of G-pseudocharacters of Γ over A by PCΓ
G(A). If f : A → B is a homomorphism of

O-algebras, then there is an induced map f∗ : PCΓ
G(A)→ PCΓ

G(B). For Θ ∈ PCΓ
G(A), the image f∗Θ is

called the scalar extension of Θ and also denoted with Θ⊗A B. This notion of scalar extension shall not
be confused with change of the base ring O of G, which will be discussed in Proposition 4.48 and comes
with some subtleties.
If ι : G → H is a homomorphism of affine O-group schemes, we define an H-pseudocharacter ι(Θ) by
letting ι(Θ)m be the composition of Θm with the induced map O[Hm]H0 → O[Gm]G0 .
In [BHKT, Def. 4.1] a G-pseudocharacter is defined only for Chevalley groups over Z. Some of our proofs
do not need this strong assumption.
Every G-valued representation gives rise to a G-pseudocharacter:
Lemma 4.21. Let Γ be a group, let A be a commutative O-algebra and let ρ : Γ → G(A) be a
homomorphism. Then the sequence of maps Θm : O[Gm]G0 → Map(Γm, A) defined by

Θm(f)(γ1, . . . , γm) := f(ρ(γ1), . . . , ρ(γm))
is a G-pseudocharacter Θ = (Θm)m≥1, which depends only on ρ up to G(A)-conjugation. We write
Θρ := Θ. In particular the map

Hom(Γ, G(A))/G0(A)→ PCΓ
G(A)

ρ 7→ Θρ
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is well-defined, where G0(A) acts by pointwise conjugation.

Proof. Compare [BHKT, p. 4.3]. Let γ1, . . . , γn ∈ Γ and ζ : {1, . . . ,m} → {1, . . . , n} and f ∈ O[Gm]G0 .

Θn(fζ)(γ1, . . . , γn) = fζ(ρ(γ1), . . . , ρ(γn))
= f(ρ(γζ(1)), . . . , ρ(γζ(m)))
= Θm(f)(γζ(1), . . . , γζ(m))
= Θm(f)ζ(γ1, . . . , γn)

The second property can be checked by a similar calculation. For g ∈ G(A) and f ∈ O[Gn]G0 , we have

f(gρ(γ1)g−1, . . . , gρ(γn)g−1) = f(ρ(γ1), . . . , ρ(γn))

since f is invariant under conjugation.

With Lemma 4.21 in mind, we give an intuitive explanation of this technical definition: AG-pseudocharacter
Θ, that comes from a representation, remembers for every m ≥ 0 for every conjugation invariant regu-
lar function on Gm its values on Γm, when applied to the representation. Since the coefficients of the
characteristic polynomials of a GLd-representation are conjugation-invariant, Θ remembers all their val-
ues and therefore at least the information about the representation, that is carried by the characteristic
polynomials.

Lemma 4.22.

(1) For h : A→ A′ the map PCΓ
G,A → PCΓ

G,A′ ,Θ 7→ h∗Θ = (h ◦Θn)n≥1 is well-defined.

(2) For ϕ : ∆→ Γ the map PCΓ
G,A → PC∆

G,A,Θ 7→ ϕ∗Θ = (Θn ◦ ϕ)n≥1 is well-defined.

(3) If N ≤ Γ is a normal subgroup, then π∗ : PCΓ/N
G,A → PCΓ

G,A is an injection, that identifies PCΓ/N
G,A

with the set of pseudocharacters, that take values in Map((Γ/N)n, A).

Proof. The proof of [BHKT, Lem. 4.4] carries over verbatim.

Proposition 4.23. Let ρ : Γ→ G(k) be a representation over an algebraically closed field k and let ρss

be some G-semisimplification of ρ. Then Θρ = Θρss in PCΓ
G(k).

Proof. Suppose P is minimal and contains ρ(Γ), suppose L is an R-Levi of P and let λ be a cochar-
acter, such that P = Pλ and L = Lλ. Let us write ρss = cλ ◦ ρ = limt→0 λ(t)ρλ(t)−1. The G-
pseudocharacter Θm,ρ attached to ρ satisfies by definition Θρ,m(f)(γ1, . . . , γm) = f(ρ(γ1), . . . , ρ(γm)) for
all m ≥ 1 and ρss satisfies a similar formula. Since f is G-invariant, the morphism Gm → A1, t 7→
f(λ(t)ρ(γ1)λ(t)−1, . . . , λ(t)ρ(γm)λ(t)−1) is constant and equal to f(ρ(γ1), . . . , ρ(γm)). Since the limit
limt→0 λ(t)ρλ(t)−1 exists and f is algebraic with separated target A1, this is equal to f(ρss(γ1), . . . , ρss(γm))
and Θρ = Θρss follows.

Theorem 4.24. Let Γ be a group. Assume that one of the following holds:

1. G is a Chevalley group over Z and k is an algebraically closed field.

2. G is a group scheme over a domain O of characteristic 0 and k is a field, which contains O, such
that Gk is reductive.

Let Θ ∈ PCΓ
G(k). Then there is a finite extension k′/k and a G-completely reducible representation

ρ : Γ→ G(k′) with Θρ = Θ and ρ is unique up to G0(k)-conjugacy.

Proof. The first case is [BHKT, Theorem 4.5]; we can use Proposition 4.17 to identify the k-points of
Gm �G with the k-points of Gmk �Gk. Alternatively we can use [Ses77, Theorem 3]. The second case is
[Laf18, Proposition 11.7].

Remark 4.25. Theorem 4.24 is still true for G/G0 ̸= 1 in positive characteristic and can be proved
using [Ses77, Theorem 3]. The proof is omitted, as it is not needed for the cases we will consider here.
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4.2.2 The kernel of a G-pseudocharacter

We will need kernels of G-pseudocharacters in the proof of Lemma 7.6.

Definition 4.26 (Kernel). Let Θ ∈ PCΓ
G(A) be an arbitrary G-pseudocharacter as in Definition 4.20.

We define the kernel ker(Θ) of Θ as the set of δ ∈ Γ, such that for all m ≥ 1, all f ∈ O[Gm]G0 and all
γ1, . . . , γm ∈ Γ, we have

Θm(f)(γ1, . . . , γmδ) = Θm(f)(γ1, . . . , γm).

Lemma 4.27. ker(Θ) in Definition 4.26 is a normal subgroup of Γ.

Proof. It is clear, that ker(Θ) is a subgroup of Γ. Let δ ∈ ker(Θ), h ∈ Γ and γ1, . . . , γm ∈ Γ for some
m ≥ 1. Then

Θm(f)(γ1, . . . , γmhδh
−1) = Θm+1(f̂)(γ1, . . . , γmhδ, h

−1)
= Θm+1(f̂)(γ1, . . . , γmh, h

−1)
= Θm(f)(γ1, . . . , γm)

so hδh−1 ∈ ker(Θ).

It is easy to check, that if δ ∈ ker(Θ), then

Θm(f)(γ1, . . . , γi−1, γiδ, γi+1, . . . , γm) = Θm(f)(γ1, . . . , γm)

for every i = 1, . . . ,m.
We will use this to prove the following homomorphisms theorem. It will also be important in the proof
of Lemma 7.6.

Lemma 4.28. Let Θ ∈ PCΓ
G(A) be an arbitrary G-pseudocharacter as in Definition 4.20, let ∆ ≤ Γ

be a normal subgroup and assume, that ∆ ⊆ ker(Θ). Then there is a unique G-pseudocharacter Θ′ ∈
PCΓ/∆

G (A), such that Θ is the restriction of Θ′ to Γ.

Proof. Uniqueness is clear, since Γ → Γ/∆ is surjective and hence the maps Map((Γ/∆)m, A) →
Map(Γm, A) are injective for all m ≥ 1. We can define Θ′ as

Θ′
m(f)(γ1∆, . . . , γm∆) := Θm(f)(γ1, . . . , γm)

for all m ≥ 1, all f ∈ O[Gm]G0 and all γ1, . . . , γm ∈ Γ. This is well-defined, since ∆ ⊆ ker(Θ). The
axioms of a pseudocharacter are easily verified.

Lemma 4.29. Let ρ : Γ → G(A) be a representation with associated G-pseudocharacter Θ. Then
ker(ρ) ⊆ ker(Θ).

Proof. We can define ρ on Γ/ ker(ρ). The associated G-pseudocharacter of Γ/ ker(ρ) can be inflated to Γ
and this turns out to be Θ.

The converse inclusion is false in general! Here is an example.

Example 4.30. Let ρ : Z→ GL2(C) be defined by ρ(a) :=
(

1 a
0 1

)
. Then Θρ is the pseudocharacter of the

trivial representation. Hence ker(ρ) = 1, but ker(Θρ) = Z.

Equality holds, when ρ is G-completely reducible.

Proposition 4.31. Let G be a reductive group over a field k and suppose that one of the assumptions
in Theorem 4.24 holds. Let Γ be a group and let ρ : Γ→ G(k) be an absolutely G-completely reducible
representation with associated G-pseudocharacter Θ. Then ker(ρ) = ker(Θ).

Proof. By Lemma 4.28 Θ factors over a G-pseudocharacter Θ′ of Γ/ ker(Θ). By Theorem 4.24 there
is a G-completely reducible representation ρ′ : Γ/ ker(Θ) → G(k) with Θ′ ⊗k k = Θρ′ . The inflation
ρ′′ : Γ → G(k) of ρ′ to Γ is still G-completely reducible and conjugate to ρ⊗k k by an element of G(k).
Hence ker(Θ) ⊆ ker(ρ′′) = ker(ρ⊗k k) = ker(ρ). The converse inclusion is Lemma 4.29.
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4.2.3 Direct sum, dual and tensor product

Recall from Section 4.2, that a homomorphism of affine O-group schemes G→ H gives rise to a natural
transformation PCΓ

G → PCΓ
H . This provides us with an astonishingly easy way to define natural opera-

tions on pseudocharacters, such as direct sums, duals and tensor products. Defining such operations for
determinant laws is more involved; see e.g. [Wan13, §1.1.11] for a direct sum operation and [BJ19, §4.5]
for twisting with a character. It is clear by construction, that these operations will be compatible with
the corresponding operations on representations.
Suppose Θ ∈ PCΓ

GLd
(A). Then we can define the dual Θ∗ by composing with the transpose inverse map

GLd → GLd.
Assume, that O is a PID. Suppose Θ ∈ PCΓ

GLa
(A) and Θ′ ∈ PCΓ

GLb
(A) with A ∈ CAlgO and a + b =

n. We will define the direct sum Θ ⊕ Θ′ ∈ PCΓ
GLn

(A). For m ≥ 1, we obtain a map Θm ⊗ Θ′
m :

O[GLma ]GLa⊗OO[GLmb ]GLb → Map(Γm, A). It turns out, that since O is a PID and by Theorem 4.13, we
have O[GLma ]GLa ⊗O O[GLmb ]GLb = O[(GLa×GLb)m]GLa × GLb . The diagonal embedding GLa×GLb →
GLn induces a mapO[GLmn ]GLn → O[(GLa×GLb)m]GLa × GLb and we define (Θ⊕Θ′)m as the composition
of this map with Θm ⊗ Θ′

m. The compatibility conditions (1) and (2) in Definition 4.20 can be verified
directly, but the alternative description of pseudocharacters Corollary 4.45 in the next section provides
us with an easier way to see, that Θ⊕Θ′ is indeed a pseudocharacter.
As for the direct sum, the tensor product Θ⊗Θ′ is induced by the dyadic product map GLd1 ×GLd2 →
GLd1d2 after choice of a bijection {1, . . . , d1} × {1, . . . , d2} ∼= {1, . . . , d1d2} as in Section 3.12.

Proposition 4.32. The direct sum of Lafforgue’s pseudocharacters is compatible with the direct sum of
Taylor’s pseudocharacters: Let Γ be a group, A a commutative ring and d1, d2 ≥ 0 with (d1 + d2)! ∈ A×.
Then the diagram

PCΓ
GLd1

(A)× PCΓ
GLd2

(A) ⊕ //

tr × tr
��

PCΓ
GLd1d2

(A)

tr
��

TPCΓ
d1

(A)× TPCΓ
d2

(A) ⊕ // TPCΓ
d1d2

(A)

commutes. Here the top arrow is the direct sum constructed in Section 4.2.3, the bottom arrow is the
direct sum of Definition 2.38 and the vertical arrows are given by the comparison map Proposition 4.59.

Proof. By definition of the comparison map Proposition 4.59 it is enough to show, that the map

Z[GLd1+d2 ]GLd1+d2 → Z[GLd1 ]GLd1 ⊗ Z[GLd1 ]GLd1

induced by the direct sum GLd1 ×GLd2 → GLd1+d2 maps tr(X) to tr(X1)+tr(X2), where X ∈ GLd1d2(Z[GLd1d2 ])
and Xi ∈ GLdi

(Z[GLd1 ]⊗ Z[GLd2 ]) are the generic matrix coordinates. This is clear by definition.

Proposition 4.33. The dual of Lafforgue’s pseudocharacters is compatible with the dual of Taylor’s
pseudocharacters: Let Γ be a group, A a commutative ring and d ≥ 0 with d! ∈ A×. Then the diagram

PCΓ
GLd

(A) ∨ //

tr × tr
��

PCΓ
GLd

(A)

tr
��

TPCΓ
d (A) ∨ // TPCΓ

d (A)

commutes. Here the top arrow is the dual constructed in Section 4.2.3, the bottom arrow is the dual
constructed in Section 2.12.

Proof. The claim follows, since the map Z[GLd]GLd → Z[GLd]GLd induced by the transpose inverse
GLd → GLd maps tr(X) to tr(X−1).

Proposition 4.34. The tensor product of Lafforgue’s pseudocharacters is compatible with the tensor
product of Taylor’s pseudocharacters: Let Γ be a group, A a commutative ring and d1, d2 ≥ 0 with
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(d1d2)! ∈ A×. Then the diagram

PCΓ
GLd1

(A)× PCΓ
GLd2

(A) ⊗ //

tr × tr
��

PCΓ
GLd1d2

(A)

tr
��

TPCΓ
d1

(A)× TPCΓ
d2

(A) ⊗ // TPCΓ
d1d2

(A)

commutes. Here the top arrow is the tensor product constructed in Section 4.2.3, the bottom arrow is
the tensor product constructed in Section 2.13.

Proof. It is enough to show, that the map Z[GLd1d2 ]GLd1d2 → Z[GLd1 ]GLd1 ⊗ Z[GLd1 ]GLd1 induced by
the tensor product GLd1 ×GLd2 → GLd1d2 maps tr(X) to tr(X1) tr(X2). This follows from Lemma 2.2,
since tr(X) is mapped to tr(X1 ⊗ X2) = tr(X1) tr(X2).

We shall also need the notion of direct sum of two symplectic pseudocharacters, induced by the natural
map Sp2a×Sp2b → Sp2n for a + b = n, which corresponds to the orthogonal direct sum of symplectic
spaces. The procedure for the construction of this direct sum operation is the same as for the general
linear group, explained above.
There is also a natural map GLn → Sp2n induced by mapping a representation V to V ⊕ V ∗ equipped
with the symplectic form, which makes V and V ∗ totally isotropic subspaces, is the canonical pairing
on V × V ∗ and the negative of the canonical pairing on V ∗ × V . Even though the map GLn → Sp2n
is not uniquely determined by this description, it is well-defined on conjugacy classes of representations
and well-defined on pseudocharacters.

4.2.4 Continuous G-pseudocharacters

We will also need the notion of a continuous G-pseudocharacter. Assume, that G is an affine group
scheme over a commutative ring O.

Definition 4.35 (Continuous G-pseudocharacter). Let Γ be a topological group and let A be a com-
mutative topological O-algebra. A G-pseudocharacter Θ ∈ PCΓ

O(A) is continuous, if Θm takes values in
the subset C(Γm, A) ⊆ Map(Γm, A) of continuous maps for all m ≥ 1. We write cPCΓ

G(A) for the set of
continuous G-valued pseudocharacters over A.

It is straightforward to verify, that if G is of finite type over O and ρ : Γ → G(A) is a continuous
homomorphism with G(A) topologized as in Proposition 4.12, then Θρ is a continuous G-pseudocharacter.

4.3 C-O-algebras

It turns out to be useful to rephrase the definition of G-pseudocharacters in terms of functors on a category
C with values in O-algebras, which we decided to call ’C-O-algebras’. Instances of C-O-algebras appear
in [Wei20] under the names FI-, FFM- and FFG-algebra. We develop the basic theory of C-O-algebras
and use them to prove existence and basic properties of a fine moduli scheme of G-pseudocharacters.

4.3.1 Generalities

Definition 4.36 (C-O-algebra). Let O be a commutative ring and let C be a small category.

1. A C-O-algebra is a functor

A• : C → CAlgO

c 7→ Ac

into the category of commutative O-algebras CAlgO.

2. A C-O-homomorphism between C-O-algebras is a natural transformation f• : A• → B•.
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3. Let CAlgC
O be the category of C-O-algebras together with C-O-homomorphisms.

4. A C-O-subalgebra of a C-O-algebra A• is a subfunctor B• ⊆ A•, such that Bc is an O-subalgebra
of Ac for all objects c of C.

5. A C-O-ideal is a subfunctor I• ⊆ A•, such that Ic is an ideal of Ac for all objects c of C.

6. A C-O-homomorphism f• : A• → B• is injective (surjective, bijective) if f c is injective (surjective,
bijective) for all objects c of C.

7. The kernel ker(f)• of a C-O-homomorphism f• : A• → B• is defined by ker(f)c := ker(f c). It is a
C-O-ideal of A•.

8. The image im(f)• of a C-O-homomorphism f• : A• → B• is defined by im(f)c := im(f c). It is a
C-O-subalgebra of B•.

C-O-algebras are just commutative O-algebra objects internal to the topos of C-sets, i.e. functors C → Set,
and all definitions in Definition 4.36 are valid in this generality.
In universal algebra free algebraic structures can be defined on an arbitrary generating set. Analogously a
free C-O-algebra is generated by a C-set. This defines a left adjoint to the forgetful functor CAlgC

O → SetC .
The forgetful functor SetC → SetOb(C) also admits a left adjoint. Here the set of objects Ob(C) of C is
regarded as a discrete category and an SetOb(C) is the same as a family of sets indexed by Ob(C). Since
we are only interested in free C-O-algebras on an SetOb(C), we define the composition of these two left
adjoints directly.

Lemma 4.37 (Free commutative C-O-algebra). Let O be a commutative ring, C a small category and
T • an Ob(C)-set. Then there is a C-O-algebra F • together with a map of Ob(C)-sets ι : T • → F •, that
satisfies the following universal property:
For every map of Ob(C)-sets f : T • → R• to a C-O-algebra R•, there is a unique homomorphism of
C-O-algebras f̄ : F • → R•, such that f̄ ◦ ι = f . We call the pair (F •, ι) the free C-O-algebra on T •. It is
unique up to unique isomorphism.

Proof. Let x ∈ Ob(C). We define F x to be the free commutative O-algebra generated by the set∐
y∈C

∐
α∈HomC(y,x)

T y

For α : y → x we denote the generator of F x associated to t ∈ T y by αt. Define ιx : T x → F x, t 7→ idxt
to be the inclusion of T x into the summand associated to idx. Define for every morphism α : x → y of
C an O-homomorphism α∗ : T x → T y, βt 7→ αβt. Now let f : T • → R• be a map of Ob(C)-sets. We
define for all x ∈ C an O-algebra homomorphism f̄x : F x → Rx, βt 7→ β∗(fy(t)), where β : y → x is a
morphism of C and t ∈ T y ⊂ F y. One easily checks f̄ ◦ ι = f and this equation forces uniqueness of f̄ .
By the standard argument (F •, ι) is unique up to unique isomorphism.

4.3.2 G-pseudocharacters as F-O-algebra homomorphisms

From now on, we will consider two different small categories for C.

1. Let M be the category of free monoids FM(m) on m generators for all m ≥ 1.

2. Let F be the category of free groups FG(m) on m generators for all m ≥ 1.

A monoid homomorphism between finitely generated free monoids can be understood as a finite sequence
of words. Such a sequence also defines a homomorphism between free groups and so we get a canonical
functor

M→ F

In particular every F-O-algebra can be restricted to an M-O-algebra.

Example 4.38. Here are the two examples of F-O-algebras we are interested in.
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1. If A is an O-algebra, then the functor

F → CAlgO,

FG(m) 7→ Map(Γm, A)

where α : FG(n)→ FG(m) is mapped to

α∗ : Map(Γn, A)→ Map(Γm, A)

where α∗(f)(γ1, . . . , γm) := f(ϕ(α(x1)), . . . , ϕ(α(xn))), where ϕ : FG(m)→ Γ, xi 7→ γi, defines an
F-O-algebra Map(Γ•, A).

2. Similarly

F → CAlgO

FG(m) 7→ O[Gm]G
0

defines an F-O-algebra: Every homomorphism α : FG(n) → FG(m) induces a morphism of O-
schemes Gm → Gn, which in turn induces the desired map α∗ : O[Gn]G0 → O[Gm]G0 . Note, that
since Gm → Gn is induced by a homomorphism of free groups it is equivariant with respect to
diagonal conjugation and hence α∗ is well-defined. We will denote this F-O-algebra by O[G•]G0 .

By definition a G-pseudocharacter Θ is a sequence of maps Θm : O[Gm]G0 → Map(Γm, A), that behaves
natural with respect to two specified types of monoid homomorphisms. Our next goal is to under-
stand, that these types of monoid homomorphisms do already generate all morphisms in M and make
Θ• = (Θm)m≥0 an M-O-homomorphism. We start with generalities on generating sets of morphisms in
categories.

Definition 4.39. Let C be a category and S a system of morphisms SA,B ⊆ HomC(A,B) for all pairs of
objects A,B. Let S̃ be another such system of morphisms.

1. S generates S̃, if S̃ is the smallest system of morphisms, that contains S, all identities and for any
two composable morphisms α1, α2 ∈ S̃ their composition α2 ◦ α1.

2. S inv-generates S̃, if S̃ is the smallest system of morphisms, that contains S, all identities, for any
two composable morphisms α1, α2 ∈ S̃ their composition α2 ◦ α1 and for each invertible morphism
α ∈ S̃ its inverse α−1.

Remark 4.40. A system of morphisms S always (inv-)generates a unique system of morphisms, since the
conditions in Definition 4.39 are closed under arbitrary intersections. If S generates S̃, then S̃ consists
of compositions of morphisms of S and identities. If S inv-generates S̃, then S̃ consists of iterated
compositions and inversions of morphisms of S that are invertible in C and identities.

It is enough to check naturality on (inv-)generating systems of morphisms.

Lemma 4.41. Let C be a category and S a generating system of the morphisms of C. Let D be another
category, F,G : C → D functors and Θ : F → G an infranatural transformation, i.e. a collection of
morphisms ΘX : FX → GX for each object X of C. Further assume, that Θ is natural for morphisms of
α ∈ S, i.e. for all α ∈ S the diagram

FX
ΘX //

Fα
��

GX

Gα
��

FY
ΘY // GY

commutes. Then Θ is a natural transformation. The same is true if S is an inv-generating system.

Proof. Follows easily from Remark 4.40 and structural induction.

We now determine generating sets of morphisms for M and F .
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Lemma 4.42. The morphisms of M are generated by the following two types of homomorphisms:

(1) ϕ : FM(n)→ FM(m), where ϕ(xi) := xζ(i) for each map ζ : {1, . . . , n} → {1, . . . ,m}.

(2) ϕ : FM(n)→ FM(n+ 1) where ϕ(xi) := xi for all i < n and ϕ(xn) := xnxn+1.

The morphisms of F are generated by homomorphisms of types (1) and (2) with FM replaced by FG and
a third type of homomorphism:

(3) ϕ : FG(n)→ FG(n) where ϕ(xi) := xi for all i < n and ϕ(xn) := x−1
n .

Proof. This is [Wei20, Lem. 2.1]. Let ϕ : FM(n) → FM(m) be a homomorphism with ϕ(xi) =
xki1 . . . xkili

. We may write it as a tuple

(xk11 . . . xk1l1
, . . . , xkn1 . . . xknln

)

It is a composition of homomorphisms of type (2) and the homomorphism given by

(xk11 . . . xk1l1
, . . . , xk(n−1)1 . . . xk(n−1)ln−1

, xkn1 , . . . , xknln
)

Iterated application of permutations of type (1) and homomorphisms of type (2) reduces us to

(xe1 , . . . , xet
)

where xe1 , . . . , xet is the condensed sequence of letters xki1 , . . . , xkili
for all i. This is already a homo-

morphism of type (1).
For a homomorphism Φ : FG(n)→ FG(m) one analogously reduces using types (1) and (2) to a sequence

(x±1
e1
, . . . , x±1

et
)

Application of permutations and homomorphisms of type (3) reduces us to (xe1 , . . . , xet).

Proposition 4.43. We have a canonical bijection between the set of M-O-algebra homomorphisms
O[G•]G0 → Map(Γ•, A) and the set PCΓ

G(A) of G-pseudocharacters of Γ with values in A.

Proof. We start with a G-pseudocharacter (Θm)m≥1 and define an association Θ̃ : O[G•]G0 → Map(Γ•, A)
by setting Θ̃FM(m) := Θm. By definition of Θ we know, that Θ̃ is natural with respect to morphisms
FM(n) → FM(m) of type (1) and morphisms FM(n) → FM(n + 1) of type (2). By Lemma 4.41 and
Lemma 4.42 this implies naturality. Conversely, given a morphism Θ̃ of M-O-algebras, the associated
sequence of algebra maps Θn := ΘFM(n) satisfies the required properties by naturality.

Clearly the morphisms of F are not generated by homomorphisms of type (1) and (2) with FM replaced
by FG: Homomorphisms of type (1) and (2) have the property, that the image of the generators xi
lies in the submonoid spanned by generators. This property is stable under compositions and hence
the homomorphism FG(1)→ FG(1), x1 7→ x−1

1 is not a composition of type (1) or (2) homomorphisms.
Fortunately by Lemma 4.41 we only need, that the morphisms of F are inv-generated by homomorphisms
of type (1) and (2) to prove, that any pseudocharacter gives rise to an F-O-algebra homomorphism.

Lemma 4.44. The morphisms of F are inv-generated by homomorphisms of type (1) and (2) in
Lemma 4.42 with FM replaced by FG.

Proof. By Remark 4.40 and Lemma 4.42 it suffices to show, that homomorphisms of type (3) can be writ-
ten as iterated compositions and inversions of homomorphisms of type (1) and (2). Since by Lemma 4.42
M is generated by monoid homomorphisms of types (1) and (2), we already know, that all group ho-
momorphisms FG(n) → FG(m), that are induced by monoid homomorphisms FM(n) → FM(m) are
generated by group homomorphisms of type (1) and (2).
Let ϕ : FG(n) → FG(n) be of type (3). We will use tuple notation for homomorphisms, so ϕ =
(ϕ(x1), . . . , ϕ(xn)) = (x1, . . . , xn−1, x

−1
n ). We first give the proof for n = 2 and x1 = x, x2 = y:

(x, y−1) = (xy−1, y) ◦ (xy, x) ◦ (x, x−1y)
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Since (xy−1, y) = (xy, y)−1 and (x, x−1y) = (x, xy)−1 we have shown, that ϕ is inv-generated by homo-
morphisms of type (1) and (2). This argument works analogously for n ≥ 2. For n = 1 we consider the
homomorphisms (y) : FG(1) → FG(2), x 7→ y and (1, x) : FG(2) → FG(1), x 7→ 1, y 7→ x and write
(x−1) = (1, x) ◦ (x, y−1) ◦ (y).

Corollary 4.45. The maps

HomCAlgF
O

(O[G•]G
0
, Map(Γ•, A))→ PCΓ

G(A)
Θ 7→ (Θm)m≥1

and

HomCAlgF
O

(O[G•]G
0
, C(Γ•, A))→ cPCΓ

G(A)
Θ 7→ (Θm)m≥1

are bijections.

Proof. The proof of Proposition 4.43 carries over.

4.3.3 Representability of PCΓ
G

Theorem 4.46 (Representability of PCΓ
G). Let Γ be a group and let G be a generalized reductiveO-group

scheme. The functor PCΓ
G : CAlgO → Set is representable by a commutative O-algebra BΓ

G. There is a
universal G-pseudocharacter Θu ∈ PCΓ

G(BΓ
G), i.e. for all m ∈ N, µ ∈ O[Gm]G, γ = (γ1, . . . , γm) ∈ Γm,

for every A ∈ CAlgO and every Θ ∈ PCΓ
G(A), the associated homomorphism fΘ : BΓ

G → A satisfies
fΘ(Θu

m(µ)(γ)) = Θm(µ)(γ). As an O-algebra BΓ
G is generated by {Θu

m(µ)(γ) | µ ∈ O[Gm]G, γ ∈ Γm}.

In the proof, we only need that G is affine.

Proof. Let F := O[t̃µ,γ | m ∈ N, µ ∈ O[Gm]G, γ ∈ Γm] be the free commutative O-algebra generated by
the letters t̃µ,γ for all m ∈ N, µ ∈ O[Gm]G and Γm. For all A ∈ CAlgO and all Θ ∈ PCΓ

G(A), there is an
O-linear map η̃Θ : F → A, t̃µ,γ 7→ Θm(µ)(γ). Let a ⊆ F be the intersection of ker(η̃Θ) for all A ∈ CAlgO
and all Θ ∈ PCΓ

G(A). Define BΓ
G := F/a.

From now on, we let ηΘ : BΓ
G → A be ηΘ(x + a) := η̃Θ(x) and tµ,γ := t̃µ,γ + a ∈ BΓ

G. In particular
ηΘ(tµ,γ) = Θm(µ)(γ).

For every A ∈ CAlgO, we have a map HA : PCΓ
G(A)→ HomO(BΓ

G, A), Θ 7→ ηΘ and these are natural in
A. We define the universal pseudocharacter Θu : O[G•]G0 → C(Γ•, BΓ

G) by Θu
m(µ) : Γm → BΓ

G, γ 7→ tµ,γ .
We check property (1) in the definition of pseudocharacter for Θu, property (2) is similar. Let µ ∈ O[Gm]G
and let ζ : {1, . . . , n} → {1, . . . ,m} be some map. Then Θu

n(µζ)(γ) = tµζ ,γ and Θu
m(µ)(γζ) = tµ,γζ

. Here
we write γζ = (γζ(1), . . . , γζ(n)). We claim, that tµζ ,γ = tµ,γζ

. Indeed for every pseudocharacter Θ, we
have η̃Θ(t̃µζ ,γ) = Θn(µζ)(γ) = Θm(µ)(γζ) = η̃Θ(t̃µ,γζ

). So t̃µζ ,γ − t̃µ,γζ
∈ ker(η̃Θ) and the claim follows

by definition of a.
We see, that for any pseudocharacter Θ, we have Θ = ηΘ∗Θu and for every h ∈ HomO(BΓ

G, A), we have
ηh∗Θu = h, so universality of Θu and bijectivity of the transformation H follows.

At this point, we would like to give also a purely categorical proof of Theorem 4.46, which is already
inherent in [Zhu20, Remark 2.2.5]. To us the derived perspective is not relevant.

Categorical proof. We use the description of pseudocharacters as F-O-algebra homomorphisms according
to Corollary 4.45. We denote by F/Γ the slice category of objects of F with a fixed homomorphism to
Γ. Let

BΓ
G := colim

FG(m)∈F/Γ
O[Gm]G

0
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be the colimit in the category of commutative O-algebras indexed over the small category F/Γ. Then

HomCAlgO (BΓ
G, A) = lim

FG(m)∈F/Γ
HomCAlgO (O[Gm]G

0
, A)

= HomCAlgF/Γ
O

(O[G•]G
0
, A)

= HomCAlgF
O

(O[G•]G
0
,Map(Γ•, A))

for every A ∈ CAlgO, where in the second line A is understood as the constant functor on F/Γ. In
the last line, we compute the right Kan extension of A : F/Γ → CAlgO along the canonical restriction
p : F/Γ→ F as

(RanpA)(FG(m)) = lim
(FG(n),f)∈F/Γ

φ∈Hom(FG(m),FG(n))

A(FG(n), f) = lim
(FG(n),f)∈F/Γ

Map(FG(n)m, A) = Map(Γm, A)

using the description of Kan extensions as weighted limits.

From the categorical proof of Theorem 4.46 it is also clear, that BΓ
G is finitely generated if Γ and all

O[Gm]G0 are finitely generated. We again give an elementary and a categorical proof.

Proposition 4.47. Let Γ be a finitely generated group, let O be a commutative ring, which is of finite
type over a universally Japanese ring and let G be a generalized reductive O-group scheme. Then BΓ

G is
a finitely generated O-algebra.

Proof. Let r be a number of generators of Γ. We know from [Ses77, Theorem 2 (i)], that O[Gr]G0

is a finitely generated O-algebra. Let k be a number of O-algebra generators of O[Gr]G0 . Let s =
(s1, . . . , sr) ∈ Γr be generators of Γ and let f1, . . . , fk be generators of O[Gr]G0 . With notation as in
Theorem 4.46 we claim, that {tfi,s | i ∈ {1, . . . , k}} is a system of generators of BΓ

G. By Theorem 4.46
BΓ
G is generated by the elements tµ,γ for all m ≥ 1, all µ ∈ O[Gm]G0 and all γ ∈ Γm. These elements

satisfy functoriality properties similar to that of pseudocharacters with respect to the category F , as
explained in the proof of Theorem 4.46. Let us fix such an element tµ,γ . Every element γ1, . . . , γm can be
written as a product of elements s1, . . . , sr and such a presentation determines a homomorphism of free
groups α : FG(m) → FG(r), such that the composition with the projection FG(r) ↠ Γ, xi 7→ si maps
xi to γi. We have γ = sα, so tµ,γ = tµ,sα = tµα,s. By uniqueness and the defining property, we see, that
t·,s : O[Gr]G0 → BΓ

G is a homomorphism and it follows, that tµα,s is a product of elements tfi,s.

Categorical proof. We use the description of BΓ
G as a colimit as in the categorical proof of Theorem 4.46.

