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Abstract

We give an introduction to the theory of pseudorepresentations of Taylor, Rouquier, Chenevier and
Lafforgue. We refer to Taylor’'s and Rouquier’s pseudorepresentations as pseudocharacters. They are
very closely related, the main difference being that Taylor’s pseudocharacters are defined for a group,
where as Rouquier’s pseudocharacters are defined for algebras. Chenevier’s pseudorepresentations are
so-called polynomial laws and will be called determinant laws. Lafforgue’s pseudorepresentations are a
generalization of Taylor’s pseudocharacters to other reductive groups G, in that the corresponding notion
of representation is that of a G-valued representation of a group. We refer to them as G-pseudocharacters.

We survey the known comparison theorems, notably Emerson’s bijection between Chenevier’s determinant
laws and Lafforgue’s GL,-pseudocharacters and the bijection with Taylor’s pseudocharacters away from
small characteristics.

We show, that duals of determinant laws exist and are compatible with duals of representations. Analo-
gously, we obtain that tensor products of determinant laws exist and are compatible with tensor products
of representations. Further the tensor product of Lafforgue’s pseudocharacters agrees with the tensor
product of Taylor’s pseudocharacters.

We generalize some of the results of [Cheld] to general reductive groups, in particular we show that
the (pseudo)deformation space of a continuous Lafforgue G-pseudocharacter of a topologically finitely
generated profinite group I'" with values in a finite field (of characteristic p) is noetherian. We also show,
that for specific groups G it is sufficient, that I' satisfies Mazur’s condition ®,.

One further goal of this thesis was to generalize parts of [BIP21] to other reductive groups. Let F/Q,
be a finite extension. In order to carry this out for the symplectic groups Sp,,, we obtain a simple and
concrete stratification of the special fiber of the pseudodeformation space of a residual G-pseudocharater
of Gal(F/F) into obstructed subloci Yd@ec, Xg " ng of dimension smaller than the expected dimension
n(2n + 1)[F : Q.

We also prove that Lafforgue’s G-pseudocharacters over algebraically closed fields for possibly non-
connected reductive groups G come from a semisimple representation. We introduce a formal scheme
and a rigid analytic space of all G-pseudocharacters by a functorial description and show, building on
our results of noetherianity of pseudodeformation spaces, that both are representable and admit a de-
composition as a disjoint sum indexed by continuous pseudocharacters with values in a finite field up to
conjugacy and Frobenius automorphisms.

At last, in joint work with Mohamed Moakher, we give a new definition of determinant laws for symplectic
groups, which is based on adding a "Pfaffian polynomial law’ to a determinant law which is invariant under
an involution. We prove the expected basic properties in that we show that symplectic determinant laws
over algebraically closed fields are in bijection with conjugacy classes of semisimple representation and
that Cayley-Hamilton lifts of absolutely irreducible symplectic determinant laws to henselian local rings
are in bijection with conjugacy classes of representations. We also give a comparison map with Lafforgue’s
pseudocharacters and show that it is an isomorphism over reduced rings.



Zusammenfassung

Wir geben eine Einfithrung in die Theorie der Pseudodarstellungen von Taylor, Rouquier, Chenevier
und Lafforgue. Wir bezeichnen Taylor’s und Rouquier’s Pseudodarstellungen als Pseudocharaktere. Es
gibt einen engen Zusammenhang zwischen diesen Begriffen, der Hauptunterschied besteht darin, dass
Taylor’s Pseudocharaktere fiir eine Gruppe definiert werden, wiahrend Rouquier’s Pseudocharaktere fir
Algebren definiert werden. Chenevier’s Pseudodarstellungen sind sogenannte polynomische Gesetze, die
Determinantengesetze genannt werden. Lafforgue’s Pseudodarstellungen sind eine Verallgemeinerung
von Taylor’s Pseudodarstellungen auf andere reduktive Gruppen G, d.h. der zugehorige Begriff von
Darstellung ist der einer G-wertigen Darstellung einer Gruppe. Wir nenne sie G-Pseudocharaktere.

Wir geben einen Uberblick iiber die bekannten Vergleichssitze, wie Emerson’s Bijektion zwischen Ch-
enevier’s Determinantengesetzen und Lafforgue’s GL,-Pseudocharakteren und die Bijektion zwischen
Taylor’s Pseudocharakteren und den beiden erstgenannten Begriffen in nicht kleiner Charakteristik.

Wir zeigen, dass Duale von Determinantengesetzen existieren und vertréaglich mit Dualen von Darstellun-
gen sind. Analog erhalten wir, dass Tensorprodukte von Determinantengesetzen existieren und vertraglich
mit Tensorprodukten von Darstellungen sind. Weiterhin stimmen Tensorprodukte von Lafforgue’s Pseu-
docharakteren mit Tensorprodukten von Taylor’s Pseudocharakteren iiberein.

Wir verallgemeinern einige der Ergebnisse von [Cheld] auf allgemeine reduktive Gruppen. Insbeson-
dere zeigen wir, dass der Pseudodeformationsraum eines stetigen G-Pseudocharakters einer topologisch
endlich erzeugten proendlichen Gruppe I' mit Werten in einem endlichen Koérper (von Charakteristik p)
noethersch ist. Wir zeigen auch, dass es fiir spezielle Gruppen G geniigt, dass I' Mazur’s Bedingung @,
erfullt.

Ein weiteres Ziel dieser Arbeit war es, Teile von [BIP21] auf andere reduktive Gruppen zu verallgemeinern.
Sei F'/Q,, eine endliche Erweiterung. Um das fiir die symplektischen Gruppen Sp,,; durchzufiihren, geben
wir eine einfache und konkrete Stratifizierung der speziellen Faser des Pseudodeformationsraums eines
residuellen Sp,,-Pseudocharakters © von Gal(F/F) in obstruierte Unterriume ch, Yp@a " Y;—pd an,
deren Dimension kleiner, als die erwartete Dimension n(2n + 1)[F : Q,] des Gesamtraums ist.

Wir zeigen auch, dass Lafforgue’s G-Pseudocharaktere iiber algebraisch abgeschlossenen Koérpern fiir
moglicherweise nicht-zusammenhéngende reduktive Gruppen G von einer halbeinfachen Darstellung kom-
men. Wir fithren ein formales Schema und einen rigid-analytischen Raum von allen G-Pseudocharakteren
durch eine funktorielle Beschreibung ein, wobei wir auf unsere Ergebnisse zur Noetherschheit der Pseu-
dodeformationsraume zuriickgreifen. Wir zeigen dass beide Funktoren darstellbar sind und in eine dis-
junkte Vereinigung zerfallen, wobei die Indexmenge aus stetigen Pseudodarstellungen mit Werten in
einem endlichen Koérper bis auf Konjugation und Frobeniusautomorphismen besteht.

Zuletzt geben wir in gemeinsamer Arbeit mit Mohamed Moakher eine neue Definition von Determinan-
tengesetzen fiir die symplektischen Gruppen, welche darauf basiert einem Determinantengesetz, welches
invariant unter einer Involution ist, ein ’Pfaffsches polynomisches Gesetz’ hinzuzufiigen. Wir zeigen
die Eigenschaften die man von Pseudodarstellungen erwartet: Symplektische Determinantengesetze tiber
algebraisch abgeschlossenen Koérpern sind in Bijektion mit Aquivalenzklassen von halbeinfachen symplek-
tischen Darstellungen und Cayley-Hamilton Lifts zu henselschen lokalen Ringen eines absolut irreduziblen
symplektischen Determinantengesetzes sind in Bijektion mit Aquivalenzklassen von Darstellugnen. Wir
geben auch eine Vergleichsabbildung mit Lafforgue’s Pseudocharakteren fir GL, an und zeigen, dass
diese ein Isomorphismus iiber reduzierten Ringen ist.
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Introduction

The first chapter of this thesis is an introduction to the theory of pseudocharacters of Taylor, Rouquier,
Chenevier and Lafforgue. We survey the known comparison theorems, notably Emersons bijection be-
tween determinant laws and Lafforgue’s GL,-pseudocharacters and the bijection with Taylor’s pseu-
docharacters away from small characteristics.

At this early stage I also got interested in defining natural operations on pseudocharacters: Direct sum,
duals and tensor products. Their construction and compatibility with the comparison isomorphisms is
the first main result of this thesis.

Theorem A.

1. Duals of determinant laws exist and are compatible with duals of representations (Section [3.10)).

2. Tensor products of determinant laws exist (Proposition [3.20)) and are compatible with tensor prod-
ucts of representations (Proposition [3.21]). Further the tensor product of Lafforgue’s pseudochar-
acters agrees with the tensor product of Taylor’s pseudocharacters (Proposition |4.34)).

The second main goal of this thesis was to generalize [Cheld| to general reductive groups. Firstly, we
prove that the deformation space of a continuous Lafforgue G-pseudocharacter of a topologically finitely
generated profinite group with values in a finite field is noetherian.

Theorem B (Theorem [6.11} Theorem [6.14)). Let L be a p-adic local field with ring of integers Oy, and
residue field . Let G be a generalized reductive Op-group scheme, let I be a profinite group and let ©
be a continuous G-pseudocharacter of I' over k.

1. If T is topologically finitely generated, then the G-pseudodeformation ring R?; 5 of © is noetherian.
L,

2. Assume that G € {SL,,, GLy, Sps,,, GSpa,,» SO2n41, O2n 41, GO, }, p > 2 in the orthogonal cases and

let ¢ : G — GL4 be the standard representation of G. Then the canonical map RY”® _ — RP® _
OL,L(@) OL,@

is surjective. If in addition I' satisfies Mazur’s condition ®,, then Rl(); 5 is noetherian.
L,

Secondly, we prove that the formal scheme and the rigid analytic space of pseudocharacters admit a
decomposition as a disjoint sum indexed by continuous pseudocharacters with values in a finite field up
to conjugacy and Frobenius automorphisms. See Definition and Lemma [7.7] for a description of the
index set | PCE |.

Theorem C (Theorem [7.21)). Let I' be a topologically finitely generated profinite group. Let G be a
connected reductive group over the ring of integers of a p-adic local field. Define X¢ : An}Y — Set as the
functor, that associates to every rigid analytic space Y € Ang the set of continuous G-pseudocharacters
cPCL(O(Y)). Then X is representable by the quasi-Stein space [ PCE, | X2,

One further goal of this thesis was to generalize parts of [BIP21] to other reductive groups. In order to

carry this out for the symplectic groups Spy,, we need to analyze the special fiber of the deformation

space of Lafforgue’s Spy,-pseudocharacters. We obtain a stratification of the pseudodeformation space
—dec —pair —spcl

into obstructed subloci X@CC, X%a lr, X%)C of lower dimension as follows.

Theorem D (Proposition m Theorem Corollary [6.35). Let F/Q, be a finite extension. Let ©

be a continuous Sp,,,-pseudocharacter of the absolute Galois group I'r of F over k.

1. dimX5° < n(2n + 1)[F : Q) — 4(n — 1)[F : Q).

—>pair

2. dimXg < n’[F: Q]+ 1.

3. dim X2 < 22[F: Q] + 1.

4. dim Xg < n(2n+ 1)[F : Q).



If © comes from _an absolutely irreducible representation, then there are non-special irreducible pseudo-
deformations of © and in (4) equality of dimensions holds.

We expect, that Theorem |§| is sufficient to prove the main result of [BIP21] for symplectic groups.
However in an ongoing project with Vytautas Paskunas, we will prove the main theorem of [BIP21] for
general disconnected reductive groups over the ring of integers of a p-adic local field. So Theorem [Df can
be seen as an alternative approach. It also gives a simple stratification of the pseudodeformation space,
whereas the general proof rests upon a less concrete stratification.

In the course of this collaboration we proved the reconstruction theorem for Lafforgue’s pseudocharacters
for disconnected reductive groups.

Theorem E (Theorem . Let G be a generalized reductive group scheme over a noetherian com-
mutative ring O. Let I" be a group. Let k be an algebraically closed field over O and let © € PCE.
Then there is a G-completely reducible representation p : I' = G(k) with ©, = ©, which is unique up to
G°(k)-conjugation.

In early 2020 I turned to working on generalizing determinant laws to symplectic and orthogonal groups.
In this time I developped some theory of *-determinants. The problem with this definition was, that it
is not able to distinguish between symplectic and orthogonal groups, so in the pseudodeformation space
might contain both symplectic and orthogonal points.

I started a collaboration with Mohamed Moakher, who has also been working on determinant laws for
classical groups. By introducing a Pfaffian polynomial law, he has found a way of asking a *-determinant
law to be symplectic, which lead to our work on symplectic determinant laws. See the introduction of
Section [§] for a detailed list of results.



Einfiihrung

Das erste Kapitel dieser Arbeit ist eine Einfilhrung in die Theorie der Pseudocharaktere von Taylor,
Rouquier, Chenevier und Lafforgue. Wir geben einen Uberblick iiber die bekannten Vergleichssitze, ins-
besondere Emersons Bijektion zwischen Determinantengesetzen und Lafforgues GL,-Pseudocharakteren
und die Bijektion mit Taylors Pseudocharakteren in nicht kleiner Charakteristik.

In dieser frithen Phase begann ich, mich auch fiir die Definition natiirlicher Operationen auf Pseudocharak-
teren zu interessieren: Direkte Summe, Duale und Tensorprodukte. Thre Konstruktion und Kompatibilitat
mit den Vergleichsisomorphismen sind das erste Hauptergebnis dieser Arbeit.

Theorem A.

1. Duale von Determinantengesetzen existieren und sind vertraglich mit Dualen von Darstellungen

(Section |3.10)).

2. Tensorprodukte von Determinantengesetzen existieren (Proposition [3.20) und sind vertriglich mit
Tensorprodukten von Darstellungen. Weiterhin sind Tensorprodukte von Lafforgue’s Pseudocharak-
teren vertraglich mit Tensorprodukten von Taylor’s Pseudocharakteren (Proposition [4.34]).

Das zweite gesetzte Ziel dieser Arbeit war es, die Hauptergebnisse von [Cheld]| auf allgemeine reduk-
tive Gruppen zu verallgemeinen. Zuerst beweisen wir, dass der Deformationsraum eines stetigen G-
Pseudocharakters nach Lafforgue von einer topologisch endlich erzeugten proendlichen Gruppe mit Werten
in einem endlichen Koérper noethersch ist.

Theorem B (Theorem Theorem [6.14). Sei L ein p-adischer lokaler Korper mit Ganzheitsring
O und Restklassenkorper x. Sei G ein verallgemeinertes reduktives Op-Gruppenschema, sei I' eine
proendliche Gruppe und sei © ein stetiger G-Pseudocharakter von I iiber k.

1. Ist I" topologisch endlich erzeugt, so ist der G-Pseudodeformationsring RI(;S 5 von © noethersch.
.

2. Nehme an G € {SL,,, GL,,, Sp,,,, GSpa,,; SO214+1, O2541, GO, }, p > 2 in den orthogonalen Fillen

und sei ¢ : G — GL, die Standarddarstellung von GG. Dann ist die kanonische Abbildung RpoS ®) —
Lyt

R _ surjektiv. Falls weiterhin I' Mazur’s Bedingung ®,, erfiillt, so ist RY” _ noethersch.
0.0 0.L,0

Als zweites beweisen wir, dass das formale Schema und der rigid-analytische Raum von Pseudocharakteren
eine Zerlegung als disjunkte Vereinigung indiziert von stetigen Pseudocharakteren mit Werten in einem
endlichen Korper bis auf Konjugation und Frobeniusautomorphismus besitzt. Siehe Definition [7.5] und
Lemma fiir eine Beschreibung der Indexmenge | PCF, |.

Theorem C (Theorem . Sei I' eine topologisch endlich erzeugte proendliche Gruppe. Sei G
eine zusammenhéngende reduktive Gruppe iiber dem Ganzheitsring eines p-adischen lokalen Korpers.
Definiere X¢ : An}? — Set als den Funktor, der einem rigid-analytischen Raum Y € Ang die Menge
der stetigen G-Pseudocharaktere cPCL(O(Y)) zuordnet. Dann ist X durch den quasi-Stein rigid-
analytischen Raum [, PCE | X®, darstellbar.

Ein weiteres Ziel dieser Arbeit war es [BIP21] auf andere reduktive Gruppen zu verallgemeinern. Um das
fiir die symplektischen Gruppen Sp,,; durchfiihren zu koénnen, ist es erforderlich, die spezielle Faser des
Deformationsraumes von Lafforgueschen G-Pseudocharakteren zu analysieren. Wir erhalten wie folgt eine

—d —pai
Stratifizierung des Pseudodeformationsraums durch obstruierte Teilrdume X @CC, X g lr,
Dimension.

Theorem D (Proposition [6.33] Theorem Corollary [6.35). Sei F//Q, eine endliche Erweiterung. Sei
O ein stetiger Sp,,,-Pseudocharakter der absoluten Galoisgruppe I'r von F iiber k.

—spel . ..
Xg niedrigerer

1. dimX5° < n(2n + 1)[F : Q) — 4(n — 1)[F : Q).

—>pair

2. dimXg < n?[F: Q)+ 1.

—spcl

3. dimXg < 2n?[F:Qp) +1.



4. dim Xg < n(2n+ 1)[F : Q).

Falls © von einer absolut irreduziblen Darstellung kommt, dann gibt es nicht-spezielle irreduzible sym-
plektische Pseudodeformationen von © und (4) gilt Gleichheit der Dimensionen.

Wir denken, dass Theorem |§| geniigt, um das Hauptresultat von |[BIP21] auf symplektische Gruppen
zu lbertragen. In einem laufenden Projekt mit Vytautas Paskunas werden wir das Hauptergebnis von
[BIP21] auf allgemeine (auch unzusammenhéngende) reduktive Gruppen iiber dem Ganzheitsring eines
p-adischen lokalen Korpers iibertragen. Somit kann Theorem |[D]als alternativer Zugang zu einem solchen
Ergebnis gesehen werden. Des weiteren liefert Theorem [D] eine einfache Stratifizierung des Pseudodefor-
mationsraumes, wihrend der allgemeine Beweis auf nicht weiter konkretisierten Unterteilungen basiert.

Im Rahmen dieser Zusammenarbeit benétigen wir auch einen Rekonstruktionssatz fiir unzusammenhén-
gende reduktive Gruppen, welcher uns in dieser Form neu erscheint.

Theorem E (Theorem4.56). Sei G ein verallgemeinertes reduktives Gruppenschema {iber einem noether-
schen kommutativen Ring O. Sei I" eine Gruppe. Sei k ein algebraisch abgeschlossener Korper iiber O
und sei © € ch. Dann gibt es eine G-vollstandig reduzible Darstellung p : I' = G(k) mit ©, = O,
welche eindeutig bis auf G°(k)-Konjugation ist.

Im Friithjahr 2020 begann ich damit, Determinantengesetze auf sympmlektische und orthogonale Gruppen
zu verallgemeinern. In dieser Zeit habe ich auch eine gewisse Theorie von *-Determinanten entwickelt.
Diese wird in dieser Arbeit nicht weiter ausgefithrt. Das Problem mit einer naiven Definition von war,
dass eine *-Determinante nicht in der Lage dazu ist zwischen symplektischen und orthogonalen Gruppen
zu unterscheiden, insbesondere konnte der Pseudodeformationsraum sowohl symplektische, also auch
orthogonale Punkte enthalten.

Ich begann eine Zusammenarbeit mit Mohamed Moakher, der parallel und unabhéngig an Determinan-
tengesetzen fiir die symplektische Gruppe arbeitete. Durch Einfithrung eines Pfaffschen polynomischen
Gesetzes gelang es ihm die Forderung an eine %-Determinante symplektisch zu sein zu formulieren. Das
fithrte zu unserer gemeinsamen Arbeit an symplektischen Determinantengesetzen. Siehe die Einfithrung
von Section [§] fiir eine detailliertere Liste der Ergebnisse.
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1 Motivation for pseudocharacters

1.1 p-adic Langlands

The p-adic Langlands correspondence for GL2(Q),) is a bijection between unitary Banach representations
of GL2(Q,) and continuous representations of the absolute Galois group I'g,. A proof of this correspon-
dence for all primes p was given by Colmez, Dospinescu and Paskunas [CDP13b]. A key ingredient for
the surjectivity of this correspondence is the density of crystalline points in the deformation space of a
mod p representation of I'g,. For p = 2 this turned out to be exceptionally difficult and was carried out
in |[CDP13a].

In view of these results it makes sense to take a step back and ask for density of crystalline points in the
framed deformation space of a mod p representation p : I'r — G(F,) of the absolute Galois group I'p
of a p-adic local field F//Q, valued in a reductive group G. For G = GL4 this has recently been proved
by Bockle, Iyengar and Paskunas [BIP21; |BIP22] along with Gouvéa’s dimension conjecture [Gou0l,
Lecture 4]: The universal framed deformation ring R%' is a local complete intersection ring of relative
dimension (dim GLg) - (1 + [F': Qp]). The proof of the results of [BIP21] rely on a careful analysis of the
special fiber of the universal pseudodeformation space by Béckle and Juschka |[BJ19|. For their work,
they use Chenevier’s notion of determinant laws for pseudocharacters.

The results of Section |§| can be seen as a step in this direction for the symplectic groups Sp,y, using the
newly constructed deformation spaces of Lafforgue’s G-pseudocharacters. Since [Emel8| it is known, that
Lafforgue’s pseudocharacters are a generalization of Chenevier’s determinant laws over any base ring. We
give dimension estimates for the symplectic groups Sp,y,, d > 1 analogous to [BJ19]. It is sufficient to give
upper bounds for the dimension of certain obstructed subloci to carry out a proof of Gouvea’s dimension
conjecture following a stategy similar to [BIP21]. In an ongoing project with Vytautas Paskunas we aim to
prove Gouvea’s conjecture using certain GIT quotients instead of one of the notions of pseudocharacters
discussed in this thesis.

1.2 Foundational questions

There are three fundamental requirements for a reasonable notion of pseudorepresentation over a given
commutative base ring A:

1. The functor, that maps a commutative A-algebra B to the set of pseudorepresentations over B
should be representable by an affine A-scheme.

2. The pseudorepresentations over an algebraically closed A-field k shall be in bijection with isomor-
phism classes of semisimple representations over k. We refer to such a statement as a reconstruction
theorem.

3. Over henselian local A-algebras A’ and under mild unobstructedness conditions, e.g. residual irre-
ducibility or multiplicity freeness there should be a bijection between pseudorepresentations over
A’ and isomorphism classes of representations over A’.

In this text we consider all notions of pseudorepresentation, that are avaible at this point in time:

1. Taylor’s pseudocharacters of groups for GL4. (Section
2. Rouquier’s pseudocharacters of algebras (for d x d-matrices My). (Section
Chenevier’s d-dimensional determinant laws of algebras (for My). (Section

Lafforgue’s G-pseudocharacters of groups for general reductive groups G. (Section

oro W

In Section [§] we introduce a new notion of pseudorepresentation of algebras with involution for
symplectic groups (or better the symplectic standard matrix algebra (Mag,j)), which is very close
to Chenevier’s determinant laws and we call them symplectic determinant laws.
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2 Taylor’s pseudocharacters

2.1 Characters of representations

Pseudorepresentations should be seen as an axiomatic generalization of the characteristic polynomial of
a representation. We approach these axioms by looking at characteristic polynomials of representations.
We first consinder only traces. Let us start with the following classical theorem.

Theorem 2.1. Let I" be a finite group and let p; : I' = GL4, (C) and ps : I' = GL4, (C) for dy,ds € Ny
be representations of I'. Assume, that for all v € T, we have tr p1(y) = tr p2(7y). Then p; is isomorphic

to pa.

The trace of a representation as a function I' — C is also known as its character. What are necessary
conditions for a map T : I' — C to be the character of a representation?

When T is the character of a representation p : I' = GL4(C), then the following properties follow from
well-known properties of the trace.

(T2) T(1) = d.
(T3) T'(1172) = T(y271) for all vq,v, € T

There is also the Frobenius trace relation, which holds for arbitrary (d + 1)-tuples of d x d-matrices. We
will deduce it in Section

2.2 The Frobenius trace relation

We start with some elementary insights on matrices and traces. Let A be a commutative ring. Multi-
plicativity of the trace with respect to tensor products is well-known:

Lemma 2.2. Let V and W be free A-modules of finite rank and let f € End(V) and g € End(W). Then
f ® g as an endomorphism of V ® W has trace tr(f ® g) = tr(f) tr(g).

When V is an A-module, then S,, acts on V" by
0 (V1 ® - B V) = V1) @+ @ Ug(n) (Symm)

for v1,...,v, € V. This defines a homomorphism of A-algebras A[S,,] = End(V®™) and we will identify
each o € S, with its image under this homomorphism. When fi,...,f, € End(V), we obtain an
endomorphism f; ® -+ ® f,, € End(V®") defined by

(L@ f)(® - Quy) = fi(v1) @ ® fu(vn)

for vy,...,v, € V.

Lemma 2.3. Let V be a free A-module of finite rank and fi,...,f, € End(V). Then for a cycle
oc=(12...n)€ S, wehavetr(co(fi® - ® fn)) =tr(fro-- o fn).

Proof. Fix a basis (e1, ..., eq) of V and denote the dual basis of V* by (e}, ..., e}). Astr(oo(f1®---®fy))

and tr(fy o+ o f,) are both multilinear in the arguments (f1,..., fn) we may assume f; = e;, - € €
J

End(V). For simpler notation, we consider the indices of 4 and ¢ modulo n. We obtain
@ @fa=(en® ®e,) (€ @ ®el)
and after identifying S,, with a subset of End(V®"), we have
o= (ejm) R ® eja(m) . (ej1 R ® e;n).
The composition is
G0 (fr® @ fu) = (€iryy @ ®ei, ) (€, @ ®el)

= (Cir€7,) © - @ (Ciy( €], )
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and by taking the trace and Lemma [2.2] we have

1, Vke {1,...,n}:ig(k) = i,
0, else.

tr(ao(f1®--~®fn))={

On the other hand

1, Yee{l,...,n—1} 4y = ips1,
fio o fy=eel - { } +
» 10, else,

and taking the trace gives

1, Vke{l,....n} iy = ir,
0, else.

Proposition 2.4. Let V be a free A-module of rank d and let n > d + 1. Then
Z sign(c)o =0
oeSy

seen as an endomorphism V" — V& via Equation (Symml).

Proof. Let T:= 3 g sign(o)o € End(V®"). Fix a basis B = (by,...,ba) of V. Let B®" = {b;, ®--- ®
bi, |i1,...,in € {1,...,d}} be the associated basis of V®". In every elementary tensor b = b;, ®- - -®b; €
B®™ at least one basis vector in B occurs at least twice, say b;, = b;,. So there is a 2-cycle y = (zy) € Sy,

such that b = ub. We have
( Z sign(a)a) b= Z (c —ou)b=0

oc€Sn o€A,
and conclude, that T'= 0. O]

We are now ready to prove the Frobenius trace relation. To simplify the formulaion of the statement we
introduce the following notation: If T': R — A is a map from a ring or group R into a commutative ring
Aand ¢ = (i1...i,) € Sy is a cycle, we define T()(71,...,7n) := T(74, - -+ 7i,). By rotation invariance
of the trace, this does not depend on the presentation of the cycle. For a general o € S,, with cycle
decomposition o = ¢y ... ck, let Tp(1,...,Vn) = H?Zl T,y (V15 -+ -5 n)-

Proposition 2.5 (Frobenius trace relation). Let V be a free A-module of rank d and f1, ..., f,, € End(V).
Whenever n > d + 1 we have

tryen ( S signo)oo (fio- @ m) =0,

g€Sy,

Here S, acts on V®" as in Equation (Symml). In particular
> sign(o)trg (f1,..-, fa) =0,

ocES,

Proof. The first identity follows from Proposition For the second part use Lemma [2.3] O

For amap T : ' — A from a monoid T' (later ' might also be the multiplicative monoid of a ring)
into a commutative ring A, such that T'(y172) = T'(y271) for all 1,72 € T' we say, that T satisfies the
d-dimensional pseudocharacter identity if

YY1,y Yar1 €T Z sign(o) Ty (v1, - -+ s Ya+1) = 0. (PC)

0ESqy1

We write Say1(T) (71, -, Ya+1) =D ses,,, Sign(0) 1o (11, - .-, Yat1)-

When T : T' — A is the trace of a representation p : T' — GL4(A), then the d-dimensional pseudocharacter
identity holds:

(T4) Sq1(T) = 0.
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2.3 Taylor’s definition

Let I' be a monoid and let A be a commutative ring. We first present a definition very close to the
original definition of d-dimensional pseudocharacters by Taylor |[Tay91, §1.1]. Itisamap T : T — A
into a commutative ring A satisfying the relations of a trace observed in Section 2.I] and Section 2.2] In
Section we introduce a slightly more general definition, where T is a map from an A-algebra R to A.
Pseudocharacters as in Definition are recovered by taking for R in Definition the monoid ring
AT

Definition 2.6 (Taylor). Let A be a commutative ring, I" a monoid and d > 0 an integer. A d-dimensional
pseudocharacter of T' with values in A is a map T : ' — A, that satisfies the following four axioms.

(
(
(T3
(

Z sign(o)To (V1 -y Ya+1) =0

c€Sg41
for all v1,...,7441 € T.
We denote by TPCL(A) the set of d-dimensional A-valued pseudocharacters of T'.
The following theorem justifies the term pseudocharacter. Pseudocharacters can be thought of as a

generalization of traces of representations.

Proposition 2.7. Let A be a commutative ring, d > 0 an integer with d! € A* and let p: T' = GL4(A)
be a homomorphism. Then T :=trp:I' = A, v trp(y) is a d-dimensional pseudocharacter.

Proof. (T1) holds by assumption. (T2) and (T3) follow from well-known properties of the trace. (T4)
follows from Proposition O

So far (T1) is not important, but it will turn out to be relevant for identifying pseudocharacters over
algebraically closed fields with equivalence classes of semisimple representations.

Example 2.8. Over R not every pseudocharacters comes from a representation in the sense of Proposi-
tion Let T' = Qs = {1, £i,£j £ k} C H* be the quaternion group. Consider the composition
T:T—-H* 5R,

where tr is the reduced trace of the central simple R-algebra H. The reduced trace has all properties
(T2)-(T4), since its C-linear extension to H ®r C = M5(C) is a trace. Over C, T comes from the
unique irreducible 2-dimensional representation of (Jg, which is of quaternionic type. Hence there is no
representation defined over R with trace T'.