If Γ is finitely generated, then F/Γ contains a surjection π : FG(m) ↠ Γ. For every FG(n) ∈ F every
homomorphism f : FG(n) → Γ factors over π, so the associated map f∗ : O[Gn]G0 → BΓ

G factors over
the map π∗ : O[Gm]G0 → BΓ

G associated to π, which implies, that π∗ is surjective. So it suffices, that
O[Gm]G0 is finitely generated. It follows from [Ses77, Theorem 2 (i)], that O[Gm]G0 is a finitely generated
O-algebra.

Proposition 4.48. Let O → O′ be a ring homomorphism, let Γ be a group, let G be a generalized
reductive O-group scheme and assume that one of the following holds.

1. O′ is O-flat.

2. G is a Chevalley group.

3. G = O2n+1 and 2 ∈ O×.

Then for any O′-algebra A, there is a canonical bijection

PCΓ
GO′ (A) ∼= PCΓ

G(A) (5)

induced by a canonical isomorphism O[G•]G0 ⊗O O′ → O′[G•]G0 of F-O′-algebras. Moreover, there is a
canonical isomorphism BΓ

G ⊗O O′ ∼= BΓ
GO′ of O′-algebras.
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Proof. By Corollary 4.45 it is enough to show, that O[Gm]G0 ⊗O O′ = O′[Gm]G0 for all m ≥ 1. In the
three cases this follows from Corollary 4.14, Proposition 4.17 and Proposition 4.19 respectively.
We now prove that BΓ

G ⊗O O′ ∼= BΓ
GO′ . We apply Theorem 4.46 twice and the first assertion once: Let

A be an O′-algebra.

HomO′(BΓ
GO′ , A) 4.46= PCΓ

GO′ (A)
(5)∼= PCΓ

G(A) 4.46= HomO(BΓ
G, A) = HomO′(BΓ

G ⊗O O′, A)

The claim follows by Yoneda.

4.4 Characteristic polynomials

Definition 4.49. Let A be a commutative ring and let Θ ∈ PCΓ
GLd

(A). Then we define the characteristic
polynomial of Θ by

χΘ(γ, t) :=
d∑
i=0

(−1)iΘ1(si)(γ)td−i ∈ A[t]

where si ∈ Z[GLd]GLd are the unique invariant regular functions, which satisfy

det(t− X) =
d∑
i=0

(−1)isi(X)td−i

in Z[GLd][t]GLd , where X is the generic matrix coordinate in GLd(Z[GLd]) which corresponds to the
identity under the Yoneda isomorphism.
Proposition 4.50. Let A be a commutative ring. Then the map

PCΓ
GLd

(A)→ Map(Γ, A[t]), Θ 7→ χΘ

is injective.

Proof. It suffices to show, that a GLd-pseudocharacter Θ is determined by the values Θ1(si) for 1 ≤ i ≤ d.
By Corollary 5.13, these are generators of the F-Z-algebra Z[GL•

d]GLd , so the claim follows.

4.5 Composition with homomorphisms

Lemma 4.51. Let ρ : G → H be an homomorphism of generalized reductive O-group schemes. Then
for n ≥ 0, the map

ρ∗ : O[Hn]→ O[Gn], f(h1, . . . , hn) 7→ f(ρ(h1), . . . , ρ(hn))

restricts to an is an O-algebra homomorphism

ρ∗ : O[Hn]H → O[Gn]G, f(h1, . . . , hn) 7→ f(ρ(h1), . . . , ρ(hn))

Together these maps define an F-O-algebra homomorphism O[H•]H → O[G•]G.

Proof. For each n ≥ 0, the map ρ∗ : O[Hn]→ O[Gn] is just by definition an O-algebra homomorphism.
Let f ∈ O[Hn]H and g ∈ G. Then

(ρ∗f)(gg1g
−1, . . . , ggng

−1) = f(ρ(g)ρ(g1)ρ(g)−1, . . . , ρ(g)ρ(gn)ρ(g)−1)
= f(ρ(g1), . . . , ρ(gn))
= (ρ∗f)(g1, . . . , gn)

and thus ρ∗f ∈ O[Gn]G. We have to check functoriality on inv-generators of F according to Lemma 4.42.
Let ζ : {1, . . . ,m} → {1, . . . , n} by any map. Then

ρ∗(fζ)(g1, . . . , gn) = fζ(ρ(g1), . . . , ρ(gn))
= f(ρ(gζ(1)), . . . , ρ(gζ(n)))
= f(ρ(g1), . . . , ρ(gn))ζ

= (ρ∗f)ζ(g1, . . . , gn)
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Now assume ρ is a homomorphism. Then

ρ∗f̂(g1, . . . , gn+1) = f̂(ρ(g1), . . . , ρ(gn+1))
= f(ρ(g1), . . . , ρ(gn)ρ(gn+1))
= f(ρ(g1), . . . , ρ(gngn+1))
= (ρ∗f)(g1, . . . , gngn+1)

= ρ̂∗f(g1, . . . , gn+1)

Lemma 4.52. Let Γ be a group and let Θ ∈ PCΓ
G(A). If ρ : G→ H is a homomorphism of generalized

reductive O-group schemes, then the collection ρ∗Θ := (ρ∗Θn)n≥1 is a pseudocharacter ρ∗Θ ∈ PCΓ
H(A).

Proof. According to Corollary 4.45 Θ is equivalently an F-O-algebra homomorphism Θ : O[G•]G →
Map(Γ•, A). By Lemma 4.51 ρ∗ defines an F-O-algebra homomorphism O[H•]H → O[G•]G. The claim
follows from composability in the category of F-O-algebras, which is just a functor category.

4.6 The reconstruction theorem

I would like to thank Vytautas Paškūnas for helpful conversation leading to the proof of the following
general reconstruction theorem. A variant is used in upcoming joint work with Paškūnas.

Lemma 4.53. Let G be a reductive group over an algebraically closed field k. Let g = (g1, . . . , gn) ∈
Gn(k) and let H be the smallest Zariski closed subgroup of G(k), containing {g1, . . . , gn}. The following
are equivalent:

1. The G0(k)-orbit of g is closed.

2. The G(k)-orbit of g is closed.

3. H is strongly reductive in G.

4. H is G-completely reducible.

Proof. Let x1, . . . , xr ∈ G(k) be coset representatives of G(k)/G0(k). So

G(k) · g =
r⋃
i=1

G0(k) · xig =
r⋃
i=1

xi · (G0(k) · g)

If G0(k) · g is closed, then all xi · (G0(k) · g) are images of G0(k) · g under multiplication with xi and
therefore also closed. It follows, that (1) implies (2). If G(k) · g is closed, then it contains a closed
G0(k)-orbit, which is necessarily of the form G0(k) ·xig. But then again G0(k) · g is closed, so (2) implies
(1). The equivalence of (2) and (3) is [Ric88, Theorem 16.4]. The equivalence of (3) and (4) is [BMR05,
Theorem 3.1].

Lemma 4.54. Let G be a generalized reductive group scheme over a noetherian commutative ring O.
Let k be an algebraically closed field over O. Then there is a bijection between the following sets induced
by π : Gn(k)→ (Gn �G0)(k).

1. (Gn �G0)(k)

2. G0(k)-conjugacy classes of tuples (g1, . . . , gn) ∈ Gn(k), such that the smallest Zariski closed sub-
group of G(k) that contains {g1, . . . , gn} is G-completely reducible.

Proof. Recall from Section 4.1, that G0 is a reductive group scheme. By [Ses77, Theorem 3], the map
π : Gn(k)→ (Gn �G0)(k) is surjective. By [BHKT, Proposition 3.2] for each x ∈ (Gn �G0)(k), the fiber
π−1(x) contains a unique closed G0(k)-orbit. The claim follows from Lemma 4.53.
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Lemma 4.55. Let Γ ⊆ G(k) be a subgroup, where G is a reductive group over an algebraically closed
field k. Let P and P ′ be R-parabolic subgroups of G minimal among those which contain Γ. Then
dimP = dimP ′ and |π0(P )| = |π0(P ′)|.

Proof. By Lemma A.3, P and P ′ contain a common R-Levi L. We have dimP = 1
2 (dimG + dimL) =

dimP ′ and |π0(P )| = |π0(L)| = |π0(P ′)|.

The proof of the reconstruction theorem itself is very close to the proof presented in [BHKT, Theorem
4.5] in the case that G is split connected reductive over Z. The main difference is that we prove the
result also for groups G with nontrivial component group G/G0. The validity of Theorem 4.56 has been
claimed in the proof of [DHKM, Lemma A.4] without proof.

Theorem 4.56. Let G be a generalized reductive group scheme over a noetherian commutative ring O.
Let Γ be a group. Let k be an algebraically closed field over O and let Θ ∈ PCΓ

G. Then there is a G-
completely reducible representation ρ : Γ→ G(k) with Θρ = Θ, which is unique up to G0(k)-conjugation.

Proof. For each n ≥ 1, Θn determines for each tuple γ = (γ1, . . . , γn) ∈ Γn an element ξγ ∈ (Gn�G0)(k).
The map Gn(k) → (Gn �G0)(k) is surjective by Lemma 4.54 and we write T (γ) for a representative of
ξγ contained in the unique closed G0(k)-orbit in Gn(k) over ξγ . The representatives T (γ) shall be chosen
and fixed for each γ ∈ Γn and each n ≥ 1 for the rest of the proof.
Let H(γ) be the smallest Zariski closed subgroup of G(k), that contains the entries of T (γ). By
Lemma 4.53 H(γ) is G-completely reducible. Let n(γ) be the dimension of an R-parabolic subgroup
P of Gk minimal among those with H(γ) ⊆ P (k) and let c(γ) be the cardinality of the component group
π0(P ). By Lemma 4.55 these numbers are both independent of the choice of P .
Let N := supn≥1,γ∈Γn n(γ) and C := supn≥1,γ∈Γn;n(δ)=N c(δ). We fix an integer n ≥ 1 and δ ∈ Γn, that
satisfy the following four conditions:

1. n(δ) = N .

2. c(δ) = C.

3. For any n′ ≥ 1 and δ′ ∈ Γn′ also satisfying (1) and (2), we have dimZGk
(H(δ)) ≤ dimZGk

(H(δ′)).

4. For any n′ ≥ 1 and δ′ ∈ Γn′ also satisfying (1), (2) and (3), we have |π0(ZGk
(H(δ)))| ≤ |π0(ZGk

(H(δ′)))|.

Satisfiability. Condition (1) is satisfiable, since N ≤ dimG. Condition (2) is satisfiable, since G has
only finitely many conjugacy classes of R-parabolic subgroups ([Mar03, Proposition 5.2 (e)] and [BMR05,
Corollary 6.7]) and so C is bounded by the maximal number of components of an R-parabolic subgroup.
So the set of pairs (n, δ) satisfying (1) and (2) is not empty. It clear, that (3) and (4) are satisfiable under
(1) and (2). 3

Let (g1, . . . , gn) := T (δ).
Claim A. For all γ ∈ Γ, there is a unique g ∈ G(k), such that (g1, . . . , gn, g) is G0(k)-conjugate to
T (δ1, . . . , δn, γ).
Proof of existence of g. Let (h1, . . . , hn, h) := T (δ1, . . . , δn, γ). It follows from the substitution properties
in the definition of G-pseudocharacter, that (h1, . . . , hn) lies over ξδ ∈ (Gn �G0)(k).
Let P ⊆ Gk be a minimal R-parabolic among those with H(δ1, . . . , δn, γ) ⊆ P (k). Since H(δ1, . . . , δn, γ)
is G-completely reducible by find by the very definition of complete reducibility an R-Levi subgroup MP

of P with H(δ1, . . . , δn, γ) ⊆ MP (k). Let NP := Ru(P ) be the unipotent radical of P and let Q ⊆ MP

be an R-parabolic subgroup of MP minimal among those containing {h1, . . . , hn}. Let MQ be an R-
Levi subgroup of Q and let h′

1, . . . , h
′
n ∈ MQ(k) be the images of h1, . . . , hn in MQ(k) under the map

Q → MQ determined by the decomposition Q = MQ Ru(Q). Then the smallest Zariski closed subgroup
of MQ generated by h′

1, . . . , h
′
n is MQ-irreducible, as the preimage of an R-parabolic of MQ in Q is an

R-parabolic [BMR05, Lemma 6.2 (ii)]. Therefore G-completely reducible by the non-connected version of
[BMR05, Corollary 3.22] as explained in [BMR05, §6.3]. By Lemma 4.54, h′

1, . . . , h
′
n is G0(k)-conjugate

to T (δ).
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The subgroup QNP of Gk is R-parabolic [BMR05, Lemma 6.2 (ii)] and contains a conjugate t of T (δ).
So we have

N = n(δ) ≤ dimQNP ≤ dimP ≤ N

The first inequality follows, since QNP contains an R-parabolic minimal among those containing t. The
second inequality follows, since QNP ⊆ P . The third inequality follows by definition of N . We deduce,
that dimQNP = dimP . Since P = MP ⋉ NP and Q ⊆ MP , we have dimQ = dimMP , Q0 = M0

P and
|π0(Q)| ≤ |π0(MP )|.
We also have

C = c(δ) ≤ |π0(QNP )| ≤ |π0(P )| ≤ C

The first inequality follows, since any R-parabolic minimal among those containing t has the same di-
mension as QNP . The second inequlity follows from |π0(Q)| ≤ |π0(MP )| and the semidirect product
decomposition of P . The third inequality holds, since N = dimP = n(δ1, . . . , δn, γ) and (δ1, . . . , δn, γ)
occurs in the supremum in the definition of C.
We conclude, that QNP = P , Q = MP and hi = h′

i for all i = 1, . . . , n. It follows, that the G0(k)-orbit of
(h1, . . . , hn) in Gn(k) is closed. By Lemma 4.54, there is some x ∈ G0(k), such that x(h1, . . . , hn)x−1 =
(g1, . . . , gn). We can take g := xhx−1 and the proof of existence is finished. 3

Proof of uniqueness of g. Fix γ ∈ Γ and suppose, that g, g′ ∈ G(k) are such, that (g1, . . . , gn, g) and
(g1, . . . , gn, g

′) are G0(k)-conjugate to T (δ1, . . . , δn, γ). In particular, there is some y ∈ G0(k), such that
y(g1, . . . , gn, g)y−1 = (g1, . . . , gn, g

′). This means, that y ∈ ZG(g1, . . . , gn) and our goal is to show, that
y ∈ ZG(g1, . . . , gn, g) for then g = g′. There is an inclusion

ZG(g1, . . . , gn, g) ⊆ ZG(g1, . . . , gn) (6)

Since δ satisfies (1) and (2), (δ1, . . . , δn, γ) also satisfies (1) and (2). It thus follows from properties (3)
and (4) of δ, that in Equation (6) equality holds. 3

So we have proved claim A and defined a map ρ : Γ → G(k), γ 7→ g. We have to show, that ρ is a
homomorphism.
Claim B. For all γ, γ′ ∈ Γ, there are unique g, g′ ∈ G(k), such that (g1, . . . , gn, g, g

′) is G0(k)-conjugate
to T (δ1, . . . , δn, γ, γ

′).
The proof of claim B is similar to the proof of claim A, see [BHKT, Theorem 4.5] for more details.
Claim C. In the situation of claim B, theG0(k)-orbits of (g1, . . . , gn, g), (g1, . . . , gn, g

′) and (g1, . . . , gn, gg
′)

are closed in Gn+1(k).
We only show, that the G0(k)-orbit of (g1, . . . , gn, gg

′) is closed in Gn+1(k). The argument for the other
two orbits is similar. Let P be an R-parabolic minimal among those containing {g1, . . . , gn, g, g

′}. Then
P contains {g1, . . . , gn} and dimP = N and |π0(P )| = C, as before. It follows, that P is minimal among
those R-parabolics containing {g1, . . . , gn}. Let MP be an R-Levi of P containing {g1, . . . , gn, g, g

′}, this
exists by closedness of the orbit of (g1, . . . , gn, g, g

′). As before, the subgroup generated by {g1, . . . , gn} is
MP -irreducible, hence G-completely reducible and the same is true for {g1, . . . , gn, gg

′}. It follows, that
the G0(k)-orbit of (g1, . . . , gn, gg

′) is closed. 3

By the substitution properties in the definition of G-pseudocharacter, (g1, . . . , gn, g) is G0(k)-conjugate
to T (δ1, . . . , δn, γ), (g1, . . . , gn, g

′) is G0(k)-conjugate to T (δ1, . . . , δn, γ
′) and (g1, . . . , gn, gg

′) is G0(k)-
conjugate to T (δ1, . . . , δn, γγ

′). It follows from the uniqueness part of claim A, that ρ(γ) = g, ρ(γ′) = g′

and ρ(γγ′) = gg′. So ρ is indeed a homomorphism. It can be shown by the same methods, that Θρ = Θ.
By Proposition 4.23, we can replace ρ by its semisimplification ρss, which will be G-completely reducible
and Θρss = Θ.
We are left to show, that we can recover a G-completely reducible representation ρ : Γ → G(k) from
its associated G-pseudocharacter Θρ. For n ≥ 1 and γ ∈ Γn, let ξγ ∈ (Gn � G0)(k) as before and
T (γ) := (ρ(γ1), . . . , ρ(γn)) ∈ Gn(k). By the non-connected version of [BMR05, Lemma 2.10] as explained
in [BMR05, §6.2], we find {δ1, . . . , δn} ∈ Γ, such that for every R-parabolic P and every R-Levi L of
P , we have ρ(Γ) ⊆ P if and only if {δ1, . . . , δn} ⊆ P and ρ(Γ) ⊆ L if and only if {δ1, . . . , δn} ⊆ L. In
particular (g1, . . . , gn) := (ρ(δ1), . . . , ρ(δn)) has closed G0(k)-orbit. After possibly enlarging the tuple
(δ1, . . . , δn), we may assume that ZG(g1, . . . , gn)(k) = ZG(ρ(Γ))(k).
Let γ ∈ Γ. We now that (g1, . . . , gn, ρ(γ)) = T (δ1, . . . , δn, γ). Suppose g ∈ G(k) is such that (g1, . . . , gn, g)
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is G0(k)-conjugate to T (δ1, . . . , δn, γ). So we find x ∈ ZG(g1, . . . , gn)(k) = ZG(ρ(Γ))(k), such that
xρ(γ)x−1 = g, but this just means ρ(γ) = g.

4.7 Comparison with determinant laws

In her 2018 dissertation, Kathleen Emerson has shown, that Chenevier’s definition of d-dimensional
determinant laws and Lafforgue’s definition of GLd-pseudocharacters are equivalent over any base ring.
We recall the main result here.
Kathleen Emerson has proven in her 2018 dissertation [Eme18], that there is a bijection between GLd-
valued pseudocharacters and d-dimensional determinant laws over any base ring. In this section we
consider GLd as a group scheme over Z.

Theorem 4.57 (Emerson). Let A be a commutative ring, Γ a group and d ≥ 1. Then the map

PCΓ
GLd

(A)→ DetΓ
d (A), Θ 7→ DΘ

defined in [Eme18, Theorem 4.0.1] is a well-defined bijection.

Emerson’s bijection is characterized by the following property: If si for 1 ≤ i ≤ d are the coefficients
of the characteristic polynomial of a generic matrix in GLd viewed as elements of Z[GLd]GLd , then a
GLd-pseudocharacter Θ ∈ PCΓ

GLd
(A) corresponds to a d-dimensional determinant law D ∈ DetΓ

d (A) if
and only if Λi,A(γ) = Θ1(si)(γ) for all γ ∈ Γ.
In particular χΘ = χDΘ and if ρ : Γ→ GLd(A) is a representation, then DΘρ

= Dρ.

Proposition 4.58. Let A be a commutative topological ring, Γ a topological group and d ≥ 1. Then
Θ ∈ PCΓ

GLd
(A) is continuous if and only if DΘ is continuous. In particular the bijection PCΓ

GLd
(A) →

DetΓ
d (A), Θ 7→ DΘ in Theorem 4.57 restricts to a bijection cPCΓ

GLd
(A)→ cDetΓ

d (A).

Proof. First suppose, that Θ is continuous. Then Λi,A|Γ = Θ1(si) is a continuous map by definition of
continuity of Θ, hence DΘ is continuous.
Conversely, if DΘ is continuous, then Θ1(si) is continuous for all 1 ≤ i ≤ d. Since the F-Z-algebra
Z[GL•

d]GLd is generated by {s1, . . . , sd} and det−1 = s−1
d (see Theorem 5.12), the image of Z[GL•

d]GLd is
contained C(Γ•, A), as desired.

4.8 Comparison with Taylor’s pseudocharacters

Proposition 4.59. Let A be a commutative ring with d! ∈ A× and let Γ be a group. Then the map

PCΓ
GLd

(A)→ TPCΓ
d (A), Θ 7→ Θ1(tr)

from the set PCΓ
GLd

(A) of A-valued GLd-pseudocharacters of Γ to the set TPCRd (A) of d-dimensional
A-valued Taylor pseudocharacters of Γ is a well-defined injection. The map is bijective, if one of the
following conditions holds.

1. A is reduced.

2. 2 ∈ A× and d = 2.

3. (2d)! ∈ A×.

Proof. This follows from Proposition 3.13 and Theorem 4.57.
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5 Invariant theory of algebraic groups

In order to describe a G-pseudocharacter explicitly by a set of functions satisfying certain relations in
the style of Taylor’s Definition 2.6 it is vital to understand the algebras of rational invariants O[Gm]G in
terms of generators and relations. This is achieved by classical invariant theory. If A is an O-algebra on
which G acts rationally by algebra automorphisms, we distinguish between two types of theorems:

1. First fundamental theorem (FFT):
Determine an explicit set of generators of AG.

2. Second fundamental theorem (SFT):
Determine an explicit generating set of relations between given generators of AG.

The first results of this kind in characterstic 0 are due to Frobenius, Sibirskii [Sib67] and Procesi [Pro76].
One can reduce the computation of Q[Gm]G to matrix invariants Q[Mm

n ]G for a faithful representation
G ⊆ Mn (see Proposition 5.1). Donkin proved, that if K is an algebraically closed field, the algebras
K[Gm]G are generated by shifted traces of tilting modules [Don92]. This has since been turned into a
concrete description of generators of K[GLmn ]GLn by Donkin and K[Spmn ]Spn and K[Om

n ]On (under the
assumption char(K) ̸= 2 in the orthogonal case) by Zubkov [Zub94; Zub99]. We can descend generators of
invariant algebras to the prime fields Q and Fp and lift them to Z/pr (see Section 5.1.1, Section 5.1.2). This
is sufficient for our applications to deformation theory. Using results on tilting modules it is possible to
descend these generators further to Z[Gm]G once they are known over fields and defined over Z. We include
this argument in Section 8.7. We also obtain a slightly different proof of the first fundamental theorem
[DP76, §15.2.1 Theorem 1.10] for Z[Mm

n ]GLn , Z[Mm
n ]SLn , Z[GLmn ]GLn and Z[SLmn ]SLn (see Section 5.1.3).

The second fundamental theorem for Q[Mm
n ]GLn has been proven independently by Procesi [Pro76] and

Razmyslov [Raz74]. In positive characteristic it is due to Zubkov [Zub99]. In [DP76, Theorem 1.13] de
Concini and Procesi prove a second fundamental theorem over Z. The work on semi-invariants of quivers
over infinite fields was further developped by Domokos and Zubkov [DZ01].
In [Pro76] Procesi mentions the possibility of third and higher fundamental theorems. The first funda-
mental theorem provides us with a surjection P → AG, where P is a polynomial algebra generated by a
formal variable for each explicit generator of AG. The second fundamental theorem yields a set R of ideal
generators of the kernel of P → AG. So we can define a P -linear surjection from a free P -module P (R)

onto the kernel of P → AG. We can now ask for relations between P -module generators of the kernel of
P (R) → P , which would then be a third fundamental theorem. Even though this is a natural question,
to my knowledge there is no research towards third fundamental theorems for Q[Mm

n ]G or Q[Gm]G.
My original motivation to study classical invariant theory was firstly to give an explicit description of
Sp2n-pseudocharacters and secondly to prove, that Sp2n-pseudocharacters are in bijection with symplec-
tic determinant laws as described in Section 8. This requires first and second fundamental theorems
for Z[Spm2n]Sp2n over Z, which are not yet available. While an explicit description of Lafforgue Sp2n-
pseudocharacters seems hard, we might have found a stronger definition of symplectic determinant laws
of involutive algebras, which might enable us to prove an Emerson type comparison bijection with Laf-
forgue’s Sp2n-pseudocharacters in case of a group algebra without using a second fundamental theorem,
but this is subject to further research and not included in Section 8. What we currently know about a
possible comparison map for symplectic determinant laws is discussed in Section 8.6.
As part of this effort I’ve learned a few methods to compute generators of specific invariant algebras for
reductive groups. These are explained in Section 5.2.

Proposition 5.1. Let K be a field of characteristic 0. Let G be a reductive algebraic group over K and
let ι : G→ GLn be a faithful rational representation of G. Then the map K[Mm

n ]G⊗KK[Am]→ K[Gm]G
induced by G→Mn × A1, g 7→ (g,det−1(ι(g))) is surjective.

Proof. The map G→ Mn × A1, g 7→ (g,det−1(ι(g))) is a closed immersion. The claim follows, since G
acts trivially on A1 and the category of rational G-modules is semisimple.

Note, that Proposition 5.1 is a version of Corollary 5.13 in characteristic 0.
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5.1 Invariant theory

The goal of this section is to prove, that the F-Z/pr-algebras Z/pr[G•]G0 are finitely generated for
G ∈ {SLn,GLn,Sp2n,GSp2n,SO2n+1,O2n+1,GO2n+1} and to determine an explicit set of generators.
We use a theorem of Zubkov [Zub99] on generators of certain invariant rings over an algebraically closed
field and generalize it to Z/pr-algebras.
Let X ∈Md(Z[xij | i, j ∈ {1, . . . , d}]) be a generic d× d matrix, i.e. Xij = xij for 1 ≤ i, j ≤ d.
Let si ∈ Z[xij ] be up to a sign the i-th coefficient of the characteristic polynomial of X:

det(t · Id − X) =
d∑
i=0

(−1)isi(X)td−i ∈ Z[xij | i, j ∈ {1, . . . , d}][t]

If we evaluate X at a triangular matrix, then si is given by the i-th elementary symmetric polynomial in
the diagonal entries.

Theorem 5.2 (Zubkov, 1999). Let K be an algebraically closed field. Let G be either the symplectic
group Spd,K for even d ≥ 2 or the orthogonal group Od,K for d ≥ 1 and assume, that char(K) ̸= 2 in
the orthogonal case. Let m ≥ 1. The algebraic group G acts by conjugation on the affine K-scheme
Mm
d
∼= Amd2 . Denote by K[Mm

d ]G the algebra of rational invariants of the coordinate ring K[Mm
d ] of

Mm
d . Denote by Xk ∈Md(Z[x(k)

ij | i, j ∈ {1, . . . , d}]) the k-th matrix coordinate of Mm
d . Then:

1. K[Mm
d ]G is generated as a K-algebra by elements of the form

si(Yj1 · · ·Yjs)

for i ∈ {1, . . . , d} and s ≥ 0, where Yk ∈ {Xk, X
∗
k} and in the orthogonal case ∗ = ⊤ is transposition

and in the symplectic case ∗ = j is symplectic transposition, i.e. J(−)⊤J−1 for J =
(

0 id
− id 0

)
.

[Zub99, Theorem 1]

2. The mapK[Mm
d ]G → K[Gm]G induced by restriction toGm ⊆Mm

d is surjective [Zub99, Proposition
3.2]. In particular K[Gm]G is generated by elements of the form

si(Yj1 · · ·Yjs
)

for i ∈ {1, . . . , d} and s ≥ 0, where Yk ∈ {Xk, X
−1
k }.

Zubkov proves Theorem 5.2 for algebraically closed fields and then remarks that the claim holds for all
infinite fields by a Zariski density argument [Zub99, Remark 3.2].

5.1.1 Invariants over a field

We now extend Zubkov’s Theorem 5.2 to arbitrary fields and to the groups GSp2n, SO2n+1 and GOn

when n ≥ 1.

Proposition 5.3. Let K be a field and let m ≥ 1.

1. Suppose G ∈ {Sp2n,SO2n+1,On} and d ∈ {2n, 2n+1, n} respectively. Assume further char(K) ̸= 2
if G ∈ {SO2n+1,On}. Then K[Gm]G is generated by elements of the form

si(Yj1 · · ·Yjs
)

for i ∈ {1, . . . , d} and s ≥ 0, where Yk ∈ {Xk, X
−1
k }.

2. Suppose G ∈ {GSp2n,GOn} and d ∈ {2n, n} respectively. Assume further char(K) ̸= 2 if G = GOn.
ThenK[Gm]G is generated by the symplectic (orthogonal) similitude character sim, its inverse sim−1

and elements as in (1).
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Proof. Let K ′ be an algebraically closed overfield of K. We first treat the case G ∈ {Sp2n,On}. Let
d = 2n in the symplectic case and d = n in the orthogonal case. We have a complex

0 // J // K[Mm
d ]G // K[Gm]G // 0

of K-vector spaces, where J := ker(K[Mm
d ]G → K[Gm]G). By faithful flatness it suffices to show, that

0 // J ⊗K K ′ // K[Mm
d ]G ⊗K K ′ // K[Gm]G ⊗K K ′ // 0

is exact. By the universal coefficient theorem for rational invariants [Jan03, I.4.18 Proposition], we have
isomorphisms K[Mm

d ]G ⊗K K ′ ∼= K ′[Mm
d ]G and K[Gm]G ⊗K K ′ ∼= K ′[Gm]G, so J ⊗K K ′ is the kernel

of K ′[Mm
d ]G → K ′[Gm]G. The claim follows from Theorem 5.2. For SO2n+1, we note, that the map

K[O2n+1]O2n+1 → K[SO2n+1]SO2n+1 is surjective, since O2n+1 = SO2n+1×{±1}.
For the rest of the proof, we argue as in [Wei21, Lemma 3.15]. The natural surjection Sp2n×GL1 →
GSp2n induces an inclusion K[GSpm2n]GSp2n ⊆ K[Spm2n]Sp2n ⊗K K[GLm1 ]. Here the second factor is gener-
ated by the symplectic similitude character simi of Xi and its inverse. Since all generators on the right
hand side are defined on the left hand side, the map is an isomorphism. For GOn we argue just the same
way.

5.1.2 Invariants over Z/pr

In this subsection, fix a prime p and an integer r ≥ 1. We extend the results over fields to pr-torsion
coefficients by using the theory of good filtrations over Z. We plan to extend the results of this section to
general coefficient rings in joint work with Mohamed Moakher. The main purpose here is to demonstrate,
that if the coefficients have pr-torsion the proof is much simpler. We can lift invariants using the following
variant of Nakayama’s lemma.

Lemma 5.4 (Nakayama).

1. Let M be any Z/pr-module and assume M/p = 0. Then M = 0.

2. Let f : M → N be a homomorphism of Z/pr-modules, such that f : M/p → N/p is surjective.
Then f is surjective.

Proof. (1) We have M = pM , thus M = prM = 0. (2) We can apply (1) to coker(f).

Lemma 5.5. Let G be a Chevalley group and let S ⊆ Z[Gm]G be a subset, that generates Fp[Gm]G as
a ring. Then S generates Z/pr[Gm]G.

Proof. Let A ⊆ Z/pr[Gm]G be the subalgebra generated by S. By Proposition 4.17 Z[Gm] has a good
filtration and in particular is acyclic by Lemma 4.15. We calculate

Z/pr[Gm]G ⊗Z/pr Fp = (Z[Gm]G ⊗Z Z/pr)⊗Z/pr Fp = Z[Gm]G ⊗Z Fp = Fp[Gm]G

applying Corollary 4.14 twice. Hence the inclusion induces a surjection A/p ↠ (Z/pr[Gm]G)/p. From
Lemma 5.4, we obtain A = Z/pr[Gm]G.

Proposition 5.6. Let O be a commutative ring, such that prO = 0. In the following we denote by
Xk a generic group element, which can also be understood as a generic matrix under the standard
representation. Let m ≥ 1 and assume p > 2 in the orthogonal cases.

1. Let n ≥ 1. Then O[Spm2n]Sp2n is generated by elements of the form

si(Yj1 · · ·Yjs)

for i ∈ {1, . . . , d} and s ≥ 0, where Yk ∈ {Xk, X
−1
k }.

2. Let n ≥ 1. Then O[Om
2n+1]SO2n+1 is generated by elements of the form

si(Yj1 · · ·Yjs
)

for i ∈ {1, . . . , d} and s ≥ 0, where Yk ∈ {Xk, X
−1
k }.
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3. Let n ≥ 1. Then O[GSpm2n]GSp2n is generated by the symplectic similitude character sim, its inverse
sim−1 and elements of the form

si(Yj1 · · ·Yjs
)

for i ∈ {1, . . . , d} and s ≥ 0, where Yk ∈ {Xk, X
−1
k }.

4. Let n ≥ 1. Then O[GOm
n ]GOn is generated by the orthogonal similitude character sim, its inverse

sim−1 and elements of the form
si(Yj1 · · ·Yjs)

for i ∈ {1, . . . , d} and s ≥ 0, where Yk ∈ {Xk, X
−1
k }.

Proof. Let G ∈ {Sp2n,O2n+1,GSp2n,GOn}. Since by Proposition 4.17 all Z/pr[(G0)m] have a good
filtration, we may assume O = Z/pr. In all cases, the expected generators are defined as elements of
Z[Gm]G0 . The claim now follows from Lemma 5.5 and the generators of Fp[Gm]G we have given in
Proposition 5.3 (Zubkov).

5.1.3 Invariants over Z

In [DP76, p. 15.2.1] de Concini and Procesi have determined the generators of Z[Mm
n ]GLn and Z[Mm

n ]SLn ,
from which the generators of Z[GLmn ]GLn and Z[SLmn ]SLn can be deduced. We reprove their result using
good filtrations and avoiding usage of the formal character of Z[Mm

n ] and the analysis of root subgroups.
Recall the first fundamental theorem on invariants of several matrices.