2.4 Polarization

If M is a (2 x 2)-matrix over a commutative ring A, then the characteristic polynomial of M is given by
det(t — M) = t* — tr(M)t + det(M) € A[t].
A direct calculation shows, that if 2 € A*, we can recover the determinant from the trace as
tr(M)? — tr(M?)
2 )
so the coefficients of det(t — M) are polynomials in tr(M) and tr(M?) with coefficients in Z[]. This
procedure is known as polarization and will play a central role in the theory of pseudocharacters. In

this section, we will make use of elementary symmetric polynomials to prove a more general polarization
formula.

det(M) =

14



Definition 2.9 (Elementary symmetric polynomial). Let 0 < i < d be integers. We define the i-th
elementary symmetric polynomial in d variables as

in Z[xq,...,xq], where S varies over all subsets of {1,...,d} with i elements. We omit the superscript in
contexts with no ambiguity about d.

Equivalently, they are implicitly defined by the equation
d
[0+ = >0
i=1

For example the elementary symmetric polynomials in d = 3 variables are
e =1,
€1 =21+ T2+ 3,
€y = X1T2 + T1X3 + T2I3,
€3 = T1T2T3.
Elementary symmetric polynomials satisfy the following recursion formula:
Lemma 2.10. Let 1 < i < d be integers. Then

ez('dH) (d)

(d) + e 1Tdy1

Proof. Let S C {1,...,d + 1} be a subset with i elements. Then either S is a subset of {1,...,d} or

S\{d+1} Cc{1,...,d} is a subset with ¢ — 1 elements. The claim follows. O
If we think of the variables z1,..., x4 as eigenvalues of a triangular matrix
T *
X = R . )
Zq

then the next lemma tells us, that the coefficients of the characteristic polynomial of X are (up to sign)
elementary symmetric polynomials in z1,...,z4.

Lemma 2.11. Let 0 < i < d be integers. Then
d d

det(t — X) = [t —z:) = D (~1)7elPed~

i=1 =0

in Z[t,x1,...,z4].

Proof. We proceed by induction. For d = 0, there is nothing to prove. Assume, that the claim is true for
some d > 0. Then

d+1 d
t—xl (Ht—$1> (t — zg41)
=0 i=
d
Z )’ (d)td Z) (t — zay1)

Z z (d)td+1 z_"_z z+1 ( xd 1td i
z
d d+1
— Z _ z (d)td+1 z+z i xd+1td+1—z
=0
d+1

_ (_1)iegd+1)td+1—i7

=0
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where the last step follows from Lemma eéd) =1= eéd'H) and egd)xdﬂ = egl(fll). O

If X is an upper triangular (3 x 3)-matrix, then the characteristic polynomial of X is
CPx(t) = t* — tr(X)t? + q(A)t — det(X),

where ¢ is a 2-homogeneous polynomial in the (diagonal) entries of X.

As in dimension 2 we see, that det(X) is a polynomial in tr(X), tr(X?) and tr(X3) with coefficients in
Z[#]: Since we have a polarization formula

1
12w = ¢ (01 + 22 + x3)® — 3(w1 + @2 + 3) (2] + 23 + 23) + 2(2} + 25 + 23)),

we get
det(X) = é(m(xf — 34r(X) tr(X2) + 2 tr(XP)).

By Lemma have ¢(X) = eés). A polarization of 653) is given by

1
eé3) = T1T2 + Xox3 + 1173 = 5((51”1 + 22+ 13)° — (2] + 75 + x?,))),

SO

() = 5 (6(3)? — t(3X?))

On the right hand side, we have the same formula as for the determinant in dimension 2, in fact the
general description of the coefficients of the characteristic polynomial in terms of the trace does not
depend on the dimension. We introduce a sequence of polarization polynomials:

Definition 2.12 (Polarization polynomials). Let k£ > 0 be an integer. We define

1
Ag(re, ... ) = il Z sign(o) H Tlc|

o€Sk cecycles(o)

in Z[5][r1, . .., %], where the product varies over the set of disjoint cycles of o and |c| denotes the length
of a cycle.

Note, that Ay is homogeneous of degree k, if one defines the degree of r; as i.

Example 2.13. For k£ = 1,2, 3,4 we obtain

Ay(r1) =m
1
As(r1,m2) = 5(7"% —12)
1
A3(’I‘1,7‘2,’I”3> = 6(7“:1‘) —3rirg + 2’/"3)

1
Ay(r1,12,73,74) = ﬂ(r‘f — 67”%7"2 + 8rirs + 37"3 — 6ry)

and the polarization formulae read

egQ) = Ag(x1 + :Ug,x? + x%)
eés) = Ag(z1 + 220+ 373,17% + x% + mg)
eég) = Az(x1 + 22+ %3,.%? + x% + x%,x? + x% + xg)
Definition 2.14 (Power sums). Let 0 < i < d be integers. We define the i-th power sum in d variables

as 4 ) ]
S =gt 442l

2

in Z[xzq,...,z4)
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To prove the polarization formula for elementary symmetric polynomials, we need the classical Newton
relations.

Lemma 2.15 (Newton relations). The symmetric polynomials and the power sums in Z[z1,...,z,]
satisfy the recursive relations

(m+ el = Y (—1)'sel” (1)
i+j=m
for all m > 0, where egn)
equation

= 0if 74 > n or i < 0. These relations are encoded in the coefficients of the
o) oo
2 det(1 + tX)
ot tr(XF)Ek 2
det(1 + tX) 1; r(X5) 2)
in Z[z1,...,z,][[t], where X := diag(z1,...,2n) € My (Z[z1,...,24)).

Proof. We sketch the proof in [Pro07, §2.1.1]. It is clear, that det(1+¢X) = [\, (1 +tz;) = > iy e,
Taking the logarithmic derivative % log(...), we obtain

o n n o) 00
grdet(l +tX) 9
ot )k k
= — log (det(1 + tX)) i ) (—ta; Siat
der(i ) = o o800 T = 3 = 3w (e = 3 S
which proves Equation , since tr(X*) = Sp.
On the other hand, we have
% det(1+tX) >°", ze(n)t’ 1
o no o)y
det(1 + tX) S et
Equation (1) follows by multiplying with }_." (n)tl and comparison of coefficients. O

This shows, that the power sums S;' can be expressed as polynomials with integral coefficients in ele-

mentary symmetric polynomials. On the other hand the symmetric polynomial e( ") can be expressed
as a polynomial with coefficients in Z[L] in power sums. Notice, that this way we get a nontrivial, yet

canonical isomorphism between the polynomial rings Z[-}] ™. e and Z[4] s s

We will also need the Newton relations for the polarization polynomials in the following form:

Proposition 2.16. For all ¢ > 0, we have the recursion formula

(+ DA = Y (D) el 3)

k+l=i

in Z[%][Tl,...77‘i+1 .

Proof. For convenience, we define ¥, := n!A,, for general n, i.e.

= Z sign (o) H Tl

oeSy cecycles(o)

Multiplying Equation (3)) with 4!, the claim reduces to

! il
Yit1 = Z (*1)kl,7‘k+121

k+l=1i
i.e.
| 7!
S osile) [ met X0 Y sme) I e
ocESit1 cecycles(o) k+l=1i ' ocESI+1 c€ecycles(o)
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Let Ck41 be the set of cycles ¢ € S;41 of order k + 1 with ¢(1) # 1. By elementary combinatorics,
|Cry1| = (lj—'k), For ¢ € Cy41, let Tj11,c € Siy1 be the subset of permutations o € S;41, such that the
cycle of o containing 1 is c. We see that S; ;1 is the disjoint union of the T;;; . over all £ =0,...,7 and
all ¢ € Cy41. In particular we obtain for the left hand side:

Yip1 = Z Z Z sign(o) H Tler|

k+l=ic€Cri1 0€Ti41,c c’€cycles(o)
So our claim reduces to
k ! . ! .
(-1 R E sign(o) H Tle| = g E sign(o) H 7| (4)
’ o€Si41 cecycles(o) c€Cly10€Ti41,c ¢’ Ecycles(o)

for fixed 0 < k < ¢ and fixed [ =i — k. We notice, that on the right hand side of Equation the term

Z sign(o) H T\er|

0€Tit1,c c’ecycles(o)

does not depend on ¢ € Ci41: Every cycle containing 1 is conjugate to (1...%k 4 1) so every set T;11 ¢ is
conjugate to Tj ;1 (1...k+1)- In particular there is a bijection T;y1,c — Tj41,(1...k+1) Preserving the partition
of i + 1 defined by the cycle structure of each o € T;; .. So we have

Z Z sign(o) H Tler| = %: Z sign(o) H Tle!|

c€Cly10€Ts541,c c’ecycles(o) o€Tiq1,(1...k+1) c’ecycles(o)
7! E .
= ﬁ(_l) Tht1 Z sign(o) H Te|
oeS; c’€cycles(o)
and the last expression is exactly the left hand side of Equation ({4]). O

Now the combinatorial work is done and we can deduce the general polarization formula for elementary
symmetric polynomials:

Theorem 2.17 (Polarization formula). Let d > 0 and 0 < i < d. Then
(D _ A(S S s )
as polynomials in Z[3][z1, ..., zd4].

Proof. We prove the claim by induction on ¢. For ¢ = 0, there is nothing to prove. We assume, that
for all i/ < i+ 1 the claim is proven. By the classical Newton relations Equation and the inductive
hypothesis, the claim reduces to

. d d d d d
i+ DA (S, 8 = Y ()RS ast?, L8
k+1=1i

which reduces formally to Proposition by taking r, = S(gd) forall 1 <a<i+1. O

Now we can describe the coefficients of the characteristic polynomial of a matrix in terms of the trace.

Theorem 2.18. Let 0 < i < d be integers. Let A be a (d x d)-matrix over a commutative ring O, such
that d! € O*. If O is an integral domain, let \q,..., Ag be the eigenvalues of A over a fixed algebraic
closure of the fraction field of O. In this case we have

DA, ha) = Ay(tr(A), tr(A?), ... tr(AY))

If O is arbitrary, then

det(t — A) =Y (=1)'A(tr(A), tr(A?), ... tr(A"))?~
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Proof. We first assume, that O is a field. Then A is conjugate to an upper triangular matrix A over an
algebraic closure of @. We may replace A by A since trace and determinant are invariant under conju-
gation. So wlog. A is upper triangular and O is algebraically closed. Let A1, ..., Ag be the eigenvalues of
A. Then tr(A%) = A\{ + -+ + A, The first claim follows from Theorem and specialization x; — A;.
For the second part, we have det(t — A) = (t — A1) -+ -+ (t — Aq) on the left hand side. The claim follows
by Lemma specialization x; — \; and the first part.

The case when O is an integral domain is proved by passing to the fraction field. The second formula
remains true after passing to a quotient ring. Since every commutative ring is a quotient of an integral
domain, this proves the claim for every Z[]-algebra. O

Corollary 2.19. Let O be a commutative ring, such that d! € O* and let A € My(O). Then
det(A a Z sign(o) try (4, ..., A)

dl o€eSy

Here try(Aq,...,Aq) := HcEcycles(a) tre(Aq, ..., Ag) and tro(Ag,..., Ag) = tr(A; - ‘Ai|c|)a where ¢ =
(i1 ...1)¢) is a cycle occurring in the cycle decomposition of .

Proof. Setting t = 0 in Theorem [2.18 we obtain
e 1
det(A) = Ag(tr(A), ..., tr(Ad)) DB o > sign(e) [ (A
UES’d cEcycles(U)
and per definition tro (4, ..., 4) = [T.ceyetes(o) tr(Alel). O

Lemma 2.20. Let A € My(F) be a matrix with characteristic polynomial H?Zl(t — i), and let \" A :
A" F? — A" F? be the action of A on the r-th exterior power of F¢. Then

r(/\A) =eP (A1, M)

and moreover
d

det(t — A) = (-1’ tr(/r\ A)td=i

=0
Proof. The first part is straightforward calculation and the second part then follows from Lemma[2.11} [
Lemma 2.21. If F is a field of characteristic zero and A € My(F'), then for all i > 0 the trace tr(A*A)
is determined by tr(A),. .., tr(A4%).

Proof. Since F has characteristic zero the polarization Theorem [2.18 and Lemma [2:20] give

/\A = el (A1, ) = A(tr(A), tr(A%), .. tr(AD).

where A1,...,\q € F are the eigenvalues of A. O

2.5 The characteristic polynomial

Suppose p : I' = GL4(A) is a representation of a group and d! € A*. By Theorem the trace
trp: T' = A remembers the entire characteristic polynomial of p(v) for all v € I'. Thanks to axiom (T1),
we can define for a general pseudocharacter T : I' — A all coefficients of the characteristic polynomial
using the same polarization formula.

Definition 2.22. Let I" be a group, let A be a commutative ring with d! € A* and let T be a d-
dimensional pseudocharacter of I'. We define

X t) =D ()BT (), T(?), ., Tyt

=0

for all v € T" using the polarization polynomials A; of Definition We thereby obtain a map x”
L= A, v X" (1)
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Proposition 2.23. Let I' be a group and let A be a commutative ring with d! € A*. Then the map
TPCL(A) — Map(T', At]), T+ x7
is injective.

Proof. For all v € T, we have A;(T(v)) = T(y) and —A(T(v)) is the t?~1-coefficient of the polynomial
T
X (1 0)- -

From Theorem it is clear, that if a pseudocharacter is the trace of a representation p, then x7(v,t) =
det(t — p(7)) for all 4y € T'. This compatibility with characteristic polynomials is a very practical property,
that will play a role in several of our arguments.

2.6 Rouquier’s definition

In [Rou96, Definition 2.1] Rouquier defines pseudocharacters for algebras in analogy to Taylor’s pseu-
docharacters of groups. Some statements will just be proved in Rouquier’s setting, as it is more general.

Definition 2.24. Let d > 1 and let A be a commutative ring with d! € A* and R be an A-algebra. A
pseudocharacter of R of dimension d is an A-linear map 7' : R — A, such that:

If R = A[l'] is a group algebra, then T is determined by its values on I and T'|r is a pseudocharacter in
the sense of Definition Conversely any pseudocharacter of I" extends to a pseudocharacter of A[I].
If R is an arbitrary A-algebra, T : R — A is a d-dimensional pseudocharacter of R and A — A’ is a
homomorphism, then T ®4 A’ : R®4 A" = A', r ® a — aT(r) is a d-dimensional pseudocharacter of
R®4 A’. Note, that this notion of base extension is compatible with base extension for pseudocharacters
as in Definition 2.6

Remark 2.25. There are slight variations on the definition of pseudocharacters for algebras in the
literature.

1. In [BC09, §1.2.1] a pseudocharacter is required to satisfy condition (T3) plus the existence of some
d > 0, such that (T1) and (T4) hold. The smallest such d is then called the ’dimension’ of T'. In
[BCO9, Lem. 1.2.5 (2)] it is shown, that when A is connected and T has dimension d, then (T2)
holds.

2. In [Bell2, Definition 3] under the assumption that A is connected, condition (T2) is dropped
and condition (T4) is strengthened to the requirement, that d is the smallest integer, such that
Sa+1(T) = 0. It is then shown in [Bell2, Proposition 4], that (T2) follows from this strengthened
version of (T4). This is also the definition chosen in [Rou96|, Définition 2.1].

3. In [Nys96] condition (T1) is dropped. As we will see in Example this leads to undesired
behavior.

2.7 Representability

Lemma 2.26. Let d > 0, let O be a commutative ring such that d! € O* and let R be an O-algebra.
The functor
TPCEY : CAlgy — Set, A TPCH(A),

which associates to a commutative O-algebra A the set of d-dimensional A-valued pseudocharacters of R
is representable by a commutative O-algebra Bf.
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Compare |[Cheld, p. 2, footnote 6].

Proof. Define Bf to be the quotient of O[X,. | r € R] by the ideal generated by the following polynomials:

o Xoiqry — Xy, — Xy, forall 7,79 € R,
e Xy —aX, forallr e Randall a € O,
e X1 —d,

o Xyiry — Xpyr, forall r,ry € R,

. ZaeSdH sign(o) X, (r1,...,74+1) for all r1,...,rq11 € R.
where for any cycle ¢ = (i1 ...4,) € Sqy1 we define X () (r1,...,7q41) := Xy, ory, and for any o € Sgyq
with cycle decomposition o = ¢;...¢, we set Xy (r1,...,Td41) = H?Zl Xe) (1, ,ray1). One checks
at once, that the universal pseudocharacter R — B(f”, r +— X, represents TPCdR. O

The functor TPC? serves as a substitute for the functor Rep§ : CAlg, — Set, where for any O-algebra
A, Replf(A) is the set of GL4(A)-conjugacy classes of O-algebra homomorphisms R — My(A). Note, that
RepY is in general not representable. The trace induces a natural transformation tr : Repy — TPCJ. By
the previous lemma an A-valued pseudocharacter of R is the same as an A-point Spec(A) — Spec(BE)
over O. We define the d-dimensional pseudocharacter variety for R over O to be the O-scheme Spec(BE),
which represents TPCZ.

2.8 Reconstruction theorems

The reconstruction theorem tells us, when a d-dimensional pseudocharacter over an algebraically closed
field is the trace of a semisimple representation. This has been proved by Taylor for his pseudocharacters
in [Tay91, Theorem 1 (2)] in characteristic 0. It was later proved in positive characteristic p > d by
Rouquier [Rou96, Théoreme 4.2].

Definition 2.27. Let k be a field and let T : R — k be a d-dimensional Rouquier pseudocharacter of
a k-algebra R. We say, that T is irreducible, if T cannot be written as a sum of two pseudocharacters
Ty 4+ T3, of dimensions d; and dy respectively, with di + ds = d and dy,ds > 1.

Theorem 2.28. Let k be an algebraically closed field of characteristic 0 or p > d and let R be a unital
k-algebra. Let T : R — k be a d-dimensional Rouquier pseudocharacter of R. If T is irreducible, then
R/ker(T) is a d*-dimensional central simple k-algebra and T is the trace of the absolutely irreducible
representation R — R/ ker(T) = My(k). In general, T is the trace of a semisimple representation, which
is unique up to conjugation.

Proof. See [Rou96, Théoréme 4.2] in case T is irreducible. Let T'= Ty + - - - + T}, be a decomposition of
an arbitrary T into irreducible pseudocharacters and let p; be an irreducible representation with trace
T;. The representation p := p; @ --- @ p has trace T. Uniqueness follows from the Brauer-Nesbitt
theorem. O

In Theorem the condition on the characteristic of k is necessary, which is illustrated by the following
example.

Example 2.29. In characteristic 2 and dimension 2, uniqueness of the representation fails: The repre-
sentation

p: 03 — GLQ(FQ)

of the cyclic group C3 with generator v defined by

p(7) = (‘gj 2)

where w? +w+1 = 0 is semisimple and has the same pseudocharacter as the trivial representation, which
is 0.
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There are also reconstruction theorems over local henselian rings, which are particularly important for
comparing the pseudodeformation functor to the deformation functor.

Proposition 2.30. Let T': R — A be a residually multiplicity-free d-dimensional pseudocharacter over
a local henselian factorial domain A. Then T is the trace of a representation p : R — My(A).

Proof. See |[BC09, Prop. 1.6.1]. O

There is a converse to this result under the assumption, that A is noetherian.

Proposition 2.31. Let d > 2, let A be a noetherian local henselian ring and let R be an A-algebra. If
each d-dimensional residually multiplicity free pseudocharacter T': R — A is the trace of a representation
p:R— My(A), then A is factorial.

Proof. See [BC09, Thm. 1.6.3]. O

2.9 Kernel of Taylor’s pseudocharacters

Definition 2.32. Let T': I' — A be a d-dimensional pseudocharacter of a group I". We define the kernel
of T as
ker(T):={veT |V6 e : T(~)) =T()}

Lemma 2.33. In Definition ker(T') is a normal subgroup of T.

Proof. Let v,v" € ker(T). Clearly 1 € ker(T). For all § € T, we have T(yv'8) = T(y'6) = T(9), so
vy € ker(T). Further T(y~16) = T(yy~10) = T(d), so v~ ! € ker(T). We have shown, that ker(T) is a
subgroup of T'. For all z € T, we have T'(zyzx~10) = T(yz~16x) = T(z~1dz) = T(9), so xyz~' € ker(T)
and thus ker(7T') is a normal subgroup. O

If ker(T') = 0, we say that T is faithful.

2.10 Kernel of Rouquier’s pseudocharacters

Definition 2.34. Let T : R — A be a d-dimensional pseudocharacter of an A-algebra R. We define the
kernel of T as
ker(T):={z € R|VYy € R:T(zy) =0}

The kernel is a two-sided ideal of R. If ker(T) = 0, we say, that T is faithful. [BC09, §1.2.4]

Proposition 2.35. Let T': A[I'] — A be a d-dimensional pseudocharacter of a group algebra A[I'].

1. ker(T)N (T — 1) =ker(T|p) — 1.
2. Alker(T|r) — 1] C ker(T).
Proof. Suppose 7 € T with v — 1 € ker(T"). Then for all § € I, we have T'((y — 1)d) = 0, in particular

T(~0) = T(4), so v € ker(T|r). Conversely if v € ker(T|r), then T((y — 1)y) = 0 for all y € A[T'] by
linearity. The second assertion follows from the first. O

Note, that Definition is insensitive to base extension, i.e. if f: A — A’ is an injective ring homo-
morphism, then ker(7T") = ker(f oT'). It is important to notice, that the notion of kernel and faithfulness
of Taylor’s and Rouquier’s pseudocharacters need not agree. This is illustrated by the following example.

Example 2.36. Let I' = (7) be cyclic with generator v of order 4 and let I' act on Q? by

(5 0)

22



Let T : QI'] — Q be the associated 2-dimensional Rouquier pseudocharacter. The fundamental matrix
of the trace pairing (z,y) — T(xy) on Q[T is

2 0 -2 0
0 -2 0 2
-2 0 2 0
0 2 0 -2

and it follows, that ker(T) = (1 +~?). In particular T is not faithful. On the other hand the Taylor
pseudocharacter T'|r is faithful. We conclude, that the inclusion in Proposition (2) is strict in this
case.

2.11 Direct sum

Every (d' + 1)-tuple of d x d-matrices satisfies the d’-dimensional pseudocharacter identity (T4) for all
d’ > d. This can be seen by embedding each d X d-matrix into the upper left corner of a d’ x d’-matrix and
filling the rest with zeros. In the following lemma we prove, that the (d+ 1)-dimensional pseudocharacter
identity actually follows formally from the d-dimensional pseudocharacter identity. It is also proved in
[Bel09, Lem. 2.2].

Lemma 2.37. Let R be an A-algebra and let T : R — A be a function, such that T'(zy) = T(yx) for all
z,y € R. Let d > 0 be an integer. Then

d+2

Sar2(T)(g1, - gara) + D Sar1(T)(G1Gis -+ Gis- > Gay2)
=2

= T(91)Sa+1(T) (g2, - - - ga+2),
with Sq(7T") defined as in (T4). Explicitly

d+2

Z Sign(a)TO'(gh v agd+2) + Z Z Sign(T)TT(glgia s 7§i7 (R 7gd+2)
0€Sqt2 =2 7€Sq41
=T(q) Y sign(r)Tr(g2, -, gas+2)
TESd+1
forall g1,...,94+2 € R. In particular, if in addition T satisfies the d-dimensional pseudocharacter identity

(T4), then T satisfies the d’-dimensional pseudocharacter identity for all d’ > d.

Proof. We define for all ¢ =2,...,d+ 2 a map j; : Sg41 — Sq+2 on cycles:

ji((al e ak)) = (si(al) . si(ak))

where
i, a=1
si(a) := < a, l<a<i
a+1, a>1
For example for d = 3 we have j3((12)(34)) = (132)(45). The j; are injective and have disjoint im-
ages. By construction for all ¢ = 2,...,d+ 1 and all 7 € Syz11 we have sign(j;(7)) = —sign(r) and
T (91965 Gir- -+ 9a+2) = Tj,(r)(91, - - -, gar2). The second sum cancels entirely with the summands of

the first sum, for which o lies in the image of some j;.

Every o € Sg42, that does not fix 1 lies in the image of some j;, hence the complement of the union of
the images of the j; is the stabilizer of 1. We denote this stabilizer by (Sqi2)1. We are left to show the
equality

Y sign(0) ol gas2) = T(gr) Y sign(r)Tr(ga,- -, gar2)

o€(Sa+2)1 TESd+1

which follows easily by identifying (Sg42)1 with Sgi1. O
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For two representations p;, po of I' we can form the direct sum p; @ p2 and the tensor product p; ® pa.
Clearly tr(p; @ p2) = tr(p1) + tr(pz) and tr(p; ® p2) = tr(p1) tr(p2). This leads to the question, whether
for a dj-dimensional pseudocharacter 17 and a ds-dimensional pseudocharacter T5 the function T7 + T5
is a (dy + dy)-dimensional pseudocharacter and whether T} T» is a djdo-dimensional pseudocharacter.

Definition 2.38 (Direct sum of pseudocharacters). Let A be a commutative ring, let T3 : R — A be a
di-dimensional pseudocharacter and let 15 : R — A be a do-dimensional pseudocharacter in the sense of
Rouquier and assume (d; + d2)! € A*. We define the direct sum 77 & T by

(Th & To) () = Ta(7) + T2(v)

Proposition 2.39. Let dj,d> > 0 and A a commutative ring with (d + d2)! € A*. Let Ty : R — A be
a di-dimensional pseudocharacter and T5 : R — A a ds-dimensional pseudocharacter. Then T7 + T is a
(d1 + da)-dimensional pseudocharacter.

Proof.
(T1) We have (d; + d2)! € A* by assumption.

(T2) We have (T1 ®T3)(1) = T1 (1) + T2(1) = di + do. Invariance under cyclic permutations is also clear.
(T3) Let 1,72 € I'. Then

(11 @ To)(m172) = Ti(m1v2) + Ta(m1v2) = Ti(vem1) + Ta(v2y1) = (11 © T2) (v2m1)

(T4) For some o € S,, with cycle decomposition 0 =c¢j0---oc¢, wecallt: {1,...,n} — {1,2} a o-stable
coloring, if t is constant on the supports of all ¢;. We denote by C, the set of o-stable colorings.

For any o-stable coloring t € C, we define

k
Ti(vis- ) HTt(|cl| ey V155 7m)

where (|c;|) is the value of ¢ on the support of ¢;.

With this notation the relation we want to prove zero reads

Sartda+1(T1 +T2) (715 Yy +dat1) = Z sign(o) (11 + 12)o (715 - -+, Ydy+da+1)
0€Sa; +dg+1
= Z Slgn Z T 717"'a7d1+d2+1)
0ESd) +dy+1 teCy,

Z Z Sign(U)Té (’Yla cee a7d1+d2+1)

t:{1,...,d1+do+1} 0€Sq; tdy41
—{1,2} Co 3t

Given a map t : {1,...,n} — {1,2} the o € S,,, such that ¢ is o-stable are exactly those lying in
the image of the injective homomorphism

Sym(t*({l}»xSymu—l({z})msm(n,m)H(m{zgg’ igt )

We write Sp-1(,) := Sym(t ' ({z})). We obtain

= > > sign(m)(T)r (Ta)act-1 (1) > sign(m)(To)rn (1) ser1(2)

t:{1,....d1+da+1} TIES,— TRES,
R, 1€5;—1(1) 2€5,—1(2)

and this is zero, because either #t~1(1) > d; +1 or #t71(2) > dy + 1 and Lemma does apply.

O
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2.12 Dual

Definition 2.40. Let A be a commutative ring with d! € A* and let T : I' — A be a d-dimensional
pseudocharacter. We define the dual TV by

TV(y):=T(y™")

It is clear, that if T is the trace of a representation p, then TV is the trace of p*.

Proposition 2.41. In Definition 2.40] TV is a d-dimensional pseudocharacter.
Proof. We are able to verify properties (T1)-(T4) independently.
(T1) d! € A* holds by assumption.
(T2) TV(1)=T(1) =d.
(T3) Let 1,72 € I'. Then
TV (nye) =Ty ) =T e ) =T"(2m)

(T4) Let v1,...,744+1 €. Let ¢ = (i1...4,) be a cycle in Sg11. With the notation of Section we
have

T(vc)(%’ cosYar1) =TV (iy -2 vi)
= T(’yi:1 .. .’yi_ll)
= T(c—l)(’yfl, - /}/d::l)

The pseudocharacter relation for TV vanishes:

> sign(0)Ty (- ovar) = Y sign(e)  [[ T O var)

c€Sqt1 0ESqt1 cecycles(o)

= > sign(o) [ TenOnhvah)
0€Sqq1 cecycles(o)

= > sign(e) [ Tobtn'-h)
0€Sq41 cecycles(o—1)

= Z sign(U)TU_1(7f17...,A/djl)
O'ES(H,l

=0

2.13 Tensor product
Definition 2.42 (Tensor product of pseudocharacters). Let A be a commutative ring, let 77 : I' — A be
a di-dimensional pseudocharacter and let 75 : I' — A be a do-dimensional pseudocharacter and assume,
that (2d1ds)! € A*. We define the tensor product T3 ® Ts by
(Th ® T2)(y) :== Th(v)T2(v)
Proposition 2.43. In Definition T ® Ty is a d;ds-dimensional pseudocharacter.
Proof.
(T1) (did2)! € A* holds by assumption.
(T2) (T ® T2)(1) = T1(1)T5(1) = dids.
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(T3) Let 1,72 € I'. Then

(Th ® To)(m172) = Ti(m172) T2 (1172)
= T1(y271)T2(v2m1)
= (T1 ® Tz)(v2m1)

(T4) By Proposition the comparison map tr : PCng, (A) — TPC; (A) is a bijection. We will show
independently in Proposition 34 that tr is compatible with formation of tensor products of Laf-
forgue’s GLg4-pseudocharacters. It thus follows, that T7 ® Ty is a djds-dimensional pseudocharacter
and in particular satisfies (T4).

O

Remark 2.44. We are not able to prove directly, that the product of two pseudocharacters of dimensions
dy and ds satisfies (T4), but we expect that an elementary proof similar to the case of direct sums can be
given. However we are not really in need of such an argument, since Taylor’s pseudocharacters are not
well-behaved in small characteristics anyway (see Example . See also [BC09, Remark 1.2.9].

Remark 2.45. One can define Hom(71,7%) := T} ® T5.

2.14 The semiring of pseudocharacters

For any commutative monoid (M, +) the Grothendieck group (G(M), +) is an abelian group generated by
formal differences of elements of M. Any homomorphism from M into an abelian group factors uniquely
over G(M). There is a canonical homomorphism M — G(M), which is injective if and only if M has the
cancellation property.

Assume, that A is a Q-algebra. We know, that the trace gives rise to a homomorphism of commutative
semirings

tr: Rep' (4) = Map(T', 4), [p] = tr(p)
for all A. Here Rep' (4) = J3°, Repy (A) is the set of isomorphism classes of representations of I' on free
A-modules of rank d endowed with the structure of a semiring given by direct sum @ and tensor product
®a.
From the perspective just described, we would like to show, that the subset TPCF(A) of Map(T', A) given
by Taylor’s pseudocharacters is closed under addition and multiplication and that the dimension of a
sum or tensor product pseudocharacter is as expected.

Proposition 2.46. Over a Q-algebra A Taylor’s pseudocharacters form a commutative semiring

TPC'(4) = | ] TPC}(4)
d=0
with pointwise addition (direct sum Definition [2.38) and multiplication (tensor product Definition [2.42]).
The dualizing operation (—)Y is a semiring automorphism of order 2. Further, there is a homomorphism
of semirings
tr: Rep' (A) — TPCY(A), [p] — tr(p)

compatible with the dualizing operations on both sides, where Rep" (A) is the semiring of isomorphism
classes of representations of I" on finitely generated free A-modules.

Proof. This is a combination of Proposition [2.39] Proposition and Proposition [2.41 O

Proposition 2.47. Let C be an algebraically closed field of characteristic 0. Let RepF’SS(C) be the
subsemiring of RepF(C’) generated by semisimple representations. Then the trace map tr : RepF’SS(C) —
TPC"(C) is an isomorphism of commutative semirings.

Proof. We first note, that by a theorem of Chevalley, the tensor product of any two semisimple C[I']-
modules is semisimple. So Rep'"**(C) is indeed the subsemiring of Rep' (C) consisting only of semisimple
representations. Surjectivity and injectivity follow from the existence and uniqueness part of Theo-

rem applied to C[I. O
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2.15 Induction

It seems possible to define the induction of a Taylor pseudocharacter, just as for characters of finite
groups. We first give a definition, without claiming that the result is a pseudocharacter.

Definition 2.48 (Induction). Let I" be a group and let A <T be a subgroup of finite index n > 1. Let
T : A — A be a d-dimensional pseudocharacter and assume (nd)! € A*. Choose a system of left coset
representatives z1,...,x, € I' of A. We define

(Indj T)(v) = Z Ta (a7 ;)

where

T(v), eA
Taly) = {0(7) lee

is the truncation of T to A.

Proposition 2.49. Ind T in Definition does not depend on the choice of coset representatives.

Proof. Let y; € T', such that y;A = x;A. Let v € I'. The elements x;lvxi and y;lvyi only differ by a
conjugation by y;lxi € A. So x;lvxi € A if and only if y;lfyyi € A. For the same reason, since T is a
central function, T'(x; 'ya;) = T(y; yui)- O

Proposition 2.50. If p: A — GLg(A) is a homomorphism, then IndX tr(p) = tr(Ind} p).

Proof. The induced representation can be decomposed as Indg p=P;, x;A? as a free A-module of rank
dn. If v € A, then y acts on 2; A% as x; 'yx; and the trace of this action is tr(p(z; 'ya;)). If z; tya; ¢ A,
then yx; ¢ x;A, so v carries z;A? into a different summand :vjAd and the trace of v on x;A% is 0. It
follows, that Ind)y tr(p) = tr(Indk p). O

Proposition 2.51. If in Definition A is a reduced ring, then Ind} T' constitutes an nd-dimensional
pseudocharacter of I'.

Proof. We check the pseudocharacter axioms for T' := Indg T.

(T1) (nd)! € A* by assumption.
(T2) T'(1) =nT(1) = nd.

(T3) Let v1,72 € T' with a:;l'yl'ygmi € A. Note, that vsxq,...,722, is also a system of left coset
representatives and by the well-definedness we have just seen, we can use it as well for computation
of T":

n

T'(yv2) = > Tala; ' yvaws) = Y Ta((rai) ™ 271 (v2wi)) = T'(32m)
=1 =1

(T4) We first embed A into the ring [, Quot(A/p), where p varies over all minimal primes ideals of A.
By projection to the factors we see, that it is enough to prove the claim for A an algebraically closed
field. By the reconstruction theorem Theorem [2:28] Proposition 2.50] and Proposition [2.7] the claim
follows.

O

We expect, that (T4) can be proved without any assumption on A, but the calculations get to complicated
to carry this out directly. If A is not reduced, it might be possible to exploit the comparison isomorphism
Proposition [£.59 between Taylor’s pseudocharacters and Lafforgue’s pseudocharacters to prove the claim
by constructing induced pseudocharacters on the Lafforgue side. We do not carry this out in this thesis.
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3 Determinant laws

Chenevier generalizes Taylor’s pseudocharacters in [Cheld] to determinant laws of algebras. The key idea
is to consider homogeneous multiplicative A-polynomial laws of degree n from an arbitrary A-algebra R
to A instead of a single map R — A satisfying a certain set of identities. By doing so the formalism
is a bit thickened, but the problems one encounters with Taylor’s definition in small characteristic (see
Example are resolved. Necessarily the definitions don’t agree in small characteristics. In addition
this ’linearization’ approach allows us to use the machinery of noncommutative algebra. We give a
summary of the theory of determinant laws following the exposition of Carl Wang-Erickson in [Wanl13,
Chapter 1].

3.1 Motivation

Let T be a group, A a commutative ring, d > 0 and p : I' = GL4(A4) a homomorphism. The family of
characteristic polynomials (det(7" — p(y)))~er of the elements of I' is an invariant for the representation
p- There is a set of relations between these characteristic polynomials, that hold for any representation.
These relations come from invariants of tuples of matrices, which we will discuss later. To express
those relations in a convenient way we extend the family of characteristic polynomials to a family of
maps indexed by all A-algebras B. A homomorphism p is equivalent to an A-algebra homomorphism
p: A[l'l = M4(A) and we can recover the family of characteristic polynomials from the map

deto(p @ A[T]) : A[T|[L] — A[T]

by restricting to elements of the form T'—~ € A[T][I']. This map makes sense for any commutative
A-algebra B, so we associate to p the family of maps

Dp: All®a B = B, x> det((p® B)(7))

By definition D satisifies the following properties:

1. D is a natural transformation from the functor
—[I]: CAlg, — Alg,, B+~ B[l
that maps any A-algebra B to the group algebra B[I'] over I, to the inclusion functor CAlg 4 C Alg 4.
2. Dp(1) =1 and Dg(zy) = Dp(z)Dp(y) for all commutative A-algebras B and all x,y € B[I'].
3. Dp(bxr) = b¥Dp(x) for all commutative A-algebras B and all b € B.

We will see, that these conditions mean, that D is a d-homogeneous multiplicative A-polynomial law.

3.2 Polynomial laws

Definition 3.1 (A-polynomial law). Let A be a commutative ring, let M and N be arbitrary A-modules
and let R and S be not necessarily commutative A-algebras.

1. An A-polynomial law P : M — N is a collection of maps Pg : M ®4 B — N ®4 B for each
commutative A-algebra B, such that for each homomorphism f : B — B’ of commutative A-
algebras, the diagram

M@ABLN@)AB

J{id@f \Lid@f
DB/

M@asB —= N@u B’

commutes.

In other words, an A-polynomial law is a natural transformation M — N, where M (B) := M ®4 B
is the "functor of points’ of M. We denote the set of A-polynomial laws from M to N by P4 (M, N).
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2. A polynomial law P : M — N is called homogeneous of degree d € Ny or d-homogeneous, if for all
commutative A-algebras B, all b€ B and all z € M ® 4 B we have Pg(bx) = b?Pg(z). We denote
the set of d-homogeneous A-polynomial laws from M to N by P4 (M, N).

3. A polynomial law P : R — S is called multiplicative, if for all commutative A-algebras B, we have
Ps(lrg,B) = lsg,p and and all z,y € R ®4 B, we have Pg(xy) = Pp(xz)Pp(y). We denote the
set of d-homogeneous multiplicative A-polynomial laws from R to S by M% (R, S).

Remark 3.2. There is a geometric interpretation of polynomial laws. If M is a finitely generated free
A-module of rank n, then M is just the functor of points of the affine space A™ over A. A polynomial
law between finitely generated free A-modules is just a morphism of A-schemes. From this perspective
a polynomial law is a ’regular map’ between ’spaces’ modelled by A-modules. Just as in the case of
schemes, these 'regular maps’ are solely characterized by a naturality condition on a category of rings.
However this point of view doesn’t seem relevant to the theory of determinant laws.

Lemma 3.3. Let A be a commutative ring, let R, R’ and R” be A-algebras and let D : R — R’ and
D’ : R' — R" be polynomial laws.

1. If D is d-homogeneous and D’ is d’-homogeneous, then D’ o D is dd’-homogeneous.

2. If D and D' are multiplicative, then so is D’ o D.

Proof. These are easy calculations. O
Definition 3.4. Let P : M — N be an A-polynomial law. The kernel of P is the set
ker(P) :={me M |VB € CAlg,:Ve € M ®4 B: P(x +m) = P(x)}
(Compare [Wanl3, Definition 1.1.5.1])
The kernel of P is a submodule of M. When ker(P) = 0, we say that P is faithful. The kernel satisfies

the usual universal property, see [Wanl3, Lemma 1.1.5.2] and |[Chel4, Lemma 1.18]. Basic properties of
the kernel are shown in [Cheld, Lemma 1.19].

3.3 Definition of determinant laws

This focusses on [Chel4] §1-§2].

Definition 3.5 (Determinant law). Let A be a commutative ring. A d-dimensional A-valued determinant
law on R is a multiplicative A-polynomial law D : R — A, that is homogeneous of degree d € Ny. [Wan13|
Definition 1.1.7.1]

If B is a commutative A-algebra, we denote the set of d-dimensional B-valued determinant laws of R® 4 B
by Det”(B). If B — B’ is a homomorphism of commutative A-algebras and D : R®4 B — B is a d-
dimensional B-valued determinant law, then restriction of functors defines a d-dimensional B’-valued
determinant law D ® g B’ : R ®4 B’ — B’. This is the base change of D to B’ and defines a map
Det}(B) — Det}(B’). Base change is functorial, so we obtain a moduli functor

Det’ : CAlg, — Set, B~ Detf(B)

A determinant law can be constructed from a representation using the usual determinant: For any A-
algebra R and any A-algebra homomorphism p : R — M4(A) the collection of maps Dp := deto(p® B) :
R®a B — B is a d-dimensional determinant D : R — A. This defines a map

Homg, (R, Ma(A)) — Det[(A)
(p: R— My(A)) — (B det(p®a B))
There is a unique 0-dimensional determinant law D : R — A, that we will refer to as the trivial determi-
nant law.

If A is an infinite integral domain and D : R — A is a d-dimensional determinant law, then there is a
simpler description of the kernel of D ([Wanl3| Lemma 1.1.7.2]):

ker(D)={re R|Vr' € R: D(1+r") =1}
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3.4 Representability

Definition 3.6 (Divided power algebra). Let A be a commutative ring. Given an A-module M we define
the divided power algebra over M as the commutative A-algebra T'4(M) generated by symbols ml? for
all m € M, ¢ > 0 satisfying the following relations:

1. ml% =1 for all m € M.

2. (am)ll = a'ml! for all m € M, a € A and i € N,.

3. mlidmlil = (i%jj!)!m[“‘j] for all m € M and 4, j € No.

4. (m+m")ll = Zm_q:im[l’]m’[q] for all m,m' € M and i € Ny.

The number (i;!rﬁ)! is an integer, so we don’t need an assumption on the characteristic of A. Note, that

these relations are compatible with the degree deg(m!!) := i for m € M and i € Ny. So I'a(M) is
naturally Nyp-graded. Denote by ng (M) the A-submodule generated by monomials of degree d. If R is
an A-algebra, then I'Y (R) carries the structure of an A-algebra defined by

el gy o= 3T L™

(7i5) =1 =1

where z1,...,%,,y1,...,ys € R, > a; = d, 2221 b; = d and (;;) ranges over all families of integers
Yij > 0 with 37 | 75 = bj and 377 i = a;. See [Rob80]. For background on divided power algebras,
see [Stal9, |09PD]. '

Theorem 3.7 (Universal homogeneous polynomial law). Let A be a commutative ring and let R be an
A-algebra. The functor M (R, —) is representable by T'% (R), i.e. there is a natural bijection

M4 (R, S) = Homayg, (T%(R), S)

with universal object L% : R — T'%(R), 7+ rlil.
Proof. See |Rob80, Théoreme] or [Wanl3| Theorem 1.1.6.5]. O

In particular, if S is commutative, there is a natural bijection

M4 (R, S) = Homcayg, (T4 (R)™, S)

3.5 Reconstruction theorems

It is natural to ask, under what conditions a determinant law arises from a representation in the sense
described in Section In this case we say, that D is split. Chenevier [Cheld] Sec. 2.22] proves some
converse results for A an algebraically closed field and A a Henselian local ring.

Theorem 3.8. Let k be an algebraically closed field, R a k-algebra d > 0. Then the natural map
RepX (k) — Detf (k)

induces a bijection between the set of conjugacy classes of d-dimensional semisimple representations
R — My(k) and the set of d-dimensional k-valued determinant laws of R. If D € Det’(k), then

p: R— R/ker(D) = HMdi(k)

is a semisimple representation with associated determinant law D = detop and ker(D) = ker(p) and

Y di = d.

Proof. See |Chel4, Theorem 2.12] and [Wanl3, Theorem 1.3.1.1]. O

Theorem 3.9. Let D : R — A be a Cayley-Hamilton determinant law over a henselian local ring A
with residue field k. If D ® 4 k comes from an absolutely irreducible representation, then there is an
isomorphism p : R = M4(A), such that D = det op.

Proof. See |[Cheld, Theorem 2.22 (i)]. O
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3.6 The characteristic polynomial

The reference for the following definition is [Chel4] §1.10].

Definition 3.10. Let A be a commutative ring, let R be an A-algebra and let D : R — A be a d-
dimensional A-valued determinant law. Then we define for each r € R, the characteristic polynomial
xXP(r,t) € Alt] by

P (r,t) ;== Da(t — 1)
We will understand the characteristic polynomial as a map x? : R — A[t], r — xP(r,t). If R = A[l] is
a group ring, we also consider the restriction xy? : I' — A[t]. We denote the negative of the coefficient of
td_l by tI‘D.

By [Chel4] Lemma 1.12 (iii)], trp satisfies the d-dimensional pseudocharacter identity.
Proposition 3.11. Let A be a commutative ring and let I' be group. Then the map
Det};(A) — Map(T, A[t]), D~ x”
is injective.
Proof. By Amitsur’s formula [Chel4, (1.5)] x” determines the values of the maps Dagey,.. 01 - AC[t1, oo tn] —
A on elements of the form vyt + - -+ + ypt, with 4; € T'. By naturality we can replace finitely many

variables by elements of A, so that the x” determines all values of Dap,,...tn) + All[t1, - .. t0] — A for
all n > 1. Again by naturality this is sufficient to determine D. O

Definition 3.12. Let D be an A-linear d-dimensional determinant law. We define the coefficients
A; : R — A of the characteristic polynomial of D by the expansion

d

XP(r,t) = Dppy(t —r) = _(=1)'A; p(r)t*~" € B[]
1=0

for all B € CAlgy.

One can show, that the coefficients A; give rise to i-homogeneous A-polynomial laws.

3.7 Continuous determinant laws

Let I" be a topological group and let A be a topological ring. We say, that a d-dimensional A-linear
determinant law D € Det);(A) is continuous, if the coefficients A; of Definition of the characteristic
polynomial of D give rise to continuous maps A; a|r : I' = A. This notion of continuity is equivalent to
that defined in [Chel4] §2.30]. We denote the set of continuous d-dimensional A-linear determinant laws
by cDet} (A).

If p: T' = GL4(A) is a continuous representation, then D, is a continuous determinant law. So we have
a map CRepg’i (A) — cDet!,(A), which is natural in A and T.

3.8 Comparison with Taylor’s pseudocharacters

Proposition 3.13. Let A be a commutative ring with d! € A* and let R be an A-algebra. Then the
map
Detf(A) — TPCH(A), D trp

(see Definition [3.10) from the set Det’/(A) of d-dimensional A-valued determinant laws to the set
TPCg (A) of d-dimensional A-valued Rouquier pseudocharacters of R is a well-defined injection. The
map is bijective, if one of the following conditions holds.

1. A is reduced.
2.2 A% and d = 2.
3. (2d)! e A*.

Proof. See |Cheld] Proposition 1.27, Remark 1.28, Proposition 1.29]. O
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3.9 Direct sum

The direct sum of two determinant laws should be defined in such a way, that it corresponds to the direct
sum of representations. This has been done by Wang-Erickson in [Wanl13), §1.1.11].

Definition 3.14 (Direct sum). Let R be an A-algebra, Dy, Dy determinant laws of dimension dy, ds of
R over A. Then we define the direct sum D := Dy @ Dy to be the polynomial law given by

Dg(z) := D1,p(x)D2 5(x)
for all commutative A-algebas B. [Wanl3| Def. 1.1.11.6]

D1 & D5 is multiplicative and homogeneous of degree d; + do, in particular Dy @ Dy € Detg1 1, (A).

Lemma 3.15 (Basic properties of the direct sum). Let R be an A-algebra, di,ds > 0 and d := dy + ds.
The direct sum operation
@D Detg1 X Spec A Detff2 — Detg”

is a morphism of affine A-schemes corresponding to the homomorphism of commuative A-algebras

r4(a) , y Da
I'4(R)*™ —T9 (R x R) —=T% (R)*® @4 T¢(R)™

where A : R — Rx R is the diagonal and the right map is induced by the isomorphism [Wan13} (1.1.11.1)].

Proof. See [Wan13| Lem. 1.1.11.7]. O

3.10 Dual

Suppose p : R — My(A) is an A-linear representation of a unital A-algebra R. Since transposition does
not change the determinant of a matrix, we have det op = detoT o p as determinant laws. We may see
det op as a determinant law on R°® — A. It is clear, that det op is the determinant law attached to the
action of R°P on the dual module of A¢ equipped with the action of R by p. In case R = A[T'] is a group ring
associated to a group I', we can compose det op with the antihomomorphism ¢ : A[['] — A[T], v~ L.

This leads to the following definition:

Definition 3.16 (Dual). Let D : R — A be a d-dimensional A-valued determinant law. Then the dual
of D is defined as DV := Dov: R — A.

By the above discussion, we have:

Proposition 3.17. Let p : R — M4(A) be an A-linear representation of a unital A-algebra R. Then
(det op)V = det op*.

3.11 Vaccarino’s result

For the construction of tensor products in Section we will need a theorem of Vaccarino, which we
recall in this section.

For a set X, let Z{X} be the free unital ring generated by X. For d > 0, there is a universal d-
dimensional representation of Z{X}: Let Ax(d) be the free commutative ring generated by symbols z;;
with 1 <i,j < d for each z € X. Then the universal representation p3™ : Z{X} — My(Ax(d)) maps =
to the matrix X(®) € My(Ax(d)) with Xz(;c) = x;;. Let R be a unital ring and let 7 : X — R be a map.
It extends uniquely to a ring homomorphism 7 : Z{X} — R. To a representation p : R — M;(A) over a
commutative ring A, we can associate a ring homomorphism ¢, : Ax(d) — A defined by z;; — p(7(z));;.
The following diagram commutes

univ

ZIX}Y —"4 My(Ax(d))

lﬂ' \LMd(@p)

R——" s My(A)

32



Let Ex(d) be the subring of Ax(d) generated by the coefficients of the characteristic polynomial of all
elements pi"V(w) for w € Z{X}. The determinant law detopi™V : Z{X} — Ax(d) attached to the
universal d-dimensional representation takes values in Ex (d) [Chel4] §1.10].

We recall the following deep result of Vaccarino, which ultimately relies on knowledge about relations
between the coefficients of the characteristic polynomial of d x d-matrices. From now on, for every
commutative ring A, whenever we write det : M4(A) — A we mean the d-homogeneous multiplicative
determinant law My(A) — A given by detp : My(B) — B for every commutative A-algebra B.

Theorem 3.18 (Vaccarino). Let A be a commutative ring, let X be a set and let D : Z{X} — A be a
d-homogeneous multiplicative polynomial law. Then there is a unique homomorphism ¢p : Ex(d) — A,
such that

¢p(det(pg™ (w))) = D(w)
for all w € Z{X}.

Proof. See |Cheld, §1.10 (1.6)] or [Vac08, Thm. 6.1] and [Vac09, Thm. 28]. O

For us the case when D comes from a representation will also be important. Suppse p : Z{X} — M4(A)
is a ring homomorphism and D = det op. Then the diagram

det

My(Ax(d)) — Ex(d)

lMd(%) l%Exm

Mq(4) ——

commutes. It follows from the uniqueness part of Theorem that op = V,lEy(4)-

3.12 Tensor product

As opposed to Section [3.9] and Section [3.10] we rely on Vaccarino’s result Theorem [3.I8] to construct
tensor products of determinant laws. It is difficult to write down an explicit construction of a tensor
product determinant law D7 ® D5 from two determinant laws Dy and Ds, but it is feasible to construct
the attached homomorphism ¢p,sp, from ¢p, and ¢p, and thereby give a definition of D ® Ds.

As a preparation, we define a tensor product homomorphism fg : Ex(dida) = Ex(d1)® Ex(dz2). Recall,
that Ax(d) is the coordinate ring of the affine scheme M:* = (Adz)X of X-tuples of d x d-matrices, which
carries a rational GLg z-action by simultaneous conjugation. Hence Ax (d) is a rational GL4 z-module. It
turns out, that Ex (d) is the subring of rational GLg z-invariants of Ax (d): From classical invariant theory
(see [DP76]) it is known, that the rational invariants when X is finite are generated by the coefficients of
the characteristic polynomial of the matrix coordinate functions of M, j( and the situation is no different,
when X is infinite, since invariants commute with filtered colimits.

From now on, we fix a bijection {1,...,d1} x {1,...,d2} = {1,...,d1d2}, which determines an isomor-
phism Zh @ 72 =~ 7dd2  Sg the tensor product of a di X dij-matrix with a dy X de-matrix can be
identified with a well-defined dyds X djda-matrix and we have a homomorphism ® : My, (4) x Mg, (A) —
Mg, 4,(A) for every commutative ring A realizing this tensor product operation. This induces in par-
ticular a homomorphism of coordinate rings gg : Ax(dids) — Ax(d1) ® Ax(ds) and a homomorphism
of group schemes ® : GLg4, X GLg, — GLg4,4, again realizing the tensor product. Note, that the map
® : Mg, (A) x Mg, (A) = Mg,4,(A) is GLg4, X GLg,-equivariant, so it follows, that gg is equivariant as
well. Taking GLg4, 4,-invariants on the source of gg and GLg4, x GLg4,-invariants on the target of ¢gg, we
obtain a map fg : Ex(dida) = Ex(d1) ® Ex(dz) as the restriction of gg.

Definition 3.19 (Tensor product on Z{X}). Let A be a commutative ring and let X be a set. Suppose
D; : Z{X} — A is a d;-homogeneous multiplicative polynomial law for ¢ = 1,2. Let ¢p, : Ex(d;) —
A be the homomorphisms attached to D; o 7 for ¢ = 1,2 from Theorem [3.18] We define the tensor
product D1 ® Do as the dyda-homogeneous multiplicative polynomial law Z{X} — A attached to the
homomorphism (¢p, ® ¢p,) © fg.
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It is clear, that by extending scalars from Z{X} to A{X}, we obtain a notion of tensor product for
A-valued determinant laws. In the next proposition we use the homomorphisms theorem to extend this
definition to general A-algebras R.

Proposition 3.20 (Tensor product). Let R be a unital A-algebra. Suppose D; : R — A is a d;-
dimensional A-valued determinant law and that Do : R — A is a do-dimensional A-valued determinant
law. Let m : Z{X} — R be a homomorphism, such that 7 ® A : A{X} — R is surjective and let
i = ¢p,or : Ex(d;) — A be the homomorphisms attached to D; o w for ¢ = 1,2 from Theorem
Then ker(r®A) is contained in ker(((41®¢2)o fg odet opy"¥ )®A). In particular the A-valued determinant
law ((p1 @ p2) 0 fg odetopi’y) ® A: A{X} — A descends to a well-defined d;dz-dimensional A-valued
determinant law Dy ® Dy : R — A with ¢p,gp, = (1 ® ¥2) o fg.

Proof. By Theorem [3.18) we have ¢; o detop™ = D; o for i = 1,2, in particular ker(r ® A) C
® A

univ

ker((; o det opi™)
This containment implies: Whenever w € A{X} and s € ker(r ® A), then

et o univ A et o univ A
i (X1 ED (1 4 5, 1)) = i (x OV ED (w, 1))

in A[t].

univ

The term fg (x*** @Y (w + 5,1)) € (Ex(d1) ® Ex(dy) ® A)[t] is the characteristic polynomial of
P (w + 5) @ pV(w + s) ® A and the coefficients of the t* are polynomials in the coefficients of the
characteristic polynomials of pgfiv(w +5)® A for i = 1,2. It thus follows, that

(1 ® 2) (fo (X P D (w0 + 5,1))) = (01 ® ) (f (X P12 (w, 1))

The existence of D1 ® Ds such that ¢p,gp, = (¢1 ® v2) o fg follows from the homomorphisms theorem
for determinant laws |[Cheld, Lemma 1.18] and Theorem O

If p1 : R — My, (A) and py : R — My, (A) are representations of R, we write p1 ® pa : R — Mg, 4,(A) for
® o (p1 X p2). We show, that the construction of Proposition is compatible with the tensor product
of representations and may thus be called a tensor product of determinant laws.

Proposition 3.21. Let p; : R — My, (A) for i = 1,2 be A-linear representations of a unital A-algebra
R with associated determinant laws D,,. Then D, ® D,, = D, gp,-

Proof. The following argument works after tensoring all algebras in sight with —® A, so we assume A = 7Z
for simplicity of notation. It is sufficient to prove, that ¢, gp, = (¥p, ® ¥p,)© fe, as the argument below
shows, this will hold after any base change.

We have

(SOPI ® @Pz) © f® odet = (‘PPl ® @Pz) o det OMd1d2 (f®)
= det OMd1d2 ((Pm ® 9092) © Md1d2 (f®)
= det OMdl da (9001 ®,02)
Composing with the universal representation pj*y : Z{X} — Mg, q,(Ax (d1d2)), we obtain
((Ppl ® ‘ppz) o f® o det Op:il?;l\; = det OMd1d2 (@P1®p2) ° p:in;;l\;
=deto(p;1 ®pa)om

univ

= Qpr@p, © det opyly

where the last equality follows from Theorem Since by definition of Ex(dids) is generated by the
coefficients of the characteristic polynomials of elements of Z{X } under the universal representation, we
may use the equation

((@p1 ® 9ps) © fig 0 det 0pa) @ Z[t] = (£py0p, © det opgra,) ® Z[t]

over the single-variable polynomial ring Z[t] to deduce, that ¢, gp, = (©p, ® ©p,) © fo. O
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Next, we show that our construction does not depend on the choice of the presentation.

Proposition 3.22. In Proposition [3.20} the tensor product Dy ® Dy does not depend on .

Proof. We may assume A = Z. It is sufficient to check, that for a surjection 7’ : Z{X'} — Z{X}, the
tensor products constructed via m and via 7w o 7’ agree. Let ¢; : Ex(d;) — A be the homomorphisms
attached to D; o w and let ¢} : Ex/(d;) — A be the homomorphisms attached to D; o 7w o n’. The
homomorphism 7’ induces transition maps a(d) : Ax/(d) = Ax(d) and e(d) : Ex/(d) — Ex(d) for any
integer d > 0. For clarity we write fg x : Ex(did2) — Ex(di1) ® Ex(d2) and fg x/ : Ex/(dida) —
Ex:(dy) ® Ex:(ds) for fg in the respective cases. Our goal is to show, that

!

(b1 ® p2) 0 fg,x 0 e(didz) = (p1 ® ¥) © feo,x-
from which independence of the presentation follows.

From Theorem [3.18] we get

univ

D;om = p;odetopyy

! univ
Diomon = p;odetop;’'x,

where p§™y : Z{X'} — My, (Ax(d;)) and p§™y, : Z{X} — My, (Ax/(d;)) are the respective universal
representations. At the same time, we have by composition with 7’:

D;omon’ = p;odetopi™y on’

= p; odet oMy, (a(d;)) o ng,i;(’

univ

— ;0 e(dy) o det oy,

In the above we used, that e(d;) is the restriction of a(d;).

By definition, the image generated by det opgff}, is Ex/(d;). Hence ¢} = ¢; o e(d;). We see, that

(] ® y) o fo,x = (1 ® p2) o (e(dr) ® e(d2)) © fo,x:
= (1 ® p2) o fig, x o e(didz)

For the last step, we check that (a(di) ® a(d2)) o g, x’ = go,x © a(drdz). O

3.13 Examples of tensor products

Assume, that X = {z} has one element.

Recall, that Ex(d) is a polynomial ring over Z generated by the coefficients sy, ..., sq of the characteristic
polynomial of a generic d x d-matrix. By restriction to diagonal matrices, we obtain a homomorphism
Ex(d) — S(d) to the ring S(d) generated by elementary symmetric polynomials in the diagonal entries of
a generic d X d-matrix. Since S(d) is known to be a polynomial ring and E'x (d) is generated by sy, ..., sq,
this map is an isomorphism. By slight abuse of notation, we write Ex (d) = Z[s1(z), ..., sq(z)] and think
of x as a single generic matrix coordinate.

We want to give a more explicit description of the map fg : Ex(did2) = Ex(di1) ® Ex(dz2) in case X
has one element. It follows from the previous paragraph, that Ex(d;) ® Ex(dz2) is a polynomial ring
in elementary symmetric polynomials of the diagonal entries of two different generic matrices x and y,
we write Ex(d1) ® Ex(d2) = Z[s1(x),...,84,(x),81(y),-..,84,(y)]. So fg is determined by its values
fo(si) on the generators si,..., 84,4, and these values have a unique presentation as polynomials in
s1(x)y ..y 84, (), 51(Y), - -y Sdy (V).

In the following examples we will compute the polynomials fg(s;) in some special cases. An explicit
formula for these polynomials can be given in terms of generating functions for the coefficients of the
characteristic polynomial of a tensor product of two matrices, but we don’t write it down here.

Example 3.23.