Theorem 5.7 (De Concini, Procesi). Let K be an algebraically closed field. Then K[Mm
n ]GLn is gener-

ated by elements of the form
si(Xj1 · · ·Xjs

)
for i ∈ {1, . . . , n} and s ≥ 0.

Proof. See [DP76, Theorem 1.10].

The first fundamental theorem for SLn follows right away:

Proposition 5.8. Let K be an algebraically closed field. Then K[Mm
n ]SLn is generated by elements of

the form
si(Xj1 · · ·Xjs)

for i ∈ {1, . . . , n} and s ≥ 0.

Proof. The inclusion of the center GL1 → GLn and the inclusion SLn → GLn combine to a surjec-
tion SLn×GL1 → GLn. Therefore K[Mm

n ]GLd = K[Mm
n ]SLn × GL1 = K[Mm

n ]SLn and we conclude by
Theorem 5.7.

To descend to Z, we need the following lemma.

Lemma 5.9. Let O be a principal ideal domain and let M and M ′ be finitely generated free O-modules.
Let f : M → M ′ be an O-module homomorphism, such that for every O-field K the induced map
M ⊗O K →M ′ ⊗O K is an isomorphism. Then f is an isomorphism.

Proof. Taking K the field of fractions of O shows, that f is injective and that the cokernel C of f is a
finitely generated torsion module. For every prime ideal 0 ̸= p ⊆ O, the sequence

M ⊗O O/p
∼ // M ′ ⊗O O/p // C ⊗O O/p // 0

is exact, which shows, that C ⊗O O/p = 0. It follows, that C = 0.

Theorem 5.10 (De Concini, Procesi). Z[Mm
n ]GLn = Z[Mm

n ]SLn and is generated by elements of the form

si(Xj1 · · ·Xjs
)

for i ∈ {1, . . . , n} and s ≥ 0.
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Proof. Mm
n = (Std⊗Std∗)⊕m, where Std is the standard representation of GLn. The standard represen-

tation of GLn is self-dual and has a good filtration. We observe, that Z[Mm
n ] admits a grading by finitely

generated free Z-modules Sd := Symd((Mm
n )∗), that is preserved by the action of GLn. The Sd also have

a good filtration, so by Lemma 4.15 and Corollary 4.14 SGLn

d ⊗Z k = (Sd ⊗Z k)GLn for any field k.
Let A be a free commutative Z-algebra generated by variables t(i,(j1,...,js)) with i ∈ {1, . . . , d} and s ≥ 0.
We let t(i,(j1,...,js)) have degree si and observe that A =

⊕∞
d=0 Ad is a graded ring, such that each

submodule Ad consisting of homogeneous of degree d elements is a finitely generated free Z-module.
The natural map A→ Z[Mm

n ]GLn sending t(i,(j1,...,js)) to si(Xjs
. . . Xjs

) is graded. By Theorem 5.7, the
maps Ad⊗Z k → SGLn

d ⊗Z k are surjective for every algebraically closed field k. Hence by Lemma 5.9 the
maps Ad → Sd are surjective and thus A→ S is surjective, proving the first claim. The argument for the
SLn-invariants is the same, using Proposition 5.8.

To pass from invariants of Z[Mm
n ] to invariants of Z[GLmn ] and Z[SLmn ], we use the following general

lemma.
Lemma 5.11. Let G be a split reductive group over Z and let

0→ C → B → A→ 0

0→ C ′ → B′ → A′ → 0
be two short exact sequences of G-modules with good filtration. Then the map (B ⊗B′)G → (A⊗A′)G
is surjective.

Proof. Since good filtration modules are free, the sequences

0→ C ⊗A′ → B ⊗A′ → A⊗A′ → 0

0→ B ⊗ C ′ → B ⊗B′ → B ⊗A′ → 0
are exact. By Mathieu’s tensor product theorem Theorem 4.16, the modules C ⊗ A′ and B ⊗ C ′ have
good filtrations, hence by Lemma 4.15 the maps (B ⊗ A′)G → (A ⊗ A′)G and (B ⊗ B′)G → (B ⊗ A′)G
are surjective.

Theorem 5.12. Let O be a commutative ring, let m ≥ 1 and let n ≥ 1.

1. O[Mm
n ]GLn and O[Mm

n ]SLn are generated by elements of the form

si(Xj1 · · ·Xjs)

for i ∈ {1, . . . , n} and s ≥ 0.

2. O[GLmn ]GLn and O[SLmn ]SLn are generated by elements of the form

si(Xj1 · · ·Xjs
)

for i ∈ {1, . . . , n} and s ≥ 0 and det−1(Xj) for j ∈ {1, . . . ,m}.

Proof. By Proposition 4.17, it is for both GLn and SLn sufficient to prove the claim for O = Z. The
closed immersion GLn →Mn ×A1, g 7→ (g,det(g)−1) induces a surjection Z[(Mn ×A1)m]→ Z[GLmn ] of
Z-graded Z-modules with GLn-action, where the graded pieces are finitely generated free Z-modules.
Identifying Z[A1] = Z[t], we have a short exact sequence

0 // Z[Mn]⊗ Z[t]
·(t·det −1) // Z[Mn]⊗ Z[t] // Z[GLn] // 0

of GLd-modules, since t · det−1 is an invariant element of the integral domain Z[Md] ⊗ Z[t]. By
Lemma 5.11 and since Z[GLd] and Z[Md] have good filtrations (Proposition 4.17, Proposition 4.18),
the maps Z[Mm

n ]GLn ⊗ Z[t]⊗m = Z[(Mn × A1)m]GLn → Z[GLmn ]GLn are surjective. The claim follows
from Theorem 5.10.
The same argument using the closed immersion SLn →Mn and the short exact sequence

0 // Z[Mn]
·(det −1) // Z[Mn] // Z[SLn] // 0

implies the claim on Z[SLmn ]SLn .
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In upcoming joint work with Mohamed Moakher, we will compute explicit generators of Z[Gm]G for
G ∈ {Sp2n,GSp2n,SO2n+1,O2n+1,GOn} building on work of Zubkov.

Corollary 5.13. Let O be a commutative ring.

1. The F-O-algebra O[GL•
n]GLn is generated by s1, . . . , sn ∈ O[GLn]GLn .

2. The F-O-algebra O[SL•
n]SLn is generated by s1, . . . , sn−1 ∈ O[SLn]SLn .

Proof. This follows by inspection of the generators computed in Theorem 5.12 and substitutions.

Corollary 5.14. Let r ≥ 1 be an integer and let O be a commutative ring, such that prO = 0. Let
G ∈ {SLn,GLn,Sp2n,GSp2n,SO2n+1,O2n+1,GO2n+1} and assume that p > 2 in the orthogonal cases.
Then the maps O[GLmn ]GLn → O[Gm]G0 are surjective for all m ≥ 1. In particular the F-O-algebras
O[G•]G0 are finitely generated.

Proof. This follows from Corollary 5.13 and Proposition 5.6 and substitutions.

5.2 Alternative methods for computation of invariants

5.2.1 The successive method

If G is a connected reductive group over an algebraically closed field with Borel subgroup B containing
a maximal torus T , there is a Bruhat decomposition G =

⋃
w∈W BwB, where W is the Weyl group

W = NG(T )/T . The double cosets BwB for w ∈ W are well-defined. The ’successive method’ of
computing invariants of a G-module V rests on the observation, that it suffices to take the invariants
with respect to subgroups of G, which generate G, separately. The Weyl group does not embed into G
in general, but V T is a W -module. Let U = Ru(B) be the unipotent radical of B. We have the Levi
decomposition B = TU . It follows, that

V G = (V T )W ∩ V U (7)

The inclusion ’⊆’ is sufficient in most cases.
From a talk of Samit Dasgupta in Essen I learned the following little trick: If B is a Borel subgroup of G,
then the orbit Gx of a B-invariant element x ∈ V is the image of the connected projective variety G/B
in V and thus contains only one point. It follows, that V G = V B . So we can also use

V G = (V U )T (8)

to compute G-invariants. However in practice it is tedious to first compute U -invariants, so we stick to
Equation (7) in the following examples.

5.2.2 Matrix invariants

Example 5.15. As a warmup, we compute the S2-invariants of Z[x1, x2], where the generator of S2
interchanges x1 and x2. We claim, that Z[x1, x2]S2 is generated by tr := x1 + x2 and det := x1x2. We
can show this by induction over the number of terms of an invariant polynomial. Let f ∈ Z[x1, x2]S2 be
nonconstant with n terms, such that f is not divisible by x1x2. Then there is k ≥ 1 and λ ∈ Z \ {0},
such that f = λ(xk1 + xk2) + g for some g ∈ Z[x1, x2]S2 with n − 2 terms. We are left to show, that the
power sums xk1 + xk2 are generated by tr and det. This can be shown by induction using

xk1 + xk2 = (xk−1
1 + xk−1

2 )(x1 + x2)− x1x2(xk−2
1 + xk−2

1 ).

Example 5.16 (Successive method). We first compute the matrix invariants Z[M2]GL2 directly fol-
lowing Equation (7). GL2 acts on (2 × 2)-matrices M2 by conjugation. We can see M2 as the ra-
tional adjoint representation of GL2 over Z. Let Z[M2] be the symmetric algebra on M∗

2 . We write
Z[M2] = Z[x11, x12, x21, x22], where xij is (i, j)-entry of a generic (2× 2)-matrix. Let T be the standard
diagonal torus of GL2. The action of T on xij is given by t · xij = tit

−1
j xij with t = diag(t1, t2) ∈ T . We
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observe, that every monomial in Z[M2] spans an invariant T -submodule. Thus the weight space decom-
position of Z[M2] is given by monomials. We see T as a product G2

m, where t1 is the coordinate of the first
Gm and t2 is the coordinate of the second Gm. A monomial is t1-invariant if and only if it is a product of
x11, x22 and x12x21. This is equivalent to being t2-invariant, so we obtain Z[M2]T = Z[x11, x22, x12x21]
as a first intermediate step.
For convenience we substitute x1 := x11, x2 := x22 and y := x12x21. We now compute the Weyl-
invariants. The Weyl group of GL2 with respect to the standand torus T is isomorphic to S2 and acts by
σ · xi = xσ(i) and σ · y = y. So it is sufficient to compute the S2-invariants of Z[x1, x2]. We have already
done this in Example 5.15 and so we conclude, that Z[x1, x2, y]S2 = Z[x1 + x2, x1x2, y].
In the last step, we take invariants under the unipotent subgroup

U =
(

1 ∗
0 1

)
of strictly upper triangular matrices. We compute(

1 −a
0 1

)(
x11 x12
x21 x22

)(
1 a
0 1

)
=
(
x11 − ax21 x12 + a(x11 − x22)− a2x21

x21 x22 + ax21

)
over Z[M2][a] and observe, that x1 + x2 and x21 are U -invariant. So it is sufficient to compute the
U -invariants of Z[x1x2, y]. Beware, that the action of U on Z[M2] does not preserve the subspace Z[x1 +
x2, x1x2, y], so Z[x1x2, y] is not an honest U -representation! What we will effectively compute in the last
step is Z[x1x2, y] ∩ Z[M2]U .
As above we let a be the coordinate of Ga ∼= U . The action of U is given by

a • (x1x2) = x1x2 + (x1 − x2)ax21 − (ax21)2

a • y = y + (x1 − x2)ax21 − (ax21)2

We observe, that x1x2 − y is U -invariant. So Z[x1x2, y] = Z[x1x2 − y, y] and we are left to compute the
U -invariants of Z[y]. Clearly Z[y] ∩ Z[M2]U = Z. So we end up with Z[x1 + x2, x1x2, y] ∩ Z[M2]U =
Z[x1 + x2, x1x2 − y], where x1 + x2 is the trace and x1x2 − y is the determinant of a generic matrix in
M2.
Note, that the entire argument did not use that the coefficient ring is Z. We could now directly conclude
Z[M2]GL2 = Z[tr,det] using that the Bruhat decomposition and B = TU are valid over Z, but we don’t
need this: We have just shown the inclusion Z[M2]GL2 ⊆ Z[tr,det] and conclude by verifying that tr and
det are indeed GL2-invariant.

We can use the argument of Theorem 5.12 to deduce from Example 5.16 directly Z[GL2]GL2 = Z[tr,det,det−1].
We emphasize, that the benefit of the succesive method is that it is applicable whenever we want to com-
pute invariants for an action of a connected reductive group on a finite-dimensional representation or
a symmetric algebra on a finite-dimensional representation. In particular it is theoretically possible to
calculate Z[Mm

n ]GLn with the successive method, even though we find this not practical to carry out. The
goal of the next section is to demonstrate how to obtain Z[GL2]GL2 from an integral version of Chevalley’s
restriction theorem.

5.2.3 Chevalley’s restriction theorem

We recall the proof of Chevalley’s restriction theorem in arbitrary characteristic in lack of an adequate
reference.

Theorem 5.17. Let K be an algebraically closed field and let G be a connected semisimple group over
K with maximal torus T and Weyl group W = NG(T )/T . Then the restriction map K[G] → K[T ]
induces an isomorphism K[G]G ∼= K[T ]W of K-algebras.

Proof. For the proof, we choose a system of positive roots Φ+. K[T ] is an NG(T )-module and hence
a W -module. Therefore we get a well-defined map |T : K[G]G → K[T ]W . We first show, that |T is
surjective. Let f ∈ K[T ]W . The set of weights X(T ) is a K-basis of K[T ]. So f =

∑
λ∈X(T ) aλt

λ,
where aλ ∈ K and t is a generic element of T . Let λ ∈ X(T ) be a maximal dominant weight, such that
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aλ ̸= 0. Such a weight exists, since f is W -invariant. Let χλ ∈ K[G]G be the character of the irreducible
G-module with highest weight λ. Recall, that χλ|T only contains weights ⪯ λ. So f − aλχλ|T ∈ K[T ]W
is a function all of whose maximal dominant weights are ⪯ the maximal dominant weights of f . By
induction we conclude, that there is some f̃ ∈ K[G]G with f̃ |T = f .
It is now sufficient to show, that |T : K[G]G → K[T ] is injective. Let f ∈ K[G]G, such that f |T = 0.
Let x ∈ G be a regular element, i.e. ZG(xs) = rank(G) for the semisimple part xs of x. By [Bor91,
Theorem 12.3 (1)] x is contained in a Cartan subgroup of G. Since G is connected reductive, such
a Cartan subgroup is just a maximal torus. Thus, there is some h ∈ G with hxh−1 ∈ T and hence
f(x) = f(hxh−1) = 0. By [Bor91, Theorem 12.3 (1)] the set of regular elements contains a dense open
set in G and we conclude f = 0.

Theorem 5.18. Let G be a split connected semisimple group over Z with fiberwise maximal torus T over
Z and Weyl group W . Then the restriction map Z[G] → Z[T ] induces an isomorphism Z[G]G ∼= Z[T ]W
of rings.

Proof. Surjectivity can be proved by the same argument as in Theorem 5.17 using the Weyl module ∇(λ)
in place of the irreducible module of highest weight λ.
We have Z[T ]W =

⊕
λ∈X+(T ) Z ·

∑
w∈W λw, so Z[T ]W ⊗Q = Q[T ]W . We also know, that Z[G]G ⊗Q =

Q[G]G by flatness. We deduce, that the map Z[G]G → Z[T ]W is injective.

By Zariski denseness of GL2 ⊆M2, we have Z[M2]GL2 = Z[M2]∩Z[GL2]GL2 and thus from Theorem 5.18,
we directly obtain Z[M2]GL2 = Z[tr,det].

Example 5.19. We will compute Z[Sp4]Sp4 using Theorem 5.18. The Weyl group of Sp4 has 8 elements
and is generated by

σ1 =
(

0 1
1 0

)
, σ2 =

(
1 0
0 −1

)
as a reflection group on X(T ) with

T =


x1

x2
x−1

2
x−1

1


by σ1(x1) = x2, σ1(x2) = x1, σ2(x1) = x1, σ2(x2) = x−1

2 . We write Z[T ] = Z[x1, x
−1
1 , x2, x

−1
2 ]. Taking

σ2-invariants, we obtain Z[x2, x
−1
2 ]σ2 = Z[x2 + x−1

2 ] by an easy induction over the highest degree term of
an invariant. For convenience we next take invariants by

σ1σ2σ1 =
(
−1 0
0 1

)
and obtain Z[x1, x

−1
1 ]σ1σ2σ1 = Z[x1 + x−1

1 ]. Joining these two results, we obtain

Z[x1, x
−1
1 , x2, x

−1
2 ]⟨σ2,σ1σ2σ1⟩ = Z[x1 + x−1

1 , x2 + x−1
2 ]

Using Example 5.15, we get

Z[T ]W = Z[x1 + x−1
1 + x2 + x−1

2 , (x1 + x−1
1 )(x2 + x−1

2 )]

We observe, that x1 + x−1
1 + x2 + x−1

2 is the trace of the standard representation Std. Similarly (x1 +
x−1

1 )(x2 + x−1
2 ) + 2 is the trace of Λ2 Std. It follows, that

Z[Sp4]Sp4 = Z[tr, tr Λ2 Std]

In fact it follows directly from the basis of Z[T ]W described in the proof of Theorem 5.18, that Z[T ]W is
a polynomial ring generated by sums over W -orbits of fundamental weights. It has already been proved
by Chevalley, that Z[T ]W and therefore Z[G]G is a polynomial ring generated by traces of fundamental
representations of G.
However all we have seen so far is not sufficient to deduce a first fundamental theorem for Z[Gm]G. We
will survey in the next and last section on invariant theory, what we know about Z[Gm]G.
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5.2.4 Group invariants

We are interested in a first fundamental theorem for Z[Gm]G for G a split connected reductive group over
Z. The first observation is, that the arguments of Section 8.7 are applicable to general split semisimple
groups. Second, the case of split reductive groups reduces to the case of split semisimple groups by
taking invariants after restriction to the surjection Z(G) × [G,G] → G (see e.g. [Mil12, p. 17.28]). So
everything boils down to computation of invariants over algebraically closed fields in which case, we can
apply Donkin’s theorem [Don92]. However this turns out to be difficult in practice. We give a list of
results that compute K[Gm]G for some reductive group G.

1. Donkin [Don92] computes generators of K[GLmn ]GLn .

2. Zubkov [Zub99] computes generators of K[Spm2n]Sp2n for all n ≥ 1.

3. Zubkov [Zub99] computes generators of K[Om
n ]On for all n ≥ 1 and char(K) ̸= 2.

4. Zubkov [Zub99] computes generators of K[SOm
n ]SOn for odd n ≥ 3 and char(K) ̸= 2.

These results can be adapted to GOn and GSp2n. They can be interpreted from the perspective of F-
K-algebras: The F-K-algebra K[G•]G is finitely generated by an explicit set of generators in the cases
listed above. We expect, that this is the case for all split reductive groups G. A proof of this (over the
ring of integers of a p-adic local field) would be useful in many places: It leads to a simplification of the
proofs of Lemma 7.6 and Lemma 7.16 and Lemma 7.6 can probably be generalized to arbitrary profinite
groups Γ.
The algebra K[G•]G being finitely generated follows from the following stronger statement, of which we
are not sure if it holds in general: There is a faithful algebraic representation G → GLn, such that the
induced homomorphism K[GLmn ]GLn → K[G•]G is surjective for all m ≥ 1. A proof of this might be
within reach after a more detailed analysis of Donkin’s main theorem in [Don92]. It might be sufficient to
take a faithful tilting module which generates the category of rational G-modules under tensor products,
exterior powers and subquotients, capturing all possible weights of highest weight modules. I have not
yet been able to turn this idea into a rigorous proof, as the combinatorics of the Schur algebras that arise
remains elusive to me. At last I want to emphasize, that this second conjecture would be a very explicit
first fundamental theorem for general reductive groups in arbitrary characteristic and is likely very hard
to prove.
It is also remarkable, that in most cases we know of K[G•]G is generated by K[G]G. Indeed [Wei20,
Theorem 4.3] Weidner shows in characteristic zero, that in this case element-wise conjugacy of G-valued
representations implies conjugacy of representations. In this case we say, that G is acceptable. Indeed
the property of acceptability is also related to multiplicity one theorems, as we have learned from Carl-
Wang Erickson. So apart from the theory of pseudocharacters these questions seem to have theoretical
relevance.
Let O be a finitely generated algebra over a Nagata ring and let G be a reductive O-group scheme. Then
for all m ≥ 1, the algebra of rational invariants O[Gm]G is finitely generated over O. This follows readily
from [Ses77, Thm. 2] applied to Gm. However, we have not found Seshadri’s methods to be sufficient to
prove a similar non-constructive finite generation result for the F-O-algebras O[G•]G.

67



6 Deformations of G-valued pseudocharacters

We define a deformation space of V. Lafforgue’s G-valued pseudocharacters of a profinite group Γ for
a (generalized) reductive group G. We show, that our definition generalizes Chenevier’s construction
[Che14]. We show that the universal pseudodeformation ring is noetherian whenever Γ is topologically
finitely generated. For G = Sp2n we describe three types of obstructed subloci of the special fiber of the
universal pseudodeformation space of an arbitrary residual pseudocharacter and give upper bounds for
their dimension.

Introduction

Let F/Qp be a p-adic local field with absolute Galois group ΓF . Let L be a p-adic local field with ring of
integersOL and residue field κ. Let G be a generalized reductive group scheme overOL (see Section 4.1.2),
which is essentially a model of a possibly disconnected reductive group over OL. Given a continuous
representation ρ : ΓF → G(κ), we define the framed deformation functor on the category AOL

of local
artinian OL-algebras with residue field κ by Def□OL,ρ(A) := {ρ : ΓF → G(A) | ρ continuous lift of ρ}.
The framed deformation functor is pro-representable by a complete local noetherian OL-algebra R□

G,ρ

with residue field κ. Inspired by [BIP21, Theorem 1.1], we would like to prove the following conjecture:

Conjecture 6.1. The ring R□
G,ρ is a normal, local complete intersection, flat over OL and of relative

dimension dimGL · ([F : Qp] + 1) over OL.

The proof in [BIP21] relies on estimates of certain subloci in the special fiber of the pseudodeformation
ring for GLn. There pseudocharacters in the sense of Chenevier [Che14] are used.
The first main aim of this chapter is to introduce the pseudodeformation ring for generalized reductive
group schemes, replacing Chenevier’s pseudocharacters by Lafforgue’s pseudocharacters as introduced in
[Laf18, §11]. We show, that these rings are noetherian for topologically finitely generated profinite groups
and in particular for ΓF .

Theorem B (Theorem 6.11, Theorem 6.14). Let G be a generalized reductive OL-group scheme, let Γ
be a profinite group and let Θ be a continuous G-pseudocharacter of Γ over κ.

1. If Γ is topologically finitely generated, then the G-pseudodeformation ring Rps
OL,Θ

of Θ is noetherian.

2. Assume that G ∈ {SLn,GLn,Sp2n,GSp2n,SO2n+1,O2n+1,GOn}, p > 2 in the orthogonal cases and
let ι : G → GLd be the standard representation of G. Then the canonical map Rps

OL,ι(Θ)
→ Rps

OL,Θ
is surjective. If in addition Γ satisfies Mazur’s condition Φp, then Rps

OL,Θ
is noetherian.

The second main aim is to give estimates for certain obstructed subloci Xdec
Θ , Xpair

Θ and X
spcl
Θ (see

Definition 6.25) of the special fiber XΘ of Spec(Rps
OL,Θ

) analogous to [BIP21, §3.4] and [BJ19], which
paves the way for proving Conjecture 6.1 when G = Sp2n.

Theorem D (Proposition 6.33, Theorem 6.34, Corollary 6.35). Let Θ be a continuous Sp2n-pseudocharacter
of ΓF over κ.

1. dimX
dec
Θ ≤ n(2n+ 1)[F : Qp]− 4(n− 1)[F : Qp].

2. dimX
pair
Θ ≤ n2[F : Qp] + 1.

3. dimX
spcl
Θ ≤ 2n2[F : Qp] + 1.

4. dimXΘ ≤ n(2n+ 1)[F : Qp].
If Θ comes from an absolutely irreducible representation, then equality holds and X

spcl
Θ ⊊ XΘ.
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support and advice during the writing of this chapter. I would also like to thank Vytautas Paškūnas
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6.1 Deformations of G-pseudocharacters

6.1.1 Coefficient rings

Fix a prime p > 0. Let κ be a field of one of the following three types:

1. κ is a finite discrete field.

2. κ is a finite extension of Qp equipped with the p-adic topology.

3. κ is a finite extension of Fp((t)) equipped with the t-adic topology.

We introduce a coefficient ring Λ in each of the three cases for κ.

1. In case (1), let Λ be the ring of integers of a p-adic field with residue field κ.

2. In case (2), let Λ = κ.

3. In case (3), let Λ = κ.

By slight abuse of terminology, we will call only such rings Λ coefficient rings for κ.
Let AΛ be the category of artinian local Λ-algebras with residue field κ. Every A in AΛ has a canonical
projection πA : A→ κ with kernel mA the maximal ideal of A. Note, that AΛ admits fiber products [Til96,
§2.2]. Every complete local Λ-algebra A with residue field κ is algebraically isomorphic to the inverse
limit lim←−A/m

n
A. If A is complete local noetherian Λ-algebra, it can be written as A = Λ[[X1, . . . , Xr]]/I,

where r is the κ-dimension of the relative cotangent space t∗A = mA/(m2
A + mΛA) of A [Til96, Lem. 5.1].

6.1.2 The universal deformation ring Rps
Λ,Θ

Definition 6.2. Let κ be a finite or a local field and let Λ be a coefficient ring as in Section 6.1.1 with
residue field κ. Let Γ be a profinite group and let G be a generalized reductive Λ-group scheme. Let
Θ ∈ cPCΓ

G(κ) be a continuous G-pseudocharacter of Γ. We define the deformation functor of Θ

DefΘ : AΛ → Set
A 7→ {Θ ∈ cPCΓ

G(A) | Θ⊗A κ = Θ}

that sends an object A ∈ AΛ to the set of continuous G-pseudocharacters Θ of Γ over A with Θ⊗Aκ = Θ.

If A is an arbitrary local topological Λ-algebra with residue field κ, we define DefΘ(A) analogously. This is
notation for a single A and shall not extend the deformation functor DefΘ. To prove pro-representability
of the deformation functor we need to show, that it is compatible with taking inverse limits.

Lemma 6.3. Let Λ be a coefficient ring as in Section 6.1.1 and let A = lim←−iAi be a projective limit of
local topological Λ-algebras with Ai ∈ AΛ, endowed with the projective limit topology. Let Θ ∈ cPCΓ

G(κ).
Then the natural map DefΘ(A)→ lim←−i DefΘ(Ai) is bijective.

Proof. Per definition, we have a pullback diagram

DefΘ(A)

��

// cPCΓ
G(A)

��
{Θ} // cPCΓ

G(κ)

So it suffices to prove the claim for cPCΓ
G instead of the deformation functor.
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By Corollary 4.45 and since C(Γn, A) = lim←−i C(Γ
n, Ai), we have

cPCΓ
G(A) = HomCAlgF

Λ
(Λ[G•]G

0
, C(Γ•, A))

= HomCAlgF
Λ

(Λ[G•]G
0
, lim←−i C(Γ

•, Ai))

= lim←−i HomCAlgF
Λ

(Λ[G•]G
0
, C(Γ•, Ai))

= lim←−i cPCΓ
G(Ai)

Theorem 6.4. Let κ be a finite or a local field and let Λ be a coefficient ring for κ. Let Γ be a
profinite group and let G be a generalized reductive Λ-group scheme. Let Θ ∈ cPCΓ

G(κ) be a continuous
pseudocharacter. Then the deformation functor

DefΘ : AΛ → Set

is pro-representable by some inverse limit Rps
Λ,Θ

of artinian Λ-algebras with residue field κ, endowed with
the inverse limit topology. If κ is finite, then Rps

Λ,Θ
is pro-p and in particular complete.

If Θ is induced by a continuous representation ρ : Γ→ G(κ), we write Rps
Λ,ρ := Rps

Λ,Θ
. If the residue field

is a local field, we only have one choice for Λ and we will usually drop it from notations.

Proof. We adapt the proof of [Che14, Proposition 3.3]. Let B := BΓ
G be the Λ-algebra from Theorem 4.46,

that represents PCΓ
G : CAlgΛ → Set. Let Θu ∈ PCΓ

G(B) be the universal G-pseudocharacter and
ψ : B → κ the morphism, that corresponds to Θ under the identification HomCAlgΛ(B, κ) ∼= PCΓ

G(κ).
We define a set I of ideals of B as follows: An ideal I ⊆ B is in I, if and only if the following three
conditions hold:

1. I is contained in the maximal ideal m := ker(ψ) associated with ψ.

2. B/I is artinian and local. If κ is finite, we equip B/I with the discrete topology. If κ is a local field
then B/I is a finite-dimensional κ-vector space and we equip B/I with the product topology of κ.

3. The image ΘI := πI∗Θu of Θu under the map PCΓ
G(B) → PCΓ

G(B/I) induced by the projection
πI : B → B/I is a continuous G-pseudocharacter.

(I,⊆) is a cofiltered poset: If I, J ∈ I, then we have

1. I ∩ J ⊆ m.

2. The map ι : B/(I ∩J)→ B/I ×B/J is injective, hence B/(I ∩J) is artinian. Let m′ be a maximal
ideal of B, that contains I ∩ J . Then IJ ⊂ m′, hence either I ⊂ m′ or J ⊂ m′. In both cases
m′ = m, since B/I and B/J are local. Hence B/(I ∩ J) is local.

3. Note, that ι is a topological embedding. Thus, for the reduction ΘI∩J of Θu mod I ∩ J the
homomorphism ΘI∩J

n : B[Gn]G0 → Map(Γn, B/(I ∩J)) has image in C(Γn, B/(I ∩J)) for all n ≥ 1.

Define the topological Λ-algebra
Rps

Λ,Θ
:= lim←−

I∈I
B/I

The inverse limit is taken in the category of topological Λ-algebras. Let πRps
Λ,Θ

: Rps
Λ,Θ
→ κ be the map

induced by the identification B/ ker(ψ) ∼= κ and let mRps
Λ,Θ

:= ker(πRps
Λ,Θ

). Each B/I is a local ring with
residue field κ, so an element of Rps

Λ,Θ
is invertible if and only if its reduction to κ is. This shows, that

Rps
Λ,Θ

is local with maximal ideal mRps
Λ,Θ

.

If κ is finite, then each B/I is a finite p-group and Rps
Θ

is pro-p and in particular complete.

We show, that Rps
Λ,Θ

pro-represents DefΘ and that ι∗Θu ∈ DefΘ(Rps
Λ,Θ

) is the universal deformation of Θ,
where ι : B → Rps

Λ,Θ
is the canonical map. Assume for the proof, that DefΘ is defined on the category
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of local topological Λ-algebras with residue field κ. This way we get uniqueness of Rps
Λ,Θ

once we show
representability. By Lemma 6.3 we have an isomorphism

DefΘ(Rps
Λ,Θ

) ∼= lim←−
I∈I

DefΘ(B/I)

so it suffices to show representability for artinian rings.
If A ∈ AΛ and Θ ∈ DefΘ(A), then Θ corresponds to a unique homomorphism ϕ : B → A, such that
ϕ∗Θu = Θ and ϕ mod mA = ψ. We will show, that ker(ϕ) ∈ I. We have ker(ϕ) ⊂ ker(ψ) = m and
B/ ker(ϕ) ⊆ A is artinian local. We have to show, that πker(ϕ)

∗ Θu is continuous. Indeed ϕ∗π
ker(ϕ)
∗ Θu =

ϕ∗Θu = Θ is continuous, where ϕ : B/ ker(ϕ) → A is the map induced by ϕ. Since ϕ is a topological
embedding πker(ϕ)

∗ Θu is continuous. So there is a unique factorization B → Rps
Λ,Θ
→ B/ ker(ϕ)→ A of ϕ

over a continuous map Rps
Λ,Θ
→ A.

For the converse suppose, that φ : Rps
Λ,Θ
→ A is a continuous local Λ-homomorphism compatible with the

projections to κ. We have to show, that the pseudocharacter φ∗ι∗Θu is continuous. It is enough to show,
that the universal deformation ι∗Θu is continuous. Let π̃I : Rps

Λ,Θ
→ B/I for I ∈ I be the projection map

from the definition of Rps
Λ,Θ

as an inverse limit. The pseudocharacters π̃I∗ι∗Θu = πI∗Θu are continuous by
definition of I. For fixed m ≥ 1 and f ∈ Λ[Gm]G0 the map (ι∗Θu)m(f) : Γm → Rps

Λ,Θ
will be continuous

by the universal property of limits.

Corollary 6.5. Let Γ be a profinite group, let κ be a finite or local field and let Λ be a coefficient ring
for κ. Let Θ ∈ cPCΓ

GLd
(κ) and let DΘ be the determinant law attached to Θ by Theorem 4.57. Then

the natural transformation DefΛ,Θ → DefΛ,DΘ
defined as in Proposition 4.58 is a natural bijection. In

particular there is a canonical isomorphism Rps
Λ,Θ
∼= Rps

Λ,DΘ
of universal pseudodeformation rings.

Proof. This follows from Proposition 4.58 and Theorem 6.4.

Now that we have proved existence of universal pseudodeformation rings, we observe, that certain com-
pleted local rings at dimension 1 points x are pseudodeformation rings for a deformation problem with
residue field κ(x). It is for this reason, that we also treat cases (2) and (3) from the beginning of this
section.

Proposition 6.6. Let Γ be a profinite group. Let κ be a finite field and let Λ be a coefficient ring for
κ. Let Θ ∈ cPCΓ

G(κ) and let x ∈ Spec(Rps
Λ,Θ

) be a dimension 1 point and residue field κ(x). Assume,
that Rps

Λ,Θ
is noetherian. By [BIP21, Lemma 3.16] κ(x) is a local field and the induced pseudocharacter

Θx ∈ cPCΓ
G(κ(x)) is continuous. Let p := ker(κ(x) ⊗Λ R

ps
Λ,Θ
→ κ(x)). Then the following two rings are

canonically isomorphic:

1. The universal pseudodeformation ring Rps
Θx

.

2. The completion of κ(x)⊗Λ R
ps
Λ,Θ

at p.

The isomorphism is given by the induced map κ(x)⊗Λ R
ps
Λ,Θ
→ Rps

Θx
.

Proof. The proof of [BJ19, Corollary 4.8.7] goes through in our setting.

6.1.3 Noetherianity for topologically finitely generated profinite groups

Lemma 6.7. Let Γ be a topological group, ∆ ⊆ Γ a dense subgroup, O a commutative ring and G a
generalized reductive O-group scheme. Then for all Hausdorff O-algebras A the restriction

cPCΓ
G(A)→ cPC∆

G(A)

defined by composition with C(Γn, A)→ C(∆n, A) is injective.

This is a generalization of the density argument in [Che14, Ex. 2.31].
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Proof. Let Θ,Θ′ ∈ cPCΓ
G(A) be such that Θ|∆ = Θ′|∆. Let n ≥ 0 and f ∈ O[Gn]G0 . Then Θn(f),Θ′

n(f) :
Γn → A are continuous maps, that agree on the dense subset ∆n ⊆ Γn, hence must be equal.

Lemma 6.8. Let Γ be a group, let G and H be generalized reductive group schemes over a commutative
ring O and let ι : G → H be a homomorphism of O-group schemes, such that the induced map of F-
O-algebras O[H•]H0 → O[G•]G0 is surjective. Let A be a commutative O-algebra and let Θ ∈ PCΓ

G(A).
Then ker(Θ) = ker(ι(Θ)).

Proof. By inspection of the Definition 4.26 of kernel.

Examples, that satisfy the hypotheses of Lemma 6.8 can be obtained from Corollary 5.14.

Proposition 6.9. Let Λ be the ring of integers of a p-adic local field with residue field κ. Let A be a
pro-p local Λ-algebra with residue field κ. The following are equivalent:

1. A is noetherian.

2. mA is a finitely generated ideal.

3. mA/m
2
A is a finite-dimensional κ-vector space.

4. mA/(mΛ + m2
A) is a finite-dimensional κ-vector space.

Proof. 1 ⇒ 2 ⇒ 3 ⇒ 4 is clear. The proof of 4 ⇒ 1 can be found in Hida’s notes [Hid14, Lemma
2.10].

Proposition 6.10. Assume, that Λ is the ring of integers of a p-adic local field with residue field κ. Let
Γ be a group, let G be a generalized reductive Λ-group scheme and let Θ ∈ cPCΓ

G(κ). Then the following
are equivalent:

1. dimκ(DefΘ(κ[ε])) <∞.

2. Rps
Λ,Θ

is a noetherian ring.

Proof. Since Rps
Λ,Θ

represents DefΘ (Theorem 6.4), the relative tangent space (mRps
Λ,Θ
/(mΛ + m2

Rps
Λ,Θ

))∗ of

Rps
Λ,Θ

over Λ identifies with DefΘ(κ[ε]). Since Rps
Λ,Θ

is pro-p, the claim follows from Proposition 6.9.

Theorem 6.11. Assume, that Λ is the ring of integers of a p-adic local field with residue field κ and
that G is a generalized reductive Λ-group scheme. Let Γ be a topologically finitely generated profinite
group and let Θ ∈ cPCΓ

G(κ). Then Rps
Λ,Θ

is noetherian.

Proof. Let ∆ ⊆ Γ be a dense and finitely generated subgroup of Γ. We have a sequence of injections

DefΛ,Θ(κ[ε]) ⊆ cPCΓ
G(κ[ε])

6.7
⊆ cPC∆

G(κ[ε]) ⊆ PC∆
G(κ[ε])

4.46∼= HomΛ(B∆
G , κ[ε])

By [Sta19, 032W] and [Sta19, 0334] Λ is universally Japanese. By Proposition 4.47, HomΛ(B∆
G , κ[ε]) is a

finite-dimensional κ-vector space. By Proposition 6.10 we conclude, that Rps
Λ,Θ

is noetherian.

6.1.4 Noetherianity for profinite groups satisfying Φp

The idea of establishing noetherianity of the pseudodeformation rings Rps
Θ

for a classical group G in case
we only know that our profinite group Γ satisfies Mazur’s condition Φp is to prove surjectivity of the
transition map Rps

ι(Θ)
→ Rps

Θ
for a suitable rational representation ι : G → GLn, and use noetherianity

of Rps
ι(Θ)

. In this section we give a criterion in terms of invariant theory, which can be applied to other
reductive groups once their invariant theory is understood. We found the proofs of this section before
the argument in Proposition 4.47 was found, which is of course general and sufficient for applications to
absolute Galois groups of local fields.
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Lemma 6.12. Let Γ be a group and let ι : G→ G′ be a homomorphism of generalized reductive group
schemes over a commutative ring O. Suppose, that the map O[G′•]G′0

→ O[G•]G0 of F-O-algebras is
surjective. Then the map ι∗ : BΓ

G′ → BΓ
G induced by ι is surjective.

Proof. By Theorem 4.46 it is enough to show, that for each m ≥ 1, each µ ∈ O[Gm]G0 and each
γ = (γ1, . . . , γm) ∈ Γm, the element tµ,γ ∈ BΓ

G has a preimage in BΓ
G′ . By surjectivity of O[G′m]G′0

→
O[Gm]G0 , we find some µ′ ∈ O[G′m]G′0 mapping to µ. We claim, that ι∗(tµ′,γ) = tµ,γ . Let A ∈ CAlgO,
Θ ∈ PCΓ

G(A) and fΘ : BΓ
G → A the homomorphism attached to Θ. Let fι(Θ) : BΓ

G′ → A be the
homomorphism attached to ι(Θ). By definition fΘ(ι∗(tµ′,γ)) = fι(Θ)(tµ′,γ) = ι(Θ)m(µ′)(γ) = Θm(γ).
Since this characterizes ι∗(tµ′,γ) uniquely, we have ι∗(tµ′,γ) = tµ,γ .

Lemma 6.13. Let Γ be a profinite group. Let G and G′ be generalized reductive group schemes over a
coefficient ring Λ with finite residue field κ. Let ι : G→ G′ be a homomorphism of Λ-group schemes. Let
Θ ∈ cPCΓ

G(κ) be a continuous pseudocharacter and we denote by ι(Θ) its image in cPCΓ
G′(κ). Assume,

that the homomorphism BΓ
G′/p→ BΓ

G/p is surjective. Then the natural homomorphism Rps
Λ,ι(Θ)

→ Rps
Λ,Θ

is surjective.

Proof. Let B := BΓ
G/p, B′ := BΓ

G′/p, R := Rps
Λ,Θ

/p, R′ := Rps
Λ,ι(Θ)

/p and let J := ker(B′ → B). By
Nakayama’s lemma it is enough to show, that the natural map j : R′ = lim←−I′∈I′ B

′/I ′ → lim←−I∈I B/I = R

induced by ι is surjective. Here the ideals I and I ′ are defined as in the proof of Theorem 6.4. To an
ideal I ∈ I, we attach the ideal j−1(I) and we claim, that j−1(I) ∈ I ′ and this induces a well-defined
map of cofiltered sets j−1 : I → I ′.
As in the proof of Theorem 6.4, let ψ : B → κ be the homomorphism attached to Θ. Then ψ′ := ψ ◦ j is
the homomorphism attached to ι(Θ). Let m := ker(ψ) and m′ := ker(ψ′). We observe, that m′ = j−1(m)
and thus j−1(I) ⊆ m′ for all I ∈ I. For the second property in the definition of I ′, we observe, that
B′/j−1(I) → B/I is injective, and surjectivity follows as pB = 0. So B′/j−1(I) ∼= B/I is finite. Let
Θu ∈ PCΓ

G(B) and Θu′ ∈ PCΓ
G′(B′) be the universal pseudocharacters mod p. The pseudocharacter

π
j−1(I)
∗ Θu′ = ι(πI∗Θu) is continuous as the image of a continuous pseudocharacter.

Next, we claim, that the map I ′ → I, I ′ 7→ j(I ′ + J) is surjective. Indeed, if I ∈ I, we have just
shown, that j−1(I) ∈ I ′ and j(j−1(I) + J) = j(j−1(I)) = I. We therefore obtain an isomorphism
R ∼= lim←−I′∈I′ B

′/(I ′ +J) and the map between deformation rings is now a naturally induced map between
limits over I ′.
The image T of R′ in R is compact, since R′ is profinite. It is dense, since for all I ′ ∈ I ′, the map
B′/I ′ → B′/(I ′ + J) is surjective. As an inverse limit of Hausdorff spaces R is Hausdorff and hence T is
closed in R. It follows, that T = R.

Theorem 6.14. Let G ∈ {SLn,GLn,Sp2n,GSp2n,SO2n+1,O2n+1,GOn} over a coefficient ring Λ with
finite residue field κ and assume p > 2 in the orthogonal cases. Let ι : G → GLd be the standard
representation of G. Let Γ be a profinite group and let Θ ∈ cPCΓ

G(κ) be a continuous pseudocharacter.
Then the canonical map Rps

Λ,ι(Θ)
→ Rps

Λ,Θ
is surjective. If in addition Γ satisfies Mazur’s condition Φp,

then Rps
Λ,Θ

is noetherian.

Proof. We have shown in Corollary 5.14, that for m ≥ 1 the natural maps O/p[GLmd ]GLn → O/p[Gm]G0

are surjective. It follows from Lemma 6.12, that the maps BΓ
GLd,Λ/p

→ BΓ
GΛ/p

are surjective. By Proposi-
tion 4.48, we have surjections BΓ

GLd
/p→ BΓ

G/p. Hence we can apply Lemma 6.13 and see, that the map
Rps

Λ,ι(Θ)
→ Rps

Λ,Θ
is surjective.

6.2 Comparing deformations and pseudodeformations

The main purpose of this section is to compare unframed deformation functors to pseudodeformation
functors when the residue field of our deformation problem is a finite or a local field. We first prove a
version of [BHKT, Theorem 4.10] extended to local residue fields.
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Proposition 6.15. Let Γ be a profinite group. Let κ be a finite or local field, let Λ be a coefficient
ring for κ and let G be a connected reductive Λ-group scheme. Let ρ : Γ → G(κ) be a continuous
representation and let Θ ∈ cPCΓF

G (κ) be the associated pseudocharacter. Assume, that the centralizer of
ρ is trivial in Gad and that ρ is G-completely reducible. Then the natural map of deformation functors
DefΛ,ρ → DefΛ,Θ is an isomorphism.

Proof. Let A ∈ AΛ and Θ ∈ DefΛ,Θ(A). For any n ≥ 1, we define affine Λ-schemes of finite type Xn := Gn

and Yn := Gn �G and let π : Xn → Yn be the projection.
Now fix n ≥ 1 and γ1, . . . , γn ∈ Γ, such that the scheme-theoretic centralizer ZGκ(x) of x := (g1, . . . , gn)
in Gκ coincides with the scheme-theoretic centralizer ZGκ

(ρ) of ρ in Gκ. This is possible, as κ[G] is
a noetherian ring. Thus the image of ZGκ

(x) in Gad
κ is trivial by assumption. We may assume by

[Mar03, Lemma 9.2], that the subgroup generated by ρ(γ1), . . . , ρ(γn) has the same Zariski closure as
ρ(Γ), we denote this topological subgroup of G(κ) by H. Since ρ is Gκ-completely reducible, by [BMR05,
Proposition 2.16] the orbit of x in Xn,κ is closed.
In [BHKT, Theorem 4.10], the completion of Xn at x ∈ Xn(κ) is defined as the functor X∧,x

n : AΛ → Set
defined by X∧,x

n (A) := Xn(A)×Xn(κ) {x}. Similarly, for fixed h ∈ H, we define the completion of Xn+1
at y := (x, h) ∈ Xn+1(κ) and the respective completions of Yn and Yn+1 at π(x) and π(y). Let Gad,∧

be the completion of Gad at the neutral element. It is a group functor on AΛ, representable by a formal
Λ-scheme.
In analogy to the completion at a point, we define the completion of Xn+1 at H as the functor X∧,H

n+1 :
AΛ → Set by X∧,H

n+1(A) := Xn+1(A) ×Xn+1(κ) H, where the map H → Xn+1(κ) is given by h 7→
(g1, . . . , gn, h). Similarly we define Y ∧,H

n+1 (A) := Yn+1(A) ×Yn+1(κ) H. We will need these completions
to prove continuity of the representation we construct. One can think of completions at H just as putting
the completions at single points of H into a continuous family.
Θn+1 determines a natural map Λ[Gn+1]G → C(Γ, A), f 7→ (γ 7→ Θn+1(f)(γ1, . . . , γn, γ)), which is an
element α ∈ Yn+1(C(Γ, A)) = C(Γ, Yn+1(A)). Here Yn+1(A) is endowed with the discrete topology if κ
is finite and with the subspace topology of some closed immersion into an affine space over A equipped
with the product topology as a κ-vector space.
By the universal property of pullbacks and compatibility of the topologies we have defined on point sets
in Section 4.1.5, we obtain a unique continuous map β : Γ→ Y ∧,H

n+1 (A) as indicated in the diagram:

Γ β //

α

%%

ρ
""

Y ∧,H
n+1 (A)

��

// Yn+1(A)

��
H // Yn+1(κ)

The proof of [BHKT, Proposition 3.13] goes through verbatim in our setting. Hence Gad,∧ acts freely
on X∧,x

n and the projection X∧,x
n → Y

∧,π(x)
n factors through an isomorphism X∧,x

n /Gad,∧ → Y
∧,π(x)
n . In

particular X∧,x
n (A) → Y

∧,π(x)
n (A) is surjective and we can choose a preimage (g1, . . . , gn) ∈ X∧,x

n (A) of
the point in Y

∧,π(x)
n (A) determined by Λ[Gn]G → A, f 7→ Θn(f)(γ1, . . . , γn).

For fixed h ∈ H and y := (x, h), we have two cartesian squares:

X∧,y
n+1(A) //

��

Y
∧,π(y)
n+1 (A) //

��

{h}

��
X∧,H
n+1(A) // Y ∧,H

n+1 (A) // H

As in the proof of [BHKT, Theorem 4.10], the top left arrow is a Gad,∧(A)-torsor of sets, so X∧,y
n+1 →

Y
∧,π(y)
n+1 is a Gad,∧-pseudotorsor. It follows, that X∧,H

n+1 → Y ∧,H
n+1 is a Gad,∧-pseudotorsor. The square in

74



the following diagram is cartesian, since the horizontal arrows are Gad,∧-pseudotorsors and the vertical
maps are equivariant:

Γ //

β

&&

""

X∧,H
n+1(A)

��

// Y ∧,H
n+1 (A)

��
X∧,x
n (A) // Y ∧,π(x)

n (A)

The map Γ → X∧,x
n (A) maps constantly to (g1, . . . , gn). By the discussion of the topologies on point

sets in Section 4.1.5, the diagram is also cartesian in the category of topological spaces. Again by the
universal property, we obtain a continuous map Γ→ X

∧,G(κ)
n+1 (A).

The composition Γ → X
∧,G(κ)
n+1 (A) → Xn+1(A)

prn+1→ G(A) defines the desired ρ with Θρ = Θ as in
[BHKT, Theorem 4.10]. The second map is continuous by definition of the completion of X∧,G(κ)

n+1 as a
pullback. The projection prn+1 is continuous by definition of the topologies on point sets Proposition 4.12.
So the composition ρ is continuous and this finishes the proof.

We can now prove a continuous version of Theorem 4.24 for certain residual representations, which will
be enough for the proof of Proposition 6.32.
Proposition 6.16. Let Γ be a profinite group, let κ be a finite or a local field, let Λ be a coefficient ring for
κ and let G be a Chevalley group over Λ. Suppose Θ ∈ cPCΓ

G(Oκ) is a continuous pseudocharacter, where
Oκ = κ if κ is finite. If κ is a local field of positive characteristic, assume that Γ is topologically finitely
generated and that the reduction Θ of Θ to the residue field k of κ comes from a G-completely reducible
representation ρ : Γ → G(k′) for some finite extension k′/k, which has scheme-theoretically trivial
centralizer in Gad

k′ . Then there exists a continuous (G-completely reducible) representation ρ : Γ→ G(κ)
with Θρ = Θ, which is defined over the ring of integers Oκ′ of a finite extension κ′/κ.

Proof. Suppose κ is finite. Then Theorem 4.24 provides us with a G-completely reducible representation
ρ : Γ→ G(κ), such that Θρ = Θ. By [BHKT, Proposition 4.7 (iii)], ρ is continuous. Since Γ is profinite,
ρ(Γ) is finite. In particular there exists a finite extension κ′, such that ρ(Γ) ⊆ G(κ′).
If κ is a local field of characteristic 0, we can argue the same way using [BHKT, Proposition 4.7 (ii)] and
[BHKT, Proposition 4.8 (ii)].
Assume κ is a local field of positive characteristic. Let k be the residue field of Oκ. By the first step
the reduction Θ of Θ to k comes from a continuous G-completely reducible representation ρ : Γ→ G(k′)
over a finite extension k′/k, which by our assumption has scheme-theoretically trivial centralizer in Gad

k′ .
Choose a finite extension κ′/κ, such that the residue field of Oκ′ is k′. So Θ⊗Oκ

Oκ′ is a deformation of
Θ ⊗k k′. By Proposition 6.15 Θ ⊗Oκ

Oκ′ thus comes from a continuous deformation ρ : Γ → G(Oκ′) of
ρ.

Definition 6.17. We say, that a prime p is very good for a simple algebraic group G over an algebraically
closed field, if the following conditions hold.

1. p ∤ n+ 1, if G is of type An.

2. p ̸= 2, if G is of type B,C,D,E, F,G.

3. p ̸= 3, if G is of type E,F,G.

4. p ̸= 5, if G is of type E8.

We say, that p is very good for a reductive algebraic group G, if it is very good for every simple factor of
G0.
Lemma 6.18. Let Γ be a group. Let G ⊆ GLn be a reductive group over an algebraically closed field
k of characteristic p ≥ 0 and let ρ : Γ → G(k) be a G-completely reducible representation, which is in
addition irreducible after embedding into GLn(k).
Assume, that one of the following holds:
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1. p is very good for Gad and Gad is connected.

2. (GLn, G) is a reductive pair, i.e. g is a G-module direct summand of gln.

Then the scheme-theoretic centralizer ZGad(ρ) of ρ in Gad is trivial.

Proof. Beware, that ZGad(ρ) is defined as follows. For A ∈ CAlgk, the group ZGad(ρ)(A) is defined as
the kernel of the map

Gad(A)→ Hom(Γ, G(A)), g 7→ gρg−1

By Schur’s lemma ZGLn(ρ)(k) = Z(GLn)(k). Let π : G↠ Gad be the canonical projection. By definition,
ZG(ρ) = π−1(ZGad(ρ)) and ZG(ρ) = ZGLn

(ρ) ∩ G. We get Z(G)(k) ⊆ π−1(ZGad(ρ)(k)) = ZG(ρ)(k) =
ZGLn

(ρ)(k) ∩G(k) ⊆ Z(G)(k). We conclude, that ZGad(ρ)(k) is trivial.
Assuming (1), we see by [Bat+07, Theorem 1.2] since p is very good for Gad and Gad is connected, that
ZGad(ρ) is smooth and thus trivial as an algebraic group.
Assuming (2), we obtain from [Bat+07, Corollary 2.13], that ZG(ρ) is smooth. Since GLn is separable,
ZGLn

(ρ) is also smooth and we have ZGLn
(ρ) = Z(GLn). We can repeat the above calculation without

taking points:
Z(G) ⊆ π−1(ZGad) = ZG(ρ) = ZGLn

(ρ) ∩G = Z(GLn) ∩G ⊆ Z(G)
Hence ZGad = 1.

Proposition 6.19. Let ρ : ΓF → G(κ) be a continuous representation over a finite or local field κ and
let Λ be a coefficient ring for κ. Assume, that the unframed deformation functor is representable by Rρ.
We have a presentation Rρ ∼= Λ[[x1, . . . , xr]]/(f1, . . . , fs), where r = h1(ΓF , adρ) and s = h2(ΓF , adρ).

Proof. This follows from a standard calculation with cocycles. See e.g. [Til96].

Proposition 6.20. Let F be a p-adic local field with absolute Galois group ΓF . Let κ be a finite or
local field of very good characteristic p ≥ 0 for Gad

κ , let Λ be a coefficient ring for κ and let G ⊆ GLn
be a Chevalley group over Λ. Let ρ : ΓF → G(κ) be an absolutely G-completely reducible continuous
representation with associated G-pseudocharacter Θ ∈ cPCΓF

G (κ), such that ρ is absolutely irreducible
after embedding into GLn(κ) and such that H2(ΓF , gκ) = 0.
Assume, that one of the following holds:

1. p is very good for Gad
κ and Gad

κ is connected.

2. (GLn,κ, Gκ) is a reductive pair, i.e. gκ is a Gκ-module direct summand of gln,κ.

Then Rps
Λ,Θ

is formally smooth over Λ of dimension dim gκ · [F : Qp] + h0(ΓF , gκ) + dim Λ. In particular
Rps

Λ,Θ
∼= Λ[[x1, . . . , xr]].

Proof. By Lemma 6.18 the scheme-theoretic centralizer of ρ in Gad
κ is trivial. We can apply Proposi-

tion 6.15 to obtain a canonical isomorphism Rρ ∼= Rps
Λ,Θ

. By Proposition 6.19, the deformation ring Rρ
is isomorphic to Λ[[x1, . . . , xr]], where r = h1(ΓF , gκ). The Euler characteristic formula [BJ19, Theorem
3.4.1] implies, that dimRρ = dim gκ · [F : Qp] + h0(ΓF , gκ) + dim Λ.

6.3 Dimension of Rps
Θ

Let OL be the ring of integers of a p-adic field L with uniformizer ϖ and residue field κ, let G be
a Chevalley group over OL and let Θ ∈ cPCΓ

G(κ) be a continuous G-pseudocharacter. Let XΘ :=
Spec(Rps

OL,Θ
/ϖ), where Rps

OL,Θ
is the universal pseudodeformation ring of Θ with coefficients O from

Theorem 6.4. We define

Sp2n(A) := {M ∈ GL2n(A) |M−1 = JM⊤J−1},

where J =
(

0 In
−In 0

)
for every commutative ring A. In this section, we use the methods developed in [BJ19]

to estimate the dimension of XΘ for G = Sp2n and Γ = ΓF the absolute Galois group of a local field
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F/Qp. We assume throughout, that p > 2. Note, that by Theorem 6.11 Rps
OL,Θ

is noetherian, since ΓF is
topologically finitely generated. In lack of reference for this fact, we refer to Chandan Singh Dalawat’s
answer to Mathoverflow Question # 63094. Let ι : Sp2n → GL2n be the standard representation. By
Proposition 4.58, the GL2n-pseudocharacter ι(Θ) corresponds to a unique determinant law Dι(Θ) of
dimension 2n. The pseudodeformation ring Runiv

OL,Dι(Θ)
of Dι(Θ) defined in [BJ19, Proposition 4.7.4] is by

Corollary 6.5 canonically isomorphic to Rps
OL,ι(Θ)

. We shall use this identification without further mention
whenever we cite results from [BJ19].

6.3.1 Symplectic representations

Definition 6.21. Let Γ be a group and let V be a representation of Γ on a finite-dimensional vector
space over an algebraically closed field. We say, that V is symplectic, if there exists a non-degenerate
antisymmetric Γ-invariant k-bilinear form β : V × V → k.

With Definition 6.21, being symplectic is a property of usual representations. We also know this under the
name of quaternionic representations. Fixing a non-degenerate antisymmetric Γ-invariant β : V × V →
k, a symplectic representation is a homomorphism Γ → Sp(V, β), where Sp(V, β) is the subgroup of
GL(V ) consisting of endomorphisms Φ ∈ GL(V ) with β(Φ(x),Φ(y)) = β(x, y) for all x, y ∈ V . The
structure theory of bilinear forms [Jac85, Theorem 6.3] tells us that Sp(V, β) is isomorphic to the standard
symplectic group Sp2n(k), where 2n = dimV .
For semisimple symplectic representations we have the following structure theorem.

Proposition 6.22. Every semisimple symplectic representation of a group Γ over an algebraically closed
field k is a direct sum of representations of one of the following two types.

1. An irreducible symplectic representation.

2. A direct sum V ⊕ V ∗, where V is an arbitrary irreducible representation.

Proof. Let V be a symplectic representation.
We proceed by induction over dimV . If dimV = 0 there is nothing to show. We assume dimV > 0.
Let W be an irreducible subrepresentation of V and assume, that β : W ×W → k is non-degenerate. In
particular W is an irreducible symplectic representation. Then W⊥ is non-degenerate and Γ-invariant
and we may assume W⊥ has the desired form. This implies the claim.
We now assume, that V has no irreducible subrepresentation on which β is non-degenerate. Let W be any
irreducible subrepresentation of V . Since β is non-degenerate, there is an irreducible subrepresentation
W ′ ̸= W , such that β : W ×W ′ → k is non-degenerate. β is non-degenerate on W ⊕W ′, so (W ⊕W ′)⊥

is non-degenerate and Γ-invariant. As in the previous case, this implies the claim.

This motivates the following terminology. We say that a symplectic representation V is symplectically
decomposable, if it can be written as the direct sum of two nonzero symplectic representations, and
symplectically indecomposable otherwise. There are exactly two types of symplectically indecomposable
representations: Those which are irreducible under the standard embedding into GL2n and those which
are a direct sum W ⊕W ∗ for some irreducible representation W .
When p > 2, two semisimple symplectic representations over an algebraically closed field are conjugate
over Sp2n if and only if they are conjugate over GL2n. This is a consequence of the fact, that when
p > 2 the notions of Sp2n-semisimplicity and GL2n-semisimplicity coincide [Ric88, Corollary 16.10] and
the uniqueness part of Theorem 4.24. So being symplectic can be seen as a property of GL2n-conjugacy
classes of semisimple representations. It is easy to check, that a representation of the form W ⊕ W ∗

for some arbitrary representation W is always symplectic. We call these representations of pair type. In
general a semisimple symplectic representation is a direct sum of irreducible symplectic representations
and representations of pair type.
It can actually deduced from the theory of Lafforgue’s pseudocharacters and the first fundamental theo-
rems of invariant theory for the general linear and symplectic groups, that semisimple symplectic repre-
sentations over an algebraically closed field k are conjugate over GL2n(k) if and only if they are conjugate
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by a symplectic matrix. The proof we give requires technique developed in the next section, but it is a
surprisingly basic application of G-pseudocharacters.

Proposition 6.23. Let ρ1, ρ2 : Γ → Sp2n(k) be Sp2n-completely reducible representations over an
algebraically closed field k. Assume, that there is a matrix M ∈ GL2n(k), such that ρ1 = Mρ2M

−1.
Then there is a matrix N ∈ Sp2n(k), such that ρ1 = Nρ2N

−1.

Proof. Let us for simplicity of the argument assume that the algebraic groups GL2n and Sp2n are defined
over k. The equation ρ1 = Mρ2M

−1 implies, that the associated GL2n-pseudocharacters Θρ1 ,Θρ2 :
k[GL•

2n]GL2n → Map(Γ•, k) are equal via F-k-algebras (Lemma 4.21). We are using the characterization of
G-pseudocharacters of Corollary 4.45. At the same time, the associated Sp2n-pseudocharacters Θ′

ρ1
,Θ′

ρ2
:

k[Sp•
2n]Sp2n → Map(Γ•, k) are mapped to Θρ1 ,Θρ2 under the standard representation Sp2n → GL2n. By

the first fundamental theorems for GL2n [Don92] and Sp2n [Zub99], the homomorphism of F-k-algebras
k[GL•

2n]GL2n → k[Sp•
2n]Sp2n induced by the standard representation is (objectwise) surjective, hence

Θ′
ρ1

= Θ′
ρ2

. From the reconstruction theorem Theorem 4.56 and Sp2n-complete reducibility it follows,
that ρ1 and ρ2 are conjugate by a matrix N ∈ Sp2n(k).

6.3.2 Subdivision of XΘ

For a point x ∈ XΘ, there is a natural G-pseudocharacter Θx ∈ PCΓ
G(κ(x)) defined after choice of an

algebraic closure κ(x) of the residue field κ(x) of x. Let P be a property of G-completely reducible
representations over an algebraically closed field, which is stable under G-conjugation and passage to
algebraically closed sub- and overfields. We say x has property P, if the G-completely reducible represen-
tation attached to Θx by Theorem 4.24 has property P. If Q is a property of representations into GL2n,
we say that a representation ρ into Sp2n has property Q, if ρ followed by the standard representation
ι : Sp2n → GL2n has property Q.
In their analysis [BJ19] of the special fiber of the pseudodeformation space for GLn, Böckle and Juschka
have noticed that irreducible points need not be unobstructed. They have found a convenient character-
ization of obstructed irreducible points [BJ19, Lemma 5.1.1], which allows them to find good dimension
bounds for the obstructed locus. We recall their definition [BJ19, Definition 5.1.2]. It turns out, that for
G = Sp2n the dimension of the locus of special points for GL2n is still small enough to get the desired
estimates.

Definition 6.24. Let k be an algebraically closed Zp-field and let ρ : ΓF → GL2n(k) be an irreducible
representation. We say, that ρ is special, if one of the following holds.

1. ζp /∈ F and ρ ∼= ρ(1).

2. ζp ∈ F and there is some degree p Galois extension F ′/F , such that ρ|ΓF ′ is reducible.

Definition 6.25. We define the following subsets of XΘ.

1. Xnspcl
Θ is the subset of non-special points.

2. Xspcl
Θ is the subset of special points.

3. Xpair
Θ is the subset of points of pair type.

4. Xdec
Θ is the subset of symplectically decomposable points.

5. For any of the above subsets Ẋ
?
Θ := X

?
Θ \ {mRps

O,Θ
}.

Proposition 6.26. XΘ = X
nspcl
Θ ∪̇ Xspcl

Θ ∪̇ (Xdec
Θ ∪Xpair

Θ ).

Proof. This follows directly from Proposition 6.22.

Lemma 6.27. Suppose Θ = Θ1 ⊕ Θ2 ∈ cPCΓF

Sp2n
(κ) with Θ1 ∈ cPCΓF

Sp2a
(κ), Θ2 ∈ cPCΓF

Sp2b
(κ) and

a+b = n, where the direct sum is a direct sum of symplectic pseudocharacters as explained in Section 4.2.3.
Then the map Rps

Θ
→ Rps

Θ1
⊗̂OR

ps
Θ2

induced by (Θ1,Θ2) 7→ Θ1 ⊕Θ2 is finite.
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Proof. Let ι : Sp2d → GL2d be the canonical embedding and let ι(Θ) be the associated GL2d-pseudocharacter,
similarly for ιi(Θi). By Lemma 6.13 Rps

Θ
is a quotient of Rps

ι(Θ)
and similarly for Rps

Θi
. We know from

[BIP21, Lemma 3.23], that the map Rps
ι(Θ)
→ Rps

ι1(Θ1)
⊗̂OR

ps
ι2(Θ2)

is finite. It follows, that the induced map
Rps

Θ
→ (Rps

ι1(Θ1)
⊗̂OR

ps
ι2(Θ2)

)⊗̂Rps
ι(Θ)

Rps
Θ

is finite. Since there is a natural surjection Rps
ι1(Θ1)

⊗̂OR
ps
ι2(Θ2)

↠

Rps
Θ1
⊗̂OR

ps
Θ2

, the natural map (Rps
ι1(Θ1)

⊗̂OR
ps
ι2(Θ2)

)⊗̂Rps
ι(Θ)

Rps
Θ
→ Rps

Θ1
⊗̂OR

ps
Θ2

is surjective.

Lemma 6.28. Let Θ = Θ1 ⊕ Θ∗
1 ∈ cPCΓF

Sp2n
(κ) be a symplectic representation as explained at the end

of Section 4.2.3 with Θ1 ∈ cPCΓF

GLn
(κ). Then the map Rps

Θ
→ Rps

Θ1
induced by Θ1 7→ Θ1 ⊕Θ∗

1 is finite.

Proof. As in the proof of Lemma 6.27, the map Rps
ι(Θ)

→ Rps
ι1(Θ1)

⊗̂OR
ps
ι1(Θ1)

is finite. By affineness,
the map Rps

ι1(Θ1)
⊗̂OR

ps
ι1(Θ1)

→ Rps
ι1(Θ1)

induced by Θ1 7→ (Θ1,Θ∗
1) is surjective. So the composition

Rps
ι(Θ)

→ Rps
ι1(Θ1)

is finite and induced by Θ1 7→ Θ1 ⊕ Θ∗
1. Tensoring with Rps

Θ
, we obtain a finite

map Rps
Θ
→ Rps

ι1(Θ1)
⊗̂Rps

ι(Θ)
Rps

Θ
∼= Rps

Θ1
. The last isomorphism can be seen to hold by considering the

corresponding deformation functors.

Proposition 6.29.

1. The natural map XΘ → Xι(Θ) is a closed immersion.

2. Xspcl
Θ is closed in X

irr
Θ .

3. Xpair
Θ is closed in XΘ.

4. Xdec
Θ is closed in XΘ.

5. Xnspcl
Θ is open in XΘ.

Proof.

1. By Theorem 6.14, the map Rps
OL,ι(Θ)

→ Rps
OL,Θ

is surjective.

2. Xspcl
Θ is the preimage of Xspcl

ι(Θ) under the closed immersion XΘ → Xι(Θ). Since Xnspcl
ι(Θ) is open in

Xι(Θ) by [BJ19, Theorem 4.5.1 (ii)], Xspcl
ι(Θ) is closed in X

irr
ι(Θ) and the claim follows.

3. Xpair
Θ is the union of the images of finitely many maps as in Lemma 6.28.

4. Xdec
Θ is the union of the images of finitely many maps as in Lemma 6.27.

5. X irr
Θ is open in XΘ, as the complement of Xpair

Θ ∪Xdec
Θ (see Proposition 6.26). The subset Xnspcl

Θ ⊆
X

irr
Θ is the complement of Xspcl

Θ , which is closed in X irr
Θ . Hence Xnspcl

Θ is open in an open subset of
XΘ.