1. If dy is arbitrary and do = 1, our operation coincides with twisting with a character x = s1(y) as
introduced in [BJ19, §4.5]. It is easy to see, that fg(s;) = x"s;i(z).
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2. If d; = d2 = 2 we write tr(z) = s1(z), det(x) = s2(z) and likewise for y. Using the dyadic product
ge of two diagonal matrices, we see that

w(s1) = tr(z)t (y)

fo(s2) = (tr(z)? — 2det(z)) det(y) + det(x)(tr(y)? — 2det(y)) + 2 det(z) det(y)
fo(s3) = tr(z) det(z) tr(y) det(y)

9 (s4) = det(z)* det(y)”

We emphasize, that the formulae given in Example [3:23] uniquely characterize the tensor product of
pseudocharacters and it is not necessary to look at sets X of cardinality > 1:

Let D : R — A be a d-dimensional A-valued determinant law. By Theorem for every r € R, the
homomorphism 7 : Z[z] — R with 7(x) = r induces a unique homomorphism ¢ : Ex(d) — R, such that
o odetopi™¥ = Do . In particular

d

Y Dipa(si)tt™ = xP(r0)

=0

Since determinant laws are determined by their characteristic polynomials, D is determined by ¢, for
all m : Zlx] — R. Picking a presentation II : Z{X} — R which contains some element o € X with
II(zo) = r, and the statement of independence Proposition [3.22] we see that x?1®P2(r t) only depends
on xP1(r,t) and xP2(r,t) in the way described in Example
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4 (G-pseudocharacters

In this section we develop the basic theory of G-pseudocharacters for generalized reductive groups G. We
start with theoretical background on group schemes.

4.1 Group schemes

4.1.1 Reductive groups over fields

In this section, we fix terminology for reductive groups, that we will need lateron. Let G be a linear
algebraic group over an algebraically closed field k. Recall, that the unipotent radical R,(G) of G is
defined as the maximal closed unipotent normal k-subgroup scheme of G and the solvable radical R(G)
is defined as the maximal closed solvable normal k-subgroup scheme of G.

Definition 4.1.

1. G is reductive, if the unipotent radical Ry(G) is trivial.

2. G is semisimple, if the solvable radical R(G) is trivial.

If G is a finite k-group scheme, then it is automatically constant and reductive. If we require G to be
connected, we will explicitly say so.

Definition 4.2. [Ser03, §3.2] Let T be an abstract group and G a connected reductive group over an
algebraically closed field F. Let p: I' = G(F) be a representation. We say, that

(a) p is G-irreducible, if there is no proper parabolic subgroup P C G, such that the image of p is
contained in P(F).

(b) p is G-completely reducible, if for every parabolic subgroup P C G, such that the image of p is
contained in P(F'), there is a Levi subgroup L C P, such that the image of p is contained in L(F).

(¢) p is G-indecomposable, if there is no proper parabolic subgroup P C G containing a Levi subgroup
L C P, such that the image of p is contained in L(F).

For G = GLg4 this recovers the usual notions. Serre proves basic properties of these notions. The
quantities h(G) and n(V) are defined in [Ser03| §5.1, §5.2].

Theorem 4.3. [Ser03| pp. 5.445.5] Let G be a connected reductive group over a field k. Let I' C G(k)
be a subgroup and V' be a rational G-module.

(a) If T' is G-completely reducible and the characteristic of k is either 0 or p > n(V), then V is a
semisimple I'-representation.

(b) If the characteristic of k is either 0 or p > n(V') and V is a presque fidéle (= kernel is of multiplicative
type) semisimple I'-representation, then I' is G-completely reducible.

(c) If the characteristic of k is either 0 or p > 2h(G) — 2 then the following are equivalent:

(1) T is G-completely reducible.
(2) Lie(Q) is a semisimple I'-module.

Suppose G is a (now possibly non-connected) reductive group over an algebraically closed field k. In
[BMRO5, §6] Bate, Martin and Réhrle define a notion of complete reducibility of subgroups of G(k). For
this the notions of parabolic subgroup and Levi subgroup have to be extended to the non-connected case.

For any cocharacter A : G,, — G, we call Py := {g € G | limy_,o A\(t)g\(t) ! exists} the Richardson
parabolic (R-parabolic) attached to A. A subgroup of the form Ly := Zg(A(k™)) is called a Richardson
Levi (R-Levt) subgroup of Py. These notions agree with the usual notions of parabolic and Levi subgroups
in case G is connected [BMRO5, Lemma 2.4]. So Definition extends to the non-connected case:
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Definition 4.4. Let I' be an abstract group and G a reductive group over an algebraically closed field
F. Let p:T' = G(F) be a representation. We say, that

(a) p is G-irreducible, if there is no proper R-parabolic subgroup P C G, such that the image of p is
contained in P(F).

(b) p is G-completely reducible, if for every R-parabolic subgroup P C G, such that the image of p is
contained in P(F'), there is an R-Levi subgroup L C P, such that the image of p is contained in
L(F).

(c) p is G-indecomposable, if there is no proper R-parabolic subgroup P C G containing an R-Levi
subgroup L C P, such that the image of p is contained in L(F).

We shall also define what a G-semisimplification of a G-valued representation in the non-connected case
is. For the definition we refer to Appendix [Al

4.1.2 Reductive group schemes

Working with deformations of representations valued in other algebraic groups G than GL,, we have to
decide which groups we want to allow for G. Our group G shall be naturally defined over the coefficient
ring of some deformation problem, for example the ring of integers of a p-adic local field. In [Conl4b|
Definition 3.1.1] Brian Conrad introduces reductive and semisimple group schemes over arbitrary base
schemes. He requires, that the geometric fibers of GG shall be connected, which in particular disallows the
orthogonal groups O,,.

Definition 4.5. A reductive (semisimple) group scheme over a scheme S is a smooth S-affine S-group
scheme G, such that the geometric fibers of G are connected reductive (semisimple) groups.

An S-group scheme D is of multiplicative type, if it is fppf-locally diagonalizable, i.e. there is an fppf-
covering {S; — S}, such that Dg, is isomorphic to the relative spectrum of the quasi-coherent Hopf
algebra Og,[M;] for a finitely generated abelian group M;, where the comultiplication is given by A(m) =
m ® m and the antipode is given by s(m) := m~! for m € M;. An S-torus is an S-group scheme of
multiplicative type with smooth connected fibers.

If G is a reductive S-group scheme, then a mazimal torus of G is an S-torus T' C G, such that for each
geometric point § of S, T5 is a maximal torus of Gz. G admits étale-locally a maximal torus [Conl4b,
Corollary 3.2.7]. For the slightly technical definition of a split reductive group over S, we refer to [Conl4b),
Definition 5.1.1]. If S = Spec(Z) and G admits a maximal torus, then G is split [Conl4b, Example 5.1.4].

Definition 4.6. A Chevalley group is a reductive Z-group scheme, which admits a fiberwise maximal
Z-torus.

The following three sets are canonically in bijection [Conl4a, Theorem 1.4].

1. Chevalley groups up to Z-isomorphism.
2. Split connected reductive groups over Q up to Q-isomorphism.

3. Root data up to isomorphism.

Every split connected reductive group G over the fraction field K of a domain O admits a model over O,
which is the base change of a Chevalley group over Z [Conl4a, Theorem 1.2]. If O is a PID, then every
O-model of G is the base change of a Chevalley group |[Conl4a), Proposition 1.3]. We will use these facts
to reduce some of our arguments to Chevalley groups. By a Chevalley group over another base than Z
we will always mean the base change of a Chevalley group over Z.

4.1.3 Generalized reductive group schemes

The definition of G-pseudocharacters Definition [£:20] shall be given in a way that also allows for G to
be disconnected. Suppose G is a smooth affine group scheme over a commutative ring O, such that the
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geometric fibers Gz for s € Spec(Q) are reductive groups. There is a unique open subgroup scheme
G° C G, such that (G%)s = (Gs)° for all s € Spec(O) |Gro66, Corollaire 15.6.5]. We say, that G°
is the identity component of G. Beware, that G is not necessarily a connected scheme. Each GY is
geometrically connected [Conl4b), Exercise 1.6.5] and it follows, that formation of the identity component
(—)° commutes with any base change. In particular G2 is a connected reductive group, G is an open
and closed O-subgroup scheme of G' and the quotient G /G exists as a separated étale O-group scheme
of finite presentation |Conldb, Proposition 3.1.3]. In general G/G° doesn’t need to be finite [Conl4b
Example 3.1.4].

This leads to the following definition, which includes the orthogonal groups O,, when 2 is invertible in O.

Definition 4.7. Let O be a commutative ring. A generalized reductive (generalized semisimple) O-group
scheme G is a smooth affine O-group scheme such that the geometric fibers Gz for s € Spec(O) are
reductive (semisimple) groups and the component group G /G is finite over O.

The definition of generalized reductive group scheme is given in [FM88| Definition 2.1] in terms of a short
exact sequence.

If G is smooth and affine, G° is a reductive group scheme and G/G° is finite, then G is generalized
reductive. If G is generalized reductive, then G is a reductive group scheme.

If O is a discrete valuation ring and G is a smooth affine O-group scheme with finite component group,
such that the special fiber of G is reductive, then G is already generalized reductive [Conl4b} Proposition
3.1.9].

Example 4.8. Here are the main examples we are going to consider.

1. The symplectic group Sp,,, over Z is the scheme-theoretic automorphism group of the standard
symplectic bilinear form on Z?". Sp,,, is a semisimple Chevalley group with almost-simple connected
geometric fibers.

2. The orthogonal group O,, over Z[%] is the automorphism group of the standard symmetric bilinear
form on Z". O, is a non-connected generalized semisimple Z[%]-group scheme with almost-simple
geometric fibers. The identity component of O,, is the special orthogonal group SO, and the
component group Oy, /SO,, is the constant Z[3]-group scheme Z/2Z. [Conl4b, Example 3.1.4]

4.1.4 (G-valued representations
Definition 4.9. Let G be an affine group scheme over a scheme S.

1. A G-valued representation of a group I' over an S-scheme T is a homomorphism p: I' = G(T).

2. Denote by Repg’F : Schy” — Set the presheaf on the category of S-schemes, that maps an S-scheme
T to the set of homomorphisms I' — G(T"). The group G(T') acts on Repg’F(T) by conjugation.

3. Denote by Repg(T) the set of G(T)-conjugacy classes of homomorphisms. This also defines a
presheaf Repg : Sch%’ — Set on the category of S-schemes.

Note that in the case of affine S and T this coincides with the notion of G-valued representation from
Section The following lemma is standard.

Lemma 4.10. Let S be a scheme and let (T});cr be a cofiltered system of affine S-schemes. Then the
limit T = lim;c; T; exists in the category of S-schemes. Moreover T is S-affine and if T; = Spec S(Ai)

for quasi-coherent Og-algebras A;, then T' is canonically isomorphic to Spec(A), where A := colim A,
i€l

is the colimit in the category of quasi-coherent Og-algebras.

Proof. Any colimit of quasi-coherent Og-modules is quasi-coherent [Stal9, 01LA] and ®p, preserves
colimits in both variables [Stal9, 05NB|. From this, we obtain that (QCoh(Ox),®0, ) is a cocomplete
symmetric monoidal category. Its category of commutative monoids, which in this case is the category
of commutative quasi-coherent Og-algebras QCohCAlg(Ox), is cocomplete, see Martin Brandenburg’s
answer to Mathoverflow question 139968 for a proof. Thus A exists.
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It can be deduced from the fact, that the inclusion functor QCoh(Og) — Mod(Og) has a monoidal right
adjoint (combine [Stal9l 077P|] with [Stal9, 01CE] (3)), that the inclusion QCohCAlg(Og) — CAlg(Ogs)
has a right adjoint, which we will call the quasi-coherator (—)4°°®. Thus we can define the relative global
sections of an S-scheme f : T — S by Lg(T, Or) := (f.Or)%°". We have the usual adjunction

Homqconcalg,, (= Ls (T, Or)) = Homgen (T, Spec ()

Let U be any S-scheme. Define T':= Spec (colim; A;). We have

Homsen, (U, T) = Homqconcalg,, (A, Ls(U, Ov))
= lim Homqconcaig,  (Ai Ls (U, Ov))
= lim Homgn, (U, T;)

which proves, that T is indeed the limit of the T;. O

Theorem 4.11. Let I' be a group and let S be a scheme. Let G be an affine group scheme over S. The
functor Repg’F is representable by an affine S-scheme Xg T,

1. If T is finitely generated and G is (locally) of finite type over S, then X (E;' T is (locally) of finite type
over S.

2. If T is finitely presented and G is (locally) of finite presentation over S, then Xg T is (locally) of
finite presentation over S.

3. If T is finitely generated, G is of finite type over S and S is noetherian, then Xg T is noetherian
and of finite presentation over S.

In case of a finitely generated group I' and an affine scheme S, this has been proved by Wang-Erickson
in [Wanl13, Thm. 1.4.4.5].

Proof. Let I C T be a family of generators of I' and let F'(I) be the free group on I. For any S-scheme
T, there is a natural isomorphism between the set of homomorphisms F(I) — G(T) and G(T)!. The
functor T+ G(T)! is representable by an S-scheme G. Here G! := limp ; G! " is the cofiltered limit of
affine S-schemes G!" indexed by finite subsets I’ C I. Note, that by Lemma this limit exists and is

represented by the quasi-coherent Og-algebra Og(G)®! = colim O5(G)®! ". We have
I'cI

G (1) = Map(I, G(T))
= Hom(F(I),G(T))
= Homg (T, G')
~ Homo, (05(G)®, £.0r)

for any S-scheme f: T — S.

Let F(J) be another free group together with a homomorphism F(J) — F(I), such that the sequence of
groups

is exact. We obtain a short exact sequence of groups
1 ——= Hom(T',G(T)) —— Hom(F (1), G(T)) —— Hom(F'(J),G(T))

It follows, that T — Hom(T', G(T)) is representable by the quotient Rg,r of Os(G)®! by the image of
Os(G)®7 under the natural map. We put X5 := SpecS(R(D;’F).

1. If T is finitely generated, then I can be taken to be finite. It follows, that Og(G)®! and thus RB’F
is (locally) of finite type over Og.
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2. If T is of finite presentation, then I and J can be taken to be finite. It follows, that Ogs(G)®! and
05(G)®7 are (locally) of finite presentation over Og. Thus RB’F is (locally) of finite presentation
over Og.

3. By the first step, Rg,r is of finite type over Og, in particular noetherian and of finite presentation.

O

4.1.5 Topologizing point sets

Since we work frequently with topologies on point sets of schemes, we want to discuss the general proce-
dure by which all these topologies we are interested in can be obtained. The method is due to Grothendieck
and we follow the exposition of [Conl2).

Proposition 4.12. Let A be a topological commutative ring. There is a unique way to define a topology
on X (A) for all affine A-schemes X of finite type at once, such that the following properties hold.

1. For every morphism f : X — Y of affine A-schemes of finite type, the map X(A) — Y (A) is
continuous.

2. For every cartesian diagram

the diagram of topological spaces

is cartesian.

3. For every closed immersion f : X — Y of affine A-schemes of finite type, the map X(4) — Y (A)
is a topological embedding, i.e. X(A) carries the subspace topology of Y (A).

4. The canonical bijection A — A'(A) is a homeomorphism.
Proof. |Conl2, Proposition 2.1]. O

For a finite type affine A-scheme X this topology can be characterized as the coarsest topology on X (A),
such that all morphisms of A-schemes X — Al induce a continuous map X (A4) — A. It can also be
defined by choosing an arbitrary closed immersion X — A™ and introducing the subspace topology on
X (A) with respect to the injection X (A) — A™, where A™ carries the product topology.

For every topological commutative A-algebra B, we have X(B) = Xp(B) and we take on X(B) the
topology on X (B). By choosing an embedding into an affine space, we see that the map X (By) — X (Bs)
is continuous for any two topological A-algebras By, Bs and continuous A-homomorphisms By — Bs.

For the proof of Proposition we will also need Proposition in the following situation: Let s be
a topological field and let A be a finite-dimensional local k-algebra with residue field k equipped with
the product topology induced by an isomorphism A = k™ of k-vector spaces. If X is an affine A-scheme
of finite type, the map X(A4) — X(k) is continuous. If we now take the preimage Z C X(A) of a
Zariski-closed subset Y (k) C X (k) for some closed A-subscheme Y C X, it is not clear how to identify
Z with the A-points of a closed A-subscheme of X, but we still want to describe the topology of Z in
a functorial way. This can be done by Weil restriction: The functor T +— X (A ®, T) is representable
by an affine x-scheme Res? X with (Resa/x X)(x) = X(A) and the projection X (A) — X (k) gives rise
to a morphism of k-schemes Res,/,, X — X,. We now obtain Z as the x-points of the scheme-theoretic
preimage of Y, in Resy /. X.
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4.1.6 Acyclic G-modules and good filtrations

Let O be a commutative ring. If V' is an O-module with a rational action of an affine O-group scheme
G and O’ is an arbitrary commutative O-algebra, then the natural map V¢ @0 O' — (V @0 0')%" is
not always an isomorphism. The entire purpose of this section is to establish conditions under which this
map is an isomorphism.

We recall the universal coefficient theorem for rational Ext groups.

Theorem 4.13. Let G be a flat affine group scheme over a Dedekind ring O and let @’ be a commutative
O-algebra. Then for each O-flat G-module N and each finitely generated projective G-module V', we
have a short exact sequence

0 = Ext$(V,N) ®0 0" — Extgy_, (V@0 O', N ®0 0') = Tor{ (Extg;H (V,N),0') = 0

of O@’-modules.

Proof. By [Jan03, 1.4.4 Lemma] and |Jan03, p. 1.4.2], there is a natural identification Extg(V, N) =
Ext&(O0,V* ®p N) = H"(G,V* ®o N) and similarly for the middle term. The claim follows from the
universal coefficient theorem |Jan03, 1.4.18 Proposition (a)]. O

Corollary 4.14. Let G be a flat affine group scheme over a Dedekind ring O, let V' be a G-module and
let O’ be a commutative O-algebra. Assume, that one of the following holds:

1. O is O-flat.
2. HY(G,V) = 0.

Then the natural map V¢ @0 O' — (V ®p 0')%0’ is an isomorphism.
Proof. By the universal coeflicient theorem Theorem there is a short exact sequence
00— O[G™¢ ®p O —— O'[G™)¢ —— Tor (HY(G,V),0') —= 0
Under both assumptions the claim follows. O

We say, that V is acyclic, if the rational cohomology groups H'(G, V) vanish for all i > 0.

If G is a Chevalley group over a principal ideal domain O with fiberwise maximal O-torus 7" and Borel
subgroup B, we define H%()) := Ind% X\ and V()) := H%(—woA)* for every dominant weight X (7). and
the longest element wq of the Weyl group.

Let V' be a G-module. An ascending filtration V' = (J;5, Vi of V' is good, if for all i > 0, Vi11/V; is
isomorphic to H°(\) for some A € X (7).

Lemma 4.15. Let G be a Chevalley group over a principal ideal domain O. Let V be a G-module with
good filtration. Then V is acyclic.

Proof. If V has finite rank over a PID O, we have H*(G, V) = Ext5(V(0),V) = 0 for all i > 0 by [Jan03,
B.9 Lemma (iii)]. If V is not of finite rank, we can choose a good filtration V' = (J,, V,, by G-submodules
of finite rank and calculate H*(G,V) =lim H'(G,V;) using [Jan03, p. 1.4.17]. O

Mathieu’s tensor product theorem states, that the tensor product of two modules with good filtration
over a connected reductive group over an algebraically closed field admits a good filtration. An integral
version of this theorem also holds and we give a proof here in lack of reference.

Theorem 4.16. Let G be a Chevalley group over a principal ideal domain O. Let M and N be G-modules
with good filtration. Then M ®p N is a G-module with good filtration.
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Proof. We first assume, that M and N are free of finite rank. Let m be a maximal ideal of O with residue
field k := O/m. By [Jan03, B.9 Lemma (i) = (iv)], My := M ®o k and N, := N ®¢ k are G-modules
with good filtration. Choose a split and fiberwise maximal O-torus T' C G and a Borel subgroup B C G
containing 7. By Theorem there is an isomorphism Ext%;N (V(N), M) @, F = ExtéK(V()\), Mz) for
all dominant weights A € X(T)., so the latter group is 0 by [Jan03, B.9 Lemma (iv) = (iii)] applied
to M. So by [Jan03, B.9 Lemma (iii) = (i)] M7 and Nz are Gz-modules with good filtration. By
Mathieu’s tensor product theorem [Mat90], which holds for connected reductive groups over algebraically
closed fields, see [Jan03, Proposition I1.4.21][Kal93, Theorem 4.4.3] Mz ®z Nz has a good filtration.

We now reverse the argument: By [Jan03, B.9 Lemma (i) = (iii)], we have Ext&(V()\), Mz @ Nx),
hence Extg(V ()\), M, ®, N,) for all dominant weights A € X(T)4. So by [Jan03, B.9 Lemma (iii) =
(i)] M,; ®, N,; has a good filtration. Since m is arbitrary, we can apply [Jan03, B.9 Lemma (iv) = (i)] to
conclude, that M ®» N is a G-module with good filtration.

Now let M and N be arbitrary with good filtrations M = J;Z, M; and N = [J;2, N;. Then M ®o N =
U, Uj M; ®0 N; by [Stal9, 00DD]|. By choosing a diagonal sequence, we can define a filtration of M ® o N
by good submodules. O

Proposition 4.17. Let G be a Chevalley group. Then for all m > 1, Z[G™] equipped with the action of
G by conjugation has a good filtration. In particular for every commutative ring O and every O-algebra
O', the canonical map O[G™]% ®p O' — O'[G™]¢ is an isomorphism.

Proof. In [Jan03| B.8] it is shown, that Z[G] has a good filtration. Here the action of G is defined by
(g- f)(h) := f(g~thg). By Mathieu’s tensor product theorem Theorem Z|G™] = Z[G]®™ has a
good filtration. This proves the first assertion. So H!(G, Z[G™]) = 0 by Lemma We calculate

O[Gm]G R0 O = (Z[Gm]G ®7, O) R0 O = Z[Gm}G ®7 O = O/[Gm]G

by applying twice Corollary O

Proposition 4.18. For all m,n > 1, Z[M]"] equipped with the action of G = GL,, (resp. G = SL,,) by
conjugation has a good filtration. In particular for every commutative ring O and every O-algebra O’,
the canonical map O[M™|¢ @0 O' — O'[M™]€ is an isomorphism.

Proof. Let Std be the standard representation of G. Since the M,, = Std ® Std* and Std is self-dual, we
have M* = Std®*™. By Theorem and the formula for symmetric powers of direct sums it is enough
to show, that Symd(Std) has a good filtration. But Symd’(Std) is a highest weight module, so we are
done. O

Proposition 4.19. Let O be a commutative ring with 2 € O* and let O’ be an O-algebra. Then for all
n > 0 the canonical map O[0F}, ]9+ ®p O’ — O'[0F;, ]2+ is an isomorphism.

Proof. We have Ogy, 11 = SOag,41 x{£1} over O, so we can explicitly compute:
0[0%;, 1]+t = 0[0F), ]3>+ = O[{£1}™] ®o O[SOf,, ,]° 2+

We have O[SO%!, ., 1]592+1 ®¢ k = k[SO%,, 113927+ by Proposition O

4.2 (G-valued pseudocharacters

Let O be a commutative ring and let G be a generalized reductive O-group scheme. By the datum of
G, the datum of O is given and we will drop O from notations. A G-pseudocharacter will be defined
depending on both the coefficient ring O and a commutative O-algebra A, which corresponds to the base
ring A in Section
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4.2.1 G-pseudocharacters

The definition of G-pseudocharacter we give is slightly more general than Lafforgue’s original definition
|[Laf18, §11], in that we work over arbitrary base rings O instead of O = Z. We will later be interested
in the case, that O is the ring of integers of a p-adic field.

We introduce a special notation for substitutions, which will be particularly important in Definition
and the proofs of Theorem [£.46] and Proposition [£.47}

Let FG(m) be the free group on m generators 1, ...,%m. Let a : FG(m) — FG(n) be a group homo-
morphism. Let I' be an arbitrary group. Then there is a unique map (—)4 : I'™ — '™, v — 7,, such
that the homomorphism f, : FG(n) — T, x; — ~; satisfies f,(a(z;)) = (7a); for all j € {1,...,m}. In
other words (—)4 is the induced map I' = Hom(FG(n),I') — Hom(FG(m),I') = I'™. More concretely
w; = a(x;) is a word in z; and xj_l for j = 1,...,n and « applied to a tuple (y1,...,7v,) € I'™ is the
tuple (d1,...,0,,) € I'™ with §; the word w; with x; substituted by ~; for j =1,...,n.

Similarly we obtain an induced map (=), : G® — G™. G®actson G™ by g-(g1,-- -, 9m) = (99197, - .., 9gmg™1).
This induces a rational action of G° on the affine coordinate ring O[G™] of G™. The submodule
O[G™|E° C O[G™)] is defined as the rational invariant module of the GC-representation O[G™]. It is an
O-subalgebra, since GV acts by O-linear automorphisms. The map (—), : G — G™ is G'-equivariant.
So there is an induced homomorphism between the algebras of rational invariants (—)* : O[G™]C" —
O[G"]%°. In the special case, that a is induced by a map of sets ¢ : {1,...,n} — {1,...,m}, such that
a(z;) = x¢@y, we also write y¢ := 7, for v € I'™ and fC = fofor f € O[Gm]GO.

Definition 4.20 (G-pseudocharacter). Let T' be a group and let A be a commutative O-algebra. A
G-pseudocharacter © of I' over A is a sequence of O-algebra maps

O 1 O[G™S" = Map(I™, A)
for each m > 1, satisfying the following conditions:
1. For all n,m > 1, each map ¢ : {1,...,m} = {1,...,n}, every f € (9[Gm]G0 and all v1,...,v, €T,
we have
Gn(f<)(717 ey Yn) = @m(f)(%(l), cee ﬁc(m))
where fS(g1,...,0n) = F(ge@ys - 9cm))-

2. For all m > 1, for all 1,...,vm+1 € ' and every f € C’)[Gm]GO, we have

A

Om+1()(V15 -+ s Ym41) = Om(F) (V15 -+, YmYmt1)
where f(g1,.. ., gm+1) = f(g1.- - GmGm+1)-

We denote the set of G-pseudocharacters of I' over A by PCg (A). If f: A — B is a homomorphism of
O-algebras, then there is an induced map f, : PCL(A) — PCG(B). For © € PCL(A), the image f,0 is
called the scalar extension of © and also denoted with © ® 4 B. This notion of scalar extension shall not
be confused with change of the base ring O of G, which will be discussed in Proposition [£:48 and comes
with some subtleties.

If « : G — H is a homomorphism of affine O-group schemes, we define an H-pseudocharacter +(©) by
letting +(©),, be the composition of ©,, with the induced map O[H™H" — O[G™])¢".

In [BHKT) Def. 4.1] a G-pseudocharacter is defined only for Chevalley groups over Z. Some of our proofs
do not need this strong assumption.

Every G-valued representation gives rise to a G-pseudocharacter:

Lemma 4.21. Let T be a group, let A be a commutative O-algebra and let p : T' — G(A) be a
homomorphism. Then the sequence of maps O,, : (’)[Gm]GO — Map(I'™, A) defined by

Om ()15 vm) = f(p(71)s -+ -5 p(Ym))

is a G-pseudocharacter © = (0,,)m>1, which depends only on p up to G(A)-conjugation. We write
©, := 0. In particular the map

Hom(T, G(A))/G°(A) — PCL(A)
pr 6,
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is well-defined, where G°(A) acts by pointwise conjugation.

Proof. Compare |BHKT) p. 4.3]. Let y1,...,yn €T and ¢: {1,...,m} = {1,...,n} and f € (’)[Gm]GO

On(f)(0,- - m) = S (p(n), -5 p(Vn))
f(ﬂ(%(l)) s P(Ve(m)))
@m(f)( ...,’Yg(m))

=Om(f)° (71,---,%)

The second property can be checked by a similar calculation. For g € G(A) and f € (Q[G"]GU7 we have

flap(n)g™, . ogp(m)g™") = flp(n). -, ()

since f is invariant under conjugation. O

With Lemma in mind, we give an intuitive explanation of this technical definition: A G-pseudocharacter
O, that comes from a representation, remembers for every m > 0 for every conjugation invariant regu-
lar function on G™ its values on I'", when applied to the representation. Since the coefficients of the
characteristic polynomials of a GL4-representation are conjugation-invariant, © remembers all their val-
ues and therefore at least the information about the representation, that is carried by the characteristic
polynomials.

Lemma 4.22.

(1) For h: A — A’ the map PC&A — PCEVA,, © — h.0 = (hoB,)y>1 is well-defined.

(2) For ¢ : A — T the map PCE,A — PCéA, © — ¢*0 = (0, 0 ¢),,>1 is well-defined.

(3) If N < T is a normal subgroup, then 7* PCE/X — PCG 4 Is an injection, that identifies PCF/N

with the set of pseudocharacters, that take values in Map((F J/N)™, A).

Proof. The proof of [BHKT)}, Lem. 4.4] carries over verbatim. O

Proposition 4.23. Let p: T' — G(k) be a representation over an algebraically closed field k& and let p**
be some G-semisimplification of p. Then ©, = 0, in PCg (k).

Proof. Suppose P is minimal and contains p(T"), suppose L is an R-Levi of P and let A be a cochar-
acter, such that P = Py and L = Ly. Let us write p** = ¢y o p = lim; 0 A(¢)pA(¢)~!. The G-
pseudocharacter ©,, , attached to p satisfies by definition ©, m (f) (71, .., vm) = f(p(11),- .., p(ym)) for
all m > 1 and p* satisfies a similar formula. Since f is G-invariant, the morphism G,, — Al,t —
f()\(t)p(*yl)/\(t)_l,... A p(ym)A(t) L) is constant and equal to f(p(71),...,p(Ym)). Since the limit
lim; 0 A(t)pA(t) ! exists and f is algebraic with separated target A®, this is equal to f(p*(71), ..., p*(Vm))
and ©, = O follows. O

Theorem 4.24. Let I' be a group. Assume that one of the following holds:

1. G is a Chevalley group over Z and k is an algebraically closed field.

2. G is a group scheme over a domain O of characteristic 0 and k is a field, which contains O, such
that Gy, is reductive.

Let © € PCL(k). Then there is a finite extension k'/k and a G-completely reducible representation
p: T — G(K') with ©, = © and p is unique up to G°(k)-conjugacy.

Proof. The first case is [BHKT, Theorem 4.5]; we can use Proposition to identify the k-points of
G™ / G with the k-points of G} / Gj. Alternatively we can use [Ses77, Theorem 3]. The second case is
|[Laf18| Proposition 11.7]. O

Remark 4.25. Theorem is still true for G/G° # 1 in positive characteristic and can be proved
using [Ses77, Theorem 3]. The proof is omitted, as it is not needed for the cases we will consider here.
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4.2.2 The kernel of a G-pseudocharacter

We will need kernels of G-pseudocharacters in the proof of Lemma [7.6]

Definition 4.26 (Kernel). Let © € PCL(A) be an arbitrary G-pseudocharacter as in Definition m
We define the kernel ker(©) of © as the set of § € T, such that for all m > 1, all f € O[G™]S" and all
Y1, ---5Ym €', we have

O ()15 7m0) = Om(F) (71, -5 ym)-
Lemma 4.27. ker(0) in Definition is a normal subgroup of I'.