Lemma 6.30. Let f̄ : κ → κ′ be a homomorphism between either two finite or two local fields. Let
f : Λ → Λ′ be a local homomorphism of complete noetherian local rings with residue fields κ and κ′

respectively and assume, that f reduces to f̄ on residue fields. Let Γ be a profinite group and let G be
an affine Λ-group scheme. Let Θ ∈ cPCΓ

G(κ) and define Θ′ := Θ⊗κ κ′. Then the natural map

Rps
Λ′,Θ′ → Rps

Λ,Θ
⊗̂ΛΛ′

induced by
DefΛ,Θ(A)→ DefΛ′,Θ′(A⊗Λ Λ′), Θ 7→ Θ⊗Λ Λ′; A ∈ AΛ

is an isomorphism.

Proof. The proof of [BJ19, Proposition 4.7.6] carries over in our setting.
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6.3.3 Dimension bounds for G = Sp2n

The following proposition is the analog of [BJ19, Lemma 5.1.6] for G = Sp2n.

Lemma 6.31. Let k be a field with 2 ∈ k×. Then the symplectic Lie algebra sp2n,k is a direct summand
of gl2n,k and of sl2n,k and the corresponding projection maps gl2n,k ↠ sp2n,k and sl2n,k ↠ sp2n,k are
equivariant for the adjoint action of the symplectic group Sp2n.

Proof. Recall, that sp2n,k = {M ∈ gl2n,k | JM⊤ + MJ = 0}, where J =
(

0 In
−In 0

)
. Right multiplication

with J is an isomorphism of k-vector spaces −·J : gl2n,k →M2n(k) and identifies sp2n,k with the subspace
of symmetric 2n×2n matrices. The symmetrization map a : M2n(k)→M2n(k), M 7→ 1

2 (M+M⊤) shows,
that symmetric matrices are a direct summand of M2n(k). The map gl2n(k)→ gl2n(k), M 7→ a(MJ)J−1

is equivariant for the adjoint action of Sp2n on gl2n(k): Suppose M ∈M2n(k) and A ∈ Sp2n(k): Then

a(AMA−1J)J−1 = 1
2(AMA−1 + J−1(A−1)⊤M⊤A⊤J−1)

and

Aa(MJ)J−1A−1 = 1
2(AMA−1 +AJ−1M⊤J−1A−1) = 1

2(AMA−1 + J−1(A−1)⊤M⊤A⊤J−1)

using A ∈ Sp2n(k), so that A−1 = JA⊤J−1 and J⊤ = J−1. We also obtain, that the projection
map gl2n,k ↠ sp2n,k is split by the inclusion and equivariant for the adjoint action of Sp2n. Since
sp2n,k ⊆ sl2n,k, the restriction sl2n,k → sp2n,k is still split by the inclusion and Sp2n-equivariant.

Proposition 6.32. Let Θ ∈ cPCΓF

Sp2n
(κ) with κ a finite field of characteristic p > 2 and let Λ be a

coefficient ring for κ. Let x ∈ U := Ẋ
irr
Λ,Θ be a closed point. By [BIP21, Lemma 3.16] the residue field

κ(x) of x is a local field. Let Rps
Θx

be the universal pseudodeformation ring of the Sp2n-pseudocharacter
Θx attached to x. By Proposition 6.16, there is a finite extension κ′ of κ(x), such that Θ′

x := Θx⊗κ(x) κ
′

is induced by a continuous absolutely irreducible representation ρ : ΓF → G(κ′).

1. (a) Suppose, that x is non-special. Then Rps
Θ′

x
is regular of dimension n(2n+ 1) · [F : Qp].

(b) If in addition Unspcl ̸= ∅, then Unspcl is regular and equidimensional of dimension n(2n+1)·[F :
Qp]− 1.

2. Suppose, that ζp /∈ F and that x is special. Then dimRps
Θ′

x
∈ {n(2n+ 1) · [F : Qp], n(2n+ 1) · [F :

Qp] + 1}.

3. If ζp /∈ F , then dimU ≤ n(2n+ 1) · [F : Qp].

Proof. Ad (1) (a). If ζp /∈ F , then by [BJ19, Lemma 5.1.1 Case I], we have H2(ΓF , gl2n,κ′) = 0. Since 2
is invertible in κ′, by Lemma 6.31 sp2n,κ′ is a direct summand of gl2n,κ′ and so H2(ΓF , sp2n,κ′) = 0. If
ζp ∈ F , then we have H2(ΓF , sl2n) = 0 by [BJ19, Lemma 5.1.1 case II]. By Lemma 6.31, sp2n is also a
direct summand of sl2n. It follows, that H2(ΓF , sp2n) = 0. Let Rps

Θ′
x

be the universal pseudodeformation
ring of Θ′

x over a coefficient ring Λ′ ⊇ Λ with residue field κ′. By Proposition 6.20 Rps
Θ′

x
is regular

of dimension dim sp2n,κ′ · [F : Qp] + h0(ΓF , sp2n,κ′). By Schur’s lemma h0(ΓF , gl2n,κ′) = 1. Clearly
H0(ΓF , gl2n,κ′) is spanned by the diagonal matrices in gl2n,κ′ . These are not contained in sp2n,κ′ , hence
h0(ΓF , sp2n,κ′) = 0.
Ad (1) (b). Assume, that x is non-special. By Proposition 6.6, the universal pseudodeformation ring Rps

Θx

can be identified with the completion of Rps
Θ
⊗Λκ(x) at the kernel of the natural map Rps

Θ
⊗Λκ(x)→ κ(x)

attached to x. Since x is a 1-dimensional point of Rps
Θ

with residue characteristic p, it follows from [BJ19,
Lemma 3.3.3], that x is a regular point of dimension n(2n+ 1) · [F : Qp]− 1 of Unspcl. Let U sing ⊆ Unspcl

be the closed subscheme of singular points. By [Sta19, 02J4] and [Sta19, 01TB], the closed points are
dense in U sing. But since all closed points of Unspcl are regular, U sing must be empty. Since closed points
are dense in Unspcl, it follows that Unspcl is equidimensional of dimension n(2n+ 1) · [F : Qp]− 1.
Ad (2). As in (1)(a) h0(ΓF , sp2n,κ′) = 0. Since x is special, we have ρ ∼= ρ(1) by [BJ19, Lemma 5.1.1 Case
(I)]. We have H2(ΓF , gl2n,κ′) ∼= HomΓF

(ρ, ρ(1)) ∼= κ′ since ρ is irreducible, hence h2(ΓF , sp2n,κ′) ≤ 1. The
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case when h2(ΓF , sp2n,κ′) = 0 is already covered in Proposition 6.20, so we assume h2(ΓF , sp2n,κ′) = 1.
By the Euler characteristic formula [BJ19, Theorem 3.4.1]

h1(ΓF , sp2n,κ′) = n(2n+ 1)[F : Qp] + 1

and by Proposition 6.19, Rps
Θ′

x
is a quotient of κ′[[x1, . . . , xn(2n+1)[F :Qp]+1]] by an ideal generated by at

most one element, so the assertion follows.
Ad (4). Let x ∈ U be a closed point. Cases (1) and (2) imply, that dimRps

Θx
≤ n(2n+ 1)[F : Qp] + 1. As

in (1)(b), identifying Rps
Θx

with a completion of Rps
Θ
⊗Λ κ(x) and applying [BJ19, Lemma 3.3.3], we see

that U has dimension ≤ n(2n+ 1)[F : Qp].

Proposition 6.33. Assume G = Sp2n. Then dimX
spcl
Θ ≤ 2n2[F : Qp] + 1. In particular if n[F : Qp] ≥ 3

and if XΘ contains a non-special point, then dimX
spcl
Θ ≤ dimXΘ − 2.

Proof. Since X
spcl
Θ is a closed subspace of Xspcl

ι(Θ) by Proposition 6.29 and the latter can be identified
with the special locus of the pseudodeformation space of the determinant law D attached to ι(Θ) by
Theorem 4.57, we can take the estimate [BJ19, Theorem 5.3.1 (i)] to obtain dimX

spcl
Θ ≤ 2n2[F : Qp] + 1.

If XΘ contains a non-special point, then dimXΘ ≥ dimX
nspcl
Θ = n(2n+ 1)[F : Qp] by Proposition 6.32

(1)(b). We get dimXΘ − dimX
spcl
Θ ≥ n[F : Qp]− 1 ≥ 2.

Theorem 6.34. Assume G = Sp2n.

1. dimX
dec
Θ ≤ n(2n+ 1)[F : Qp]− 4(n− 1)[F : Qp].

In particular, if XΘ contains a non-special point, then dimX
dec
Θ ≤ dimXΘ − 4.

2. dimX
pair
Θ ≤ n2[F : Qp] + 1.

In particular, if XΘ contains a non-special point and n[F : Qp] ≥ 2, then dimX
pair
Θ ≤ dimXΘ − 3.

3. dimXΘ ≤ n(2n+ 1)[F : Qp].
In particular, if XΘ contains a non-special point, then equality holds.

Proof. We make an induction over n, so we assume the entire theorem has been proved for all n′ < n.
Since our assertions are only about dimensions, by Lemma 6.30 we may assume that ι(Θ) comes from a
representation ΓF → GL2n(κ) and that the irreducible constituents are absolutely irreducible.

1. If n = 1, then the decomposable locus Xdec
Θ is empty, so we may assume n ≥ 2. There are up to

isomorphism only finitely many ways to write Θ as a direct sum of two symplectic pseudocharacters
Θ1 ⊕ Θ2. Here the notion of direct sum is that for symplectic pseudocharacters, introduced in
Section 4.2.3. By Lemma 6.27, the map

ιdec
Θ1,Θ2

: XΘ1
×̂OXΘ2

→ XΘ

is finite. We have an inclusion

X
dec
Θ ⊆

⋃
Θ1⊕Θ2=Θ

ιdec
Θ1,Θ2

(XΘ1
×̂OXΘ2

)

where the right hand side is a closed subset of XΘ. Suppose Θ = Θ1 ⊕Θ2 is a decomposition into
an Sp2a-pseudocharacter Θ1 and an Sp2b-pseudocharacter Θ2 for a + b = n with a, b ≥ 1. Then
since ιdec

Θ1,Θ2
is finite and by part (3) of the inductive hypothesis, we have

dim ιdec
Θ1,Θ2

(XΘ1
×̂XΘ2

) ≤ dim(XΘ1
×̂XΘ2

)

≤ a(2a+ 1)[F : Qp] + b(2b+ 1)[F : Qp]
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Calculating

n(2n+ 1)[F : Qp]− a(2a+ 1)[F : Qp]− b(2b+ 1)[F : Qp]
= 4ab[F : Qp] ≥ ( min

a+b=n
a,b≥1

4ab) · [F : Qp] = 4(n− 1)[F : Qp]

we obtain the desired bound

dimX
dec
Θ ≤ n(2n+ 1)[F : Qp]− 4(n− 1)[F : Qp]

If XΘ contains a non-special point, then by Proposition 6.32 (1)(b), we have a lower bound
dimXΘ ≥ n(2n+ 1)[F : Qp]. Since 4(n− 1)[F : Qp] ≥ 4, this implies the assertion.

2. There are finitely many ways to write Θ = Θ1⊕Θ∗
1 for some GLn-pseudocharacter Θ1 and we may

assume, that there is at least one way. The sum yields an Sp2n-pseudocharacter, as explained in
Section 4.2.3. By Lemma 6.28, the map

ιpair
Θ1

: XΘ1
→ XΘ

induced by Θ1 7→ Θ1 ⊕Θ∗
1 is finite. We have an inclusion

X
pair
Θ ⊆

⋃
Θ1⊕Θ∗

1=Θ

ιpair
Θ1

(XΘ1
)

and the estimate
dimX

pair
Θ ≤ dimXΘ1

= n2[F : Qp] + 1
where the last equality follows from [BJ19, p. 5.4.1] after applying the bijection Corollary 6.5.
If XΘ contains a non-special point, we obtain a lower bound as in step (1) and the estimate
n(n+ 1)[F : Qp]− 1 ≥ 3 implies the assertion.

3. Let us recollect all upper bounds, we have established.

dimX
nspcl
Θ

6.32 (1)(b)
≤ n(2n+ 1) · [F : Qp]

dimX
spcl
Θ

6.33
≤ 2n2 · [F : Qp] + 1

dimX
dec
Θ

(1)
≤ n(2n+ 1)[F : Qp]− 4(n− 1)[F : Qp]

dimX
pair
Θ

(2)
≤ n2[F : Qp] + 1

Using the stratification XΘ = X
nspcl
Θ ∪Xspcl

Θ ∪Xdec
Θ ∪Xpair

Θ from Proposition 6.26, we obtain the
desired dimension bound for XΘ. If XΘ contains a non-special point, we obtain equality from
Proposition 6.32 (1)(b).

Corollary 6.35. Assume G = Sp2n and that Θ comes from a residual representation ρ : ΓF → Sp2n(κ),
which is absolutely irreducible under the standard embedding into GL2n(κ). Then dimXΘ = n(2n+1)[F :
Qp] and in particular XΘ contains a non-special point.

Proof. By Proposition 6.15 and Lemma 6.18 XΘ identifies with the deformation functor of ρ. From
[Til96, Proposition 5.7] and the Euler characteristic formula [BJ19, Theorem 3.4.1], we know, that XΘ ≥
h1(ΓF , sp2n) − h2(ΓF , sp2n) = h0(ΓF , sp2n) + n(2n + 1)[F : Qp]. By absolute irreducibility and Schur’s
lemma h0(ΓF , sp2n) = 0. So from Proposition 6.33, we see, that the special locus Xspcl

Θ is strictly
contained in XΘ and there must be a non-special point in XΘ.

Remark 6.36. It is likely that the arguments of Section 6.3.3 carry over to G = GSp2n with minor
modifications. It is also likely that in future work we will be able to deduce the existence of non-special
points for arbitrary residual Sp2n- and GSp2n-pseudocharacters, so that in Theorem 6.34 (3) equality
holds.
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7 The rigid analytic space of G-pseudocharacters

Let Γ be a profinite group, that satisfies Mazur’s condition Φp. In [Che14, Thm. D] Chenevier shows,
that the functor Xd : Anop

Qp
→ Set on the category AnQp

of rigid analytic spaces over Qp, that associates
to every Y ∈ AnQp

the set cDetΓ
d (O(Y )) of continuous d-dimensional determinant laws with values in

the global sections O(Y ), is representable by a quasi-Stein rigid analytic space. Here O(Y ) carries the
topology of uniform convergence on open affinoid subsets. By Proposition 4.58 the set cDetΓ

d (O(Y ))
identifies with cPCΓ

GLd
(O(Y )). The goal of this section is to generalize Chenevier’s construction to

generalized reductive group schemes.
We fix notations:

• Let Γ be a topologically finitely generated profinite group.

• Let K be a finite extension of Qp with ring of integers OK , uniformizer ϖ and residue field F.

• Let AffK be the category of affinoid K-algebras.

• Let AnK be the category of rigid analytic spaces over K.

• Let G be a generalized reductive group scheme over OK .

Definition 7.1. Define XG : AffK → Set as the functor, that associates to every affinoid K-algebra A
the set of continuous G-pseudocharacters cPCΓ

G(A).

All of Chenevier’s results carry over in case G = GLd by base change from Qp to K. Using invariant
theory, it is certainly possible to give a direct construction of XG from XGLd

for the classical groups
SLn, Spn, GSpn, On or GOn. They will be closed subspaces of XGLd

. We will not do this, but instead
give directly a functorial construction for general G, which does not depend on the choice of a faithful
representation of G.

7.1 The formal scheme of G-pseudocharacters

Before we construct the p-adic analytic space of G-pseudocharacters, we define an auxiliary functor on
the level of admissible OK-algebras, which will turn out to be representable by a disjoint union of formal
spectra of deformation rings of residual representations, recovering [Che14, Cor. 3.14] in case G = GLd.

Definition 7.2. Let A be a complete Hausdorff commutative topological ring. We say, that A is admis-
sible, if 0 has a neighborhood basis of ideals, there is an ideal I ⊆ A, called ideal of definition, such that
an ideal J ⊆ A is open if and only if there is some n ≥ 1, such that In ⊆ J .

Lemma 7.3. Let A be a commutative topological ring. The following are equivalent:

1. A is complete linearly topologized and has an ideal of definition. This is the notion of admissiblity
defined in [Sta19, 07E8].

2. A is, in the category of commutative topological rings, isomorphic to a cofiltered limit of discrete
rings lim←−λAλ, where the index category posesses a final object 0 and the transition maps Aλ → A0
are surjective with nilpotent kernel. This is the notion of admissibility defined in [Che14, §3.9].

This is [Gro60, Lemme 0.7.2.2], we recall the proof for convenience of the reader.

Proof.
(1) =⇒ (2) Let I ⊂ A be an ideal of definition. Since A is complete, we have A ∼= lim←−n≥1 A/I

n. The
final object of our index category is A/I. The kernel of the projection map A/In → A/I is nilpotent for
all n.
(2) =⇒ (1) As an inverse limit of discrete rings, A is complete. We claim, that I := ker(A→ A0) is an
ideal of definition. Let U ⊂ A be an open neighborhood of 0. We have to show, that U contains a power
of I. By definition of the topology on the projective limit, there is a finite number of indices λ1, . . . , λn
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and open neighborhoods Ui ⊂ Aλi
of 0 ∈ Aλi

, such that
⋂n
i=1 π

−1
λi

(Ui) ⊂ U , where πλ : A→ Aλ are the
projection maps. Since the Aλ are discrete, we can take Ui = {0}. Since the index category is cofiltered,
there is an index object µ, that admits maps µ → λi for all i = 1, . . . , n. It follows, that ker(πµ) ⊂ U .
Let m be a natural number, such that ker(Aµ → A0)m = 0. We conclude Im ⊂ ker(πµ) ⊂ U .

Definition 7.4. Let XG : AdmOK
→ Set be the functor, that attaches to an admissible OK-algebra A

the set of continuous pseudocharacters cPCΓ
G(A).

Next, we will define a set which will lateron be the index set of a disjoint decomposition of XG into open
subspaces.

Definition 7.5. We denote by |PCΓ
G | ⊂ PCΓ

G the subset of closed points z with finite residue field kz,
such that the canonical G-pseudocharacter Θz ∈ PCΓ

G(kz) attached to z is continuous for the discrete
topology on kz.

Although the above definition is possible in general, we will always assume, that the OK-algebra BΓ
G

representing PCΓ
G is finitely generated.

Lemma 7.6. Let A be a discrete OK-algebra and Θ ∈ cPCΓ
G(A). Then Θ factors over an open normal

subgroup ∆ ≤ Γ.

Proof. The idea is the same as in the proof of Proposition 4.47. Let σ = (σ1, . . . , σr) ∈ Γr be a tuple
of topological generators of Γ and let Σ be the subgroup generated by σ1, . . . , σr. By [Ses77, Theorem 2
(i)], OK [Gr+1]G0 is a finitely generated OK-algebra. Let f1, . . . , fs ∈ OK [Gr+1]G0 be a set of OK-algebra
generators. Since A is discrete and Γr+1 is a profinite set, a map Θr+1(fi) : Γr+1 → A is constant on
a finite partition of open subsets of Γr+1. Such a partition can be refined to consist of open sets in a
topological basis of Γr+1. So we can assume, that the partition of Γr+1 consists of products of sets in a
topological basis of Γ. Refining further, we can assume, that the basis of Γ consists of cosets of an open
normal subgroup ∆i of Γ. We take ∆ :=

⋂s
i=1 ∆i and observe, that for all γ ∈ Γr+1, all δ ∈ ∆ and all

f ∈ OK [Gr+1]G0 , we have Θr+1(f)(γ1, . . . , γr, 1) = Θr+1(f)(γ1, . . . , γr, δ).

Letm ≥ 0, γ = (γ1, . . . , γm) ∈ Γm, f ∈ OK [Gm]G0 and δ ∈ ∆. Our goal is to show, that Θm(f)(γ1, . . . , γm) =
Θm(f)(γ1, . . . , γmδ) and therefore ∆ ⊆ ker(Θ) (see Definition 4.26). Since Θm(f) is continuous and A is
discrete, we can choose γ′ = (γ′

1, . . . , γ
′
m) ∈ Σm close enough to γ, such that both Θm(f)(γ1, . . . , γm) =

Θm(f)(γ′
1, . . . , γ

′
m) and Θm(f)(γ1, . . . , γmδ) = Θm(f)(γ′

1, . . . , γ
′
mδ) hold. There is a homomorphism of

free groups α : FG(m) → FG(r), such that the composition with the projection FG(r) ↠ Γ, xi 7→ si
maps xi to γ′

i. We extend α to a homomorphism α̃ : FG(m+1)→ FG(r+1), such that α̃(xm+1) = xr+1.
Let η : FG(m)→ FG(m+ 1) be defined by η(xi) := xi for i ≤ m− 1 and η(xm) = xmxm+1.
Using, what we have just proved, we conclude:

Θm(f)(γ1, . . . , γmδ) = Θm(f)(γ′
1, . . . , γ

′
mδ)

= Θm+1(fη)(γ′
1, . . . , γ

′
m, δ)

= Θr+1((fη)α̃)(σ1, . . . , σr, δ)
= Θr+1((fη)α̃)(σ1, . . . , σr, 1)
= Θm+1(fη)(γ′

1, . . . , γ
′
m, 1)

= Θm(f)(γ′
1, . . . , γ

′
m)

= Θm(f)(γ1, . . . , γm)

By the homomorphisms theorem Lemma 4.28, Θ factors over a unique pseudocharacter of Γ/∆.

We have a more explicit description of |PCΓ
G |:

Lemma 7.7. There is a canonical bijection between |PCΓ
G | and the set of continuous G-completely

reducible representations Γ → G(F) up to G(F)-conjugation and the F-linear Frobenius action on G(F)
on the coefficients.

Proof. Let S be the set of continuous G-completely reducible representations Γ→ G(F) modulo the action
of G(F) by conjugation and modulo the action of the F-Frobenius of F on the entries of G(F). Let S →
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|PCΓ
G | be the map, that maps an equivalence class [ρ] to the well-defined and unique point in the image

of Spec(F) → PCΓ
G attached to Θρ. Surjectivity follows from the reconstruction theorem Theorem 4.56

together with the fact, that a continuous pseudocharacter over F factors over an open normal subgroup
Lemma 7.6. For injectivity suppose ρ, ρ′ : Γ → G(F) are such, that the attached pseudocharacters Θρ

and Θρ′ are supported on the same point z ∈ |PCΓ
G |. Then there are F-homomorphisms f, f ′ : kz → F,

such that Θz ⊗kz,f F = Θρ and Θz ⊗kz,f ′ F = Θρ′ . We can take a power of the F-Frobenius φ : F → F,
such that φ ◦ f = f ′, in particular Θρ ⊗F,φ F = Θρ′ . The uniqueness part Theorem 4.56 tells us, that
ρ⊗F,φ F and ρ′ are conjugate.

Lemma 7.8. Let Γ be a finite group and let G be a generalized reductive group scheme over OK/ϖrOK .
Then BΓ

G is finite as a set.

Proof. We first show that BΓ
G⊗F is a finite-dimensional F-vector space. By Proposition 4.47, we already

know that BΓ
G ⊗ F is a finitely generated F-algebra. By Theorem 4.56 the canonical map RepΓ,□

G (F) ↠

PCΓ
G(F) = HomCAlgF

(BΓ
G ⊗ F,F) is surjective. But RepΓ,□

G (F) is finite, so BΓ
G ⊗ F has finitely many

F-points and thus its nilreduction (BΓ
G ⊗ F)red must be a finite product of F with itself. The nilradical

N := Nil(BΓ
G⊗F) is finitely generated and hence nilpotent. So by induction each N i is a finitely generated

(BΓ
G⊗F)red-module. It follows, that BΓ

G⊗F is a finite-dimensional F-vector space. Hence BΓ
G/ϖ is finite.

Since BΓ
G is ϖr-torsion, there is a finite descending sequence

BΓ
G ⊇ ϖBΓ

G ⊇ ϖ2BΓ
G ⊇ · · · ⊇ 0

With quotients ϖiBΓ
G/ϖ

i+1BΓ
G. These are finitely generated BΓ

G/ϖ-modules, hence finite and thus BΓ
G

is finite.

Lemma 7.9. Let A be an admissible OK-algebra. Let Θ ∈ cPCΓ
G(A) be a continuous pseudocharacter.

Let A′ ⊆ A be the closure of the OK-subalgebra of A generated by Θn(f)(γ1, . . . , γn) for all n ≥ 1, all
f ∈ OK [Gn]G0 and all (γ1, . . . , γn) ∈ Γn. Then A′ is an admissible profinite OK-subalgebra of A.

Proof. Assume, that A is discrete. Then there is some r ≥ 1, such that ϖrA = 0. By Proposition 4.48,
Θ factors over the GOK/ϖr -pseudocharacter Θ/ϖr := Θ ⊗OK

OK/ϖr. By Lemma 7.6 Θ/ϖr factors
through an open subgroup ∆ ≤ Γ. The representing ring BΓ/∆

GOK /ϖr
of PCΓ/∆

GOK /ϖr
is finite by Lemma 7.8.

By Theorem 4.46, A′ is the image of the map BΓ/∆
GOK /ϖr

→ A attached to Θ/ϖr, in particular A′ is finite,
hence admissible.
Now let A = lim←−λAλ be a presentation of A as an inverse limit of discrete rings as in Lemma 7.3. Let
πλ : A → Aλ be the canonical projection and let Θλ := πλ∗Θ. Since Aλ is discrete, the image A′

λ of A′

in Aλ is finite by the previous step. Since ker(A′
λ → A′

0) ⊆ ker(Aλ → A0), the former kernel is nilpotent
for all λ. It follows from Lemma 7.3, that A′ = lim←−λA

′
λ is admissible.

We have just shown, that Θ can be uniquely descended to a continuous A′-valued pseudocharacter.

Definition 7.10. If A′ in Lemma 7.9 is local, we say that Θ is residually constant.

In Lemma 7.13, we will see that A′ is a finite product of local profinite admissible OK-algebras. So if Θ
is not residually constant it is essentially a finite product of residually constant pseudocharacters, defined
over different connected components of A′. This picture will be crucial for the description of the functor
of points of the generic fiber in Theorem 7.21.
Suppose Θ is residually constant. In Lemma 7.9 the natural map BΓ

G → A′
0 (with A′

0 as in Lemma 7.3)
is surjective by definition. The radical of the kernel of this map does not depend on the choice of the
presentation of A′ as an inverse limit as in Lemma 7.3. It is a maximal ideal of BΓ

G with finite residue
field and therefore determines a closed point z ∈ |PCΓ

G |. The residue field of A′ is canonically isomorphic
to the residue field k(z) of z. Therefore Θ can be reduced to a continuous k(z)-valued pseudocharacter
along the map A′ → k(z). This reduction is the pseudocharacter Θz attached to z.

Proposition 7.11. Let A be a local profinite admissible Zp-algebra with residue field k. Then A admits
a unique Teichmüller lift ω : k× → A×.
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Proof. Let m be the maximal ideal of A. The residue field k is finite of order q := |k| a power of p. We
have A× = A \ m. First, suppose A is finite. It follows, that |A×| = |A| − |m| and A× is a product of
finite groups E and T with |E| = q − 1 and T = |m| of p-power order. Since p does not divide q − 1, T
must be in the kernel of the canonical projection A× → k×. It follows, that the inverse of the restriction
of the projection to E is a unique Teichmüller lift. If A = lim←−λAλ, all Teichmüller lifts ωλ : k× → A×

λ

constructed in the previous step are compatible and define a Teichmüller lift for A.

Theorem 7.12. Let z ∈ |PCΓ
G | and let XG,z : AdmOK

→ Set be the functor, that attaches to an
admissible OK-algebra A the set XG,z(A) of continuous pseudocharacters Θ ∈ cPCΓ

G(A), such that Θ is
residually constant and equal to Θz. Then XG,z is representable by Rps

ρz
, which is a complete noetherian

local OK-algebra with residue field k(z).

Proof. Let Θ ∈ XG,z(A). By Lemma 7.9, Θ descends to an A′-valued pseudocharacter for some admissible
profinite OK-subalgebra A′ ⊆ A, which we will also denote by Θ. Using the Teichmüller lift of A′

(Proposition 7.11), we see that there is a finite unramified extension L/K, such that OL has residue field
k(z) and A′ is an OL-algebra. By Proposition 4.48 Θ can be regarded as a GOL

-pseudocharacter. As
such it is a lift of Θz in the pseudodeformation functor DefΘz

: AOL
→ Set. It follows, that DefΘz

and
XG,z are naturally isomorphic as functors on AOL

. By Theorem 6.11, the pseudodeformation functor
DefΘz is representable by a complete noetherian local OL-algebra with residue field k(z).

From now on, we denote by XG,z the formal scheme Spf(Rps
ρz

).

Lemma 7.13. Let A be a profinite admissible OK-algebra. Then A is a finite product of local profinite
admissible OK-algebras.

We emphasize, that Lemma 7.13 holds independently of any noetherianity hypothesis.

Proof. We only show, that A is a finite product of local rings, the rest of the claim then follows easily.
Let m be a maximal ideal of A and let I be an ideal of definition of A. Then {(In+m)/m}n≥1 is a system
of open subgroups of A/m, that induces the quotient topology of A/m. But In + m is either m or A,
so A/m is either discrete or indiscrete. Since F is discrete and there is a continuous injection F → A/m
induced by the natural map OK → A, we have that A/m is discrete, hence finite. So there is some n ≥ 1,
such that In + m = m, hence I ⊆ m.
We know that mA/I is a maximal ideal of A/I and by [Mat70, (24.C)], we know that A/I has only finitely
many maximal ideals. It follows, that A has only finitely many maximal ideals. Since A is commutative,
it follows that A is semilocal and thus the claim follows from [Mat70, (24.C)].

Lemma 7.14. Let A be an admissible local OK-algebra and let Θ ∈ cPCΓ
G(A). Then Θ is residually

constant.

Proof. According to Lemma 7.9, there is an admissible profinite subring A′ ⊆ A, over which Θ is defined.
From Lemma 7.13, we obtain a system of primitive orthogonal idempotents for A′, which also leads to
a product decomposition of A. It follows, that the only nonzero idempotent of A′ is 1 and that A′ is
local.

Corollary 7.15. The functor XG : AdmOK
→ Set is representable by the coproduct

∐
z∈| PCΓ

G
| XG,z in

the category of formal schemes over OK .

Proof. It is clear, that on the level of Zariski sheaves on AdmOK
, there is an injective natural transfor-

mation
∐
z∈| PCΓ

G
| XG,z → XG. We want to show surjectivity. Let A be an admissible OK-algebra. If

Θ ∈ XG(A), then by Lemma 7.9 Θ is defined over a profinite admissible OK-algebra, so we may assume
A is profinite. Then by Lemma 7.13 A is a finite product A =

∏
iAi of local profinite OK-algebras Ai.

Since every continuous G-pseudocharacter over an admissible local OK-algebra is automatically residually
constant (Lemma 7.14), the map of sets (

∐
z XG,z)(Ai) =

∐
z XG,z(Ai) → XG(Ai) is bijective for all i.

This will be used in the third equality below. Recall also, since the decomposition of A is finite, we have
Spf(A) =

∐
i Spf(Ai) in the category FSchOK

of formal OK-schemes.
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We calculate

HomFSchOK
(Spf(A),

∐
z
XG,z) =

∏
i
HomFSchOK

(Spf(Ai),
∐

z
XG,z)

=
∏

i

∐
z

HomFSchOK
(Spf(Ai), XG,z)

=
∏

i
HomFSchOK

(Spf(Ai), XG)

= HomFSchOK
(Spf(A), XG)

7.2 The rigid analytic space of G-pseudocharacters

The goal of this subsection is to construct the p-adic analytic space of G-pseudocharacters, which will be
obtained by taking Berthelot’s generic fiber (see [Ber96, (0.2.6)] or [De 95, §7]) of XG. Let FSchlnad

OK
be

the category of locally noetherian adic formal schemes X over Spf(OK) such that the mod ϖ reduction
Xred of X is a scheme locally of finite type over Spec(F).
We briefly recall the features of Berthelot’s functor. It is a functor

( )rig : FSchlnad
OK
→ AnK

X 7→ Xrig

from FSchlnad
OK

to the category of rigid analytic spaces over K.
If X is of the form Spf(A) for some quotient A = OK [[x1, . . . , xn]]/(f1, . . . , fs) of a formal power series
ring OK [[x1, . . . , xn]], the space Xrig will be a closed analytic subvariety of the rigid analytic open unit
disk Dn of dimension n, defined by vanishing of the functions f1, . . . , fs interpreted as analytic functions
on Dn.
If A is an affinoid K-algebra, a model of A is a continuous open OK-algebra homomorphism A → A for
some admissible OK-algebra A, such that the induced map A[1/ϖ]→ A is an isomorphism. For a fixed
model A → A, there is a canonical map

ιA : XG(A)→ XG(A)

that maps a continuous pseudocharacter with values in A to its base change to A.
We also have a natural map

ι : lim−→
A

XG(A)→ XG(A) (9)

where the colimit on the left hand side is taken over the category of all models of A with continuous ring
homomorphisms over A. The next goal is to show, that ι is bijective. For d-dimensional determinant
laws (i.e. G = GLd here by Emerson’s isomorphism) and K = Qp and this has been shown by Chenevier
in [Che14, Lemma 3.15].

Lemma 7.16. Assume, that G is connected. Let A be an affinoid K-algebra and let Θ ∈ XG(A).

1. For all m ≥ 1, all f ∈ OK [Gm]G0 and all γ ∈ Γm, we have that Θm(f)(γ) is contained in the
subring A◦ of power-bounded elements of A.

2. Assume, that Γ is topologically finitely generated. Then ι in Equation (9) is bijective.

3. Assume, that Γ is topologically finitely generated. If A is reduced, then XG(A◦) = XG(A).

Proof.