Proof. Tt is clear, that ker(©) is a subgroup of I'. Let ¢ € ker(©), h € T and ~v1,...,7m € T for some
m > 1. Then

O )y s 1mhh™Y) = Opst (N (1, -+ s Yohd, h )
= Ot (Hn, - b, )

so héh™! € ker(0). O

It is easy to check, that if § € ker(©), then

Gm(f)(’ylv oo 7’72'71771'5) Yit+1s .- 77m) - @m(f)(’yh CIaE 7’Ym)
for every i =1,...,m.

We will use this to prove the following homomorphisms theorem. It will also be important in the proof
of Lemma

Lemma 4.28. Let © € PCL(A) be an arbitrary G-pseudocharacter as in Definition let AT
be a normal subgroup and assume, that A C ker(©). Then there is a unique G-pseudocharacter ©’ €

PCE/A (A), such that © is the restriction of © to I'.

Proof. Uniqueness is clear, since I' — T'/A is surjective and hence the maps Map((I'/A)™, A) —
Map(I'™, A) are injective for all m > 1. We can define 0 as

@;n(f)(’ylAv o a'YmA) = @m(f)(717 cee ,%n)

for all m > 1, all f € O[G™]%" and all y1,...,7m, € I'. This is well-defined, since A C ker(©). The
axioms of a pseudocharacter are easily verified. O

Lemma 4.29. Let p : I' — G(A) be a representation with associated G-pseudocharacter ©. Then
ker(p) C ker(O).

Proof. We can define p on T'/ ker(p). The associated G-pseudocharacter of I'/ ker(p) can be inflated to T
and this turns out to be ©. O

The converse inclusion is false in general! Here is an example.

Example 4.30. Let p : Z — GL3(C) be defined by p(a) := (; 1). Then ©, is the pseudocharacter of the
trivial representation. Hence ker(p) = 1, but ker(0,) = Z.

Equality holds, when p is G-completely reducible.

Proposition 4.31. Let G be a reductive group over a field k£ and suppose that one of the assumptions
in Theorem holds. Let I" be a group and let p : I' — G(k) be an absolutely G-completely reducible
representation with associated G-pseudocharacter ©. Then ker(p) = ker(©).

Proof. By Lemma O factors over a G-pseudocharacter ©' of '/ ker(©). By Theorem there
is a G-completely reducible representation p’ : I'/ ker(©) — G(k) with ©' ®; k = ©,. The inflation
p": T — G(k) of p’ to T is still G-completely reducible and conjugate to p ®x k by an element of G(k).
Hence ker(0) C ker(p”) = ker(p ®4 k) = ker(p). The converse inclusion is Lemma O
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4.2.3 Direct sum, dual and tensor product

Recall from Section [£:2] that a homomorphism of affine O-group schemes G — H gives rise to a natural
transformation PCg — PCE. This provides us with an astonishingly easy way to define natural opera-
tions on pseudocharacters, such as direct sums, duals and tensor products. Defining such operations for
determinant laws is more involved; see e.g. [Wanl3| §1.1.11] for a direct sum operation and [BJ19, §4.5]
for twisting with a character. It is clear by construction, that these operations will be compatible with
the corresponding operations on representations.

Suppose © € PCEL ,(A). Then we can define the dual ©* by composing with the transpose inverse map
GLd — GLd

Assume, that O is a PID. Suppose © € PCgLa (A) and ©' € PCng (A) with A € CAlgy, and a+b =
n. We will define the direct sum © @ O € PCEL" (A). For m > 1, we obtain a map ©,, ® ©/ :
O[GLY'|CY ®p O[GL;" %L — Map(T'™, A). It turns out, that since O is a PID and by Theorem |4.13} we
have O[GL!"]|%" ®» O[GL}"|%" = O[(GL, x GL;)™]%k X GLo - The diagonal embedding GL, x GLj —
GL,, induces a map O[GL"|%t» — O[(GL, x GLy)™]|%%e X G and we define (©©0’),,, as the composition
of this map with ©,, ® ©/,. The compatibility conditions (1) and (2) in Definition can be verified
directly, but the alternative description of pseudocharacters Corollary in the next section provides
us with an easier way to see, that © @ O’ is indeed a pseudocharacter.

As for the direct sum, the tensor product © ® ©’ is induced by the dyadic product map GLg4, x GLg4, —
GLyg, 4, after choice of a bijection {1,...,d1} x {1,...,d2} = {1,...,d1d>} as in Section

Proposition 4.32. The direct sum of Lafforgue’s pseudocharacters is compatible with the direct sum of
Taylor’s pseudocharacters: Let T' be a group, A a commutative ring and dy,ds > 0 with (dy +d3)! € A*.
Then the diagram

PChy,, (4) x PCGy, (A) PCqr,,,, (4)

\Ltrxtr J{tr

TPCY, (A) x TPCy, (A) TPCY, 4, (A)

commutes. Here the top arrow is the direct sum constructed in Section the bottom arrow is the
direct sum of Definition 2:38] and the vertical arrows are given by the comparison map Proposition [£:59

Proof. By definition of the comparison map Proposition [£.59] it is enough to show, that the map
Z[GLd1+d2]GLdl+d2 - Z[GLdl]GLdl ® Z[GLdl}GLdl

induced by the direct sum GLg, x GLg, = GLg, 4, maps tr(X) to tr(X;)+tr(Xs), where X € GLg, 4, (Z|GL4, 4,])
and X; € GLg4, (Z|GL4,] ® Z|GL4,]) are the generic matrix coordinates. This is clear by definition. [

Proposition 4.33. The dual of Lafforgue’s pseudocharacters is compatible with the dual of Taylor’s
pseudocharacters: Let I' be a group, A a commutative ring and d > 0 with d! € A*. Then the diagram

PCEr, (4) ———PCgy,(4)
\Ltr X tr ltr
TPCL(A) —— > TPCL(A)

commutes. Here the top arrow is the dual constructed in Section {:2.3] the bottom arrow is the dual
constructed in Section 2121

Proof. The claim follows, since the map Z[GL4]%t — Z[GL4]%Y induced by the transpose inverse
GLg — GLg maps tr(X) to tr(X—1). O

Proposition 4.34. The tensor product of Lafforgue’s pseudocharacters is compatible with the tensor
product of Taylor’s pseudocharacters: Let I" be a group, A a commutative ring and dy,ds > 0 with
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(d1dz)! € A*. Then the diagram

PCGy,, (4) x PCqy, (4) PCGr,,,, (4)

\Ltrxtr J{tr

TPCy, (4) x TPCy, (A4) TPCq,q,(4)

commutes. Here the top arrow is the tensor product constructed in Section [£.2.3] the bottom arrow is
the tensor product constructed in Section 2:13]

Proof. Tt is enough to show, that the map Z[GLg, 4,]F4142 — Z[GLg,|Y1 ® Z[GLg4, %% induced by
the tensor product GLg, x GLg, = GLg, 4, maps tr(X) to tr(X;) tr(Xz). This follows from Lemma
since tr(X) is mapped to tr(X; ® X3) = tr(Xy) tr(Xs). O

We shall also need the notion of direct sum of two symplectic pseudocharacters, induced by the natural
map Spy, X SPgp — SPag, for a + b = n, which corresponds to the orthogonal direct sum of symplectic
spaces. The procedure for the construction of this direct sum operation is the same as for the general
linear group, explained above.

There is also a natural map GL,, = Sp,,, induced by mapping a representation V' to V @& V* equipped
with the symplectic form, which makes V' and V* totally isotropic subspaces, is the canonical pairing
on V x V* and the negative of the canonical pairing on V* x V. Even though the map GL,, — Sp,,
is not uniquely determined by this description, it is well-defined on conjugacy classes of representations
and well-defined on pseudocharacters.

4.2.4 Continuous G-pseudocharacters

We will also need the notion of a continuous G-pseudocharacter. Assume, that G is an affine group
scheme over a commutative ring O.

Definition 4.35 (Continuous G-pseudocharacter). Let I’ be a topological group and let A be a com-
mutative topological O-algebra. A G-pseudocharacter © € PC}; (A) is continuous, if O, takes values in
the subset C(I'™, A) € Map(I'"™, A) of continuous maps for all m > 1. We write cPCg (A) for the set of
continuous G-valued pseudocharacters over A.

It is straightforward to verify, that if G is of finite type over O and p : I' — G(A) is a continuous
homomorphism with G(A) topologized as in Proposition then ©, is a continuous G-pseudocharacter.

4.3 (C-0O-algebras

It turns out to be useful to rephrase the definition of G-pseudocharacters in terms of functors on a category
C with values in O-algebras, which we decided to call ’C-O-algebras’. Instances of C-O-algebras appear
in [Wei20] under the names FI-, FFM- and FFG-algebra. We develop the basic theory of C-O-algebras
and use them to prove existence and basic properties of a fine moduli scheme of G-pseudocharacters.

4.3.1 Generalities
Definition 4.36 (C-O-algebra). Let O be a commutative ring and let C be a small category.

1. A C-O-algebra is a functor

A® . C — CAlg,
cr— A€

into the category of commutative O-algebras CAlg,,.

2. A C-O-homomorphism between C-O-algebras is a natural transformation f®: A®* — B°.
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3. Let CAIg% be the category of C-O-algebras together with C-O-homomorphisms.

4. A C-O-subalgebra of a C-O-algebra A® is a subfunctor B®* C A®, such that B¢ is an O-subalgebra
of A¢ for all objects ¢ of C.

5. A C-O-ideal is a subfunctor I®* C A®, such that I¢ is an ideal of A€ for all objects ¢ of C.

6. A C-O-homomorphism f* : A* — B*® is injective (surjective, bijective) if f€ is injective (surjective,
bijective) for all objects ¢ of C.

7. The kernel ker(f)® of a C-O-homomorphism f® : A®* — B* is defined by ker(f)¢ := ker(f¢). It is a
C-O-ideal of A°®.

8. The image im(f)* of a C-O-homomorphism f® : A* — B*® is defined by im(f)¢ := im(f°). It is a
C-O-subalgebra of B®.

C-O-algebras are just commutative O-algebra objects internal to the topos of C-sets, i.e. functors C — Set,
and all definitions in Definition [£.36 are valid in this generality.

In universal algebra free algebraic structures can be defined on an arbitrary generating set. Analogously a
free C-O-algebra is generated by a C-set. This defines a left adjoint to the forgetful functor CAlg% — SetC.
The forgetful functor Set® — SetOP(©) also admits a left adjoint. Here the set of objects Ob(C) of C is
regarded as a discrete category and an SetOP(© is the same as a family of sets indexed by Ob(C). Since

we are only interested in free C-O-algebras on an SetOb(C), we define the composition of these two left
adjoints directly.

Lemma 4.37 (Free commutative C-O-algebra). Let O be a commutative ring, C a small category and
T* an Ob(C)-set. Then there is a C-O-algebra F'® together with a map of Ob(C)-sets ¢ : T* — F*, that
satisfies the following universal property:

For every map of Ob(C)-sets f : T* — R*® to a C-O-algebra R®, there is a unique homomorphism of
C-O-algebras f : F* — R®, such that fo.= f. We call the pair (F'*,:) the free C-O-algebra on T*. It is
unique up to unique isomorphism.

Proof. Let x € Ob(C). We define F* to be the free commutative O-algebra generated by the set

| I

y€C a€Home (y,z)

For o : y — = we denote the generator of F'* associated to t € TY by *t. Define 1* : T% — F* t v idot
to be the inclusion of T* into the summand associated to id,. Define for every morphism « : x — y of
C an O-homomorphism a, : T% — TY, At s *Bt. Now let f : T* — R® be a map of Ob(C)-sets. We
define for all € C an O-algebra homomorphism f* : F* — R*, Bt — B,(f¥(t)), where B :y — z is a
morphism of C and t € TY C FY. One easily checks f o: = f and this equation forces uniqueness of f.
By the standard argument (F'*,¢) is unique up to unique isomorphism. O

4.3.2 (G-pseudocharacters as F-O-algebra homomorphisms
From now on, we will consider two different small categories for C.

1. Let M be the category of free monoids FM(m) on m generators for all m > 1.

2. Let F be the category of free groups FG(m) on m generators for all m > 1.

A monoid homomorphism between finitely generated free monoids can be understood as a finite sequence
of words. Such a sequence also defines a homomorphism between free groups and so we get a canonical
functor

M= F
In particular every F-QO-algebra can be restricted to an M-O-algebra.

Example 4.38. Here are the two examples of F-Q-algebras we are interested in.
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1. If A is an O-algebra, then the functor

F — CAlgpy,
FG(m) — Map(I'™, A)

where a : FG(n) — FG(m) is mapped to
. : Map(I'™, A) — Map(I'™, A)
where . (f)(y1, -+, Ym) = f(Pla(z1)),. .., d(a(zy))), where ¢ : FG(m) — T, z; — ~;, defines an
F-O-algebra Map(I'®, A).
2. Similarly

F — CAlgy
FG(m) — 0[G™]S"

defines an F-O-algebra: Every homomorphism « : FG(n) — FG(m) induces a morphism of O-
schemes G™ — G™, which in turn induces the desired map a, : O[G"]9" — O]G™]C". Note, that
since G™ — G" is induced by a homomorphism of free groups it is equivariant with respect to
diagonal conjugation and hence «, is well-defined. We will denote this F-O-algebra by O[G'}GD.

By definition a G-pseudocharacter © is a sequence of maps O, : (O[G’”]G0 — Map(I'™, A), that behaves
natural with respect to two specified types of monoid homomorphisms. Our next goal is to under-
stand, that these types of monoid homomorphisms do already generate all morphisms in M and make
O¢ = (01)m>0 an M-O-homomorphism. We start with generalities on generating sets of morphisms in
categories.

Definition 4.39. Let C be a category and S a system of morphisms S4 p C Homc(A, B) for all pairs of
objects A, B. Let S be another such system of morphisms.

1. S generates S, if S is the smallest system of morphisms, that contains S, all identities and for any
two composable morphisms aq, as € S their composition as o a;.

2. S inv-generates S, if S is the smallest system of morphisms, that contains S, all identities, for any

two composable morphisms oy, as € S their composition s o oy and for each invertible morphism

a € S its inverse a1,

Remark 4.40. A system of morphisms S always (inv-)generates a unique system of morphisms, since the
conditions in Definition are closed under arbitrary intersections. If S generates S, then S consists
of compositions of morphisms of S and identities. If S inv-generates S, then S consists of iterated
compositions and inversions of morphisms of S that are invertible in C and identities.

Tt is enough to check naturality on (inv-)generating systems of morphisms.

Lemma 4.41. Let C be a category and S a generating system of the morphisms of C. Let D be another
category, F,G : C — D functors and © : F — G an infranatural transformation, i.e. a collection of
morphisms Ox : FX — GX for each object X of C. Further assume, that © is natural for morphisms of
a € 8, ie. for all « € S the diagram

FX 2% 6x

e e

FY -2, Gy

commutes. Then O is a natural transformation. The same is true if S is an inv-generating system.
Proof. Follows easily from Remark [£.40] and structural induction. O

We now determine generating sets of morphisms for M and F.
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Lemma 4.42. The morphisms of M are generated by the following two types of homomorphisms:

(1) ¢:FM(n) — FM(m), where ¢(z;) := x(;) for each map ¢ : {1,...,n} — {1,...,m}.
(2) ¢ : FM(n) = FM(n + 1) where ¢(z;) := z; for all i <n and ¢(xy,) 1= TnTpt1.

The morphisms of F are generated by homomorphisms of types (1) and (2) with FM replaced by FG and
a third type of homomorphism:
(3) ¢:FG(n) — FG(n) where ¢(x;) := z; for all i <n and ¢(z,) := z,, .

Proof. This is [Wei20, Lem. 2.1]. Let ¢ : FM(n) — FM(m) be a homomorphism with ¢(z;) =
Tk, - .- Ty, - We may write it as a tuple

(.’L‘ku . .Z'klll g e e "Tknl - xknln)

Tt is a composition of homomorphisms of type (2) and the homomorphism given by
(xkll s Tk Thinnyr o Thinony, g s Thnas - - 7xknln)
Tterated application of permutations of type (1) and homomorphisms of type (2) reduces us to

(Teyse -y Te,)

where z,, ..., %, is the condensed sequence of letters xy,,,...,zg,, for all 7. This is already a homo-
morphism of type (1).

For a homomorphism ® : FG(n) — FG(m) one analogously reduces using types (1) and (2) to a sequence

+1 +1
e xg)

(x
Application of permutations and homomorphisms of type (3) reduces us to (x.,,...,Z,). O

Proposoition 4.43. We have a canonical bijection between the set of M-O-algebra homomorphisms
O[G*]¢" — Map(I'*, A) and the set PCg(A) of G-pseudocharacters of I' with values in A.

Proof. We start with a G-pseudocharacter (0,,),>1 and define an association © : 0[G*]¢" = Map(T'®, A)
by setting (:)FM(m) := 0,,. By definition of © we know, that © is natural with respect to morphisms
FM(n) — FM(m) of type (1) and morphisms FM(n) — FM(n + 1) of type (2). By Lemma and
Lemma this implies naturality. Conversely, given a morphism © of M-O-algebras, the associated
sequence of algebra maps ©,, := Opyy(y,) satisfies the required properties by naturality. O

Clearly the morphisms of F are not generated by homomorphisms of type (1) and (2) with FM replaced
by FG: Homomorphisms of type (1) and (2) have the property, that the image of the generators x;
lies in the submonoid spanned by generators. This property is stable under compositions and hence
the homomorphism FG(1) — FG(1), z; — ;' is not a composition of type (1) or (2) homomorphisms.
Fortunately by Lemma[4.41] we only need, that the morphisms of F are inv-generated by homomorphisms
of type (1) and (2) to prove, that any pseudocharacter gives rise to an F-O-algebra homomorphism.

Lemma 4.44. The morphisms of F are inv-generated by homomorphisms of type (1) and (2) in
Lemma [£.42] with FM replaced by FG.

Proof. By Remark and Lemma it suffices to show, that homomorphisms of type (3) can be writ-
ten as iterated compositions and inversions of homomorphisms of type (1) and (2). Since by Lemma [4.42]
M is generated by monoid homomorphisms of types (1) and (2), we already know, that all group ho-
momorphisms FG(n) — FG(m), that are induced by monoid homomorphisms FM(n) — FM(m) are
generated by group homomorphisms of type (1) and (2).

Let ¢ : FG(n) — FG(n) be of type (3). We will use tuple notation for homomorphisms, so ¢ =
(p(z1),...,9(xn)) = (x1,.. ., Tn_1,7, ). We first give the proof for n = 2 and x1 = z,72 = y:

1

(z,y™ ") = (zy~ " y) o (zy,x) 0 (x, 27 y)
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1

Since (zy~1,y) = (vy,y) "' and (z,27'y) = (z,2y)~! we have shown, that ¢ is inv-generated by homo-

a
morphisms of type (1 ) and (2). This argument works analogously for n > 2. For n = 1 we consider the
homomorphisms (y ) FG(1) — FG(2), z — y and (1,2) : FG(2) —» FG(1), © — 1, y — z and write
(

(@7 = (Lz)o (z,y7) o (y). O

Corollary 4.45. The maps

Hom 2 (O[G*]”, Map(I'*, 4)) — PCG(A)
O (Gm)m21

and

Homg, g7 (O[G*]%", (I, A)) = cPCG(A)
O — (@m)mzl

are bijections.

Proof. The proof of Proposition [£.43] carries over. O

4.3.3 Representability of PCE;

Theorem 4.46 (Representability of PCE;). Let I" be a group and let G be a generalized reductive O-group
scheme. The functor PC, : CAlge,, — Set is representable by a commutative O-algebra BY,. There is a
universal G-pseudocharacter ©% € PCg(BIE;), ie. forallm e N, p € O[G™%, v = (71,.-,%m) € I™,
for every A € CAlg, and every © € PCg(A), the associated homomorphism fo : B — A satisfies
fe (03, (1)(7)) = ©m (1) (7). As an O-algebra B, is generated by {O}, (1)(v) | u € O[G™]F, v € T™}.

In the proof, we only need that G is affine.

Proof. Let F := Ot | meN, ue€ OG™Y, v €TI'™] be the free commutative O-algebra generated by
the letters 7, -, for all m € N, u € O[G™]¢ and T"™. For all A € CAlg, and all © € PCg(A), there is an
O-linear map 7jo : F — A, 1, — O,,(11)(7). Let a C F be the intersection of ker(jg) for all A € CAlg,,
and all © € PC(A). Define BY, := F/a.

From now on, we let ng : B — A be no(z + a) := flo(x) and ¢, := t,, + a € B;. In particular
We(tum/) = em(ﬂ) (’Y)

For every A € CAlge, we have a map H4 : PCG(A) — Homp(BE, A), © — 1o and these are natural in
A. We define the universal pseudocharacter O : O[G*]¢° — C(T*, BL) by O% (p) : T™ — B, v =ty

We check property (1) in the definition of pseudocharacter for ©*, property (2) is similar. Let u € O[G™]¢
and let ¢ : {1,...,n} = {1,...,m} be some map. Then ©%(u)(7) = t,c ., and O% (1)(7¢) =ty . Here
we write 7¢ = (Y¢(1) -+ -5 Ve(n))- We claim, that ¢,c =1, . . Indeed for every pseudocharacter O, we
have 7o (£, ) = On (1) (7) = Om (1) (v¢) = Tl (funqe)- S0 e o — tuq € ker(ijo) and the claim follows
by definition of a.

We see, that for any pseudocharacter ©, we have © = 1g,0" and for every h € Homp (Bg7 A), we have
Nh, 0w = h, so universality of ©" and bijectivity of the transformation H follows. O

At this point, we would like to give also a purely categorical proof of Theorem [£.46] which is already
inherent in [Zhu20, Remark 2.2.5]. To us the derived perspective is not relevant.

Categorical proof. We use the description of pseudocharacters as F-O-algebra homomorphisms according
to Corollary We denote by F/T' the slice category of objects of F with a fixed homomorphism to
I'. Let
BL := colim O[Gm]GO
FG(m)eF/T
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be the colimit in the category of commutative O-algebras indexed over the small category F/I". Then

Homcalg,, (Bg, A) = FG(}grel}_/F Homcalg,, ((’)[Gm]GO, A)

= HOmCAlgg/r(O[G']G JA)

= Homg .z (O[G*]%", Map(I™*, A))

for every A € CAlgy, where in the second line A is understood as the constant functor on F/I'. In
the last line, we compute the right Kan extension of A : F/T' — CAlg,, along the canonical restriction
p: F/T' = F as

(Ran, A)(FG(m)) = eé“ﬁglirzgi];& )) A(FG(n), f)= Tl Map(FG(n)", 4) = Map(I"™, A)

using the description of Kan extensions as weighted limits. O

From the categorical proof of Theorem it is also clear, that B is finitely generated if I' and all
(Q[G’”]G0 are finitely generated. We again give an elementary and a categorical proof.

Proposition 4.47. Let I' be a finitely generated group, let O be a commutative ring, which is of finite
type over a universally Japanese ring and let G be a generalized reductive O-group scheme. Then Bg is
a finitely generated O-algebra.

Proof. Let r be a number of generators of I'. We know from [Ses77, Theorem 2 (i)], that O[G"]¢"
is a finitely generated O-algebra. Let k& be a number of O-algebra generators of O[GT]GO. Let s =

(s1,-..,8-) € I'" be generators of I" and let fi,..., fr be generators of O[GT]GO. With notation as in
Theorem we claim, that {ts, s | i € {1,...,k}} is a system of generators of Bf,. By Theorem M
BL, is generated by the elements ¢, for all m > 1, all u € (’)[Gm]GO and all v € I'". These elements
satisfy functoriality properties similar to that of pseudocharacters with respect to the category F, as
explained in the proof of Theorem@ Let us fix such an element ¢, . Every element vy, ...,y can be
written as a product of elements sy, ..., s, and such a presentation determines a homomorphism of free
groups « : FG(m) — FG(r), such that the composition with the projection FG(r) — T, z; — s; maps
x; to ;. We have v = 54, so t, 4 = t,s, = tue~s. By uniqueness and the defining property, we see, that
ts: o[Gne - BL is a homomorphism and it follows, that ¢, s is a product of elements ¢y, . O

Categorical proof. We use the description of Bg as a colimit as in the categorical proof of Theorem m
If T is finitely generated, then F/I" contains a surjection 7 : FG(m) — I'. For every FG(n) € F every
homomorphism f : FG(n) — T" factors over 7, so the associated map f : O[G”]GO — BE factors over
the map m, : (O[G’"“]G0 — BE associated to w, which implies, that 7. is surjective. So it suffices, that
O[G™|’ is finitely generated. It follows from [Ses77, Theorem 2 (i)], that O[G™]¢” is a finitely generated
O-algebra. O

Proposition 4.48. Let O — O’ be a ring homomorphism, let T" be a group, let G be a generalized
reductive O-group scheme and assume that one of the following holds.

1. O is O-flat.
2. G is a Chevalley group.
3. G=02,41 and 2 € O*.

Then for any (O’-algebra A, there is a canonical bijection
PCg,, (4) = PCq(A) ()

induced by a canonical isomorphism O[G*]¢” ®@p O’ — O'[G*]C" of F-O'-algebras. Moreover, there is a
canonical isomorphism Bf, ®o O’ = Bg@/ of O’-algebras.

53



Proof. By Corollary it is enough to show, that O[G™]%° ®p O' = O'[G™]" for all m > 1. In the
three cases this follows from Corollary Proposition [.17] and Proposition [£.19 respectively.

We now prove that Bg Rp O = Bgow We apply Theorem twice and the first assertion once: Let
A be an O'-algebra.

116 4,40
Homer (B, A) 228 PCL,_ (4) = PCE(A) =¥ Homo (B, A) = Homo: (B @0 O, A)
The claim follows by Yoneda. O

4.4 Characteristic polynomials

Definition 4.49. Let A be a commutative ring and let © € PCgy, ,(A). Then we define the characteristic

polynomial of © by
d

XO(y 1) =Y _(=1)'Ou(si) (" € Alf]

i=0
where s; € Z|GL4)%L4 are the unique invariant regular functions, which satisfy

d

det(t — X) = Z(—l)isi(X)td_i

=0

in Z[GLg][t]%%¢, where X is the generic matrix coordinate in GLg(Z[GL4]) which corresponds to the
identity under the Yoneda isomorphism.

Proposition 4.50. Let A be a commutative ring. Then the map
PCor,(4) = Map(T, Alt]), € x°
is injective.

Proof. It suffices to show, that a GL4-pseudocharacter © is determined by the values ©1(s;) for 1 <i <d.
By Corollary these are generators of the F-Z-algebra Z[GL$]%", so the claim follows. O

4.5 Composition with homomorphisms

Lemma 4.51. Let p : G — H be an homomorphism of generalized reductive O-group schemes. Then
for n > 0, the map

p*: O[H™] = O[G"], f(h1,...,hn) = f(p(h1),...,p(hy))
restricts to an is an O-algebra homomorphism
p* O™ = O[GME,  f(hns. . ha) = [(p(ha)s -, plha))
Together these maps define an F-0O-algebra homomorphism O[H*]7 — O[G*]€.

Proof. For each n > 0, the map p* : O[H"] — O[G"] is just by definition an O-algebra homomorphism.
Let f € O[H"]# and g € G. Then

(P*Nggrg™" - 9909~ ") = F(p(9)p(g1)p(9) ", -, p(9)p(gn)p(9) ")
= .f(p(gl)a ceey p(gn))
= (P f)(g1:---+9n)

and thus p* f € O[G™]. We have to check functoriality on inv-generators of F according to Lemma m
Let ¢: {1,...,m} = {1,...,n} by any map. Then

PH(F) g1, 9n) = (1), -, p(gn))
= f(p(9c1))s- -5 P(9¢n)))
= f(p(g1)s- -5 p(gn))°
= (0" f)(g1,--- 1 9n)
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Now assume p is a homomorphism. Then

p(g1)s -5 p(gnt1))

p(g1)s- - P(gn)p(gn+1))
(91)s- s p(GnGn+1))

"9 InGni1)

*f(glv oo 7gn+1)

p*f(gh v agn-‘rl)

|
g Kh)

[
~

(
(
(
p

I
b —

O

Lemma 4.52. Let I' be a group and let © € PCE(A). If p: G — H is a homomorphism of generalized
reductive O-group schemes, then the collection p*© := (p*©,,),>1 is a pseudocharacter p*@ € PCl(A).

Proof. According to Corollary |4.45( © is equivalently an F-O-algebra homomorphlsm o : 0[G*“
Map(T'*, 4). By Lemma |4.51} “ p* deﬁnes an F-O-algebra homomorphism O[H®*]# — O[G*]¢. The claun
follows from composability in the category of F-(O-algebras, which is just a functor category. O

4.6 The reconstruction theorem

I would like to thank Vytautas Paskunas for helpful conversation leading to the proof of the following
general reconstruction theorem. A variant is used in upcoming joint work with Paskunas.

Lemma 4.53. Let G be a reductive group over an algebraically closed field k. Let g = (g1,...,9n) €
G"(k) and let H be the smallest Zariski closed subgroup of G(k), containing {g1,...,gn}. The following
are equivalent:

1. The G°(k)-orbit of g is closed.
2. The G(k)-orbit of g is closed.
3. H is strongly reductive in G.

4. H is G-completely reducible.

Proof. Let x1,...,z, € G(k) be coset representatives of G(k)/G°(k). So

(k)-g= U GOk) - @i = U zi - (G(k) - g)

If GO(k) - g is closed, then all z; - (G°(k) - g) are images of G°(k) - g under multiplication with z; and
therefore also closed. It follows, that (1) implies (2). If G(k) - g is closed, then it contains a closed
G°(k)-orbit, which is necessarily of the form G°(k)-z;g. But then again G°(k)- g is closed, so (2) implies
(1). The equivalence of (2) and (3) is [Ric88, Theorem 16.4]. The equivalence of (3) and (4) is [BMRO5,
Theorem 3.1]. O

Lemma 4.54. Let G be a generalized reductive group scheme over a noetherian commutative ring O.
Let k be an algebraically closed field over @. Then there is a bijection between the following sets induced

by 7 : G"(k) — (G™ ) G°)(k).

L (G™ ) G)(k)

2. G°(k)-conjugacy classes of tuples (gi,...,g,) € G"(k), such that the smallest Zariski closed sub-
group of G(k) that contains {g1,...,gn} is G-completely reducible.

Proof. Recall from Section that GO is a reductive group scheme. By [Ses77, Theorem 3], the map
7 G"(k) — (G" J GO)(k) is surjective. By [BHKT, Proposition 3.2] for each z € (G™ J/ G°)(k), the fiber
7~1(x) contains a unique closed G°(k)-orbit. The claim follows from Lemma O
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Lemma 4.55. Let I' C G(k) be a subgroup, where G is a reductive group over an algebraically closed
field k. Let P and P’ be R-parabolic subgroups of G minimal among those which contain I'. Then
dim P = dim P’ and |7o(P)| = |mo(P")|.

Proof. By Lemma P and P’ contain a common R-Levi L. We have dim P = (dimG + dim L) =
dim P" and |mo(P)| = |mo(L)| = |mo(P")]. O

The proof of the reconstruction theorem itself is very close to the proof presented in [BHKT} Theorem
4.5] in the case that G is split connected reductive over Z. The main difference is that we prove the
result also for groups G' with nontrivial component group G//G°. The validity of Theorem @ has been
claimed in the proof of [DHKM] Lemma A.4] without proof.

Theorem 4.56. Let G be a generalized reductive group scheme over a noetherian commutative ring O.
Let I' be a group. Let k be an algebraically closed field over O and let © € ch. Then there is a G-
completely reducible representation p : I' — G(k) with ©, = ©, which is unique up to G°(k)-conjugation.

Proof. For each n > 1, ©,, determines for each tuple v = (1,...,7,) € I an element &, € (G™ J G°)(k).
The map G"(k) — (G™ ) G°)(k) is surjective by Lemma and we write T'(y) for a representative of
&, contained in the unique closed G°(k)-orbit in G™ (k) over &,. The representatives T'(7) shall be chosen
and fixed for each v € I'™ and each n > 1 for the rest of the proof.

Let H(y) be the smallest Zariski closed subgroup of G(k), that contains the entries of T'(y). By
Lemma m H(v) is G-completely reducible. Let n(y) be the dimension of an R-parabolic subgroup
P of G}, minimal among those with H () C P(k) and let ¢(y) be the cardinality of the component group
7o(P). By Lemma these numbers are both independent of the choice of P.

Let NV := sup,,>1 yern n(7) and C := sup,>1 yernn(s)=n ¢(d). We fix an integer n > 1 and § € I'", that
satisfy the following four conditions:

1. n(d) = N.

2. ¢(6) =C.

3. For any n/ > 1 and &' € T also satisfying (1) and , we have dim Zg, (H(9)) < dim Zg, (H(d")).

4. Foranyn’' > 1and § € I also satisfying , and (3)), we have |(Za, (H(6)))| < |m0(Zg, (H(5")))|.

Satisfiability. Condition is satisfiable, since N < dim G. Condition is satisfiable, since G has
only finitely many conjugacy classes of R-parabolic subgroups ([Mar03, Proposition 5.2 (e)] and [BMR05),
Corollary 6.7]) and so C is bounded by the maximal number of components of an R-parabolic subgroup.
So the set of pairs (n, ) satisfying and is not empty. It clear, that and are satisfiable under

and . O
Let (g1,...,9n) :=T(0).

Claim A. For all v € T, there is a unique g € G(k), such that (g1,...,9n,9) is G°(k)-conjugate to
T(01,-.,0n,7).

Proof of existence of g. Let (hy,...,hp, h) :==T(01,...,0n,7). It follows from the substitution properties
in the definition of G-pseudocharacter, that (hi,...,h,) lies over & € (G™ ) G°)(k).

Let P C G, be a minimal R-parabolic among those with H(d1,...,0,,7) C P(k). Since H(d1,...,0n,7)
is G-completely reducible by find by the very definition of complete reducibility an R-Levi subgroup Mp
of P with H(é1,...,0,,7) C Mp(k). Let Np := Ry(P) be the unipotent radical of P and let Q@ C Mp
be an R-parabolic subgroup of Mp minimal among those containing {hq,...,h,}. Let Mg be an R-
Levi subgroup of @ and let hf,...,h], € Mg(k) be the images of hq,...,h, in Mg(k) under the map
@ — Mg determined by the decomposition @ = Mg Ry (Q). Then the smallest Zariski closed subgroup
of Mg generated by hj,...,hl is Mg-irreducible, as the preimage of an R-parabolic of Mg in @ is an
R-parabolic [BMRO5, Lemma 6.2 (ii)]. Therefore G-completely reducible by the non-connected version of
[BMRO5, Corollary 3.22] as explained in [BMRO5, §6.3]. By Lemma Y. bl is GO(k)-conjugate
to T(0).
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The subgroup QNp of Gy, is R-parabolic [BMRO5, Lemma 6.2 (ii)] and contains a conjugate t of T'(d).
So we have
N =n(0) <dim@Np <dimP < N

The first inequality follows, since Q Np contains an R-parabolic minimal among those containing ¢. The
second inequality follows, since QNp C P. The third inequality follows by definition of N. We deduce,
that dim QNp = dim P. Since P = Mp x Np and Q C Mp, we have dim Q = dim Mp, Q° = MY and
[T (Q)] < [mo(Mp)|.

We also have
C =c(0) < |m(QNp)| < |mo(P)| < C

The first inequality follows, since any R-parabolic minimal among those containing ¢ has the same di-
mension as QNp. The second inequlity follows from |m(Q)| < |mo(Mp)| and the semidirect product
decomposition of P. The third inequality holds, since N = dim P = n(d1,...,0,,7) and (1,...,0n,7)
occurs in the supremum in the definition of C.

We conclude, that QNp = P, Q = Mp and h; = h} for alli = 1,... n. It follows, that the G°(k)-orbit of
(hi,...,hy) in G"(k) is closed. By Lemma there is some x € G°(k), such that x(h,..., hy)z"t =
(g1,---,9n). We can take g := zhx~! and the proof of existence is finished. <&

Proof of uniqueness of g. Fix v € T' and suppose, that g,¢’ € G(k) are such, that (gi,...,9n,9) and
(91, 9n,g") are G°(k)-conjugate to T(d1,...,6,,7). In particular, there is some y € G°(k), such that
y(g1s- 3 9n,9) Y = (91, -+, Gn,g"). This means, that y € Zg(g1,...,9,) and our goal is to show, that
Yy € Za(g1, -, 9n,g) for then g = g’. There is an inclusion

Za(91,-- -, 9n:9) € Za(91,- - 9n) (6)
Since ¢ satisfies and 7 (01,-..,0n,7) also satisfies and . It thus follows from properties
and of 4, that in Equation @ equality holds. &

So we have proved claim A and defined a map p : I' — G(k), v — g. We have to show, that p is a
homomorphism.

Claim B. For all 7,~" € T, there are unique g,¢’ € G(k), such that (g1,...,9n,9,4g") is G°(k)-conjugate
to T (01, .- 0n,7,7)-

The proof of claim B is similar to the proof of claim A, see [BHKT, Theorem 4.5] for more details.

Claim C. In the situation of claim B, the G°(k)-orbits of (g1, ..., 9n,9); (91, -, 9n,g") and (g1, ..., gn,99")
are closed in G" (k).

We only show, that the G°(k)-orbit of (g1,...,gn,gg") is closed in G"*1(k). The argument for the other
two orbits is similar. Let P be an R-parabolic minimal among those containing {¢1,...,9n,9,¢'}. Then
P contains {g1,...,g,} and dim P = N and |mo(P)| = C, as before. It follows, that P is minimal among
those R-parabolics containing {¢1,...,gn}. Let Mp be an R-Levi of P containing {g1,...,gn, 9,9’} this
exists by closedness of the orbit of (g1,...,9n,9,9’). As before, the subgroup generated by {g1,...,gn} is
Mp-irreducible, hence G-completely reducible and the same is true for {g1,...,gn,99'}. It follows, that
the GO(k)-orbit of (g1, ..., gn,gg’) is closed. &

By the substitution properties in the definition of G-pseudocharacter, (g1, ..., gn,g) is G°(k)-conjugate
to T(61,..,0n,7), (g15---59n,g") is GO(k)-conjugate to T(61,...,6,,7) and (g1,...,9n,99") is G°(k)-
conjugate to T'(d1,...,0,,7Y"). It follows from the uniqueness part of claim A, that p(y) =g, p(7/) = ¢
and p(yY') = g¢’. So p is indeed a homomorphism. It can be shown by the same methods, that ©, = ©.
By Proposition we can replace p by its semisimplification p, which will be G-completely reducible
and O, = 0.

We are left to show, that we can recover a G-completely reducible representation p : I' — G(k) from
its associated G-pseudocharacter ©,. For n > 1 and v € T, let & € (G™ J G°)(k) as before and
T() := (p(71)s-- -, p(yn)) € G™(k). By the non-connected version of [BMRO5| Lemma 2.10] as explained
in [BMRO5, §6.2], we find {d1,...,d,} € T, such that for every R-parabolic P and every R-Levi L of
P, we have p(I') C P if and only if {61,...,0,} C P and p(I') C L if and only if {1,...,0,} C L. In
particular (g1,...,gn) == (p(61),...,p(6,)) has closed G°(k)-orbit. After possibly enlarging the tuple
(61,-..,0,), we may assume that Zg(g1,...,9)(k) = Za(p(T))(k).

Let v € T'. We now that (g1,...,9n, (7)) = T(01,...,0n,7). Suppose g € G(k) is such that (g1, .., n,9)
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is G°(k)-conjugate to T(61,...,0n,7). So we find z € Zg(g1,...,92)(k) = Zg(p(T))(k), such that
xp(y)x~! = g, but this just means p(v) = g. -

4.7 Comparison with determinant laws

In her 2018 dissertation, Kathleen Emerson has shown, that Chenevier’s definition of d-dimensional
determinant laws and Lafforgue’s definition of GLg4-pseudocharacters are equivalent over any base ring.
We recall the main result here.

Kathleen Emerson has proven in her 2018 dissertation [Emel8], that there is a bijection between GLg4-
valued pseudocharacters and d-dimensional determinant laws over any base ring. In this section we
consider GL4 as a group scheme over Z.

Theorem 4.57 (Emerson). Let A be a commutative ring, I" a group and d > 1. Then the map
PCgy,(A) — Dety(A), ©+ Do

defined in [Emel8, Theorem 4.0.1] is a well-defined bijection.

Emerson’s bijection is characterized by the following property: If s; for 1 < i < d are the coefficients
of the characteristic polynomial of a generic matrix in GL4 viewed as elements of Z[GL4]%", then a
GLg-pseudocharacter © € PCgy, ,(A) corresponds to a d-dimensional determinant law D € Det} (A) if
and only if A; 4(y) = ©1(s;)(y) for all y € T.

In particular x® = yPe and if p : I' = GLg(A) is a representation, then Deg, = D,.

Proposition 4.58. Let A be a commutative topological ring, I' a topological group and d > 1. Then
SNS PCng (A) is continuous if and only if Dg is continuous. In particular the bijection PCng (A) —

Det;(A), © — De in Theorem restricts to a bijection CPCng (A) — cDet}(A).

Proof. First suppose, that © is continuous. Then A; o|lr = ©1(s;) is a continuous map by definition of
continuity of ©, hence Dg is continuous.

Conversely, if Dg is continuous, then ©4(s;) is continuous for all 1 < 4 < d. Since the F-Z-algebra
Z|GL$)L is generated by {s1,...,sq} and det™' = s;' (see Theorem [5.12), the image of Z[GL$]% 4 is
contained C(I'*, A), as desired. O

4.8 Comparison with Taylor’s pseudocharacters

Proposition 4.59. Let A be a commutative ring with d! € A* and let T" be a group. Then the map
PCgy, (A) = TPCy(A), © — O (tr)

from the set PCgy, ,(A) of A-valued GLg-pseudocharacters of I' to the set TPCY(A) of d-dimensional

A-valued Taylor pseudocharacters of I' is a well-defined injection. The map is bijective, if one of the

following conditions holds.

1. A is reduced.
2. 2¢ A and d = 2.
3. (2d)! € A*.

Proof. This follows from Proposition and Theorem O
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5 Invariant theory of algebraic groups

In order to describe a G-pseudocharacter explicitly by a set of functions satisfying certain relations in
the style of Taylor’s Definition [2.6]it is vital to understand the algebras of rational invariants O[G™]¢ in
terms of generators and relations. This is achieved by classical invariant theory. If A is an O-algebra on
which G acts rationally by algebra automorphisms, we distinguish between two types of theorems:

1. First fundamental theorem (FFT):
Determine an explicit set of generators of AS.

2. Second fundamental theorem (SFT):
Determine an explicit generating set of relations between given generators of AY.

The first results of this kind in characterstic 0 are due to Frobenius, Sibirskii [Sib67] and Procesi [Pro76).
One can reduce the computation of Q[G™]¢ to matrix invariants Q[M/™] for a faithful representation
G C M, (see Proposition . Donkin proved, that if K is an algebraically closed field, the algebras
K[G™]Y are generated by shifted traces of tilting modules [Don92]. This has since been turned into a
concrete description of generators of K[GL!"]%L» by Donkin and K[Sp!']3P» and K[O!"]° (under the
assumption char(K') # 2 in the orthogonal case) by Zubkov |[Zub94} [Zub99]. We can descend generators of
invariant algebras to the prime fields Q and IF,, and lift them to Z/p" (see Section[5.1.1] Section[5.1.2)). This
is sufficient for our applications to deformation theory. Using results on tilting modules it is possible to
descend these generators further to Z[G™]“ once they are known over fields and defined over Z. We include
this argument in Section We also obtain a slightly different proof of the first fundamental theorem
[DP76, §15.2.1 Theorem 1.10] for Z[M"]SLn, Z[M)3M | Z]GLI|SMn and Z[SL']S" (see Section [5.1.3).

The second fundamental theorem for Q[M ™% has been proven independently by Procesi [Pro76] and
Razmyslov [Raz74]. In positive characteristic it is due to Zubkov [Zub99]. In [DP76| Theorem 1.13] de
Concini and Procesi prove a second fundamental theorem over Z. The work on semi-invariants of quivers
over infinite fields was further developped by Domokos and Zubkov [DZ01].

In [Pro76] Procesi mentions the possibility of third and higher fundamental theorems. The first funda-
mental theorem provides us with a surjection P — A%, where P is a polynomial algebra generated by a
formal variable for each explicit generator of A“. The second fundamental theorem yields a set R of ideal
generators of the kernel of P — A%. So we can define a P-linear surjection from a free P-module P(%)
onto the kernel of P — A%. We can now ask for relations between P-module generators of the kernel of
P 5 P which would then be a third fundamental theorem. Even though this is a natural question,
to my knowledge there is no research towards third fundamental theorems for Q[M™]¢ or Q[G™]€.

My original motivation to study classical invariant theory was firstly to give an explicit description of
Sp,y,-pseudocharacters and secondly to prove, that Sp,,,-pseudocharacters are in bijection with symplec-
tic determinant laws as described in Section [§] This requires first and second fundamental theorems
for Z[Spy!]5P2n over Z, which are not yet available. While an explicit description of Lafforgue Spy,,-
pseudocharacters seems hard, we might have found a stronger definition of symplectic determinant laws
of involutive algebras, which might enable us to prove an Emerson type comparison bijection with Laf-
forgue’s Sp,,,-pseudocharacters in case of a group algebra without using a second fundamental theorem,
but this is subject to further research and not included in Section [§] What we currently know about a
possible comparison map for symplectic determinant laws is discussed in Section [8.6]

As part of this effort I've learned a few methods to compute generators of specific invariant algebras for
reductive groups. These are explained in Section [5.2

Proposition 5.1. Let K be a field of characteristic 0. Let G be a reductive algebraic group over K and
let + : G — GL, be a faithful rational representation of G. Then the map K[M™] @ K[A™] — K[G™]¢
induced by G — M,, x A, g (g,det™(1(g))) is surjective.

Proof. The map G — M, x A', g (g,det™(1(g))) is a closed immersion. The claim follows, since G
acts trivially on A' and the category of rational G-modules is semisimple. O

Note, that Proposition [5.1]is a version of Corollary in characteristic 0.

59



5.1 Invariant theory

The goal of this section is to prove, that the F-Z/p"-algebras Z/p" [G‘]GO are finitely generated for
G € {SL,,, GL,, Spa,,, GSpa,,, SO2,,+1, O2p+1, GO2, 11} and to determine an explicit set of generators.
We use a theorem of Zubkov [Zub99] on generators of certain invariant rings over an algebraically closed
field and generalize it to Z/p"-algebras.

Let X € Mg(Z[x;j | i,5 € {1,...,d}]) be a generic d x d matrix, i.e. X;; = z;; for 1 <i,j <d.
Let s; € Z[z;;] be up to a sign the i-th coefficient of the characteristic polynomial of X:

d
det(t-I; — X) = Z(q)isi(X)td*i € Zlzyj | 4,75 € {1,...,d}][t]
=0

If we evaluate X at a triangular matrix, then s; is given by the i-th elementary symmetric polynomial in
the diagonal entries.

Theorem 5.2 (Zubkov, 1999). Let K be an algebraically closed field. Let G be either the symplectic
group Sp, i for even d > 2 or the orthogonal group Oy x for d > 1 and assume, that char(K) # 2 in
the orthogonal case. Let m > 1. The algebraic group G acts by conjugation on the affine K-scheme
M = A™@ Denote by K[MT¢ the algebra of rational invariants of the coordinate ring K[M7'] of

M. Denote by X, € Md(Z[xz(»f) | 4,5 € {1,...,d}]) the k-th matrix coordinate of MJ*. Then:

1. K[M"] is generated as a K-algebra by elements of the form

- Yj,)

fori e {1,...,d} and s > 0, where Y}, € {X}, X} } and in the orthogonal case * = T is transposition
and in the symplectic case * = j is symplectic transposition, i.e. J(—)"J~! for J = <—Oid 1(()i>
[Zub99 Theorem 1]

2. The map K[M'|¢ — K[G™]¢ induced by restriction to G™ C M is surjective [Zub99, Proposition
3.2]. In particular K[G™]% is generated by elements of the form

si(Yj, -+ Yj)
fori e {1,...,d} and s > 0, where Y}, € {Xk,Xk_l}.

Zubkov proves Theorem [5.2] for algebraically closed fields and then remarks that the claim holds for all
infinite fields by a Zariski density argument |[Zub99, Remark 3.2].

5.1.1 Invariants over a field

We now extend Zubkov’s Theorem to arbitrary fields and to the groups GSps,, SO2,41 and GO,
when n > 1.

Proposition 5.3. Let K be a field and let m > 1.

1. Suppose G € {Spa,,, SO02,,4+1,0,} and d € {2n,2n+1,n} respectively. Assume further char(K) # 2
if G € {SO2,+1,0,}. Then K[G™]% is generated by elements of the form

Y.

si(Y; i)

Ji’
fori € {1,...,d} and s > 0, where Y}, € {X;, X, '}.

2. Suppose G € {GSp,,,, GO, } and d € {2n,n} respectively. Assume further char(K) # 2 if G = GO,,.
Then K[G™]% is generated by the symplectic (orthogonal) similitude character sim, its inverse sim !
and elements as in (1).
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Proof. Let K’ be an algebraically closed overfield of K. We first treat the case G € {Sp,,,O0,}. Let
d = 2n in the symplectic case and d = n in the orthogonal case. We have a complex

0—J —= K[M"¢ — K[G™]Y ——=0
of K-vector spaces, where J := ker(K[M7']¢ — K[G™]%). By faithful flatness it suffices to show, that
0——J@xg K' —= KM% @ K' —= K[G™]% @ K/ —=0

is exact. By the universal coefficient theorem for rational invariants |[Jan03| 1.4.18 Proposition], we have
isomorphisms K[M7% @k K' = K'[M7]¢ and K[G™]|¢ @k K' = K'[G™], so J @k K' is the kernel
of K'[M"|¢ — K'[G™]%. The claim follows from Theorem For SOg,+1, we note, that the map
K[O2,41]927+1 — K[SO2,41]%92+1 is surjective, since Ogy, 1 = SO2,41 x{%1}.

For the rest of the proof, we argue as in [Wei2l, Lemma 3.15]. The natural surjection Sp,,, x GL; —
GSp,,, induces an inclusion K[GSphy,|SP2n C K[Spy!|SP2n @ K[GLYT"]. Here the second factor is gener-
ated by the symplectic similitude character sim; of X; and its inverse. Since all generators on the right
hand side are defined on the left hand side, the map is an isomorphism. For GO,, we argue just the same
way. O

5.1.2 Invariants over Z/p"

In this subsection, fix a prime p and an integer r > 1. We extend the results over fields to p”-torsion
coefficients by using the theory of good filtrations over Z. We plan to extend the results of this section to
general coefficient rings in joint work with Mohamed Moakher. The main purpose here is to demonstrate,
that if the coefficients have p"-torsion the proof is much simpler. We can lift invariants using the following
variant of Nakayama’s lemma.

Lemma 5.4 (Nakayama).

1. Let M be any Z/p"-module and assume M/p = 0. Then M = 0.

2. Let f : M — N be a homomorphism of Z/p"-modules, such that f : M/p — N/p is surjective.
Then f is surjective.

Proof. (1) We have M = pM, thus M = p"M = 0. (2) We can apply (1f) to coker(f). O

Lemma 5.5. Let G be a Chevalley group and let S C Z[G™]“ be a subset, that generates F,[G™] as
a ring. Then S generates Z/p"[G™]€.

Proof. Let A C Z/p"[G™]% be the subalgebra generated by S. By Proposition Z|G™] has a good
filtration and in particular is acyclic by Lemma We calculate

Z/p"[G™] ®zjpr By = (Z[G™ @2 Z[p") @zspr By = Z[G™)7 @1 F, = F,[G™]C

applying Corollary twice. Hence the inclusion induces a surjection A/p — (Z/p"[G™]%)/p. From
Lemma we obtain A = Z/p"[G™]C. O

Proposition 5.6. Let O be a commutative ring, such that p"O = 0. In the following we denote by
X a generic group element, which can also be understood as a generic matrix under the standard
representation. Let m > 1 and assume p > 2 in the orthogonal cases.

1. Let n > 1. Then O[Sp4},]5P2~ is generated by elements of the form
5i(Yj, -+ Yj.)
for i € {1,...,d} and s > 0, where Y}, € {Xk,Xk_l}.
2. Let n > 1. Then O[0%;,,,]392n+1 is generated by elements of the form
si(Yj, -+ Yj,)
fori € {1,...,d} and s > 0, where Y}, € {Xj, X, '}.
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3. Let n > 1. Then O[GSpy’,]%5P2n is generated by the symplectic similitude character sim, its inverse

sim™! and elements of the form
si(Yj, -+ Yj,)

fori € {1,...,d} and s > 0, where Y}, € { X}, X, '}.

4. Let n > 1. Then O[GO"]S©» is generated by the orthogonal similitude character sim, its inverse

sim™! and elements of the form
5i(Yj, -+ Yj,)

fori € {1,...,d} and s > 0, where Y}, € { X}, X, '}.
Proof. Let G € {Sps,,, O2n+1, GSp,,,, GO, }. Since by Proposition all Z/p"[(G°)™] have a good

filtration, we may assume O = Z/p". In all cases, the expected generators are defined as elements of

Z[G™])". The claim now follows from Lemma and the generators of F,[G™]% we have given in
Proposition (Zubkov). O

5.1.3 Invariants over 7Z

In [DP76} p. 15.2.1] de Concini and Procesi have determined the generators of Z[M/™]%L» and Z[M]5t |
from which the generators of Z[GL]"|S" and Z[SL!"]3"" can be deduced. We reprove their result using
good filtrations and avoiding usage of the formal character of Z[M"] and the analysis of root subgroups.

Recall the first fundamental theorem on invariants of several matrices.

Theorem 5.7 (De Concini, Procesi). Let K be an algebraically closed field. Then K[M™]%Ln is gener-
ated by elements of the form

- X

si(X i)

J1°°
forie{1,...,n} and s > 0.

Proof. See [DP76, Theorem 1.10]. O

The first fundamental theorem for SL,, follows right away:

Proposition 5.8. Let K be an algebraically closed field. Then K[M']5! is generated by elements of
the form
(X -+ Xy,)

forie {1,...,n} and s > 0.

Proof. The inclusion of the center GL; — GL, and the inclusion SL,, — GL, combine to a surjec-
tion SL,, x GL; — GL,. Therefore K[M"|%te = K[M™]St» X GLt = K[M™]5E and we conclude by
Theorem 5.1 O]

To descend to Z, we need the following lemma.

Lemma 5.9. Let O be a principal ideal domain and let M and M’ be finitely generated free O-modules.
Let f : M — M’ be an O-module homomorphism, such that for every O-field K the induced map
M ®0o K — M' ®o K is an isomorphism. Then f is an isomorphism.

Proof. Taking K the field of fractions of O shows, that f is injective and that the cokernel C' of f is a
finitely generated torsion module. For every prime ideal 0 # p C O, the sequence

M @0 Ofp ——= M' 20 O/p —=C®0 Ofp —0
is exact, which shows, that C ®» O/p = 0. It follows, that C' = 0. O
Theorem 5.10 (De Concini, Procesi). Z[M™]%tn = Z[M™]5"» and is generated by elements of the form
(X X;)

forie{1,...,n} and s > 0.
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Proof. M™ = (Std ® Std*)®™, where Std is the standard representation of GL,,. The standard represen-
tation of GL,, is self-dual and has a good filtration. We observe, that Z[M"] admits a grading by finitely
generated free Z-modules Sy := Sym®((M™)*), that is preserved by the action of GL,. The S, also have
a good filtration, so by Lemma and Corollary SdGL" ®z k = (S4 ®7 k)Gt for any field k.

Let A be a free commutative Z-algebra generated by variables ¢(; ;... ;.)) withi € {1,...,d} and s > 0.
We let t; (j,,..5.)) have degree si and observe that A = EBZOZO Ay is a graded ring, such that each
submodule A, consisting of homogeneous of degree d elements is a finitely generated free Z-module.

The natural map A — Z[M|%" sending t(; (;,,... ;.)) t0 si(Xj, ... X;,) is graded. By Theorem the

maps Ag Rz k — SC?L" ®z k are surjective for every algebraically closed field k. Hence by Lemma the
maps Ay — Sy are surjective and thus A — S is surjective, proving the first claim. The argument for the
SL,-invariants is the same, using Proposition [5.8] O

R

To pass from invariants of Z[M"] to invariants of Z[GL;'] and Z[SL,'], we use the following general
lemma.

Lemma 5.11. Let G be a split reductive group over Z and let
0-+C—-B—-A—=0
0—-C"-B —-A =0
be two short exact sequences of G-modules with good filtration. Then the map (B ® B )¢ — (A® A")¢
is surjective.
Proof. Since good filtration modules are free, the sequences
0C®A -BA A A —0

0-B®C BB -BA =0

are exact. By Mathieu’s tensor product theorem Theorem the modules C ® A" and B ® C’ have
good filtrations, hence by Lemma the maps (B® A")Y — (A® A)¢ and (B® B)¢ — (B® A)Y
are surjective. O

Theorem 5.12. Let O be a commutative ring, let m > 1 and let n > 1.

1. O[M™])SLn and O[M™]5L» are generated by elements of the form
si( X, -+ X5,)
forie {1,...,n} and s > 0.
2. O[GL"St» and O[SL"]St» are generated by elements of the form
si( Xy - X5,)
fori € {1,...,n} and s > 0 and det™'(X;) for j € {1,...,m}.
Proof. By Proposition it is for both GL,, and SL,, sufficient to prove the claim for @ = Z. The

closed immersion GL,, — M,, x Al, g — (g,det(g)™!) induces a surjection Z[(M,, x A')™] — Z[GL}"'] of
Z-graded Z-modules with GL,-action, where the graded pieces are finitely generated free Z-modules.

Identifying Z[A!] = Z[t], we have a short exact sequence

0— s Z[Mn] © Z[t} -(t-det —1)

Z|M,) ® Z[t)| — Z|GL,] ——=0

of GLg-modules, since ¢ - det —1 is an invariant element of the integral domain Z[My] ® Z[t]. By
Lemma and since Z[GLg4] and Z[M,] have good filtrations (Proposition Proposition [£.18),
the maps Z[M™]%t» @ Z[t]®™ = Z[(M,, x AY)™]9Ln — Z[GL"]9t» are surjective. The claim follows
from Theorem [5.101

The same argument using the closed immersion SL,, — M,, and the short exact sequence

0 ——>7Z[M,] — Y 7(M,] — > Z[SL,,] —> 0

implies the claim on Z[SL|5t. O
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In upcoming joint work with Mohamed Moakher, we will compute explicit generators of Z[G™]% for
G € {Sps,,; GSpay,; SO2, 11, O t1, GO, } building on work of Zubkov.

Corollary 5.13. Let O be a commutative ring.

1. The F-O-algebra O[GL?]%t is generated by si,...,s, € O[GL,]%".
2. The F-O-algebra O[SL? |5t is generated by s1,...,5,_1 € O[SL,]5"".

Proof. This follows by inspection of the generators computed in Theorem [5.12] and substitutions. O

Corollary 5.14. Let r > 1 be an integer and let O be a commutative ring, such that p"O = 0. Let
G € {SL,, GL,, Sp,y,,, GSpa,,, SO2p+1, O2 41, GOz, 11} and assume that p > 2 in the orthogonal cases.
Then the maps O[GL™|CLn — O[G™]¢ are surjective for all m > 1. In particular the F-O-algebras
O[G*]¢" are finitely generated.

Proof. This follows from Corollary and Proposition [5.6] and substitutions. O

5.2 Alternative methods for computation of invariants

5.2.1 The successive method

If G is a connected reductive group over an algebraically closed field with Borel subgroup B containing
a maximal torus 7', there is a Bruhat decomposition G = |J, ey BwB, where W is the Weyl group
W = Ng(T)/T. The double cosets BwB for w € W are well-defined. The ’successive method’ of
computing invariants of a G-module V rests on the observation, that it suffices to take the invariants
with respect to subgroups of G, which generate G, separately. The Weyl group does not embed into G
in general, but V7 is a W-module. Let U = R, (B) be the unipotent radical of B. We have the Levi
decomposition B = TU. It follows, that

Ve =whHWnyY (7)

The inclusion 'C’ is sufficient in most cases.

From a talk of Samit Dasgupta in Essen I learned the following little trick: If B is a Borel subgroup of G,
then the orbit Gz of a B-invariant element x € V' is the image of the connected projective variety G/B
in V and thus contains only one point. It follows, that V& = VB, So we can also use

Ve = (vU)T (8)

to compute G-invariants. However in practice it is tedious to first compute U-invariants, so we stick to
Equation @ in the following examples.