1. An element of an affinoid K-algebra is power-bounded if and only if for every maximal ideal m ⊆ A,
its image in A/m is power-bounded. This follows from [BGR84, Proposition 6.2.3/1] and the
boundedness of the supremum norm [BGR84, §6.2.1 and Corollary 3.8.2/2]. We may thus assume,
that A is a finite field extension of K and that A◦ the ring of integers of A. The claim follows
directly from [BHKT, Theorem 4.8 (i)].
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2. ι is injective, as every model A of A maps to a ϖ-torsionfree model (take the image of A in A)
and for a torsionfree model A, the map ιA is injective. We are left to show surjectivity of ι, so
let Θ ∈ XG(A) and let A ⊆ A be some (torsionfree) model of A. Since we assume, that Γ is
topologically finitely generated, we can choose a finitely generated dense subgroup Σ ⊆ Γ. Let
σ1, . . . , σr ∈ Σ be group generators of Σ. Let f1, . . . , fs ∈ OK [Gr]G0 be OK-algebra generators,
which we find by [Ses77, Theorem 2 (i)].
We define a compact subset C :=

⋃s
i=1 Θr(fi)(Γr) ⊆ A. As A is an open subset of A, C meets only

finitely many additive translates of A in A. So there are ki ∈ C with i = 1, . . . , t, such that

C ⊆
t∑
i=1

(ki +A)

We claim that the algebra A′ := A⟨k1, . . . , ks⟩ (the closure of A[k1, . . . , ks] in A) is a model of A
containing C. First, since A is open in A, A′ is also open. It is also clear, that A′[1/ϖ] = A. For
admissibility of A′, we note, that by (1) each of the ki is power-bounded, so there is a continuous
surjection by a Tate algebra A⟨T1, . . . , Ts⟩ → A′ mapping Ti 7→ ki, and this map is also open, since
after inverting ϖ, we obtain a surjection A⟨T1, . . . , Ts⟩ ↠ A, which is open and a quotient map
by the open mapping theorem for p-adic Banach spaces [BGR84, §2.8.1]. It follows, that A′ is a
complete Hausdorff ring, which carries the I-adic topology for some ideal of definition of A and is
therefore admissible.
We claim, that Θ actually takes values in A′, so that Θ is the image of a pseudocharacter in
XG(A′), as desired. Let m ≥ 1, f ∈ OK [Gm]G0 and δ ∈ Σm. As in the proof of Lemma 7.6, we find
a homomorphism α : FG(m) → FG(r), such that Θm(f)(δ) = Θr(fα)(σ). Since fα is in the OK-
algebra span of the fi and Θr(fi)(σ) ∈ A′ by construction, we find that Θr(fα)(σ) ∈ A′. Overall,
we have shown that Θm(f)(Σm) ⊆ A′. Since Θm(f) : Γm → A is continuous, Γm is compact, A is
Hausdorff and A′ is closed in A, we conclude that Θm(f)(Γm) ⊆ A′ and therefore Θ takes values
in A′.

3. This is a direct consequence of (2), since if A is reduced, then it is known that A0 is the terminal
model of A [Che14, §3.14.1].

Definition 7.17. Let z ∈ |PCΓ
G | and define for every affinoid K-algebra A the set XG,z(A) as the set

of Θ ∈ XG(A), such that there exists a model A → A, such that Θ is the image of a pseudocharacter
Θ̃ ∈ XG,z(A).

Suppose A is an affinoid K-algebra and x is a point in the maximal spectrum of A with residue field L.
We know, that L is a finite extension of K.

Definition 7.18. The reduction map at x is defined as redx : XG(A)→ |PCΓ
G |, where for Θ ∈ XG(A),

redx(Θ) shall be the reduction of the unique pseudocharacter Θ̃ ∈ XG(OL) (see Lemma 7.16 (3)) mapping
to Θ⊗A L.

Definition 7.19.

1. Define X̃G : Anop
K → Set as the functor, that associates to every rigid analytic space Y ∈ AnK the

set of continuous G-pseudocharacters cPCΓ
G(O(Y )).

2. For z ∈ |PCΓ
G |, let X̃G,z be the subset of X̃G of G-pseudocharacters Θ, such that for all x ∈

Specmax(A), the specialization Θz of Θ at z defined as the image of Θ under X̃G(A)→ X̃G(kx)→
X̃G(Okx) is residually equal to z.

The proofs of Lemma 7.20 and Theorem 7.21 are the same as the proofs of [Che14, Lemma 3.16] and
[Che14, Theorem 3.17].

Lemma 7.20. Assume, that G is connected. Suppose A is an affinoid K-algebra and z ∈ |PCΓ
G |. Then

XG,z(A) = {Θ ∈ XG(A) | ∀x ∈ Specmax(A) : redx(Θ) = z}
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Proof. Let Θ ∈ XG(A), so that for all x ∈ Specmax(A), we have redx(Θ) = z. By Lemma 7.16 (2), there
is some model A → A and some Θ′ ∈ XG(A) that maps to Θ. Let A′ ⊆ A be the ring attached to Θ′ as
in Lemma 7.9. We know, that A′ is a product of local OK-algebras

∏n
i=1 A

′
i. The idempotents of this

decomposition induce a decomposition of A into a product
∏n
i=1 Ai. Let xi ∈ Specmax(Ai) be a closed

point with residue field Li. By assumption, the kernel of the composition BΓ
G → A′

i → OLi/mOLi
is the

maximal ideal of BΓ
G, that corresponds to z. By definition of A′, the map BΓ

G → A′ → A′/ Jac(A′) is
surjective and thus A′ itself must be local. This shows, that Θ′ is residually constant and residually equal
to Θz, so Θ′ ∈ XG,z(A′). It follows, that Θ ∈ XG,z(A).

Lemma 7.20 in particular implies, that X̃G,z is representable by Xrig
G,z.

Theorem 7.21. Assume, that G is connected. Then X̃G is representable by the quasi-Stein space∐
z∈| PCΓ

G
| X

rig
G,z.

Proof. To verify, that Xrig
G =

∐
z∈| PCΓ

G
| X

rig
G,z represents X̃G it is enough to check that the functor of

points agree on affinoid analytic spaces Y ∈ AnK , since X̃G and the functor of points of Xrig
G are sheaves

for the Zariski topology on AnK . We have

HomAnK
(Y,Xrig

G ) = lim−→
Y→Y

HomFSch /OK
(Y,XG)

= lim−→
Y→Y

XG(O(Y))

= XG(O(Y )) = X̃G(Y )

Here the first equality is the universal property of Berthelot’s generic fiber functor [De 95, §7.1.7.1], the
third equality is using Lemma 7.16 (2).

Remark 7.22. In [PQ23] we will show, that a continuous representation ρ : Γ → G(A) is G0(A)-
conjugate to a representation with values in G(A◦). In particular the same arguments show, that
Lemma 7.16, Lemma 7.20 and Theorem 7.21 hold for generalized reductive group schemes.

Remark 7.23. It would also have been possible to take the adic generic fiber Xad
G ×Spa(OK) Spa(K) of

the adic space Xad
G attached to XG. It is canonically isomorphic to Xad

G . Although we found no advantage
in the usage of adic spaces so far, this point of view might be more natural for further applications.
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8 Symplectic determinant laws (joint with M. Moakher)

In joint work with Mohamed Moakher, we have developed a notion of symplectic determinant law for
Sp2d (d ≥ 1) over Z[ 1

2 ] in analogy to Chenevier’s definition [Che14] for GLd. We give a classification
of symplectic determinant laws over fields and show that every symplectic determinant law over an
algebraically closed field comes from a unique semisimple symplectic representation. We prove, that
the natural map from the GIT quotient of framed symplectic representations into the moduli scheme
of symplectic determinant laws is a finite universal homeomorphism. We also establish a comparison
bijection with Lafforgue’s Sp2n-pseudocharacters provided the coefficient ring is reduced. At last we
compute generators of the invariant algebras A[Mm

d ]G and A[Gm]G, where G ∈ {Spd,Od,GSpd,GOd}
over a commutative ring A generalizing results of Zubkov [Zub99].

Introduction

In [Che14] Chenevier has given a definition of pseudocharacters of algebras over arbitrary base rings
using the notion of multiplicative d-homogeneous polynomial laws. He calls them determinant laws and
we follow this terminology. The goal of this paper is to give a definition of determinant laws of involutive
algebras for the symplectic groups Sp2n over arbitrary Z[ 1

2 ]-algebras and study their general properties
in analogy to Chenevier’s determinant laws.
The first and most important result we obtain is that geometric points of our symplectic pseudocharacter
variety (see Proposition 8.15) are in bijection with conjugacy classes semisimple symplectic representa-
tions. This is the symplectic analog of [Che14, Theorem 2.12].

Theorem E (Theorem 8.28). Let k be an algebraically closed field (2 ∈ k
×) and let (R, σ) be an

involutive k-algebra. There is a bijection between isomorphism classes of semisimple 2d-dimensional
symplectic representations of (R, σ) over k and 2d-dimensional symplectic determinant laws of (R, σ)
over k given by sending ρ : (R, σ)→ (M2d(k), j) to (det ◦ρ,Pf ◦ρ).

Secondly, we obtain a description of Cayley-Hamilton ∗-determinant laws lifting absolutely irreducible
symplectic (or orthogonal) representations. This is the symplectic and orthogonal analog of [Che14,
Theorem 2.22].
Theorem F (Proposition 8.30). Let R be an A-algebra with involution equipped with a d-dimensional
Cayley-Hamilton ∗-determinant D : R → A such that D = det ◦ρ for some absolutely irreducible or-
thogonal (resp. symplectic) representation ρ : (R, σ)→ (Md(k),⊤) (resp. (Md(k), j)). Then there exists
an isomorphism of involutive algebras ρ : (R, σ) → (Md(A),⊤) (resp. (Md(A), j)) lifting ρ such that
D = det ◦ρ.

We also study the connection between the moduli stack of symplectic representations and the quotient
stack of framed symplectic representations and obtain the following expected equivalences. This is the
symplectic analog of [Wan13, Theorem 1.4.1.4].
Theorem G (Theorem 8.33). The canonical functors

[SpRep□,2d
(R,∗) / Sp2d]

∼→ SpRep2d
(R,∗) and [SpRep□,2d

(R,∗) /PGSp2d]
∼→ SpRep2d

(R,∗)

are equivalences of étale stacks on Sch/S. On the left hand sides we take the étale stack quotient.

There is a natural comparison map between the GIT quotient of framed symplectic representations and
the pseudocharacter variety. We prove that it is a finite universal homeomorphism. This is almost the
symplectic analog of [Wan18, Theorem 2.20].

Theorem H (Theorem 8.34). ν : SpRep□,2d
(R,∗) � Sp2d → SpDet2d

(R,∗) is a finite universal homeomorphism.

We would be happy to show, that ν is an isomorphism in characteristic 0, but we have run into difficulties
that come from lack of knowledge about the relations between the natural generators (see Proposition 8.43
and Proposition 8.45) of the invariant algebras Z[Mm

2d]Sp2d and Z[Spm2d]Sp2d . We expect, that an analog
of Vaccarino’s theorem [Vac09] for involutive Q-algebras would be sufficient.
We also obtain a bijection between Lafforgue’s pseudocharacters and symplectic determinant laws for
reduced rings. This is a weakened symplectic analog of [Eme18, Theorem 4.0.1].
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Theorem I (Proposition 8.41). LetA be a reduced commutative Z[ 1
2 ]-algebra. Then the map PCΓ

Sp2d
(A)→

SpDetΓ
2d(A) defined in Proposition 8.38 is bijective.

Again, the proof of a full analog of [Eme18, Theorem 4.0.1] cannot be carried out without a symplectic
analog of Vaccarino’s theorem, this time over Z. We expect to resolve these issues in future work by
strenghening the definition of symplectic determinant laws, circumventing the problem of determining
relations between invariants.
At last, we adapt Zubkov’s results [Zub99] on generators of invariant algebras for the symplectic groups
over algebraically closed fields to Z. The method can be used to compute generators of invariant algebras
of various different kinds over Z, once the results over algebraically closed fields are available. So we see
this as an interesting technical result in its own right.

Theorem J (Proposition 8.43, Proposition 8.45).

1. Let Sp2d act rationally by simultaneous conjugation on the scheme of m-tuples of 2d× 2d-matrices
Mm

2d and thereby on the coordinate ring Z[Mm
2d]. Then the invariant algebra Z[Mm

2d]Sp2d is generated
by the elements

(X1, . . .,Xm) 7→ σi(Yj1 · · · · · Yjs
)

where every matrix Yi is either Xi or the symplectic transpose X j
i and σi(X) is the i-th coefficient

of the characteristic polynomial of X.

2. The invariant algebra Z[Spm2d]Sp2d is generated by the restriction of the elements defined in (1)

(X1, . . .,Xm) 7→ σi(Yj1 · · · · · Yjs)

along the closed embedding Sp2d ⊆ M2d. Note, that symplectic transpose becomes inversion in
Sp2d.

8.1 Notations

Let A be a commutative ring.

1. J :=
(

0 idd
− idd 0

)
∈M2d(A)

2. Transposition of matrices in Mn(A) is (−)⊤. It is also called the orthogonal standard involution of
Mn(A).

3. The symplectic standard involution (−)j : M2d(A)→M2d(A) is defined by M j := JM⊤J−1.

4. We define the symplectic group Sp2n(A) := {M ∈ GL2n(A) |M−1 = JM⊤J−1}.

5. If (R, ∗) is an involutive ring, let R+ := {x ∈ R | x∗ = x} and R− := {x ∈ R | x∗ = −x}. We say,
that the elements of R+ are symmetric and the elements of R− are antisymmetric.

6. The swap involution is defined as

swap : Md(A)×Md(A)→Md(A)×Md(A), (a, b) 7→ (b⊤, a⊤).

7. CAlgA is the category of commutative A-algebras.
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8.2 Polynomial laws

Chenevier’s original definition [Che14] of determinant laws is based on the notion of polynomial laws.
The basic references are [Rob80; BC09; Che14; Wan13]. We give the basic definitions and explain how
to introduce the structure of an algebra with involution on the graded pieces of a divided power algebra.
We consider a commutative ring A.

Definition 8.1. Let M and N be any A-modules and let R and S be not necessarily commutative
A-algebras.

1. An A-polynomial law P : M → N is a collection of maps PB : M ⊗A B → N ⊗A B for each
commutative A-algebra B, such that for each homomorphism f : B → B′ of commutative A-
algebras, the diagram

M ⊗A B

id ⊗f
��

DB // N ⊗A B

id ⊗f
��

M ⊗A B′ DB′ // N ⊗A B′

commutes. In other words, an A-polynomial law is a natural transformation M → N , where
M(B) := M ⊗A B is the functor of points of M . We denote the set of A-polynomial laws from M
to N by PA(M,N).

2. A polynomial law P : M → N is called homogeneous of degree d ∈ N0 or d-homogeneous, if for all
commutative A-algebras B, all b ∈ B and all x ∈M ⊗A B we have PB(bx) = bdPB(x). We denote
the set of d-homogeneous A-polynomial laws from M to N by PdA(M,N).

3. A polynomial law P : R→ S is called multiplicative, if for all commutative A-algebras B, we have
PB(1R⊗AB) = 1S⊗AB and for all x, y ∈ R ⊗A B, we have PB(xy) = PB(x)PB(y). We denote the
set of d-homogeneous multiplicative A-polynomial laws from R to S by Md

A(R,S).

4. If R and S are equipped with A-linear involutions, both denoted by ∗, we say that a polynomial
law P : R → S preserves the involution if PB(x∗) = PB(x)∗ for every commutative A-algebra B,
and all x ∈ R⊗B.

5. A d-dimensional determinant law on R is a d-homogeneous multiplicative polynomial law D : R→
A.

6. If ∗ : R → R is an A-linear involution, a d-dimensional ∗-determinant law on (R, ∗) is a d-
homogeneous multiplicative polynomial law D : R→ A, which preserves the involution ∗.

Definition 8.2. Let P : M → N be an A-polynomial law. We define ker(P ) ⊆ M as a sub A-module
whose elements are the m ∈M such that for every commutative A-algebra B, b ∈ B and m′ ∈M ⊗A B,
we have:

P (m⊗ b+m′) = P (m′)

Definition 8.3. Let R be an A-algebra, and P : R → A be a d-homogeneous A-polynomial law. For a
commutative A-algebra B an element r ∈ R⊗A B, we define its characteristic polynomial by:

χP (r, t) := PB[t](t− r) ∈ B[t]

For an integer n ≥ 1, r1, . . . , rn ∈ R, and ordered tuple of integers α = (α1, . . . , αn), we consider the
function χPα : Rn → R defined by:

χP (t1r1 + · · ·+ tnrn, t1r1 + · · · tnrn) =
∑
α

χPα (r1, . . . , rn)tα ∈ R[t]

where tα =
∏n
i=1 t

αi . Note that χPα ≡ 0 if
∑
i αi ̸= d.

It is debatable, whether characteric polynomial is an appropriate name in Definition 8.3. This definition
will only be applied in case P is a determinant law or P is the Pfaffian of a symplectic determinant law.
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We will now describe a few representability results for polynomial laws, that are already explained in
[Che14].
Recall that for any commutative ring A and any A-module M , the divided power algebra ΓA(M) is the
commutative graded A-algebra generated by the symbols m[i] in degree i for m ∈ M , i ∈ N0, which is
subject to the following relations:

• m[0] = 1 for all m ∈M .

• (am)[i] = aim[i] for all a ∈ A, m ∈M .

• m[i]m[j] = (i+j)!
i!j! m

[i+j] for all i, j ∈ N0, m ∈M .

• (m+m′)[i] =
∑
p+q=im

[p]m′[q] for all i ∈ N0, m,m′ ∈M .

We denote by ΓdA(M) the d-th graded piece of ΓA(M). It represents the functor PdA(M,−) : ModA → Set
with the universal d-homogeneous polynomial law given by P univ : M → ΓdA(M), m 7→ m[d]. We have
PdA(M,N) ∼= HomA(ΓdA(M), N) for any A-module N .
For an A-algebra R, we can equip ΓdA(R) with the structure of an A-algebra as follows:
The map R⊕R→ R⊗A R, (r, r′) 7→ r ⊗ r′ is homogeneous of degree 2 and is compatible with −⊗A B
for any B ∈ CAlgA. Thus it gives rise to a 2-homogeneous A-polynomial law. Composing this map
with the universal d-homogeneous polynomial law R⊗A R→ ΓdA(R⊗A R), we obtain a 2d-homogeneous
polynomial law R ⊕ R → ΓdA(R ⊗A R). By the universal property of Γ2d

A (R ⊕ R), we get a morphism of
A-modules:

η : Γ2d
A (R⊕R)→ ΓdA(R⊗A R)

There is canonical isomorphism Γ2d
A (R ⊕ R) ∼=

⊕
p+q=2d ΓpA(R) ⊗A ΓqA(R) (see [Wan13, §1.1.11]) and η

kills ΓpA(R) ⊗A ΓqA(R) for p ̸= q. From the multiplication map θ : R ⊗A R → R, we obtain an A-linear
map

ΓdA(R)⊗A ΓdA(R) η−→ ΓdA(R⊗A R) Γd
A(θ)−−−−→ ΓdA(R)

defining the structure of an A-algebra on ΓdA(R). In fact, we have a natural isomorphism Md
A(R,S) ∼=

HomAlgA
(ΓdA(R), S) for any commutative A-algebra S.

If R is equipped with an A-linear involution ∗, we want to equip ΓdA(R) with an induced involution. For
this, let Rop be the opposite algebra of R. Then ∗ induces an isomorphism R ∼= Rop. We define the
A-linear maps s : R ⊕ R → R ⊕ R, (a, b) 7→ (b, a) and s′ : R ⊗A R → R ⊗A R, a ⊗ b → b ⊗ a, and we
have a commutative diagram

ΓdA(R)⊗ ΓdA(R) ΓdA(R⊗A R) ΓdA(R)

ΓdA(R)⊗ ΓdA(R) ΓdA(R⊗A R) ΓdA(R)

η

Γ2d
A (s) Γd

A(s′)

Γd(θop)

id

η Γd(θ)

which shows that we have a canonical isomorphism ΓdA(Rop) ∼= ΓdA(R)op. Here θop : R⊗AR→ R, a⊗b 7→
ba is the multiplication of Rop and ΓdA(R)⊗ ΓdA(R) is identified with a subset of Γ2d

A (R⊕R).

Definition 8.4. Let (R, ∗) be an A-algebra with involution. We define the involution ∗ on ΓdA(R) by the
isomorphism

ΓdA(R) Γd
A(∗)−−−−→ ΓdA(Rop) ∼= ΓdA(R)op

Since the above diagram is compatible with tensoring with any B ∈ CAlgA, the isomorphism ΓdA(R)⊗A
B ∼= ΓdB(R⊗A B) is compatible with the involution.

8.3 Symplectic representations

Definition 8.5. Let (R, ∗) be an involutive A-algebra and B a commutative A-algebra. A symplec-
tic representation of (R, ∗) is a homomorphism of involutive A-algebras (R, ∗) → (M2d(B), j). We let
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SpRep□,2d
(R,∗) be the functor of symplectic representations of (R, ∗):

SpRep□,2d
(R,∗) : CAlgA → Set

B 7→ {symplectic representations (R, ∗)→ (M2d(B), j)}

Lemma 8.6. The functor SpRep□,2d
(R,∗) is representable by a commutative A-algebra A[SpRep□,2d

(R,∗)]. We
let uuniv : (R, ∗) → (M2d(A[SpRep□,2d

(R,∗)]), j) be the universal representation. If R is a finitely generated
A-algebra, then A[SpRep□,2d

(R,∗)] is a finitely generated A-algebra.

Proof. If R = A⟨xi, x∗
i ⟩i∈S is a free (non-commutative) A-algebra with involution on a set S, then clearly

A[SpRep□,2d
(R,∗)] = A[ξ(i)

h,k] is the polynomial algebra over A in the variables ξ(i)
h,k, i ∈ S, 1 ≤ h, k ≤ 2d and

uuniv(xi) = ξi = (ξ(i)
h,k)h,k.

For a general A-algebra with involution R, there is a presentation R = A⟨xi, x∗
i ⟩/I for some involution-

stable two-sided ideal I of A⟨xi, x∗
i ⟩, respecting the involution. Then uuniv(I) generates a two-sided ideal

in M2d(A[ξ(i)
h,k]), which is as any two-sided ideal in a matrix algebra, of the form M2d(J), with J an ideal

of A[ξ(i)
h,k]. Then the universal map for R is given by:

A⟨xi, x∗
i ⟩ M2d(A[ξ(i)

h,k])

R M2d(A[ξ(i)
h,k]/J)uuniv

By the universal property M2d(A[ξ(i)
h,k]/J) is independent of the presentation of R.

8.4 Symplectic determinant laws

8.4.1 Definition and basic properties

The definition of symplectic determinant laws is based on the following observation. Let A be a com-
mutative ring with 2 ∈ A× and let M ∈ M2d(A) be a matrix with M j = M . We will call such matrices
symplectically symmetric. Then

M =
(
D B
C D⊤

)
where D ∈Md(A) is arbitrary and B,C ∈Md(A) are antisymmetric. The matrix

MJ =
(
−B D
−D⊤ C

)
= JM⊤ = −J⊤M⊤ = −(MJ)⊤

is alternating and therefore the Pfaffian Pf(MJ) is defined. We have det(M) = det(MJ) = Pf(MJ)2.

Definition 8.7. A 2d-dimensional symplectic determinant law on an involutive A-algebra (R, ∗) with
coefficients in a commutative A-algebra B is the data of an A-linear 2d-dimensional ∗-determinant law
D : R→ B together with a homogeneous polynomial law P : R+ → B of degree d, such that P 2 = D|R+

and P (1) = 1.

Example 8.8. LetA be a commutative ring and let ρ : (R, ∗)→ (M2n(A), j) be symplectic representation.
Define for any commutative A-algebra B:

1. DB : R⊗A B →M2n(B) by DB(r ⊗ b) := b2n det(ρ(r)).

2. PB : R+ ⊗A B →M2n(B) by PB(r ⊗ b) := bn Pf(ρ(r)J).

Then (D,P ) is a symplectic determinant of (R, ∗) over A.
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Lemma 8.9. Let (R, ∗) be an A-algebra with involution equipped with a symplectic determinant (D,P ).
Then for every commutative A-algebra B, any x ∈ R⊗A B, and any y ∈ R+ ⊗A B such that PB(y) is a
non zero divisor, we have that:

PB(xyx∗) = DB(x)PB(y)

Proof. For a fixed y as in the statement, consider the polynomial laws Q1 : R⊗A B → B, x 7→ P (xyx∗)
and Q2 : R ⊗A B → B, x 7→ D(x)P (y). Then it is clear that Q2

1 = Q2
2, and so evaluating at the formal

power series ring B[[t]], we have:

(Q1(tx− t+ 1)−Q2(tx− t+ 1))(Q1(tx− t+ 1) +Q2(tx− t+ 1)) = 0

The evaluation of the second summand at t = 0 gives 2PB(y), thus Q1(tx− t+1)+Q2(tx− t+1) is a non
zero divisor. And so, Q1(tx− t+ 1) = Q2(tx− t+ 1) whose evaluation at t = 1 gives us the result.

We record the following property discovered in [CC21, Proposition 3.1]:

Lemma 8.10. Let (R, ∗) be an A-algebra with involution equipped with a symplectic determinant (D,P )
of dimension 2d. Then for any commutative A-algebra B any commuting elements x, y ∈ R+ ⊗A B, we
have that xy ∈ R+ ⊗A B and :

PB(xy) = PB(x)PB(y)

Proof. The fact that xy ∈ R+⊗AB is immediate. Now we introduce the commuting elements 1+ t1x, 1+
t2y ∈ R+ ⊗A B[t1, t2], and the polynomials:

Qx = PB(1 + t1x), Qy = PB(1 + t2y), Qxy = PB((1 + t1x)(1 + t2y))

in B[t1, t2]. The Qx is a polynomial in t1 of degree at most d whose coefficient of td is PB(x). Similarly
Qy is a polynomial in t2 of degree at most d whose coefficient of td is PB(y), and Qxy is a polynomial
in t1, t2 whose coefficient of td1td2 is PB(xy). Thus to prove the statement, it suffices to show the equality
QxQy = Qxy, which can be checked inside the power series ring B[[t1, t2]].
Note that for every power series g ∈ B[[t1, t2]]× with g(0, 0) ∈ B× and every square root f0 ∈ B× of
g(0, 0), there exists a unique power series f ∈ B[[t1, t2]]× with f(0, 0) = f0 such that f2 = g. This can
be seen by considering the power series expansion of the square root function at 1. Using this fact, the
equality Q2

xy = Q2
xQ

2
y (coming from multiplicativity of D), and Qxy(0, 0) = Qy(0, 0) = Qx(0, 0), we ge

that QxQy = Qxy as desired.

For an A-algebra with involution (R, ∗), and a symplectic determinant (D,P ) : (R, ∗)→ A, we introduce
the polynomial laws

Λi : R→ A for 1 ≤ i ≤ 2d
Tj : R+ → A for 1 ≤ j ≤ d

defined for any A-algebra B by the formulas:

χD(r, t) := DB(t− r) =
2d∑
i=0

(−1)iΛi,B(r)t2d−i, r ∈ R⊗A B

χP (r, t) := PB(t− r) =
d∑
i=0

(−1)iTi,B(r)td−i, r ∈ R+ ⊗A B

The following result explains how the characteristic polynomial of P is related to the characteristic poly-
nomial of D when restricted to symmetric elements. In particular, we see that a symplectic determinant
law (D,P ) is determined by D.

Proposition 8.11. If D : R→ A and P, P ′ : R+ → A are polynomial laws, such that (D,P ) and (D,P ′)
are symplectic determinant laws, then P = P ′. Further, we have the recursion formula

Λi|R+ =
i∑

j=0
TjTi−j

for 1 ≤ i ≤ 2d with Ti = 0 for i > d.
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Proof. Since 1 = P ′(1) = P (1), we have T0 = T ′
0 . The coefficients Λi for 0 ≤ i ≤ 2d of D are defined by

the equation

χD(r, t) = DB[t](t− r) =
2d∑
i=0

(−1)iΛi,B(r)t2d−i ∈ B[t]

and similarly the coefficients Ti for 0 ≤ i ≤ d of P (and T ′
i of P ′) are defined by

χP (r, t) = PB[t](t− r) =
d∑
i=0

(−1)iTi,B(r)td−i ∈ B[t]

for all A-algebras B. By comparing the coefficients Ti and T ′
i and the coefficients Λi using χD(·, t)|R+ =

χP (·, t)2 = χP
′(·, t)2 we obtain

Λi|R+ =
i∑

j=0
TjTi−j =

i∑
j=0
T ′
j T ′

i−j

for 1 ≤ i ≤ 2d and Td = P and T ′
d = P ′. For i = 0, we know, that 1 = Λ0 = T 2

0 = T ′
0

2.
By induction over the above equations and using 2 ∈ A×, we obtain T ′

i = Ti for all 0 ≤ i ≤ d, in particular
P ′ = P .

Taking r = 1, we see that Ti(1) = ±
(
d
i

)
for 0 ≤ i ≤ d and the assumption P (1) = Td(1) = 1 implies

Ti(1) =
(
d
i

)
by downward induction.

Example 8.12. Let Γ be a group. By [Che14, Lemma 1.9], the datum of a 2-dimensional determinant
law D : A[Γ] → A is equivalent to the datum of a pair of functions (d, t) : Γ → A such that d : Γ → A×

is a group homomorphism, and t is a function satisfying t(1) = 2 and for all γ, γ′ ∈ Γ the following two
equations:

(a) t(γγ′) = t(γ′γ),

(b) d(γ)t(γ−1γ′)− t(γ)t(γ′) + t(γγ′) = 0.

Here the functions t and d are obtained from the determinant law D by considering the characteristic
polynomial χD(x, γ) = x2 − t(γ)x+ d(γ) ∈ A[x] for all γ ∈ Γ. In particular they are defined as functions
t, d : A[Γ]→ A and we have the usual polarization formula

d(r) = t(r)2 − t(r2)
2 (10)

for all r ∈ A[Γ].
We are interested in the case, that D is a symplectic determinant law in the sense of Definition 8.7.
Note, that this means that D is a determinant law for Sp2 = SL2. So we require that there exists a
1-homogeneous A-polynomial law P : A[Γ]+ → A with P 2 = D|A[Γ]+ and P (1) = 1. So let us assume
such a P exists. By [Che14, Example 1.2 (i)] P is determined by the A-linear map PA : A[Γ]+ → A.
By Proposition 8.11, we have PA(r) = 1

2 t(r) for all r ∈ A[Γ]+. Evaluating the equation P 2
A = d|A[Γ]+ at

γ + γ−1 for some γ ∈ Γ, we thus obtain

1
4 t(γ + γ−1)2 = d(γ + γ−1) (11)

Equation (10) gives

d(γ + γ−1) = d(γ) + d(γ−1) + t(γ)t(γ−1)− 2 (12)

Combining Equation (12) with Equation (11) we get:

1
4 t(γ + γ−1)2 = d(γ) + d(γ−1) + t(γ)t(γ−1)− 2

and thus
t(γ)2 + 2t(γ)t(γ−1) + t(γ−1)2 − 2t(γ2)− 2t(γ−2)− 8 = 0
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In Definition 8.7, we also require that the determinant law D is invariant for the A-linear involution on
A[Γ] extending inversion Γ → Γ, γ 7→ γ−1. This implies that the functions t, d are invariant under the
inversion map. So we have

4t(γ)2 − 4t(γ2)− 8 = 0

and hence d(γ) = 1 by Equation (10).

Example 8.13. For d = 4, one finds that:

P = 1
2Λ4 −

1
4Λ1Λ3 + 1

16Λ2
1Λ2 + 1

8Λ2
2 −

3
128Λ4

1

In particular we see that the recursion formulas of Proposition 8.11 provide us with a way to define P as
a d-homogeneous A-polynomial law on the entire algebra R for every 2d-dimensional determinant law D
when 2 ∈ A×. Requiring, that D is symplectic is requiring that P satfies the conditions in Definition 8.7.

Lemma 8.14. Let (R, ∗) be an A-algebra with involution equipped with a symplectic determinant law
(D,P ). Then ker(D) is stable under ∗ and ker(D) ∩ R+ ⊆ ker(P ). In particular for every ∗-ideal
I ⊆ ker(D), (D,P ) factors uniquely through a symplectic determinant law (D,P ) : (R/I, ∗)→ A.

Proof. Since D is ∗-invariant, it follows that ker(D) is a ∗-ideal. Using [Che14, Lemma 1.19] we have
that:

ker(D) = {r ∈ R | ∀B ∈ CAlgA, ∀m ∈ R⊗A B, ∀i ≥ 1, Λi(rm) = 0}

By Proposition 8.11, we know that P can be expressed as a polynomial in the Λi, thus to show that
r ∈ ker(D) ∩ R+ is in ker(P ), it suffices to show that Λi(r ⊗ b + m) = Λi(m) for all commutative A-
algebras B, b ∈ B and m ∈ R+ ⊗A B. But this follows from the definition of the Λi and the definition of
ker(D).
Since 2 ∈ R×, we have a surjection R+ ↠ (R/I)+ and (R/I)+ is identified with R+/(I ∩ R+). Since
I ∩ R+ ⊆ ker(D) ∩ R+ ⊆ ker(P ), P descends to a well-defined A-polynomial law P : (R/I)+ → A
satisfying the desired properties.

Proposition 8.15. Let (R, ∗) be an A-algebra with involution. Then the functor

SpDet2d
(R,∗) : CAlgA → Set

B 7→ {symplectic determinant laws (D,P ) : R→ B}

is represented by a commutative A-algebra denoted by A[SpDet2d
(R,∗)]. If R is a finitely generated A-

algebra, then A[SpDet2d
(R,∗)] is a finitely generated A-algebra.

Proof. We let I be the ideal of SymA(ΓdA(R+)) generated by the element [1]d − 1. Then the ring
SymA(ΓdA(R+))/I represents the functor which associates to a commutative A-algebra B the set of
homogeneous polynomial laws P of degree d such that P (1) = 1. Using the isomorphism

ΓA(R+ ×R+) ∼−→ ΓA(R+)⊗A ΓA(R+)

[(r1, r2)]i 7→
∑
p+q=i

[r1]p ⊗ [r2]q

we get a morphism of A-modules:

φ̃ : Γ2d
A (R+) ΓA(∆)−−−−→ ΓA(R+ ×R+) ↠ ΓdA(R+)⊗A ΓdA(R+)→ SymA(ΓdA(R+))/I

which for [r1]i1 · · · [rm]im ∈ Γ2d
A (R+) with i1 + · · ·+ im = d, is given by:

φ̃([r1]i1 · · · [rm]im) =
∑

p1,q1,...,pm,qm

([r1]p1 · · · [rm]pm)⊙ ([r1]q1 · · · [rm]qm)

where the sum runs over the integers pj , qj satisfying pj + qj = ij and p1 + · · ·+ pm = q1 + · · ·+ qm = d.
Here ⊙ denotes the product in the symmetric algebra.
Therefore we get a morphism of A-algebras φ : SymA(Γ2d

A (R+))→ SymA(ΓdA(R+))/I.
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On the other hand, the canonical map Γ2d
A (R+)→ Γ2d

A (R) induces a morphism of commutative A-algebras
SymA(Γ2d

A (R+))→ Γ2d
A (R)ab. Then we take:

A[SpDet2d
(R,∗)] = (Γ2d

A (R)ab/∗)⊗SymA(Γ2d
A

(R+)),φ SymA(ΓdA(R+))/I

Here Γ2d
A (R)ab/∗ is the quotient of Γ2d

A (R)ab by the ideal generated by γ − γ∗ for γ ∈ Γ2d
A (R)ab.

We can define direct sums for symplectic determinant laws. On the level of representations it corresponds
to the orthogonal direct sum of symplectic spaces carrying an equivariant group action. We will use the
direct sum to state the structure theorem Proposition 8.27 for symplectic determinants over fields.

Lemma 8.16. Let A be a commutative ring, let (R, ∗) be an involutive A-algebra and let (D1, P1) and
(D2, P2) be symplectic determinant laws of (R, ∗) over A of dimension 2d1 and 2d2 respectively. Then
(D1D2, P1P2) is a symplectic determinant law of dimension 2(d1 + d2).

We also write (D1, P1)⊕ (D2, P2) for (D1D2, P1P2) in analogy to the direct sum of representations.

Proof. As in [Che14, §2.1], D1D2 is a determinant law of dimension 2(d1+d2) and one checks, that it is a ∗-
determinant. Similarly P1P2 : R+ → A is homogeneous of degree d1+d2. Further (P1P2)2 = D1|R+D2|R+

and (P1P2)(1) = 1.

Remark 8.17. Let A be a commutative ring and (R, ∗) be an involutive A-algebra. If (D1, P1)
and (D2, P2) are the symplectic determinants attached respectively to the symplectic representations
ρ1 : (R, ∗) → (M2d1(A), j) and ρ2 : (R, ∗) → (M2d2(A), j) then (D1, P1) ⊕ (D2, P2) is the symplectic
determinant attached to ρ1 ⊕ ρ2.

Proposition 8.18. Let (D1, P1) and (D2, P2) be symplectic determinant laws of dimensions 2d1 and 2d2
satisfying CH(Pi) ⊆ ker(Di) for i = 1, 2. Then CH(P1P2) ⊆ ker(D1D2).

Proof. Suppose (D1, P1) and (D2, P2) are symplectic determinant laws of dimensions 2d1 and 2d2. Sup-
pose CH(Pi) ⊆ ker(Di). We will show, that CH(P1P2) ⊆ ker(D1D2). Let P := P1P2 and D := D1D2.
Recall Definition 8.3 of the functions χPi

α , where α ∈ Nn0 with
∑n
j=1 αj = di. For r1, . . . , rn ∈ R, the

equation
χP (r1t1 + · · ·+ rntn) = χP1(r1t1 + · · ·+ rntn)χP2(r1t1 + · · ·+ rntn)

in R[t1, . . . , tn] implies

χPα (r1, . . . , rn) =
∑

α′+α′′=α
χP1
α′ (r1, . . . , rn)χP2

α′′(r1, . . . , rn)

by comparing the coefficients of tα. To check that D(1 + χPα (r1, . . . , rn)r) = 1 for all r ∈ R, it suffices to
check that Di(1 + χPα (r1, . . . , rn)r) = 1 for all r ∈ R. This is clear, since∑

α′+α′′=α
χP1
α′ (r1, . . . , rn)χP2

α′′(r1, . . . , rn)r ∈ ker(D1) ∩ ker(D2)

and by [Che14, Lemma 1.19].

8.4.2 Symplectic determinant laws over Azumaya algebras

Recall, that an Azumaya algebra over a commutative ring A (where we still assume that 2 ∈ A×) is
a unital A-algebra R, such that there is an étale covering {A → Bi}i∈I , such that for all i ∈ I the
Bi-algebra R ⊗A Bi is isomorphic to a matrix algebra of positive rank over Bi. The rank of this matrix
algebra may vary over Spec(A) and we will assume, that the rank is constant on Spec(A). In this section,
we explain what we mean by a symplectic, orthogonal or unitary involution of an Azumaya algebra of
constant rank.

Definition 8.19. Let A be a commutative ring and let R be an Azumaya algebra of constant rank d2

over A. Let σ be an A-linear involution of R.
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1. We say, that σ is an involution of the first kind of symplectic (orthogonal) type, if there is an étale
covering {A→ Bi}i∈I , such that the involution σ ⊗ 1 on R ⊗A Bi is induced by an antisymmetric
(symmetric) non-degenerate bilinear form β : V ×Bi

V → L on a locally free Bi-module V of
constant rank d with values in a locally free Bi-module L of constant rank 1.

2. Let A◦ → A be an étale covering of degree 2, where A◦ is connected, and let σ be an A◦-linear
involution on R. We say, that σ is an involution of the second kind (wrt. A◦) or unitary involution,
if it restricts to the unique nontrivial A◦-linear automorphism of A.

We put A◦ := A by convention if σ is of the first kind.

Proposition 8.20. Let (R, σ) be an Azumaya algebra of constant rank d2 over A with involution of the
first or second kind over A◦. Then étale locally over A◦, (R, σ) has one of the following three forms.

1. (Md(A◦), j), if σ is symplectic.

2. (Md(A◦),⊤), if σ is orthogonal.

3. (Md(A◦)×Md(A◦), swap), if σ is unitary.

Following the book [Knu91], we define a symplectic determinant law for an Azumaya algebra R over a
commutative ring A equipped with a symplectic involution.
Let R be an Azumaya algebra over A of rank d2 with an involution σ. Let S be a faithfully flat A-algebra,
such that we have a splitting α : S ⊗A R

∼−→Md(S) of R over S and let σ̃ = α(1⊗ σ)α−1 be the induced
involution on Md(S). The map x 7→ σ̃(x⊤) is an automorphism of Md(S). We can choose S so that
σ̃(x) = u(x⊤)u−1 for some suitably chosen u ∈ GLd(S) and all x ∈Md(S). The fact that σ̃2 = id implies
that u⊤ = ϵu for some ϵ ∈ µ2(S). By [Knu91, p. 8.1.1], one can choose S so that ϵ ∈ µ2(A) and this
element is independent of the choice of S. We call it the type of the involution σ on R. An involution of
type 1 is called an orthogonal involution, and an involution of type −1 is called a symplectic involution.
To define the Pfaffian on an Azumaya algebra, we first consider the case of the endomorphism ring
EndA(V ) for V a finitely generated projective A-module of rank 2d. In this case, one can show by glueing
local Pfaffians (c.f. [Knu91, p. 9.2.1]), the existence of a (unique) map

Pf : ∧2V → ∧2dV

that commutes with base change and that is given by the usual Pfaffian if V is free.
In order to generalize this construction, let R be an Azumaya algebra of rank 4d2 over A such that
its class in the Brauer group Br(A) is of order 2. Let φ : R ⊗ R ∼−→ EndA(P ) be an isomorphism of
A-algebras for P a faithfully flat finitely generated projective A-module. We call the triple (R,P, φ) a
2-torsion datum. The triple (EndA(V ), V ⊗A V, can), where V is a finitely generated projective A-module
and can is the canonical isomorphism can : EndA(V ) ⊗A EndA(V ) ∼−→ EndA(V ⊗A V ) is called a split
datum. By [Knu91, p. 9.3.1], any 2-torsion datum (R,P, φ) admits a splitting by a faithfully flat étale
A-algebra S, i.e. an isomorphism

(α, g) : (R,P, φ)⊗ S ∼−→ (EndA(V ), V ⊗A V, can)

of 2-torsion data for a finitely generated projective S-module V .
By [Knu91, p. 8.4.1], there exists an element u ∈ (R ⊗A R)× such that for any splitting (α, g), the
conjugation iu : R ⊗A R → R ⊗A R is the switch map, i.e. iu(r ⊗ r′) = r′ ⊗ r for all r, r′ ∈ R, and
(α ⊗ α) ◦ (1⊗ u) : V ⊗S V → V ⊗S V is also the switch map ωV . The element ψ := φ(u) ∈ EndS(P ) is
called the module involution of P with respect to φ and we call the set

S−(P ) = {x− ψ(x) | x ∈ P}

the set of alternating elements of P . We shall identify S−(V ) = {x − ωV (x) | x ∈ V ⊗S V } with ∧2V
through the map x⊗ y − y ⊗ x 7→ x ∧ y.

Theorem 8.21. [Knu91, p. 9.3.2] For any 2-torsion datum (R,P, φ) with R of rank 4d2, there exists up
to isomorphism a unique invertible A-module Pf(P ) and a map Pf : S−(P ) → Pf(P ), which is unique
once Pf(P ) is fixed, with the following properties:
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1. If (R,P, φ) = (EndR(V ), V ⊗ V, can), then Pf(P ) = ∧2dV , and Pf is the Pfaffian ∧2V → ∧2dV .

2. For any commutative A-algebra B, there exist canonical isomorphisms γB : Pf(P )⊗AB → Pf(P⊗A
B) such that γB(1⊗ Pf(x)) = Pf(1⊗ x), x ∈ S−(P ).

3. Viewing P as an (R,Rop)-bimodule through φ, we have Pf(rxr) = NR(r) Pf(x) where NR : R→ A
is the reduced norm, and Pf(λx) = λd Pf(x) for all r ∈ R, x ∈ P and λ ∈ A.

Now suppose that R is equipped with an involution σ of type ϵ ∈ µ2(A). We have an isomorphism
φσ : R ⊗A R

∼−→ EndR(A) given by φσ(r ⊗ r′)(x) = rxσ(r′). Thus (R,R, φσ) is a 2-torsion datum and
using [Knu91, p. 9.5.1], we can show that:

S−(R) = {x− ϵσ(x) | x ∈ R}

Moreover, in this case there is a canonical nonsingular pairing:

σ̃ : Pf(R)× Pf(R)→ A

such that σ̃(Pf(r),Pf(r)) = NrdR(r) for r ∈ S−(R) (c.f. [Knu91, p. 9.5.2]).

Proposition 8.22. [Knu91, p. 9.5.4] Let R be an Azumaya algebra over A with an involution σ of
symplectic type, then Pf(R) ∼= A and the pairing σ̃ is the trivial one.

Therefore if R is an Azumaya algebra over A equipped with a symplectic involution σ, we use the explicit
generator of Pf(R) given in the proof of [Knu91, p. 9.5.4], to get an A-valued function that we denote by
PrdR : R→ A. Explicitly, let α : R⊗AS

∼−→M2d(S) be a splitting such that (α◦(1⊗σ)◦α−1)(x) = ux⊤u−1

with u an alternating matrix in M2d(S). The matrix u−1(α(1⊗x)) for x ∈ S−(R) is skew-symmetric and

PrdR(x) = Pf(u) Pf(u−1(α(1⊗ x))), x ∈ S−(R) = R+

and we have that PrdR(x)2 = NrdR(x). Since the construction is stable under base change, we can make
the following definition:

Definition 8.23. The pair (NrdR,PrdR) defines a symplectic determinant law on (R, σ).

8.4.3 Symplectic determinant laws over fields

The goal of this subsection is to give a precise structure theorem for symplectic determinants over general
fields of characteristic ̸= 2. It is the symplectic analog of [Che14, Thm. 2.16]. A crucial ingredient in the
GLn-case is the Artin-Wedderburn theorem. Here we need a version of the Artin-Wedderburn theorem
for semisimple rings with involution.
If D is a division algebra over a field K and † : D → D is an involution, we extend † to a map
† : Mn(D) → Mn(D) by defining A† by (A†)kl := (Akl)† for A ∈ Mn(D). Note, that † ◦ ⊤ = ⊤ ◦ † is
an involution on Mn(D), but in general neither † nor ⊤ is an involution. In the following, we identify
Z(Mn(D)) with Z(D).

Proposition 8.24. Let k be a field. Let R be a semisimple k-algebra, such that every simple factor of
R is finite-dimensional over its center. Let ∗ : R→ R be a k-linear involution. Then (R, ∗) is isomorphic
as an involutive k-algebra to a product

(R, ∗) ∼=
t∏
i=1

(Ti, ιi)

for some t ∈ N≥1, where the involutive rings (T, ι) := (Ti, ιi) have one of the following three forms:

(I-II) T = Mn(D) is an n × n matrix algebra over a finite-dimensional division k-algebra D with center
K and ι(A) = SA†⊤S−1 for some S ∈ Mn(D)×, where † : D → D is a K-linear involution and
S†⊤ = ±S. If char(k) ̸= 2, then the involution ι is of the same type as † if and only if S†⊤ = S.

(IIIa) T = Mn(D) is an n × n matrix algebra over a finite-dimensional division k-algebra D with center
L and ι(A) = SA†⊤S−1 for some S ∈Mn(D)×, where † : D → D is a K-linear involution for some
index 2 subfield K of L with L/K separable, † is not the identity on L, and S†⊤ = S.
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(IIIb) T = Mn(D) × Mn(Dop) for some finite-dimensional divison algebra D over k and ι(a, bop) =
(b⊤, (aop)⊤).

Proof. Applying Artin-Wedderburn to R, we see, that R is isomorphic to a finite product
∏s
j=1 Mnj

(Dj)
of matrix algebras Mnj

(Dj) over finite-dimensional division algebras Dj over k. This product decom-
position corresponds to a unique set of orthogonal central primitive idempotents e1, . . . , es ∈ R with
e1 + · · · + es = 1. The involution ∗ defines a bijection ∗ : {e1, . . . , es} → {e1, . . . , es}. This defines a
∗-stable partition of {e1, . . . , es} into singletons {ej}, when e∗

j = ej (case (I-II-IIIa)) and pairs {ej , e∗
j}

otherwise (case (IIIb)). Let t be the number of classes of this partition and choose some numbering of
the partition by i ∈ {1, . . . , t}.
Since ejR is ∗-stable for all j with e∗

j = ej and (ej+e∗
j )R is ∗-stable for all j, we obtain ∗-stable k-algebras

Ti with Ti = Mnj
(Dj) in case (I-II-IIIa) and Ti = Mnj

(Dj)×Mnj′ (Dj′) in case (IIIb) with j′, such that
ej′ = e∗

j . The involution ∗ induces an isomorphism Mnj (Dj) ∼= Mnj′ (Dj′)op. Thus, we may assume, that
Mnj′ (Dj′) = Mnj (Dj)op.
We obtain a product decomposition of R into ∗-stable algebras Ti, with either Ti = Mnj

(Dj) or Ti =
Mnj

(Dj)×Mnj
(Dop

j ) for i ∈ {1, . . . , t}. Let ιi : Ti → Ti be the restriction of ∗ to Ti.
Fix i and let (T, ι) := (Ti, ιi).

(I-II-IIIa) These follow from [Knu+98, Chapter I, Proposition 2.20].

(IIIb) Suppose T = Mn(D) ×Mn(D)op. We know, that ι({0} ×Mn(D)op) ⊆ Mn(D) × {0}. It defines
an anti-isomorphism Mn(D)op → Mn(D). Composed with the anti-isomorphism op : Mn(D) →
Mn(D)op, we get an automorphism β : Mn(D)op →Mn(D)op This gives an isomorphism of involu-
tive k-algebras (id, β) : (T, ι)→ (T, swap), where (a, bop)swap = (b, aop). After identifying Mn(D)op

with Mn(Dop) using transposition, the claim follows.

Example 8.25. Let K/k be a field extension, and let ks ⊆ K be the maximal separable extension of k
inside K. We assume that f = [ks : k] is finite. If char(k) = p > 0, assume there is an integer q ∈ pN
such that Kq ⊆ ks. We take q minimal with this property. If p = 0 we take q = 1.
Let (R, σ) be a K-algebra with involution and let (D,P ) be a symplectic determinant law of (R, σ) over
k. We consider the following cases:

(I) (R, σ) is a central simple algebra over K with a symplectic involution. Then (D,P ) is power of:

Normks/k ◦F q ◦NrdR : R→ k

Normks/k ◦F q ◦ PrdR : R+ → k

This follows from [Che14, Lemma 2.17] and the existence and uniqueness Proposition 8.11 of the
Pfaffian.

(II) (R, σ) is a central simple algebra over K with an orthogonal involution. Suppose that after base
change R⊗K ′ = Mr(K ′), then there exists some m ∈ N>0 such that D(diag(t, 1, . . . , 1)) = tqfm ∈
K ′[t]. The existence of P forces qfm to be even. Then if m is even, (D,P ) is a power of:

Normks/k ◦F q ◦Nrd2
R : R→ k

Normks/k ◦F q ◦NrdR : R+ → k

If qf is even, This follows from [Che14, Lemma 2.17], existence and uniqueness of the Pfaffian.

(III) (R, σ) is a central simple algebra over an étale K-algebra L of degree 2 equipped with a unitary
involution over L/K. In other words L is either K ×K and R = E ×Eop with E a central simple
algebra over K, or L is a separable field extension of K and R is a central simple algebra over L.
Also σ is K-linear and restricts to the nontrivial element of AutK(L). Then (D,P ) is a power of:

Normks/k ◦F q ◦NormL/K ◦NrdR : R→ k

Normks/k ◦F q ◦NrdR : R+ → k
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This is because NrdR on R+ takes values in K. Indeed in the first case, we have that σ is given
by σ(a, b) = (ι(b), ι(b)) with ι : E → Eop an isomorphism of central simple algebras over K. So for
(a, ι(a)) ∈ R+ with a ∈ E, we have

NrdR(a, ι(a)) = (NrdE(a),NrdEop(ι(a))) = (NrdE(a),NrdE(a))

The second case follows from the first case by base change [Knu+98, §2, Proposition 2.15].

Example 8.26. There is an infinite field extension K/k, such that there is a determinant D : K → k.
Indeed, we can take k := Fp(tpi | i ∈ N) and K = Fp(ti | i ∈ N). The extension K/k is infinite with
Kp = k, so the Frobenius F p : K → k is a determinant.

Proposition 8.27. Let (D,P ) : (R, σ)→ k be a 2d-dimensional symplectic determinant. Then there is
an isomorphism

(R/ ker(D), σ) ∼=
s∏
i=1

(Ri, σi)

of involutive k-algebras, where each (Ri, σi) is equipped with a symplectic determinant (Di, Pi) which
takes one of the forms (I)-(III) described in the example 8.25, and where:

(D,P ) =
(

s∏
i=1

Di ◦ πi,
s∏
i=1

Pi ◦ πi

)

with πi : R→ Ri are the projections given by the isomorphism.

Proof. This proposition follows from [Che14, Theorem 2.16] and 8.24.

Theorem 8.28. Let k be an algebraically closed field and let (R, σ) be an involutive k-algebra. There is a
bijection between isomorphism classes of semisimple 2d-dimensional symplectic representations of (R, σ)
over k and 2d-dimensional symplectic determinant laws of (R, σ) over k given by sending ρ : (R, σ) →
(M2d(k), j) to (det ◦ρ,Pf ◦ρ).

Proof. Let (D,P ) be a symplectic determinant of (R, σ) over k. By proposition 8.27 there is a decompo-
sition

(R/ ker(D), σ) ∼=
s∏
i=1

(Ri, σi)

where the Ri are Ki-algebras of the form described in example 8.25 for some extension field Ki/k.
Arguing as in the proof of [Wan13, Theorem 1.3.1.3], we have Ki = k for all i. Thus we have the following
three cases:

(I) (Ri, σi) ∼= (M2ni(k), j). We let ρi : (R, σ)→ (M2ni(k), j) be the corresponding symplectic represen-
tation.

(II) (Ri, σi) ∼= (Mni
(k),⊤). We let

ρi : (R, σ)→ (M2ni
(k), j)

r 7→
(
πi(r) 0

0 πi(r)

)

(III) (Ri, σi) ∼= (Mni
(k)×Mni

(k), swap). We let

ρi : (R, σ)→ (M2ni
(k), j)

r 7→
(

pr1(πi(r)) 0
0 pr2(πi(r))op

)
In these three cases (Di, Pi) is of the form (det ◦ρi,Pf ◦ρi). In particular (D,P ) is of the form (det ◦ρ,Pf ◦ρ),
where ρ =

⊕s
i=1 ρi. Since R surjects onto the Ri, the ρi are semisimple and thus ρ is semisimple.
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To prove that the map is injective, let us consider two semisimple representations ρ1 and ρ2 of R over k
of dimension 2d that have the same symplectic determinant. By [Che14, Theorem 2.12], ρ1 and ρ2 are
conjugated by an element g ∈ GL2d(k). We need to show that we can take g ∈ Sp2d(k).
Since the product of copies of the symplectic group embeds diagonally in a symplectic group up to
conjugation, it suffices to check this for direct summands of ρ1 and ρ2. We can match the irreducible
symplectic subrepresentations of ρ1 and ρ2. An irreducible subrepresentation of ρ1, which is contained
in an indecomposable symplectic subrepresentation of ρ1 that is not irreducible, is mapped into an
indecomposable symplectic subrepresentation of ρ2 that is also not irreducible. Thus, we can assume
that ρ1 and ρ2 are indecomposable as symplectic representations.
We distinguish two cases:

(a) ρ1 and ρ2 are irreducible as representations. In this case, they are both surjective onto M2d(k), so
that Inner(g) ∈ Aut((M2d(k), j)) = PSp2d(k).

(b) The representations are of the form ρi = ρi,1 ⊕ ρi,2 with ρi(rσ) = (ρi,2(r)⊤, ρi,1(r)⊤). There
exist g1, g2 ∈ GLd(k) such tht ρ1,1 = g1ρ2,1g

−1
1 and ρ1,2 = g2ρ2,2g

−1
2 . The compatibility of the

representations with the involution implies that g2 = g−1,⊤
1 , and so diag(g1, g2) = diag(g1, g

−1,⊤
1 ) ∈

Sp2d(k).

Corollary 8.29. Let (R, σ) be an involutive k-algebra equipped with a symplectic determinant (D,P )
over k of dimension 2d. Assume, that R/ ker(D) is a finitely generated k-algebra. Then there exists
a finite field extension k′/k and a symplectic representation ρ : (R ⊗k k′, σ) → (M2d(k′), j) such that
(D ⊗k k′, P ⊗k k′) = (det ◦ρ,Pf ◦ρ).

Proof. By Lemma 8.14, we may assume, that ker(D) = 0 and that R is a finitely generated k-algebra. By
Theorem 8.28, let ρk : (R⊗kk, σ⊗ idk)→ (Md(k), j) be a symplectic representation with D⊗kk = det ◦ρk
and P ⊗k k = Pf ◦ρk|(R⊗kk)+ . Then the image ρk(R) ⊆Md(k) is as a k-subalgebra generated by finitely
many matrices in Md(k), hence there is a finite field extension k′/k, such that ρk(R) ⊆ Md(k′). We
have ρk(R+) ⊆ Md(k′) ∩ Md(k)+ = Md(k′)+. Thus the restriction of ρk to k′ defines a symplectic
representation ρ : (R⊗k k′, σ ⊗ idk′)→ (Md(k′), j).
For every commutative k′-algebra B we obtain a diagram

R⊗k′ B

ρ⊗id ((

DB //

��

B

��

Md(B)
det

77

��

R⊗k′ (B ⊗k′ k)

ρ⊗id ((

D
B⊗

k′ k
// B ⊗k′ k

Md(B ⊗k′ k)
det

88

By the functorialities of D, det and the base changes of ρ, we know that every square commutes. The
bottom triangle commutes by Theorem 8.28. The vertical maps are all injective and so it follows, that
the top triangle commutes, hence det ◦ρ = D ⊗k k′. We proceed similarly for the Pfaffian.

8.4.4 Symplectic determinant laws over Henselian local rings

We fix a Henselian local ring A with maximal ideal mA and residue field k, and we suppose that 2 ∈ A×.

Proposition 8.30. Let R be an A-algebra with involution equipped with a d-dimensional Cayley-
Hamilton ∗-determinant D : R → A such that D = det ◦ρ for some absolutely irreducible orthogonal
(resp. symplectic) representation ρ : (R, σ)→ (Md(k),⊤) (resp. (Md(k), j)). Then there exists an isomor-
phism of involutive algebras ρ : (R, σ)→ (Md(A),⊤) (resp. (Md(A), j)) lifting ρ such that D = det ◦ρ.
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Proof. First we treat the orthogonal case. By [Che14, Theorem 2.22], we know that R ∼= Md(A) and that
(R/ ker(D), σ) ∼= (Md(k),⊤). We let ϵij ∈Md(k) be the matrix with 1 at the (i, j) entry and 0 elsewhere.
By [Che14, Lemma 2.10 (i)], we know that rad(R) = ker(R → R/ ker(D)). This allows us to use the
proof of [BC09, Lemma 1.8.2] to show the existence of σ-fixed orthogonal idempotents eii lifting ϵii for
1 ≤ i ≤ d with

∑
i eii = 1. Since A is local, we have a decomposition Ad = e11A

d ⊕ · · · ⊕ eddAd into
free of rank 1 summands, and we may choose generators αi of eiiAd such that the base change matrix
g ∈ GLd(A) from the canonical basis of Ad to the basis (α1, . . . , αd) reduces to the identity modulo
mA. Thus after conjugaction by g, we can suppose that eii is the matrix with 1 at the (i, i) entry and
0 elsewhere. By [Alj+21, Remark 3.4.19], every automorphism of Md(A) is inner, so there exists an
invertible matrix P ∈ GLd(A) such that σ(M)⊤ = P−1M⊤P for every M ∈Md(A) ∼= R. It follows from
the fact that σ(eii) = eii that we have P = diag(λ1, . . . , λd) with λi ≡ 1 mod mA. Since A is Henselian
and 2 ∈ A×, there exists elements λ′

i ∈ A such that λ′2
i = λi. Letting Q = diag(λ′

1, . . . , λ
′
d), we get an

isomorphism of involutive algebras (Md(A), σ)→ (Md(A),⊤) : M 7→ QMQ−1 which is what we want.
The symplectic case reduces to the orthogonal case after conjugating the involution by J .

8.5 Moduli of symplectic representations

8.5.1 Setting

Let A be a noetherian commutative ring with 2 ∈ A× and let (R, ∗) be a finitely generated A-algebra with
involution. Let d ≥ 1 be an integer. The goal of this section is to compare the moduli of 2d-dimensional
symplectic representations of (R, ∗) to the space of symplectic determinants of dimension 2d.
We put S = Spec(A) and recall the following functors on S-schemes. They are defined in analogy to
[Wan18, Definition 2.1].

Definition 8.31.

1. Define the functor on S-schemes to SpRep□,2d
(R,∗) : (Sch /S)op → Set by setting

SpRep□,2d
(R,∗)(X) := {A-algebra morphisms (R, ∗)→ (M2d(Γ(X,OX)), j) respecting the involution}

2. We also define a functor SpRep2d
(R,∗) : (Sch /S)op → Gpd by setting

ob SpRep2d
(R,∗)(X) := {V/X a rank 2d vector bundle,

b : V × V → OX a non-singular skew-symmetric OX -bilinear form,
and an A-algebra morphism ρ : (R, ∗)→ (Γ(X,EndOX

(V )), σb) respecting the involution}

An isomorphism of two objects (V, b, ρ) and (V ′, b′, ρ′) is an isomorphism α : V → V ′, such that
b′ ◦ (α× α) = b and Γ(X,EndOX

(α)) ◦ ρ = ρ′.

3. We also define a functor SpRep2d
(R,∗) : (Sch /S)op → Gpd by setting

ob SpRep2d
(R,∗)(X) := {(E , σ) a rank 4d2 Azumaya algebra over X equipped with a symplectic involution,

and an A-algebra morphism ρ : (R, ∗)→ (Γ(X, E), σ) respecting the involution}

An isomorphism of two objects (E , σ, ρ) and (E ′, σ′, ρ′) is an isomorphism α : E → E ′ of Azumaya
algebras over OX , such that α ◦ ρ = ρ′.

SpRep□,2d
(R,∗) is representable by an affine scheme, which is of finite type over S, if R is finitely generated

over A. The functors SpRep2d
(R,∗) and SpRep2d

(R,∗) are (2-)representable by categories fibered in groupoids
over Sch/S.

Lemma 8.32. Let X be a scheme and d ≥ 1.

1. There is a natural bijection of pointed sets between the set of symplectic vector bundles of rank 2d
on Sch/X up to isomorphism and the set of étale Sp2d-torsors on Sch/X up to isomorphism.
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2. There is a natural bijection of pointed sets between the set of Azumaya algebras of rank 4d2 equipped
with a symplectic involution on Sch/X up to isomorphism and the set of étale PGSp2d-torsors on
Sch/X up to isomorphism.

Proof. We first observe, that symplectic vector bundles are the same in the Zariski and in the étale
topology. This follows from the equivalence of categories [Sta19, 03DX], which is also used in the proof
of Hilbert’s Theorem 90 [Sta19, 03P7] in the case of line bundles.
The bijection between étale symplectic vector bundles and étale Sp2d-torsors is now the standard one:
Take an étale symplectic vector bundle (V, σ) to the étale Isom-sheaf

Isom((V, σ), (O2d
X , std))(U) := Isom((V, σ)|U , (O2d

X , std)|U )

with Sp2d-action induced by the standard action on O2d
X . It follows directly from local triviality of (V, σ),

that Isom((V, σ), (O2d
X , std)) is an Sp2d-torsor.

Take an étale Sp2d-torsor T to the étale sheaf quotient T ×Sp2d O2d
X := (T ×Sp2d O2d

X )/Sp2d, which by
local triviality of T is again easily seen to be an étale symplectic vector bundle.
By the same argument using that the automorphism group of the standard Azumaya algebra with sym-
plectic involution is PGSp2d and that Azumaya algebras are étale locally trivial, we see that the groupoid
of Azumaya algebras with symplectic involution is equivalent to the groupoid of étale PGSp2d-torsors.

Theorem 8.33. The canonical functors

[SpRep□,2d
(R,∗) / Sp2d]

∼→ SpRep2d
(R,∗) and [SpRep□,2d

(R,∗) /PGSp2d]
∼→ SpRep2d

(R,∗)

are equivalences of étale stacks on Sch/S. On the left hand sides we take the étale stack quotient.

The proof follows closely the proof of [Wan13, Theorem 1.4.1.4]. We remark, that the result is a version
of [Wan13, Theorem 1.4.4.6] for representations of algebras instead of groups.

Proof. By [Sta19, 003Z] it is enough to show, that the functors induce equivalences of fiber categories
(which are groupoids). For the purpose of this proof the stacks will be described as pseudofunctors from
(Sch /S)op to the (2, 1)-category of groupoids in the sense of [Sta19, 003V].

[SpRep□,2d
(R,∗) /Sp2d] parametrizes for each S-scheme t : T → S pairs (f : G → T, G → SpRep□,2d

(R,∗)) ∈
[SpRep□,2d

(R,∗) /Sp2d](T ), where G is an étale Sp2d-torsor over T and G → SpRep□,2d
(R,∗) is an Sp2d-equivariant

map of S-schemes.
Using Lemma 8.32, we attach to G a symplectic vector bundle (V, b) on T . Since G(G) contains idG , (V, b)
is canonically trivialized over G. The composition

f∗t∗R→ (M2d(OG), j)→ EndOG (f∗V, σb)

can be descended to a map t∗R→ EndOG (V, σb) using Sp2d-equivariance of G → SpRep□,2d
(R,∗). The functor

G 7→ (V, b) realizes the identification Lemma 8.32 between symplectic vector bundles and Sp2d-torsors. In
particular it induces an equivalence between the groupoid of symplectic vector bundles and the groupoid
of Sp2d-torsors.

To show, that the functor [SpRep□,2d
(R,∗) / Sp2d](T ) → SpRep2d

(R,∗)(T ) is an equivalence, we give a functor
in the other direction. It is then formal to verify that this realizes an equivalence of groupoids.
An object of SpRep2d

(R,∗)(T ) is a triple (V, b, ρ) as in Definition 8.31. We define an Sp2d-torsor G over T
by setting

G(X) := IsomOX
((x∗V, b), (O⊕2d

X , bstd))

for all T -schemes x : X → T . Here bstd is the standard symplectic form and isomorphisms shall preserve
the bilinear forms. G is represetable by a flat scheme f : G → T of finite presentation over T [You,
Theorem 3.24]. The identity map in G(G) corresponds to an isomorphism f∗V

∼→ O⊕2d
G compatible with

b and bstd. The composition

(f∗t∗R, ∗) ρ→ (EndOG (f∗V ), σb)
∼→ (EndOG (O⊕2d

G ), j)
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defines a representation in SpRep□,2d
(R,∗)(G), so we obtain a map G → SpRep□,2d

(R,∗). The latter is Sp2d-
equivariant, for the action of Sp2d realizes a change of basis. We have constructed an object of [SpRep□,2d

(R,∗) / Sp2d](T ).

The equivalence [SpRep□,2d
(R,∗) /PGSp2d]

∼→ SpRep2d
(R,∗) follows by an analogous argument. We only men-

tion, that PGSp2d is the automorphism group scheme of (M2d, j). We are using Lemma 8.32 to identify
étale PGSp2d-torsors and Azumaya algebras with symplectic involution.