5.2.2 Matrix invariants

Example 5.15. As a warmup, we compute the Ss-invariants of Z[z1,z2], where the generator of S,
interchanges x7 and x2. We claim, that Z[xhxg]S? is generated by tr := x1 4+ x2 and det := x129. We
can show this by induction over the number of terms of an invariant polynomial. Let f € Z[x1,z2]? be
nonconstant with n terms, such that f is not divisible by z125. Then there is k > 1 and A € Z \ {0},
such that f = \(z¥ + 28) + g for some g € Z[zy,x2]%? with n — 2 terms. We are left to show, that the

ower sums z¥ + =5 are generated by tr and det. This can be shown by induction using
p 1 2

x]f + xé = (x]f_l + mg_l)(xl + x9) — xlxg(x’f_g + x]f_z).

Example 5.16 (Successive method). We first compute the matrix invariants Z[M]%% directly fol-
lowing Equation @ GLy acts on (2 x 2)-matrices Ms by conjugation. We can see My as the ra-
tional adjoint representation of GLy over Z. Let Z[Ms] be the symmetric algebra on M;. We write
Z[Ms) = Z]z11, T12, T21, Ta2), Where x5 is (i, j)-entry of a generic (2 x 2)-matrix. Let T' be the standard
diagonal torus of GLa. The action of 7" on z;; is given by t - z;; = titjflxij with ¢t = diag(t1,t2) € T. We
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observe, that every monomial in Z[Ms] spans an invariant T-submodule. Thus the weight space decom-
position of Z[M,] is given by monomials. We see T as a product G2,, where t; is the coordinate of the first
Gy, and to is the coordinate of the second G,,. A monomial is ¢;-invariant if and only if it is a product of
711, To2 and T1979;. This is equivalent to being to-invariant, so we obtain Z[Ms]T = Z[z11, T22, T12721]
as a first intermediate step.

For convenience we substitute x;1 := x11, 2 = Too and y := x12x2;. We now compute the Weyl-
invariants. The Weyl group of GLy with respect to the standand torus T is isomorphic to Se and acts by
0T = Ty(;) and o -y = y. So it is sufficient to compute the So-invariants of Z[x1, z2]. We have already
done this in Example and so we conclude, that Z[xy, o, y]? = Z[z1 + T2, 2172, ).

In the last step, we take invariants under the unipotent subgroup

(1)

of strictly upper triangular matrices. We compute

1 —a\ fzn 212 (1 a) _ (21 —azar w12 +a(z — 222) — a’xa

0 1 T21 T22) \0 1 T21 Zo2 + aoy
over Z[Ms][a] and observe, that x; 4+ x5 and x5, are U-invariant. So it is sufficient to compute the
U-invariants of Z[z1x2,y]. Beware, that the action of U on Z[M3] does not preserve the subspace Z[z1 +

X9, T1T2,Y], SO Z[x1x2,y] is not an honest U-representation! What we will effectively compute in the last
step is Z[z1x2, y] N Z[Ms]Y .

As above we let a be the coordinate of G, = U. The action of U is given by

ae ($1372> =122 + (56‘1 — 31‘2)(1.’1721 — (am21)2

aey=y+ (r1 — x2)axs — (aacgl)z

We observe, that z1z9 — y is U-invariant. So Z[z122,y] = Z[x122 — y, y] and we are left to compute the
U-invariants of Z[y]. Clearly Z[y] N Z[M5]Y = Z. So we end up with Z[z + 2o, 7129, y] N Z[M5)V =
Z[x1 + x2, T129 — y], where x1 + x2 is the trace and x5 — y is the determinant of a generic matrix in
M.

Note, that the entire argument did not use that the coefficient ring is Z. We could now directly conclude
Z[M>)CL2 = Z]tr, det] using that the Bruhat decomposition and B = TU are valid over Z, but we don’t
need this: We have just shown the inclusion Z[M,]%2 C Z]tr, det] and conclude by verifying that tr and
det are indeed GLsy-invariant.

We can use the argument of Theoremto deduce from Exampledirectly Z|GLy|S%2 = Z[tr, det, det ™).
We emphasize, that the benefit of the succesive method is that it is applicable whenever we want to com-
pute invariants for an action of a connected reductive group on a finite-dimensional representation or

a symmetric algebra on a finite-dimensional representation. In particular it is theoretically possible to
calculate Z[M™]%5 with the successive method, even though we find this not practical to carry out. The
goal of the next section is to demonstrate how to obtain Z[GLo]%2 from an integral version of Chevalley’s
restriction theorem.

5.2.3 Chevalley’s restriction theorem

We recall the proof of Chevalley’s restriction theorem in arbitrary characteristic in lack of an adequate
reference.

Theorem 5.17. Let K be an algebraically closed field and let G be a connected semisimple group over
K with maximal torus T and Weyl group W = Ng(T')/T. Then the restriction map K[G] — K|[T]
induces an isomorphism K[G]¢ = K[T]" of K-algebras.

Proof. For the proof, we choose a system of positive roots ®*. K[T] is an Ng(T)-module and hence
a W-module. Therefore we get a well-defined map |7 : K[G]® — K[T]". We first show, that |p is
surjective. Let f € K[T])". The set of weights X(T) is a K-basis of K[T]. So f = 2orex(T) axt?,
where a) € K and t is a generic element of T. Let A € X(T') be a maximal dominant weight, such that
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ax # 0. Such a weight exists, since f is W-invariant. Let x» € K[G]¢ be the character of the irreducible
G-module with highest weight \. Recall, that xx|7 only contains weights < A. So f — axxa|r € K[T]V
is a function all of whose maximal dominant weights are < the maximal dominant weights of f. By
induction we conclude, that there is some f € K[G]¢ with f|r = f.

It is now sufficient to show, that |7 : K[G]¢ — K[T] is injective. Let f € K[G]Y, such that f|7 = 0.
Let x € G be a regular element, i.e. Zg(xs) = rank(G) for the semisimple part z, of . By [Bor91,
Theorem 12.3 (1)] x is contained in a Cartan subgroup of G. Since G is connected reductive, such
a Cartan subgroup is just a maximal torus. Thus, there is some h € G with hxh~! € T and hence
f(z) = f(hah=') = 0. By [Bor91, Theorem 12.3 (1)] the set of regular elements contains a dense open
set in G and we conclude f = 0. O

Theorem 5.18. Let G be a split connected semisimple group over Z with fiberwise maximal torus T" over
7 and Weyl group W. Then the restriction map Z[G] — Z[T] induces an isomorphism Z[G]¢ = Z[T|WV
of rings.

Proof. Surjectivity can be proved by the same argument as in Theorem using the Weyl module V()
in place of the irreducible module of highest weight .

We have Z[T|W = Drex+r)Z 2 pew A, 80 ZITI" @ Q = Q[T]W. We also know, that Z[G]® ® Q =
Q[G]¢ by flatness. We deduce, that the map Z[G]¢ — Z[T]"W is injective. O

By Zariski denseness of GLy C Ms, we have Z[My]*2 = Z[M3]NZ[GL3]%" and thus from Theorem
we directly obtain Z[M,]%2 = Z[tr, det].

Example 5.19. We will compute Z[Sp,]°P+ using Theorem The Weyl group of Sp, has 8 elements

and is generated by
(0 1 (1 0
1=\ 0)0 270 -1

as a reflection group on X (7T") with

by o1(x1) = 2, 01(x2) = 21, 02(x1) = 1, 0o(x2) = 25 *. We write Z[T] = Z[x1, 2] ", x2, 25 ']. Taking
op-invariants, we obtain Z[zy, x5 ']7? = Z[x + 25 '] by an easy induction over the highest degree term of
an invariant. For convenience we next take invariants by

-1 0
0102071 — 0 1

and obtain Z[xy, x] ']71927" = Z[z; + z;']. Joining these two results, we obtain
Zlwy, a7t xg, 2y 102010290 = oy 4 a7t 1o + 251
Using Example we get
ZITIY = Z[wy + 2y + 2z 25" (21 + 27 ) (@2 + 23 )]

We observe, that 1 + xl_l + z2 + 2y !is the trace of the standard representation Std. Similarly (z1 +
7Y (2o + 25 1) 4+ 2 is the trace of A% Std. It follows, that

Z[Sp,]®P+ = Z[tr, tr A? Std]

In fact it follows directly from the basis of Z[T]" described in the proof of Theorem that Z[T|W is
a polynomial ring generated by sums over W-orbits of fundamental weights. It has already been proved
by Chevalley, that Z[T]" and therefore Z|G]% is a polynomial ring generated by traces of fundamental
representations of G.

However all we have seen so far is not sufficient to deduce a first fundamental theorem for Z[G™]%. We
will survey in the next and last section on invariant theory, what we know about Z[G™]¢.
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5.2.4 Group invariants

We are interested in a first fundamental theorem for Z[G™]¢ for G a split connected reductive group over
Z. The first observation is, that the arguments of Section [8.7] are applicable to general split semisimple
groups. Second, the case of split reductive groups reduces to the case of split semisimple groups by
taking invariants after restriction to the surjection Z(G) x [G,G] — G (see e.g. [Mill2, p. 17.28]). So
everything boils down to computation of invariants over algebraically closed fields in which case, we can
apply Donkin’s theorem [Don92]. However this turns out to be difficult in practice. We give a list of
results that compute K[G™] for some reductive group G.

1. Donkin |[Don92] computes generators of K[GL}"|k.
2. Zubkov [Zub99] computes generators of K[Sp5:,]5P2n for all n > 1.
3. Zubkov [Zub99] computes generators of K[O']° for all n > 1 and char(K) # 2.

4. Zubkov |[Zub99] computes generators of K[SO™]5» for odd n > 3 and char(K) # 2.

These results can be adapted to GO,, and GSp,,,. They can be interpreted from the perspective of F-
K-algebras: The F-K-algebra K[G*]“ is finitely generated by an explicit set of generators in the cases
listed above. We expect, that this is the case for all split reductive groups G. A proof of this (over the
ring of integers of a p-adic local field) would be useful in many places: It leads to a simplification of the
proofs of Lemma [7.6] and Lemma [7.16] and Lemma[7.6] can probably be generalized to arbitrary profinite
groups I'.

The algebra K[G*]¢ being finitely generated follows from the following stronger statement, of which we
are not sure if it holds in general: There is a faithful algebraic representation G — GL,, such that the
induced homomorphism K[GL'|%" — K[G®]¢ is surjective for all m > 1. A proof of this might be
within reach after a more detailed analysis of Donkin’s main theorem in [Don92|. It might be sufficient to
take a faithful tilting module which generates the category of rational G-modules under tensor products,
exterior powers and subquotients, capturing all possible weights of highest weight modules. T have not
yet been able to turn this idea into a rigorous proof, as the combinatorics of the Schur algebras that arise
remains elusive to me. At last I want to emphasize, that this second conjecture would be a very explicit
first fundamental theorem for general reductive groups in arbitrary characteristic and is likely very hard
to prove.

It is also remarkable, that in most cases we know of K[G*] is generated by K[G]“. Indeed [Wei20,
Theorem 4.3] Weidner shows in characteristic zero, that in this case element-wise conjugacy of G-valued
representations implies conjugacy of representations. In this case we say, that G is acceptable. Indeed
the property of acceptability is also related to multiplicity one theorems, as we have learned from Carl-
Wang Erickson. So apart from the theory of pseudocharacters these questions seem to have theoretical
relevance.

Let O be a finitely generated algebra over a Nagata ring and let G be a reductive O-group scheme. Then
for all m > 1, the algebra of rational invariants O[G™]¢ is finitely generated over O. This follows readily
from [Ses77, Thm. 2] applied to G™. However, we have not found Seshadri’s methods to be sufficient to
prove a similar non-constructive finite generation result for the F-O-algebras O[G*]¢.
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6 Deformations of G-valued pseudocharacters

We define a deformation space of V. Lafforgue’s G-valued pseudocharacters of a profinite group I' for
a (generalized) reductive group G. We show, that our definition generalizes Chenevier’s construction
[Cheld]. We show that the universal pseudodeformation ring is noetherian whenever I' is topologically
finitely generated. For G = Sp,,, we describe three types of obstructed subloci of the special fiber of the
universal pseudodeformation space of an arbitrary residual pseudocharacter and give upper bounds for
their dimension.

Introduction

Let F'/Q, be a p-adic local field with absolute Galois group I'r. Let L be a p-adic local field with ring of
integers Oy, and residue field k. Let G be a generalized reductive group scheme over Oy, (see Section,
which is essentially a model of a possibly disconnected reductive group over Op. Given a continuous
representation p : I'r — G(k), we define the framed deformation functor on the category e, of local
%L,E(A) = {p:Tr = G(A) | p continuous lift of p}.
The framed deformation functor is pro-representable by a complete local noetherian Op-algebra Rgﬁ
with residue field . Inspired by |[BIP21, Theorem 1.1], we would like to prove the following conjecture:

artinian Op-algebras with residue field x by Def

Conjecture 6.1. The ring Rg,’ is a normal, local complete intersection, flat over Op and of relative
dimension dim Gy, - ([F': Q] + 1) over Op.

The proof in [BIP21] relies on estimates of certain subloci in the special fiber of the pseudodeformation
ring for GL,,. There pseudocharacters in the sense of Chenevier |[Chel4| are used.

The first main aim of this chapter is to introduce the pseudodeformation ring for generalized reductive
group schemes, replacing Chenevier’s pseudocharacters by Lafforgue’s pseudocharacters as introduced in
[Laf18l §11]. We show, that these rings are noetherian for topologically finitely generated profinite groups
and in particular for I'p.

Theorem B (Theorem [6.11} Theorem [6.14). Let G' be a generalized reductive Op-group scheme, let T'
be a profinite group and let © be a continuous G-pseudocharacter of I' over k.

1. If T is topologically finitely generated, then the G-pseudodeformation ring R?; 5 of © is noetherian.
L,

2. Assume that G € {SL,,, GLy, Sps,,, GSPa,,» SO2n41, O2n 11, GO, }, p > 2 in the orthogonal cases and
let ¢ : G — GLg4 be the standard representation of G. Then the canonical map RI(;S @ Rpos 5
L L
is surjective. If in addition I' satisfies Mazur’s condition ®,, then RI(’; 5 is noetherian.
L,

. . . . . . . =dec —pair —spcl
The second main aim is to give estimates for certain obstructed subloci Xg , Xg and Xg  (see

Definition |6.25)) of the special fiber Xg of Spec(RI(;S 6) analogous to |[BIP21, §3.4] and |BJ19|, which
L
paves the way for proving Conjecture [6.1] when G = Sp,,,.

Theorem D (Propositionm Theorem Corollary|6.35). Let © be a continuous Sp,,,-pseudocharacter
of T'r over k.

1. dimXa® < n(2n + 1)[F : Q)] — 4(n — 1)[F : Q).

2. dimyp@air <n?[F:Qp) + 1.

—spcl

3. dimXg < 2n2[F:Qp] +1.

4. dim Xg < n(2n+ 1)[F : Q).
—spcl

If © comes from an absolutely irreducible representation, then equality holds and X s & Yg.
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6.1 Deformations of G-pseudocharacters

6.1.1 Coefficient rings
Fix a prime p > 0. Let k be a field of one of the following three types:

1. k is a finite discrete field.
2. k is a finite extension of Q, equipped with the p-adic topology.

3. K is a finite extension of F,,((t)) equipped with the ¢-adic topology.
We introduce a coefficient ring A in each of the three cases for k.

1. In case , let A be the ring of integers of a p-adic field with residue field k.
2. In case , let A = k.
3. In case , let A = k.

By slight abuse of terminology, we will call only such rings A coefficient rings for k.

Let A5 be the category of artinian local A-algebras with residue field k. Every A in 24 has a canonical
projection w4 : A — k with kernel m 4 the maximal ideal of A. Note, that 2, admits fiber products [Til96
§2.2]. Every complete local A-algebra A with residue field & is algebraically isomorphic to the inverse
limit yLnA/n‘UAL. If A is complete local noetherian A-algebra, it can be written as A = A[[ X1, ..., X,]]/1,

where 7 is the k-dimension of the relative cotangent space t% = m4/(m?% + mpA) of A |Til96, Lem. 5.1].

ps

6.1.2 The universal deformation ring RA6

Definition 6.2. Let k be a finite or a local field and let A be a coefficient ring as in Section with
residue field k. Let I' be a profinite group and let G be a generalized reductive A-group scheme. Let
O € cPCL (k) be a continuous G-pseudocharacter of T'. We define the deformation functor of ©

Def§ : Ap — Set
A {© €cPCL(A) |O®4 K =0}

that sends an object A € 2, to the set of continuous G-pseudocharacters © of I over A with © @4k = ©.
If A is an arbitrary local topological A-algebra with residue field «, we define Defg(A) analogously. This is

notation for a single A and shall not extend the deformation functor Defg. To prove pro-representability
of the deformation functor we need to show, that it is compatible with taking inverse limits.

Lemma 6.3. Let A be a coefficient ring as in Section and let A = @12 A; be a projective limit of
local topological A-algebras with A; € 2, endowed with the projective limit topology. Let © € CPCE(/{).

Then the natural map Defg(A) — lim, Defg(A;) is bijective.

Proof. Per definition, we have a pullback diagram

Defg(A) — cPCL(A)

| |

{6} —— cPCL(r)

So it suffices to prove the claim for cPCy, instead of the deformation functor.

69



By Corollary and since C(I'", A) = lim, C(I'", A;), we have

cPCH(A) = Home 7 (A[G*]S, C(I*, A))
= Homg a7 (A[G*]", 1im, C(*, A;))
= lim, Homey,z (A[G*] ", C(I*, 47))
= lim, cPCg(4;)
O
Theorem 6.4. Let x be a finite or a local field and let A be a coefficient ring for k. Let ' be a

profinite group and let G be a generalized reductive A-group scheme. Let © € CPCE(H) be a continuous
pseudocharacter. Then the deformation functor

Defg : Ay — Set

is pro-representable by some inverse limit RT@ of artinian A-algebras with residue field x, endowed with

the inverse limit topology. If « is finite, then Risé is pro-p and in particular complete.

If © is induced by a continuous representation p: I' — G(k), we write Risﬁ = Risé. If the residue field
is a local field, we only have one choice for A and we will usually drop it from notations.

Proof. We adapt the proof of [Chel4, Proposition 3.3]. Let B := B¢, be the A-algebra from Theoremm
that represents PCL : CAlg, — Set. Let ©% € PCL(B) be the universal G-pseudocharacter and
Y : B — K the morphism, that corresponds to © under the identification Homc Alg, (B, k) = PCE;(/@').
We define a set Z of ideals of B as follows: An ideal I C B is in Z, if and only if the following three
conditions hold:

1. T is contained in the maximal ideal m := ker(¢)) associated with .

2. B/I is artinian and local. If k is finite, we equip B/I with the discrete topology. If & is a local field
then B/I is a finite-dimensional k-vector space and we equip B/I with the product topology of &.

3. The image © := 710* of ©" under the map PCy(B) — PCg(B/I) induced by the projection
7l B — B/I is a continuous G-pseudocharacter.

(Z,Q) is a cofiltered poset: If I, J € Z, then we have

1. InJCm.

2. Themap ¢: B/(INJ) — B/I x B/J is injective, hence B/(IN.J) is artinian. Let m’ be a maximal
ideal of B, that contains I N'J. Then IJ C mw’, hence either I C m’ or J C m’. In both cases
m’ = m, since B/I and B/J are local. Hence B/(I N .J) is local.

3. Note, that ¢ is a topological (gmbedding. Thus, for the reduction O of % mod I N .J the
homomorphism O : B[G"]Y" — Map(I'®, B/(INJ)) has image in C(I'™, B/(IN.J)) for all n > 1.

Define the topological A-algebra

RKSE = gB /1
The inverse limit is taken in the category of topological A-algebras. Let TR Ris,g — Kk be the map
induced by the identification B/ ker(¢) & k and let mpes_ := ker(mges_). Each B/I is a local ring with
residue field k, so an element of Ri’j@ is invertible if anAdeonly if its ;\ézuction to k is. This shows, that

RIS is local with maximal ideal mpes_.
,0 A,©

If k is finite, then each B/I is a finite p-group and R%S is pro-p and in particular complete.

We show, that Risé pro-represents Defg and that ¢,©" € Def@(Risé) is the universal deformation of ©,
where ¢+ : B — R”_ is the canonical map. Assume for the proof, that Def is defined on the category

)
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of local topological A-algebras with residue field k. This way we get uniqueness of Risé once we show

)

representability. By Lemma [6.3] we have an isomorphism

Iez
so it suffices to show representability for artinian rings.

If A€ R and © € Defg(A), then © corresponds to a unique homomorphism ¢ : B — A, such that
90" = 0 and ¢ mod my = ¢. We will show, that ker(¢) € Z. We have ker(¢) C ker(y)) = m and

B/ker(¢) C A is artinian local. We have to show, that (@ Qu iy continuous. Indeed @, i@ gu —

$.0% = O is continuous, where ¢ : B/ker(¢) — A is the map induced by ¢. Since ¢ is a topological

ker(¢)@u

embedding 7 is continuous. So there is a unique factorization B — RpS — B/ker(¢) » Aof ¢

over a continuous map Rps — A.

For the converse suppose, that ¢ : pr — A is a continuous local A-homomorphism compatible with the

projections to x. We have to show, that the pseudocharacter V1O is continuous. It is enough to show,
that the universal deformation ¢,0" is continuous. Let 7/ : Ribé — B/I for I € T be the projection map

from the definition of Risg as an inverse limit. The pseudocharacters 7.,0" = 1@ are continuous by

)

definition of Z. For fixed m > 1 and f € A[G™]%’ the map (1,0"),,(f) : T™ — Risé will be continuous
by the universal property of limits. ’ O

Corollary 6.5. Let I' be a profinite group, let x be a finite or local field and let A be a coefficient ring
for . Let © € cPCqy, ,(x) and let Dg be the determinant law attached to © by Theorem m Then
the natural transformation Def, g — Defy, Ds defined as in Proposition is a natural bijection. In

particular there is a canonical isomorphism Risg =~ RY,_ of universal pseudodeformation rings.
) e

Proof. This follows from Proposition [£.58 and Theorem [6.4] O

Now that we have proved existence of universal pseudodeformation rings, we observe, that certain com-
pleted local rings at dimension 1 points = are pseudodeformation rings for a deformation problem with
residue field k(x). It is for this reason, that we also treat cases and from the beginning of this
section.

Proposition 6.6. Let I' be a profinite group. Let s be a finite field and let A be a coefficient ring for
k. Let © € cPChL (k) and let o € Spec(RpSf) be a dimension 1 point and residue field k(x). Assume,

that pr is noetherian. By [BIP21] Lemma 3. 16] k(x) is a local field and the induced pseudocharacter

0, € CPCG(K(Z‘)) is continuous. Let p := ker(x(z) ®@x Risé — k(x)). Then the following two rings are
canonically isomorphic: ’

1. The universal pseudodeformation ring Rg’ .
2. The completion of x(z) @4 Ri% at p.
The isomorphism is given by the induced map r(z) @5 RY 5 — Rg -

Proof. The proof of [BJ19, Corollary 4.8.7] goes through in our setting. O

6.1.3 Noetherianity for topologically finitely generated profinite groups

Lemma 6.7. Let I" be a topological group, A C I' a dense subgroup, O a commutative ring and G a
generalized reductive O-group scheme. Then for all Hausdorff O-algebras A the restriction

cPCL(A) = cPC5(A)

defined by composition with C(I'™, A) — C(A™, A) is injective.

This is a generalization of the density argument in [Chel4, Ex. 2.31].
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Proof. Let ©,0 € cPCL(A) be such that ©a = ©’|a. Letn > 0and f € O[G"%°. Then ©,,(f), 0. (f) :
'™ — A are continuous maps, that agree on the dense subset A™ C I'”, hence must be equal. O

Lemma 6.8. Let I" be a group, let G and H be generalized reductive group schemes over a commutative
ring O and let « : G — H be a homomorphism of O-group schemes, such that the induced map of F-
O-algebras O[H®|H" — O[G*]¢" is surjective. Let A be a commutative O-algebra and let © € PCL(A).
Then ker(0) = ker(:(0)).

Proof. By inspection of the Definition [£:26] of kernel. O

Examples, that satisfy the hypotheses of Lemma can be obtained from Corollary

Proposition 6.9. Let A be the ring of integers of a p-adic local field with residue field x. Let A be a
pro-p local A-algebra with residue field x. The following are equivalent:

1. A is noetherian.
2. my4 is a finitely generated ideal.
3. my/m? is a finite-dimensional k-vector space.

4. my/(my +m?%) is a finite-dimensional x-vector space.

Proof. 1 = 2 = 3 = 4 is clear. The proof of 4 = 1 can be found in Hida’s notes [Hid14, Lemma
2.10]. O

Proposition 6.10. Assume, that A is the ring of integers of a p-adic local field with residue field x. Let
I" be a group, let G be a generalized reductive A-group scheme and let © € CPCE(I{). Then the following
are equivalent:

1. dimH(Defé(/i[s])) < 0.

Rps is a noetherian ring.

Proof. Since RT;@ represents Defg (Theorem [6.4)), the relative tangent space (mRm /(mp +m? R N* of
R"

Ri% over A identifies with Defg(re]). Since R~ is pro-p, the claim follows from Proposmon . O

A,©

Theorem 6.11. Assume, that A is the ring of integers of a p-adic local field with residue field x and
that G is a generalized reductive A-group scheme. Let I' be a topologically finitely generated profinite
group and let © € cPCH (k). Then Rp is noetherian.

Proof. Let A CT be a dense and finitely generated subgroup of I'. We have a sequence of injections

14,46l

Def, 5(ke]) C CPCE(R[E])CPCé(H[{—:D C PC5(k[e]) = Homy (B, k)

By [Stal9, 032W] and [Stal9, 0334] A is universally Japanese. By Proposition Homp (B, k[g]) is a
finite-dimensional k-vector space. By Proposition we conclude, that Risé is noetherian. O

)

6.1.4 Noetherianity for profinite groups satisfying @,

The idea of establishing noetherianity of the pseudodeformation rings RE for a classical group G in case
we only know that our profinite group I' satisfies Mazur’s condition ®, is to prove surjectivity of the

transition map Rp(s 5 R%S for a suitable rational representation ¢ : G — GL,,, and use noetherianity

of Rp(se) In this section we give a criterion in terms of invariant theory, which can be applied to other
reductive groups once their invariant theory is understood. We found the proofs of this section before
the argument in Proposition [£.47| was found, which is of course general and sufficient for applications to

absolute Galois groups of local fields.
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Lemma 6.12. Let T be a group and let ¢ : G — G’ be a homomorphism of generalized reductive group
schemes over a commutative ring @. Suppose, that the map O[G"]G/O — O[G*]% of F-O-algebras is
surjective. Then the map ¢* : Bg, — Bg induced by ¢ is surjective.

Proof. By Theorem it is enough to show, that for each m > 1, each u € (9[G’m]G0 and each
¥ = (71,---+Ym) € I'™, the element ¢, € B, has a preimage in B{,. By surjectivity of O[G’m]G/O —
O[G™¢°, we find some pi' € (’)[G’m]G/0 mapping to p. We claim, that ¢*(t, ) = t,~. Let A € CAlgp,
0 € PCg(A) and fo : BL — A the homomorphism attached to ©. Let fuey : BL, — A be the
homomorphism attached to +(©). By definition fo(t*(tu ) = fuo)(tuy) = t(O)m(1)(Y) = Om (7).
Since this characterizes t*(t, ) uniquely, we have ¢*(t, ) =t . O

Lemma 6.13. Let I" be a profinite group. Let G and G’ be generalized reductive group schemes over a
coefficient ring A with finite residue field x. Let ¢ : G — G’ be a homomorphism of A-group schemes. Let
© € cPCL(k) be a continuous pseudocharacter and we denote by ¢(©) its image in cPCh, (k). Assume,
that the homomorphism BE, /p — Bg/p is surjective. Then the natural homomorphism RKSL ® Risg
is surjective. 7 ’

Proof. Let B := BL/p, B' := B, /p, R := Risé/p, R = RRSL(@)/I’ and let J := ker(B’ — B). By
Nakayama’s lemma it is enough to show, that the natural map j: R’ = lim,,__, B'/I' - lim, B/I=R
induced by ¢ is surjective. Here the ideals Z and Z’ are defined as in the proof of Theorem To an

ideal I € Z, we attach the ideal 571(I) and we claim, that j7!(I) € Z’ and this induces a well-defined
map of cofiltered sets j= : T — T'.

As in the proof of Theorem let ¢ : B — &k be the homomorphism attached to ©. Then 1’ := o j is
the homomorphism attached to ¢(©). Let m := ker(z)) and m’ := ker(¢)'). We observe, that m’ = j~!(m)
and thus j71(I) € m’ for all I € Z. For the second property in the definition of Z’, we observe, that
B'/j~Y(I) — B/I is injective, and surjectivity follows as pB = 0. So B’/j~1(I) = B/I is finite. Let
O € PCL(B) and ©* € PCL,(B’) be the universal pseudocharacters mod p. The pseudocharacter

1
7

Do = 1(r1O") is continuous as the image of a continuous pseudocharacter.

Next, we claim, that the map Z/ — Z, I' — j(I’ + J) is surjective. Indeed, if I € Z, we have just
shown, that j71(I) € 7/ and j(j=*(I) + J) = j(571(I)) = I. We therefore obtain an isomorphism
R=lm, __, B’/(I'+ J) and the map between deformation rings is now a naturally induced map between

limits over Z'.

The image T of R’ in R is compact, since R’ is profinite. It is dense, since for all I’ € Z’, the map
B'/I' — B'/(I' +J) is surjective. As an inverse limit of Hausdorff spaces R is Hausdorff and hence T is
closed in R. It follows, that T'= R. O

Theorem 6.14. Let G € {SL,,, GLy, Sps,,, GSpa,,s SO2n41, O2n41, GO, } over a coefficient ring A with
finite residue field x and assume p > 2 in the orthogonal cases. Let ¢ : G — GLg be the standard
representation of G. Let I' be a profinite group and let © € CPCE(H) be a continuous pseudocharacter.

Then the canonical map RKSL ® Risg is surjective. If in addition I" satisfies Mazur’s condition @,

then Risé is noetherian.