8.5.2 Comparison with the GIT quotient

Assume, that A is noetherian and that R is finitely generated over A.
By [Alp14, Theorem 9.1.4] the canonical map [SpRep□,2d

(R,∗) / Sp2d] → SpRep□,2d
(R,∗) � Sp2d is an adequate

moduli space. Since the canonical map [SpRep□,2d
(R,∗) / Sp2d] → SpRep2d

(R,∗) is an equivalence of stacks
(8.33), the map ϕ : SpRep2d

(R,∗) → SpRep□,2d
(R,∗) � Sp2d is an adequate moduli space as well.

The map ψ□ : SpRep□,2d
(R,∗) → SpDet2d

(R,∗) given by mapping a representation to its determinant factors
over the stack quotient and thus through a map ψ : SpRep2d

(R,∗) → SpDet2d
(R,∗), which in turn factors

through the adequate moduli space ϕ. We obtain a commutative diagram

SpRep2d
(R,∗)

ψ

��

ϕ

''
SpDet2d

(R,∗) SpRep□,2d
(R,∗) � Sp2dν

oo

Recall, that an adequate homeomorphism is an integral universal homeomorphism, which is a local iso-
morphism at all points with residue field of characteristic 0 (see [Alp14, Definition 3.3.1]).

Theorem 8.34. ν is a finite universal homeomorphism.

We follow closely the structure of the proof of [Wan18, Theorem 2.20].

Proof. We know, that ν is surjective and radicial, since ν is a bijection on geometric points [Pro76,
Theorem 15.4]. Hence by [Gro67, Corollaire 18.12.11] it suffices to show, that ν is integral and by [Sta19,
01WM] it suffices to show, that ν is universally closed.
We will apply the valuative criterion for universally closed morphisms in the version of [Gro61, Remarques
7.3.9 (i)].
Let B be a complete discrete valuation ring with an algebraically closed residue field and fraction field
K.
We will show, that given a diagram of A-schemes:

SpecK SpRep□,2d
(R,∗) � Sp2d

SpecB SpDet2d
(R,∗)

α

ν

(D,P )

there exists a finite field extension K ′′/K and letting B′′ be the integral closure of B in K ′′ there is a
morphism f : SpecB′′ → SpRep2d

(R,∗), such that ϕ ◦ f fits in the diagram

SpecK ′′ SpecK SpRep□,2d
(R,∗) � Sp2d

SpecB′′ SpecB SpDet2d
(R,∗)

α

νϕ◦f
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and thereby verifies the valuative criterion.
Let (D,P ) be the symplectic determinant of (R, ∗) associated to the point SpecB → SpDet2d

(R,∗). Our
Theorem 8.28 together with [Wan18, 2.19 (1)] implies, that there is a K-linear semisimple symplectic
representation ρ : (R ⊗A K, ∗) → (M2d(K), j) such that the corresponding point SpecK → SpRep2d

(R,∗)
lies above α:

SpecK SpRep2d
(R,∗)

SpecK SpRep□,2d
(R,∗) � Sp2d

ρ

ϕ

α

By [Che14, Theorem 2.12] and [Che14, Lemma 2.8] we have ker(ρ) ∩ (R ⊗A K) = ker(D ⊗A K), so
the action of R ⊗A K on K

n factors through (R ⊗A K)/ ker(D ⊗A K), which is finite-dimensional over
K by [Wan18, Corollary 2.14]. By Corollary 8.29 there is a finite extension K ′/K and a symplectic
representation ρ : R⊗A K ′ → (M2d(K ′), j), which induces (D ⊗A K ′, P ⊗A K ′).
Let B′ be the integral closure of B in K ′. Let V ′ := (K ′)2d be the K ′-vector space realizing ρ. Let
L ⊆ V ′ be a B′-lattice and as in the proof of [Wan18, Theorem 2.20], we may assume that L is R-stable.
The symplectic bilinear form on V ′ restricts to a B′-bilinear form β : L×L→ K ′; beware that we don’t
know a priori whether β has values in B′. Choose a basis x1, . . . , x2d of L and let F be the fundamental
matrix of β, i.e. Fij = β(xi, xj). Let ϖ be a uniformizer of B′. Then det(F ) = aϖr, where a ∈ (B′)×

and r ∈ Z.
We find a finite extension K ′′/K ′, such that there is an element z ∈ K ′′ with z4d = ϖ−r. Let B′′ be the
integral closure of B′ (and B) in K ′′. Let L′′ := L ⊗B′ B′′, which is a lattice in V ′′ := V ′ ⊗K′ K ′′ with
basis x1, . . . , x2d. β extends to a B′′-bilinear form β : L′′ × L′′ → K ′′ with fundamental matrix F . The
rescaled lattice zL′′ has basis zx1, . . . , zx2d and fundamental matrix z2F . It follows, that det(z2F ) = a
and thus β is non-degenerate on zL′′. So there is a representation on the B′′-lattice zL′′ compatible
with (the involution induced by) β, which gives ρ ⊗K ′′ after extension of scalars. To obtain an actual
symplectic representation R⊗AB′′ → (M2d(B′′), j), we use [MH74, Corollary 3.5]: Every non-degenerate
bilinear form over B′′ is congruent to the standard symplectic form.

8.6 Comparison With Lafforgue’s pseudocharacters

We recall the definition of Lafforgue’s pseudocharacters for reductive groups. See [Laf18, §11] for the
original definition and [BHKT, Definition 4.1] for a definition in the context of deformation theory. For
GLn Lafforgue’s definition has been proven to be equivalent to Chenevier’s notion of determinant laws
[Eme18, Theorem 4.0.1]. We expect, that the bijection constructed in [Eme18, Theorem 4.0.1] restricts to
a bijection between Lafforgue’s pseudocharacters for the symplectic groups and symplectic determinant
laws over commutative Z[ 1

2 ]-algebras. The main goal of this section is prove this conjecture in some
special cases.
Recall for the next definition, that a reductive group scheme over Z is connected by definition [Con14b].
Only G = GLd and G = Sp2d will be relevant here.

Definition 8.35 (G-pseudocharacter). Let G be a reductive Z-group scheme, let Γ be an abstract group
and let A be a commutative ring. AG-pseudocharacter Θ of Γ over A is a sequence of ring homomorphisms

Θm : Z[Gm]G → Map(Γm, A)

for each m ≥ 1, satisfying the following conditions1:

1. For all n,m ≥ 1, each map ζ : {1, . . . ,m} → {1, . . . , n}, every f ∈ Z[Gm]G and all γ1, . . . , γn ∈ Γ,
we have

Θn(fζ)(γ1, . . . , γn) = Θm(f)(γζ(1), . . . , γζ(m))
where fζ(g1, . . . , gn) = f(gζ(1), . . . , gζ(m)).

1Here G acts on Gm by g · (g1, . . . , gm) = (gg1g−1, . . . , ggmg−1). This induces a rational action of G on the affine
coordinate ring Z[Gm] of Gn. The submodule O[Gm]G ⊆ O[Gm] is defined as the rational invariant module of the G-
representation O[Gm]. It is an O-subalgebra, since G acts by O-linear automorphisms.
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2. For all m ≥ 1, for all γ1, . . . , γm+1 ∈ Γ and every f ∈ Z[Gm]G, we have

Θm+1(f̂)(γ1, . . . , γm+1) = Θm(f)(γ1, . . . , γmγm+1)

where f̂(g1, . . . , gm+1) = f(g1, . . . , gmgm+1).

We denote the set of G-pseudocharacters of Γ over A by PCΓ
G(A). If f : A→ B is a ring homomorphism,

then there is an induced map f∗ : PCΓ
G(A) → PCΓ

G(B). This defines a functor PCΓ
G : CRing → Set,

which is representable by a commutative ring BΓ
G Theorem 4.46.

The definition of G-pseudocharacter can be brought into a more convenient and practical form. Let
F := {FG(m) | m ≥ 1} be the category of finitely generated free groups FG(m) on m letters. Then the
associations Z[G•]G : FG(m) 7→ Z[Gm]G and Map(Γ•, A) : FG(m) 7→ Map(Γm, A) give rise to functors
F → CRing. It can be proved, that there is a natural bijection

PCΓ
G(A) ∼= Nat(Z[G•]G,Map(Γ•, A))

for any commutative ring A, where Nat stands for natural transformations. See Corollary 4.45 for more
details.
Now assume, that G = Sp2d. For m ≥ 1, the Sp2d-module Z[Spm2d] has a good filtration by [Jan03, §B.8]
and Mathieu’s tensor product theorem [Mat90] (which holds also over the integers, see e.g. Theorem 4.16)
andHi(Sp2d,Z[Spm2d]) = 0 for all i > 0 [Jan03, §B.9]. In particular for any homomorphism of commutative
rings A→ B, we have

B[Spm2d]Sp2d ∼= Z[Spm2d]Sp2d ⊗Z B ∼= (Z[Spm2d]Sp2d ⊗Z A)⊗A B ∼= A[Spm2d]Sp2d ⊗A B

We recall the definition of characteristic polynomials of Lafforgue pseudocharacters here.

Definition 8.36. Let A be a commutative ring and let Θ ∈ PCΓ
GLd

(A). Then we define the characteristic
polynomial of Θ by

χΘ(γ, t) :=
d∑
i=0

(−1)iΘ1(si)(γ)td−i ∈ A[t]

where si ∈ Z[GLd]GLd are the unique invariant regular functions, which satisfy

det(t− X) =
d∑
i=0

(−1)isi(X)td−i

in Z[GLd][t]GLd , where X is the generic matrix coordinate in GLd(Z[GLd]) which corresponds to the
identity under the Yoneda isomorphism.

Proposition 8.37. Let A be a commutative ring. Then the map

PCΓ
GLd

(A)→ Map(Γ, A[t]), Θ 7→ χΘ

is injective.

Proof. It suffices to show, that a GLd-pseudocharacter Θ is determined by the values Θ1(si) for 1 ≤ i ≤ d.
By Corollary 5.13, these are generators of the F-Z-algebra Z[GL•

d]GLd , so the claim follows.

Now we are in shape to define a comparison map in one direction:

Proposition 8.38. Let Θu ∈ PCΓ
Sp2d

(BΓ
Sp2d

) be the universal Sp2d-pseudocharacter and let C be a
commutative BSp2d

-algebra. We have seen, that C[Spm2d]Sp2d ∼= BΓ
Sp2d

[Spm2d]Sp2d ⊗BΓ
Sp2d

C and Θu
m induces

a homomorphism Θu
m,C : C[Spm2d]Sp2d → Map(Γm, C) for all m ≥ 1. We define maps

DC : C[Γ]→ C,

m∑
i=1

ciγi 7→ Θu
m,C

(
det
(

m∑
i=1

ciXi

))
(γ1, . . . , γm)

PC : C[Γ]+ → C,

m∑
i=1

ci(γi + γ−1
i ) 7→ Θu

m,C

(
Pf
(

m∑
i=1

ci(Xi + X−1
i )
))

(γ1, . . . , γm)
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Then D is a 2d-dimensional determinant law over BΓ
Sp2d

and P is a d-homogeneous polynomial law with
P 2 = D|BΓ

Sp2d
[Γ]+ and P (1) = 1. In particular we have a natural map PCΓ

Sp2d
(A)→ SpDetΓ

2d(A) for every
commutative Z[ 1

2 ]-algebra A.

Here Xi ∈ Sp2d(Z[Spm2d]) is the generic i-th coordinate, i.e. the unique element of Sp2d(Z[Spm2d]), such
that for all commutative rings A and all tuples T = (T1, . . . , Tm) ∈ Sp2d(A)m, we have Xi(T1, . . . , Tm) =
Sp2d(T )(Xi) = Ti.
(D,P ) is formally a symplectic determinant law attached to the universal Sp2d-pseudocharacter over Z,
but in Definition 8.7 we require that 2 shall be invertible on the base, so we refrain from calling it a
symplectic determinant law.

Proof. The way the maps are defined is functorial, so clearly D and P are polynomial laws. We check
2d-homogeneity of D:

Θu
m,C

(
det
(

m∑
i=1

cciXi

))
= c2dΘu

m,C

(
det
(

m∑
i=1

ciXi

))

for all m ≥ 1, C ∈ CRing, c, ci ∈ C and Xi ∈ Sp2d(Z[Spm2d]) the generic matrix corresponding to the i-th
projection Spm2d → Sp2d by Yoneda. d-homogeneity of P follows similarly. For multiplicativity, we notice,
that

Θu
m+m′,C

(
det
(

m∑
i=1

ciXi

))
Θu
m+m′,C

det

 m′∑
j=1

c′
jXm+j

 = Θu
m+m′,C

det

 m∑
i=1

m′∑
j=1

cic
′
jXiXm+j


Define

µ := det

 m∑
i=1

m′∑
j=1

cic
′
jXiXm+j

 µ′ := det

 m∑
i=1

m′∑
j=1

cic
′
jXi+(j−1)m


Now

Θu
m+m′,C (µ) (γ1, . . . , γm, γ

′
1, . . . , γ

′
m′)

=Θu
mm′,C (µ′) (γ1γ

′
1, γ1γ

′
2, . . . , γmγ

′
m′)

holds by a suitable substitution in an F-Z-algebra. ∗-invariance of D, P 2 = D|C[Γ]+ and P (1) = 1 follow
by a similar substitution.

Let Θ ∈ PCΓ
Sp2d

(A) and write (DΘ, PΘ) for the image of Θ under the natural map PCΓ
Sp2d

(A) →
SpDetΓ

2d(A). We observe, that the comparison map is compatible with characteristic polynomials: We
have Θ = φΘ(Θu) for the arrow φΘ : Z[ 1

2 ][PCΓ
Sp2d

]→ A associated to Θ. Then DΘ = φΘ ◦ D̃ with D̃ as-
sociated to Θu as in Proposition 8.38. We see that the comparison map is compatible with characteristic
polynomials:

χDΘ(γ, t) = φΘ(χD̃(γ, t))
= φΘ(D̃Z[t](t− γ))
= φΘ(Θu

1 (det(t− X1))(γ))
= φΘ(χΘu

(γ, t))
= χΘ(γ, t)

for all γ ∈ Γ.

Lemma 8.39. The map PCΓ
Sp2d

(A)→ SpDetΓ
2d(A) defined in Proposition 8.38 is injective.

Proof. Indeed, the map PCΓ
Sp2d

(A) → PCΓ
GL2d

(A) induced by the standard representation ι : Sp2d →
GL2d is injective, since the maps Z[GLm2d]GL2d ↠ Z[Spm2d]Sp2d are surjective by Proposition 8.45. The
map SpDetΓ

2d(A)→ DetΓ
2d(A) forgetting the Pfaffian is injective by Proposition 8.11. The claim follows,

since we have a bijection PCΓ
GL2d

(A)→ DetΓ
2d(A) by [Eme18, Theorem 4.0.1].
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Lemma 8.40. If A→ B is an injective homomorphism of Z[ 1
2 ]-algebras and PCΓ

Sp2d
(B)→ SpDetΓ

2d(B)
defined in Proposition 8.38 is a bijection, then PCΓ

Sp2d
(A)→ SpDetΓ

2d(A) is a bijection.

Proof. By Lemma 8.39 it is enough to show surjectivity. Let (D,P ) ∈ SpDetΓ
2d(A). By Proposition 8.11,

the natural map SpDetΓ
2d(A) → DetΓ

2d(A) is injective. By assumption (D ⊗A B,P ⊗A B) ∈ SpDetΓ
2d(B)

corresponds to a unique Θ ∈ PCΓ
Sp2d

(B). We know, that χD(γ, t) = χD⊗AB(γ, t) for all γ ∈ Γ and
thus (for the standard representation ι : Sp2d → GL2d) the coefficients of χι(Θ)(γ, t) lie in A. By
Proposition 8.45, these coefficients determine Θ1 : Z[Sp2d]Sp2d → Map(Γ, B). But also by Corollary 8.46
these elements already generate the entire F-Z-algebra Z[Sp•

2d]Sp2d and thereby all homomorphisms Θm :
Z[Spm2d]Sp2d → Map(Γm, B). By considering substitutions with morphisms of the category F , it follows,
that the image of Θm is contained in Map(Γm, A). Thus Θ descends to an Sp2d-pseudocharacter in
PCΓ

Sp2d
(A), which we will also call Θ. It remains to show, that Θ is indeed mapped to (D,P ), but

this follows from the compatibility of the comparison map with characteristic polynomials: We have
χι(Θ)(γ, t) = χD⊗AB(γ, t) = χD(γ, t). Since D is determined by χD and P is determined by P , Θ is
necessarily mapped to (D,P ).

Proposition 8.41. Let A be a reduced commutative Z[ 1
2 ]-algebra. Then the map PCΓ

Sp2d
(A) →

SpDetΓ
2d(A) defined in Proposition 8.38 is bijective.

Proof. By Lemma 8.39 it is enough to show surjectivity. If (D,P ) ∈ SpDetΓ
2d(A), we know by [Eme18,

Theorem 4.0.1], that there is some Θ ∈ PCΓ
GL2d

(A), that maps to D. So it is enough to show, that Θm

factors over Z[Spm2d]Sp2d for all m ≥ 1.
By Lemma 8.40, the proof of the proposition reduces to the case of an algebraically closed field in three
steps: First embed A →

∏
pA/p, where p varies over all prime ideals of A. Second, representable

functors preserve products, so the claim for
∏

pA/p reduces to the claim for A/p. Third, embed an
integral domain A/p into an algebraic closure of its fraction field. If A is an algebraically closed field,
then by Theorem 8.28 there is a semisimple representation ρ : Γ → Sp2d(A), that induces (D,P ). The
Sp2d-pseudocharacter induced by ρ is necessarily mapped to (D,P ).

8.7 Symplectic and orthogonal matrix invariants

The main theorem of [Zub99] is stated as follows:

Theorem 8.42. Let G = Spd or Od and let K be an algebraically closed field (of characteristic ̸= 2 in
the orthogonal case). Then the invariant algebra K[Mm

d ]G is generated by the elements

(X1, . . .,Xm) 7→ σi(Yj1 · · ·Yjs
)

where every matrix Yi is either Xi or the symplectic (or orthogonal) transpose X j
i and σi(X) is the i-th

coefficient of the characteristic polynomial of X.

Using this theorem, we use the idea of Donkin (cf. [Don92]) to find generators of the symplectic invariants
of several matrices with integral coefficients.

Proposition 8.43. Let G = Spd, then the invariant algebra Z[Mm
d ]G is generated by the elements

(X1, . . .,Xm) 7→ σi(Yj1 · · ·Yjs
)

defined above.

Proof. Let us write R̃ = Z[Mm
d ]G and let R ⊆ R̃ be the subalgebra generated by the functions defined in

the statement of the proposition. We need to show that this inclusion is an equality.
Note that the algebra of regular functions onmmatrices has a natural gradingK[Mm

d ] =
⊕

α∈Nm K[Mm
d ]α

defined by giving to the (i, j)-entry x(l)
i,j of the l-th matrix Xl (1 ≤ l ≤ m) the degree (0, .., 1, .., 0) (the 1

is in the l-th position). In particular, the grading on C[Mm
d ] induces a grading on R and R̃.

By [Don92, §3], K[Mm
d ]α has a good filtration as a GLd(K)-module. But as mentioned in the proof of

[Don94, Theorem 3.9], the restriction to Spd of a GLd-module with a good filtration has a good filtration.
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From [Don90, Proposition 1.2a(iii)], we get that dimK[Mm
d ]Gα is the coefficient of the character of the

Weyl module ∇(0) in the expension of the character of the G-module K[Mm
d ] as a Z-linear combination

of the characters of ∇(λ) for λ ∈ X+ (loc.cit.). In particular dα = dimK[Mm
d ]Gα is the same for all

algebraically closed fields K.
Let Rα := R ∩ Z[Mm

d ]α. Since C⊗Z Rα = C⊗Z R̃α = C[Mm
d ]α, we get that rankZRα = rankZ R̃α = dα.

Also by Theorem 8.42 we have a sequence of morphisms

K ⊗Z Rα K ⊗Z R̃α K[Mm
d ]Gα

where all of the vector spaces have the same dimension dα, so all of the arrows are isomorphisms. In
particular, we have K ⊗Z Rα ∼= K ⊗Z R̃α for every algebraically closed field K, and so Rα = R̃α which
is enough to conclude.

Consider the general symplectic group GSp2n over Z whose funtor of points is as follows:

GSp2n(A) = {g ∈ M2n(A) | gg∗ = λ(g) · id for some λ(g) ∈ A∗}

There is a natural embedding of GSp2n inside M2n×A1 given by g 7→ (g, λ(g)−1). This way, we see that
Z[GSp2n] = Z[ci,j , δ]/I where I is the ideal generated by the relation det(ci,j)i,j · δn = 1 and the relations
coming from the identity (ci,j)i,j · (ci,j)∗

i,j = δ−1 · id. Thus we see that for the grading on Z[ci,j , δ] such
that deg(ci,j) = 1 and deg(δ) = −2, I is homogeneous and so the grading can be transferred to Z[GSp2n].
More generally we will consider the graded ring

Z[GSpm2n] =
⊕
α∈Zm

Z[GSpm2n]α (13)

Lemma 8.44. Let K be an algebraically closed field, then the invariant algebra K[GSpkd]Spd is generated
by the functions

(X1, . . .,Xk) 7→ σi(Xj1 · · ·Xjs
) and (X1, . . .,Xk) 7→ λ−1(Xi)

where σi(X) is the i-th coefficient of the characteristic polynomial of X.

Proof. The proof is based on a remark in [Zub99, §3]. Consider the canonical morphism of alge-
braic groups π : Spd×Gm → GSpd which is surjective since it is surjective on the K-points (see
[Knu+98, Proposition 22.3]). The same is true for π⊗k so we get an embedding (π⊗k)∗ : K[GSpkd] ↪→
K[(Spd×Gm)k]. Note that for h ∈ Spd(K) and f ∈ K[GSpkd], we have h · ((π⊗k)∗f) = (π⊗k)∗(π⊗k(h) ·
f) (the action is by conjugation). Therefore we get that (π⊗k)∗(K[GSpkd]Spd) = (π⊗k)∗(K[GSpkd]) ∩
K[(Spd×Gm)k]Spd = (π⊗k)∗(K[GSpkd]) ∩K[Spkd]Spd ⊗K[Gkm] hence the result.

Proposition 8.45. The invariant algebra Z[Spm2d]Sp2d is generated by the elements

(X1, . . .,Xm) 7→ σi(Yj1 · · ·Yjs
)

defined in Theorem 8.42.

Proof. Let T be a maximal torus of Sp2d and let (πn)n≥1 be an ascending sequence of finite saturated
subsets of X+(T ) such that

⋃
n≥1 πn = π = X+(T ), which is possible since Sp2d is semisimple. For a

field K, let Oτ be the truncation functor associated to a finite saturated subset τ ⊆ X+(Tm) whose
definition and properties we are going to use are given in [Jan03, §A]. This definition makes sense over
Z for a finite saturated τ by setting Oτ (Z[Spm2d]) := Oτ (Q[Spm2d]) ∩ Z[Spm2d], which is a finitely generated
free Z-module. We have for any field K ([Jan03, §A.24]):

Oτ (Z[Spm2d])⊗Z K = Oτ (K[Spm2d]) (14)

For the cartesian power πm = X+(T )m, we have πm =
⋃
n≥1 π

m
n and πmn are finite saturated sub-

sets for the group Spm2d. By definition, we have Oπm(Q[Spm2d]) = Q[Spm2d] and since Oπm(Q[Spm2d]) =⋃
n≥1 Oπm

n
(Q[Spm2d]) ([Jan03, §A.1]), we get that (Oπm

n
(Z[Spm2d]))n≥1 is an ascending filtration of Z[Spm2d].
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Now let R be the subalgebra of Z[Spm2d]Sp2d generated by the elements in the statement of the proposition
and let Rn := R ∩ Oπm

n
(Z[Spm2d]). By [Jan03, Lemma A.15], for any field K Oπm

n
(K[Spm2d]) is finite-

dimensional and admits a good filtration as an Spm2d×Spm2d-module (for the left action induced by left
multiplication by the first factor and inverse right multiplication by the second factor on Spm2d) with
factors ∇(λ) ⊗ ∇(−w0λ) for λ ∈ πmn . By [Don94, Theorem 3.3], the tensor product of two induced
modules ∇(λ)⊗∇(λ′) admits a good filtration, hence Oπn(K[Spm2d]) admits a good filtration as an Spm2d-
module under conjugation. But by [Jan03, Lemma I.3.8], ∇(λ) = ⊗i∇(λi) for λ = (λi)1≤i≤m ∈ X+(Tm),
so by the same argument as before, we get that Oπm

n
(K[Spm2d]) admits a good filtration as an Sp2d-module.

It follows from [Jan03, Lemma B.9] that Oπm
n

(Z[Spm2d]) admits a good filtration as an Sp2d-module, hence
by [Don90, Proposition 1.2a (iii)]

rankZOπm
n

(Z[Spm2d])Sp2d = dimK Oπm
n

(K[Spm2d])Sp2d =: dn

for any field K.
We have an exact sequence

0→ Rn → Z[Spm2d]→ (Z[Spm2d]/R)× (Z[Spm2d]/Oπm
n

(Z[Spm2d]))

so tensoring with Q gives an exact sequence

0→ Rn ⊗Q→ Q[Spm2d]→ (Q[Spm2d]/(R⊗Q))× (Q[Spm2d]/Oπm
n

(Q[Spm2d]))

By [Zub99, Proposition 3.2], we have R ⊗ Q = Q[Spm2d]Sp2d , so the kernel of the rightmost arrow is
Q[Spm2d]Sp2d ∩Oπm

n
(Q[Spm2d]) = Oπm

n
(Q[Spm2d])Sp2d .

Hence Rn ⊗Z Q = Oπn
(Q[Spm2d])Sp2d , and in particular we get that rankZRn = dn.

We claim, thatRn is cotorsionfree inR: We know, that by definitionR/Rn embeds into Z[Spm2d]/Oπm
n

(Z[Spm2d]),
which is free.
Let K be an algebraically closed field. The top map in the following diagram is an isomorphism by
[Zub99, Proposition 3.2].

R⊗K
∼= // K[Spm2d]Sp2d

Rn ⊗K
?�

OO

� � // Oπm
n

(K[Spm2d])Sp2d

?�

OO

So the bottom map injective. Since rankZRn = dn, it must be an isomorphism. We deduce, that in the
following diagram all maps are isomorphisms.

Rn ⊗Z K Oπm
n

(Z[Spm2d])Sp2d ⊗Z K Oπm
n

(K[Spm2d])Sp2d

Since this is true for every algebraically closed field K, the map Rn → Oπm
n

(Z[Spm2d])Sp2d of finitely
generated free Z-modules is an isomorphism. So R = Z[Spm2d]Sp2d , as desired.

Corollary 8.46. The F-Z-algebra Z[Sp•
2d]Sp2d is generated by the elements σ1, . . . , σ2d defined in The-

orem 8.42.

Proof. This follows directly from Proposition 8.45 and subsitutions with morphisms from F .

Remark 8.47. The statements of Proposition 8.43 and Proposition 8.45 hold after replacing Z by
an arbitrary commutative ring A. Since the Spd-modules Z[Mm

d ] and Z[Spmd ] have good filtrations,
taking invariants commutes with tensoring with A, so A[Mm

d ]Spd = Z[Mm
d ]Spd ⊗Z A and A[Spmd ]Spd =

Z[Spmd ]Spd ⊗Z A. The same arguments go through for the odd orthogonal groups Od (d ≥ 3) using
Zubkov’s computation [Zub99] of generators of these invariant rings over an algebraically closed field.
The arguments in Lemma 8.44 can be adapted to the general orthogonal groups GOd (d ≥ 2) and
we obtain the same generators with the inverse of the orthogonal similitude character in place of the
symplectic similitude character.
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A On common R-Levis and G-semisimplification

The content of this section of the appendix also occurs in [PQ23]. As this work is not yet available, the
relevant preparations for the proof of reconstruction theorem for disconnected groups Theorem 4.56 are
taken from there.
Let G be a (possibly disconnected) reductive group over an algebraically closed field κ.

Lemma A.1. Let P and Q be R-parabolic subgroups of G. Then P ∩Q contains a maximal torus of G.

Proof. By [Mar03, Rmk. 5.3], P 0 and Q0 are parabolic subgroups of G0. By [BT65, §2.4] P 0 ∩ Q0

contains a maximal torus T of G0. T is also a maximal torus of G.

Lemma A.2. Let P and Q be R-parabolic subgroups of G. Assume, that Q contains an R-Levi of P
and P contains an R-Levi of Q. Then P and Q have a common R-Levi.

Proof. Let T be a maximal torus of G contained in P ∩Q (Lemma A.1). Let L be an R-Levi of P , which
contains T and let M be an R-Levi of Q, which contains T . Existence and uniqueness of L and M follow
from [BMR05, Cor. 6.5]. Since by assumption P ∩Q contains an R-Levi of P as well as an R-Levi of Q,
the maps

P ∩Q→ P/Ru(P )

P ∩Q→ Q/Ru(Q)

are surjective. Since by [BMR05, Lem. 6.2 (iii)], P ∩Q = (L ∩M)Ru(P ∩Q), we obtain surjections

L ∩M → P/Ru(P )

L ∩M → Q/Ru(Q)

Hence P = (L ∩M)Ru(P ). Since P = L ·Ru(P ) and L ∩Ru(P ) = 1, we have L ∩M = L. Similarly, we
have L ∩M = M .

Lemma A.3. Let H be a closed subgroup of G. Let P and Q be R-parabolic subgroups of G, both
minimal among R-parabolics containing H. Then P and Q have a common R-Levi.

Proof. The group (P ∩ Q)Ru(Q) contains H and is contained in Q and by [BMR05, Cor. 6.9], (P ∩
Q)Ru(Q) is R-parabolic. By minimality of Q, we have Q = (P ∩Q)Ru(P ). Again by [BMR05, Cor. 6.9],
P contains an R-Levi subgroup of Q. Similarly Q contains an R-Levi of P . We can apply Lemma A.2.

Our definition of G-semisimplification of representations is close to the definition of G-semisimplification
of subgroups of G(κ) given in [BMR20, Definition 4.1]. The main difference is, that we have to keep track
of the map from Γ to G(κ).

Definition A.4. Let ρ : Γ → G(κ) be a homomorphism. Let P be an R-parabolic of G, such that
ρ(Γ) ⊆ P (κ) and such that P is minimal among all R-parabolics with this property. Let L be an R-Levi
of P . We have a canonical surjective homomorphism cP,L : P → L. We define the G-semisimplification
ρss of ρ with respect to P and L as the composition Γ ρ→ P (κ) cP,L→ L(κ)→ G(κ).

When G = GLn we recover the usual notion of semisimplification of n-dimensional Γ-representations,
which is defined as the direct sum of the Jordan-Hölder factors of ρ. By definition ρss(Γ) is a G-
semisimplification of the subgroup ρ(Γ) in the sense of [BMR20, Definition 4.1]. It is thus immediate,
that ρss is G-completely reducible. If Γ is a topological group, κ is a topological field and ρ is continuous,
then ρss is continuous, but the converse is false in general.

Proposition A.5. In Definition A.4, the G0(k)-conjugacy class of ρss does not depend on the choice of
P and L.
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Proof. Let ρss,i = cPi,Li
◦ ρ for i = 1, 2 be two semisimplifications of ρ with respect to an R-parabolic Pi

and an R-Levi Li respectively. We first assume P := P1 = P2. Then there exists some u ∈ Ru(P ), such
that uL1u

−1 = L2. Since the square in the following diagram commutes, we obtain ucP,L1u
−1 = cP,L2

and thus in particular uρss,1u−1 = ρss,2.

P //

##

cL1

&&

cL2

55

P/Ru(P ) L1
∼oo

u(−)u−1

��
P/Ru(P ) L2

∼oo

If P1 ̸= P2, we can apply Lemma A.3 to find a common R-Levi L of P1 and P2. By [BMR05, Lemma 6.2
(iii)], we have P1 ∩ P2 = L · (Ru(P1) ∩Ru(P2)). It follows, that the following diagram commutes.

P1 ∩ P2 //

��

P1

cP1,L

��
P2

cP2,L // L

This implies cP1,L ◦ ρ = cP2,L ◦ ρ. We obtain from the first step, that there are ui ∈ Ru(Pi) with
ui(cPi,Li ◦ ρ)u−1

i = cPi,L ◦ ρ.

Corollary A.6. Let ρ : Γ→ G(κ) be a homomorphism. Then ρ is G-completely reducible if and only if
ρ and ρss are G0(κ)-conjugate.

Proof. The reverse direction is clear. Suppose, that ρ is G-completely reducible and that ρss is some G-
semisimplification of ρ. Let P be a minimal R-parabolic, such that ρ(Γ) ⊆ P (κ). Since ρ is G-completely
reducible, there exists some R-Levi L of P , such that ρ(Γ) ⊆ L(κ). In particular ρ = cP,L ◦ ρ. We can
apply Proposition A.5 to conclude, that cP,L ◦ ρ and ρss are conjugate.

Proposition A.7. Let ρ : Γ→ G(κ) be a homomorphism. Then the determinant laws attached to τ ◦ ρ
and τ ◦ ρss agree.

Proof. Let λ be a cocharacter, such that ρss = limt→0 λ(t)ρλ(t)−1. Let Dτ◦ρ : κ[Γ] → κ be the de-
terminant law attached to τ ◦ ρ and let Dρss be the determinant law attached to τ ◦ ρss. We also
have a family of determinant laws D : κ[Γ] → κ[t, t−1] over Gm given by DA : A[Γ] → A[t, t−1], r 7→
det(((τ(λ(t))(τ ◦ρ)τ(λ(t))−1)⊗ idA)(r)), which is actually constant in t and equal to Dτ◦ρ. So this family
extends uniquely to a family over A1. Since the limit of λ(t)ρλ(t)−1 as t→ 0 exists and formation of the
determinant is algebraic, we obtain Dt=0 = Dτ◦ρss and hence Dτ◦ρ = Dτ◦ρss .

Remark A.8. In general (τ ◦ ρ)ss is not isomorphic to τ ◦ ρss. But it follows from Proposition A.7, that
Dτ◦ρss = Dτ◦ρ and in particular that (τ ◦ ρss)ss is isomorphic to (τ ◦ ρ)ss.
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