Proof. We have shown in Corollary that for m > 1 the natural maps O/p[GL7 Gl — O /p[G™]C”
are surjective. It follows from Lemma that the maps Bng.A/p — BgMP are surjective. By Proposi-
tion we have surjections Bng /p— Bg/p. Hence we can apply Lemma and see, that the map

O

ps ps . . .
— — _ 1s surjective.
RA,L(@) RA,@ J

6.2 Comparing deformations and pseudodeformations
The main purpose of this section is to compare unframed deformation functors to pseudodeformation

functors when the residue field of our deformation problem is a finite or a local field. We first prove a
version of [BHKT, Theorem 4.10] extended to local residue fields.
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Proposition 6.15. Let I" be a profinite group. Let k be a finite or local field, let A be a coefficient
ring for x and let G be a connected reductive A-group scheme. Let p : I' — G(k) be a continuous
representation and let © € CPCEF (k) be the associated pseudocharacter. Assume, that the centralizer of
7 is trivial in G and that p is G-completely reducible. Then the natural map of deformation functors
Defy 5 — Def A I8 an isomorphism.

Proof. Let A € 5 and © € Def, 5(A). For any n > 1, we define affine A-schemes of finite type X,, := G"
and Y,, := G" J G and let 7 : X,, = Y,, be the projection.

Now fix n > 1 and 71, ...,v, € I, such that the scheme-theoretic centralizer Zg, (z) of z := (g4,...,G,,)
in Gy coincides with the scheme-theoretic centralizer Zg, (p) of p in G,. This is possible, as &[G] is
a noetherian ring. Thus the image of Zg,_(x) in G2 is trivial by assumption. We may assume by
[Mar03, Lemma 9.2], that the subgroup generated by p(v1),...,p(7n) has the same Zariski closure as
p(I"), we denote this topological subgroup of G(k) by H. Since p is Gx-completely reducible, by [BMRO5,
Proposition 2.16] the orbit of z in X, ,; is closed.

In [BHKT, Theorem 4.10], the completion of X,, at © € X,,(x) is defined as the functor X* : A5 — Set
defined by X" (A) := X,,(A) Xx, (x) {z}. Similarly, for fixed h € H, we define the completion of X1
at y := (z,h) € X,+1(x) and the respective completions of V;, and Y, ;1 at (z) and n(y). Let G®/
be the completion of G® at the neutral element. It is a group functor on 2y, representable by a formal
A-scheme.

In analogy to the completion at a point, we define the completion of X,,; at H as the functor X{L\jﬁ :
Ar — Set by Xﬁfll(A) = Xnt1(A) Xx,,1(x) H, where the map H — X,y1(k) is given by h
(915---+9n,h). Similarly we define Yn/\fl{(A) = Ynt1(A) Xy, ,(v) H. We will need these completions

to prove continuity of the representation we construct. One can think of completions at H just as putting
the completions at single points of H into a continuous family.

O,11 determines a natural map A[G"TY — C(T', A), f+— (v = Oni1(f)(V1,---s7m,7)), which is an
element o € Y, 41(C(T', A)) = C(T', Y, +1(A)). Here Y, 11(A) is endowed with the discrete topology if k
is finite and with the subspace topology of some closed immersion into an affine space over A equipped
with the product topology as a k-vector space.

By the universal property of pullbacks and compatibility of the topologies we have defined on point sets

in Section we obtain a unique continuous map g : ' — Ynﬁ’?(A) as indicated in the diagram:

H > Yi1(x)

The proof of [BHKT, Proposition 3.13] goes through verbatim in our setting. Hence G acts freely
on X/ and the projection X/ — ¥;"™®) factors through an isomorphism X/ /GadA — v 1y
particular X/»*(A) — YnA’”(x)(A) is surjective and we can choose a preimage (g1,...,gn) € XM (A) of
the point in YnA’”(I)(A) determined by A[G™Y — A, £ O,(f)(V1s---sVn)-

For fixed h € H and y := (x, h), we have two cartesian squares:

XM (A) ——= YT (4) — {h}

| L

As in the proof of [BHKT) Theorem 4.10], the top left arrow is a G24"\(A)-torsor of sets, so X, —

n

Yn/\_ﬂ(y) is a G*d"\-pseudotorsor. It follows, that XT/L\_‘_I}( — YnA_;_If is a G*"\-pseudotorsor. The square in

74



the following diagram is cartesian, since the horizontal arrows are G*®"\-pseudotorsors and the vertical
maps are equivariant:

The map I' = X/*(A) maps constantly to (gi,...,gn). By the discussion of the topologies on point
sets in Section the diagram is also cartesian in the category of topological spaces. Again by the

universal property, we obtain a continuous map I' — X Y/L\_’S(”)(A).

The composition I' — X5 (A) = Xn1(4) Plogs G(A) defines the desired p with ©, = © as in

n+1
IBHKT) Theorem 4.10]. The second map is continuous by definition of the completion of X,/L\_ﬁ(n) as a

pullback. The projection pr,, ; is continuous by definition of the topologies on point sets Proposition [£.12]
So the composition p is continuous and this finishes the proof. ]

We can now prove a continuous version of Theorem for certain residual representations, which will
be enough for the proof of Proposition [6.32

Proposition 6.16. Let I' be a profinite group, let s be a finite or a local field, let A be a coefficient ring for
k and let G be a Chevalley group over A. Suppose © € CPCg((’)H) is a continuous pseudocharacter, where
O, = k if k is finite. If K is a local field of positive characteristic, assume that I' is topologically finitely
generated and that the reduction © of © to the residue field k of x comes from a G-completely reducible
representation p : I' — G(k') for some finite extension k'/k, which has scheme-theoretically trivial
centralizer in G3¢. Then there exists a continuous (G-completely reducible) representation p : I' — G(R)
with ©, = ©, which is defined over the ring of integers O, of a finite extension x’/x.

Proof. Suppose k is finite. Then Theorem [£.24] provides us with a G-completely reducible representation
p:I' = G(FR), such that ©, = ©. By [BHKT, Proposition 4.7 (iii)], p is continuous. Since I is profinite,
p(T') is finite. In particular there exists a finite extension «’, such that p(I") C G(x').

If k is a local field of characteristic 0, we can argue the same way using [BHKT) Proposition 4.7 (ii)] and
[IBHKT), Proposition 4.8 (ii)].

Assume k is a local field of positive characteristic. Let k be the residue field of O,. By the first step
the reduction © of © to k comes from a continuous G-completely reducible representation 7 : I' — G(k’)
over a finite extension &’/k, which by our assumption has scheme-theoretically trivial centralizer in Gg<.
Choose a finite extension x’/k, such that the residue field of O, is k’. So © ®p,, O, is a deformation of
O ®; k. By Proposition O ®p, O thus comes from a continuous deformation p : I' = G(O,y) of
D. O

Definition 6.17. We say, that a prime p is very good for a simple algebraic group G over an algebraically
closed field, if the following conditions hold.

1. ptn+1,if G is of type A,.

2. p#£2,if Gis of type B,C,D,E, F,G.

3. p#£3,if G is of type E, F,G.

4. p #5, if G is of type Eg.
V\i)e say, that p is very good for a reductive algebraic group G, if it is very good for every simple factor of
G°.

Lemma 6.18. Let I be a group. Let G C GL,, be a reductive group over an algebraically closed field
k of characteristic p > 0 and let p : I' — G(k) be a G-completely reducible representation, which is in
addition irreducible after embedding into GL,, (k).

Assume, that one of the following holds:
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1. pis very good for G*! and G®¢ is connected.

2. (GLy, G) is a reductive pair, i.e. g is a G-module direct summand of g,,.
Then the scheme-theoretic centralizer Zgaa(p) of p in G4 is trivial.

Proof. Beware, that Zgaa(p) is defined as follows. For A € CAlg,, the group Zgaa(p)(A) is defined as
the kernel of the map

G*(A) — Hom(T, G(A)), g gpg *
By Schur’s lemma Zgr,, (p)(k) = Z(GL,,)(k). Let 7 : G — G be the canonical projection. By definition,
Zg(p) = 7Y Zgaa(p)) and Zg(p) = Zar, (p) NG. We get Z(G)(k) C 71 (Zgaa(p)(k)) = Za(p)(k) =
Zaw, (p) (k) N G(k) C Z(G)(k). We conclude, that Zgaa(p)(k) is trivial.

Assuming (1), we see by [Bat-+07, Theorem 1.2] since p is very good for G*! and G®4 is connected, that
Zgaa(p) is smooth and thus trivial as an algebraic group.

Assuming (2), we obtain from [Bat+07, Corollary 2.13], that Zg(p) is smooth. Since GL,, is separable,
ZaL, (p) is also smooth and we have Zgr,, (p) = Z(GL,). We can repeat the above calculation without
taking points:

Z(G) C 1 N Zgaa) = Zalp) = Zawn, (p) NG = Z(GL,) NG C Z(G)

Hence Zgaa = 1. O

Proposition 6.19. Let p: I'r — G(k) be a continuous representation over a finite or local field x and
let A be a coefficient ring for x. Assume, that the unframed deformation functor is representable by Rj.
We have a presentation R = Al[z1,...,2.]]/(f1,..., fs), where r = h}(T'p,ad5) and s = h*(Cp,ady).

Proof. This follows from a standard calculation with cocycles. See e.g. [Til96]. O

Proposition 6.20. Let F' be a p-adic local field with absolute Galois group I'p. Let x be a finite or
local field of very good characteristic p > 0 for G%d, let A be a coefficient ring for £ and let G C GL,
be a Chevalley group over A. Let p: I'r — G(k) be an absolutely G-completely reducible continuous
representation with associated G-pseudocharacter © € CPCEF (k), such that p is absolutely irreducible
after embedding into GL,, (%) and such that H?(T'r, g,) = 0.

Assume, that one of the following holds:

1. p is very good for G%d and G%d is connected.
2. (GLy 7, Gx) is a reductive pair, i.e. gr is a Gg-module direct summand of gl,, =.

Then Risé is formally smooth over A of dimension dim g, - [F' : Q] + h°(T'p, g,) + dim A. In particular
Risg = A[[xla s axTH'

Proof. By Lemma the scheme-theoretic centralizer of p in G29 is trivial. We can apply Proposi-
tion [6.15( to obtain a canonical isomorphism R; = Risé. By Proposition the deformation ring Rz

is isomorphic to A[[x1,...,2,]], where r = h*(T'r, g,). The Euler characteristic formula [BJ19, Theorem
3.4.1] implies, that dim R = dimg,, - [F' : Q] + h°(Tp, gx) + dim A. O

6.3 Dimension of R%S

Let O be the ring of integers of a p-adic field L with uniformizer @ and residue field x, let G be

a Chevalley group over Oy and let © € CPCE(FL) be a continuous G-pseudocharacter. Let Xg :=

Spec(RpOS §/w), where RI()QS 5 18 the universal pseudodeformation ring of © with coefficients O from
L

Theorem [6.4. We define 7
Spo,, (A) := {M € GLgp(A) | M~ =JMTJ1},

where J = (_}, ') for every commutative ring A. In this section, we use the methods developed in [BJ19)
to estimate the dimension of y@ for G = Sp,,, and I' = I'rp the absolute Galois group of a local field
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F/Q,. We assume throughout, that p > 2. Note, that by Theorem RpS 1s noetherian, since I'p is

topologically finitely generated. In lack of reference for this fact, we refer to Chandan Singh Dalawat’s
answer to Mathoverflow Question # 63094. Let ¢ : Spy,, — GLG be the standard representation. By
Proposition the GLa,-pseudocharacter ¢(©) corresponds to a unique determinant law DL@) of

univ

dimension 2n. The pseudodeformation ring RV - of Db@) defined in [BJ19, Proposition 4.7.4] is by

Corollary [6.5|canonically isomorphic to pr (@) We shall use this identification without further mention

whenever we cite results from [BJ19|.

6.3.1 Symplectic representations

Definition 6.21. Let I" be a group and let V' be a representation of I' on a finite-dimensional vector
space over an algebraically closed field. We say, that V is symplectic, if there exists a non-degenerate
antisymmetric I'-invariant k-bilinear form 5:V x V — k.

With Definition[6.21} being symplectic is a property of usual representations. We also know this under the
name of quaternionic representations. Fixing a non-degenerate antisymmetric [-invariant g : V x V —
k, a symplectic representation is a homomorphism I' — Sp(V, ), where Sp(V, ) is the subgroup of
GL(V) consisting of endomorphisms ® € GL(V) with 8(®(x), ®(y)) = B(x,y) for all z,y € V. The
structure theory of bilinear forms [Jac85, Theorem 6.3] tells us that Sp(V, §) is isomorphic to the standard
symplectic group Sp,,, (k), where 2n = dim V.

For semisimple symplectic representations we have the following structure theorem.

Proposition 6.22. Every semisimple symplectic representation of a group I' over an algebraically closed
field k is a direct sum of representations of one of the following two types.

1. An irreducible symplectic representation.

2. A direct sum V @ V*, where V is an arbitrary irreducible representation.

Proof. Let V be a symplectic representation.

We proceed by induction over dim V. If dim V' = 0 there is nothing to show. We assume dimV > 0.
Let W be an irreducible subrepresentation of V' and assume, that 5 : W x W — k is non-degenerate. In
particular W is an irreducible symplectic representation. Then W+ is non-degenerate and I'-invariant
and we may assume W= has the desired form. This implies the claim.

We now assume, that V' has no irreducible subrepresentation on which 5 is non-degenerate. Let W be any
irreducible subrepresentation of V. Since 3 is non-degenerate, there is an irreducible subrepresentation
W' # W, such that 3: W x W’ — k is non-degenerate. (3 is non-degenerate on W @& W', so (W @ W')+
is non-degenerate and I'-invariant. As in the previous case, this implies the claim. O

This motivates the following terminology. We say that a symplectic representation V is symplectically
decomposable, if it can be written as the direct sum of two nonzero symplectic representations, and
symplectically indecomposable otherwise. There are exactly two types of symplectically indecomposable
representations: Those which are irreducible under the standard embedding into GLs,, and those which
are a direct sum W @& W* for some irreducible representation W.

When p > 2, two semisimple symplectic representations over an algebraically closed field are conjugate
over Sp,,, if and only if they are conjugate over GLa,. This is a consequence of the fact, that when
p > 2 the notions of Sp,,,-semisimplicity and GLa,-semisimplicity coincide [Ric88, Corollary 16.10] and
the uniqueness part of Theorem So being symplectic can be seen as a property of GLs,-conjugacy
classes of semisimple representations. It is easy to check, that a representation of the form W ¢ W*
for some arbitrary representation W is always symplectic. We call these representations of pair type. In
general a semisimple symplectic representation is a direct sum of irreducible symplectic representations
and representations of pair type.

It can actually deduced from the theory of Lafforgue’s pseudocharacters and the first fundamental theo-
rems of invariant theory for the general linear and symplectic groups, that semisimple symplectic repre-
sentations over an algebraically closed field k are conjugate over GLa, (k) if and only if they are conjugate
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by a symplectic matrix. The proof we give requires technique developed in the next section, but it is a
surprisingly basic application of G-pseudocharacters.

Proposition 6.23. Let p1,p2 : I' — Sp,, (k) be Spy,,-completely reducible representations over an
algebraically closed field k. Assume, that there is a matrix M € GLg,(k), such that p; = Mpo M 1.
Then there is a matrix N € Sp,,,(k), such that p; = NpoN~L.

Proof. Let us for simplicity of the argument assume that the algebraic groups GL3,, and Sp,,, are defined
over k. The equation p; = Mpy M~ implies, that the associated GLs,-pseudocharacters 0,,,0,, :

k[GL3,]Gt2n — Map(T'®, k) are equal via F-k-algebras (Lemma“ We are using the characterization of
G-pseudocharacters of Corollary- At the same time, the associated Sp,,,-pseudocharacters ©’ o @’ Do -

k[Sps,|5P2» — Map(I'®, k) are mapped to ©,,, ©,, under the standard representation Sp,,, — GLa,. By
the first fundamental theorems for GLg,, [Don92] and Sp,,, [Zub99|, the homomorphism of F-k-algebras
k[GL3, ]Gt — K[Sps,]5P2» induced by the standard representation is (objectwise) surjective, hence
©), = ©),. From the reconstruction theorem Theorem and Sp,,,-complete reducibility it follows,
that p; and ps are conjugate by a matrix N € Sp,,, (k). O

6.3.2 Subdivision of X5

For a point # € Xg, there is a natural G-pseudocharacter ©, € PCL (k(z)) defined after choice of an

algebraic closure x(x) of the residue field x(x) of x. Let P be a property of G-completely reducible
representations over an algebraically closed field, which is stable under G-conjugation and passage to
algebraically closed sub- and overfields. We say = has property P, if the G-completely reducible represen-
tation attached to ©, by Theorem has property P. If Q is a property of representations into GLo,,
we say that a representation p into Sp,,, has property Q, if p followed by the standard representation
L : Spy,, — GLag, has property Q.

In their analysis [BJ19] of the special fiber of the pseudodeformation space for GL,,, Bockle and Juschka
have noticed that irreducible points need not be unobstructed. They have found a convenient character-
ization of obstructed irreducible points [BJ19, Lemma 5.1.1], which allows them to find good dimension
bounds for the obstructed locus. We recall their definition [BJ19, Definition 5.1.2]. It turns out, that for
G = Sp,,, the dimension of the locus of special points for GLg,, is still small enough to get the desired
estimates.

Definition 6.24. Let k be an algebraically closed Z,-field and let p : 'y — GLay, (k) be an irreducible
representation. We say, that p is special, if one of the following holds.

1. ¢ ¢ F and p = p(1).

2. (p € F and there is some degree p Galois extension F’/F, such that p|r, is reducible.

Definition 6.25. We define the following subsets of Y@.

1. YH—SP is the subset of non-special points.

2. Y?C is the subset of special points.

—pair

3. Xg is the subset of points of pair type.
4. Y@ec is the subset of symplectically decomposable points.

=7 _
5. For any of the above subsets Xg := X?@\ {mpes_}.
0,0

Proposition 6.26. Xg = XnleCl U Xprl ' (Xd@eC U Xpw)
Proof. This follows directly from Proposition [6.22 O

Lemma 6.27. Suppose © = ©; ©® O, € CPCFF2 (k) with ©, € CPCFF (k) 0, € CPCFF%(/{) and
a+b = n, where the direct sum is a direct sum of symplectlc pseudocharacters as explained in Section [4.2.3
Then the map R@ — R@ ®(9R%S induced by (01,03) — 01 @ O is finite.

1 2
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Proof. Let ¢ : Spyq — GLag be the canonical embedding and let ¢(©) be the associated GLag-pseudocharacter,
similarly for ¢;(©;). By Lemma BL is a quotient of Rpi and similarly for RBS We know from

1(©)
|BIP21, Lemma 3.23], that the map R~ — R ®@Rps is finite. It follows, that the induced map

«(®) 1(81) 2(92)
DS ps ~ D! < DS ps
R@ — (R (@) ORLQ(@))@R?(O)& is finite. Since there is a natural surjection R (@1)®ORL2(62) —»
R @0 R | the natural map (R _ QR _ )®prs Rp — Rps ®@R5 is surjective. O
0, CH 11(61) 12(02) «(®) O3

Lemma 6.28. Let © = 6, ® @I € CPng2 (k) be a symplectic representation as explained at the end
of Section with ©; € cPCHY (k). Then the map RZ — RZ induced by ©1 — ©1 & O7 s finite.
n L

; ps ps > ps : :
Proof. As in theAproof of Lemma, the map R .(®) R“@l)@)oRLl@l) is finite. By affineness,
the map Rp ' ®, )®ORPS(§) RpS 5.) induced by ©; — (01,07%) is surjective. So the composition
L1 1
RP (SO) RPS(O ) is finite and mduced by ©; — ©; ® 7. Tensoring with R%S , we obtain a finite
L L 1 )

map Rps — Rfs( 5 )® RPS_ R%S & R%s . The last isomorphism can be seen to hold by considering the
1(©1 «(©) 1

correspondmg deformation functors. O

Proposition 6.29.

1. The natural map Yg — YL@) is a closed immersion.
—spcl —irr
2. X%pc is closed in Xg .

—Ppair
3. Xg

is closed in Xg.
—dec . . =
4. Xg is closed in X3.

—nspcl

5. Xg isopen in Yg.

Proof.

1. By Theorem the map R?; «(®) RpS 5 is surjective.
L

2. Y%) 1 is the preimage of X7 ( under the closed immersion X — XL(@) Since X - (® ;1 is open in

X @) by [BJ19, Theorem 4.5.1 (ii)], Xj(pg) is closed in XL(@) and the claim follows.

3. Yg i is the union of the images of finitely many maps as in Lemma

—d
4. X @ec is the union of the images of finitely many maps as in Lemma

Uyd@ec (see Proposition ) The subset Xg Xopel ¢

i — ~snspel
X g is the complement of X @ , Wthh is closed in X g. Hence X %Spc is open in an open subset of
X5

e

5. Yo is open in X< 5> as the complement of Xg X

O

Lemma 6.30. Let f : kK — &’ be a homomorphism between either two finite or two local fields. Let
f: A — A be a local homomorphism of complete noetherian local rings with residue fields x and &’
respectively and assume, that f reduces to f on residue fields. Let T' be a profinite group and let G be
an affine A-group scheme. Let © € ¢cPCL (k) and define ©' =0 ®, K. Then the natural map

RY _, — RY @A

induced by
Def, 5(A) = Def,, g(A®@a A'), © =0 &y A AeAp

is an isomorphism.

Proof. The proof of [BJ19, Proposition 4.7.6] carries over in our setting,. O
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6.3.3 Dimension bounds for G = Sp,,,

The following proposition is the analog of [BJ19, Lemma 5.1.6] for G = Sp,,,.

Lemma 6.31. Let k be a field with 2 € k. Then the symplectic Lie algebra sp,,, , is a direct summand
of gly,, , and of slz;, ; and the corresponding projection maps gly,, , — Py, and sla, g — spy,, , are
equivariant for the adjoint action of the symplectic group Sps,,.

Proof. Recall, that sp,, , = {M € gly,,;, | JM " + MJ = 0}, where J = (_, '¢'). Right multiplication
with J is an isomorphism of k-vector spaces —-J : gly,, , — M2y, (k) and identifies sp,,, k with the subspace
of symmetric 2n X 2n matrices. The symmetrization map a : Moy, (k) — May, (k), M — 5(M+M ") shows,
that symmetric matrices are a direct summand of My, (k). The map gl,,, (k) — gls, (k‘) M a(MJ)J !

is equivariant for the adjoint action of Sp,,, on gl,,, (k): Suppose M € My, (k) and A € Sp,,,(k): Then

a(AMA™* )t = %(AMA‘l +JHATHTMTAT T
and
Aa(MJ)J A7 = %(AMA*1 + AT IMT AT = %(AMA*1 +J N ATHTMTATT

using A € Sp,,,(k), so that A=t = JATJ™! and J' = J~!. We also obtain, that the projection
map gly, . — 8Py, x is split by the inclusion and equivariant for the adjoint action of Sp,,. Since
SPay i C Slon k, the restriction sl i — spy, j is still split by the inclusion and Sp,,,-equivariant. O

Proposition 6.32. Let © € CPC£§2 (k) with & a finite field of characteristic p > 2 and let A be a

coefficient ring for k. Let x € U := Yxr@ be a closed point. By |[BIP21, Lemma 3.16] the residue field
#(x) of x is a local field. Let R be the universal pseudodeformatlon ring of the Spy,- pseudocharacter
O, attached to z. By Proposmon @} there is a finite extension «’ of x(z), such that O/, := 0, ® () K’
is induced by a continuous absolutely irreducible representation 5 : I'p — G(x').

1. (a) Suppose, that z is non-special. Then R%s; is regular of dimension n(2n + 1) - [F : Q,].
(b) If in addition UP<! 2 (), then U™P°! is regular and equidimensional of dimension n(2n+1)-[F :

Q,] — 1.
2. Suppose, that ¢, ¢ F and that z is special. Then dim R , €{nn+1) [F:Qp],n(2n+1)-[F:
Qp + 1}

3. If , ¢ F, then dimU < n(2n+1) - [F : Q).

Proof. Ad (1) (a). If {, ¢ F, then by [BJ19, Lemma 5.1.1 Case I], we have H*(T'p, gly, ,,) = 0. Since 2

is invertible in x’, by Lemma [6.31|spy,, ., is a direct summand of gl,,, ., and so H? (I‘F,sp2n W) = 0. If
(p € F, then we have H? (I‘F,s[gn = 0 by [BJ19, Lemma 5.1.1 case II] By Lemma 5Py, is also a
direct summand of sly,,. It follows, that H?(I'p,sp,,) = 0. Let R, be the universal pseudodeformation

ring of ©/, over a coefficient ring A’ O A with residue field &' ”By Proposition R@, is regular
of dimension dimspy, . - [F : Q] + h°(T'p,8p,, v). By Schur’s lemma hO(FF,g[Qnﬁ,) = 1. Clearly
HO(Tp, g[Qn,,{,) is spanned by the diagonal matrices in gly,, ... These are not contained in sp,,, ,./, hence
hO(FF,SPQn’ﬁ/) =0.

Ad (1) (b). Assume, that x is non-special. By Proposition the universal pseudodeformation ring Rgsz
can be identified with the completion of R%S ®a k(x) at the kernel of the natural map R%S ®p k(z) = Kk(2)
attached to x. Since x is a 1-dimensional point of R%S with residue characteristic p, it follows from [BJ19,
Lemma 3.3.3], that z is a regular point of dimension n(2n+1)-[F : Q,] — 1 of U™P¢l. Let Using C yrspel
be the closed subscheme of singular points. By [Stal9, |02J4] and [Stal9, 01TB]|, the closed points are
dense in U*™. But since all closed points of U™ are regular, U8 must be empty. Since closed points
are dense in U™P<! it follows that U™P<! is equidimensional of dimension n(2n + 1) - [F : Q,] — 1.

Ad (2). Asin (1)(a) h°(Tp, 5Py, ) = 0. Since  is special, we have p = p(1) by [BJ19, Lemma 5.1.1 Case
(I)]. We have H*(T'p, gly,, ) = Homr, (5, p(1)) = &’ since pis irreducible, hence h*(L'p, 5py,, ) < 1. The
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case when h*(I'p,spy, ) = 0 is already covered in Proposition so we assume h?(I'p, spy,, /) = 1.
By the Euler characteristic formula [BJ19, Theorem 3.4.1]

R (Tp,pg, ) =n2n+1)[F: Q) + 1
and by Proposition , RY, is a quotient of x'[[z1, ... s Tn(2n+1)[F:Q,)+1)] Dy an ideal generated by at

most one element, so the assertion follows.

Ad (4). Let € U be a closed point. Cases (1) and (2) imply, that dim R < n(2n+1)[F : Q,] + 1. As
in (1)(b), identifying Rg’ with a completion of R%S ®a k(x) and applying |[BJ19, Lemma 3.3.3], we see
that U has dimension < n(2n + 1)[F : Q). O

—spcl

Proposition 6.33. Assume G = Sp,,,. Then dim X < 2n?[F : Q)] + 1. In particular if n[F : Q,] > 3

— —specl —
and if X contains a non-special point, then dim Xsofpc <dim Xg — 2.

Proof. Since Y%JCI is a closed subspace of Yj?g) by Proposition [6.29| and the latter can be identified

with the special locus of the pseudodeformation space of the determinant law D attached to t(©) by
Theoremm we can take the estimate [BJ19, Theorem 5.3.1 (i)] to obtain dim Y%pd <2n?[F: Q] +1.
If Xg contains a non-special point, then dim Xg > dim Y%Spd =n(2n + 1)[F : Q,] by Proposition

1)(b). We get dim X= — dim X2 > n[F: Q,] — 1> 2. O
g 6 e) p

Theorem 6.34. Assume G = Sp,,,.

1. dimXg* < n(2n+ 1)[F : Q,] — 4(n — 1)[F : Q).
In particular, if Yg contains a non-special point, then dim Yd@ec < dim Yg —4.

—>pair

2. dimXg < n’[F: Q)+ 1.
In particular, if Yg contains a non-special point and n[F : Q,] > 2, then dim Y%alr < dim y@ - 3.

3. dim Xg < n(2n+ 1)[F : Q).
In particular, if Yg contains a non-special point, then equality holds.

Proof. We make an induction over n, so we assume the entire theorem has been proved for all n' < n.
Since our assertions are only about dimensions, by Lemma we may assume that ¢(0) comes from a
representation I'y — GLa, (k) and that the irreducible constituents are absolutely irreducible.

—d .
1. If n = 1, then the decomposable locus X@ec is empty, so we may assume n > 2. There are up to
isomorphism only finitely many ways to write © as a direct sum of two symplectic pseudocharacters
©1 & ©5. Here the notion of direct sum is that for symplectic pseudocharacters, introduced in

Section [£.2.3] By Lemma [6.27} the map

wdee X

0.8, @1XOX§2 —>X§

is finite. We have an inclusion
X dec (X 3o X,
© - U Lél,éz( (21 XO 92)
©.40,=6

where the right hand side is a closed subset of Yg. Suppose © = O @ O, is a decomposition into
an Spy,-pseudocharacter ©1 and an Spy,-pseudocharacter O for a + b = n with a,b > 1. Then

since Lgcé is finite and by part (3) of the inductive hypothesis, we have

1,02
dim Lieci (Y§l §Y6z) S dlm(Y6l QY@2)

01,02
<a(2a+1)[F: Qp] +b(20 4+ 1)[F : Q]
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Calculating

n(2n+1)[F : Q] —a(2a+ 1)[F : Q] — b(20 + 1)[F : Qp)
= 4ab[F : Qp] > ( IJPbiB dab) - [F : Qp) =4(n—1)[F : Q)
aa,bz_ln
we obtain the desired bound

dim Xe* < n(2n + 1)[F : Q] — 4(n — 1)[F : Q,]

It YE contains a non-special point, then by Proposition m (1)(b), we have a lower bound
dim Xg > n(2n + 1)[F : Q,]. Since 4(n — 1)[F : Qp] > 4, this implies the assertion.

2. There are finitely many ways to write © = 0, @@I for some GL,,-pseudocharacter ©; and we may
assume, that there is at least one way. The sum yields an Sp,,-pseudocharacter, as explained in

Section By Lemma the map

pair | Y
‘s, 1 Xg, 7 Xg

induced by ©; — O @ O7 is finite. We have an inclusion

—=pair ir ~
X@ g U L%afr (Xél )

8,00 -0
and the estimate o o
dim Xy <dimXg, =n’[F: Q) +1

where the last equality follows from [BJ19, p. 5.4.1] after applying the bijection Corollary
If Xg contains a non-special point, we obtain a lower bound as in step (1) and the estimate
n(n+ 1)[F : Qp) — 1 > 3 implies the assertion.

3. Let us recollect all upper bounds, we have established.

— (1)(b)
dim Xgpd -§

—spel 6331
diInXb@—pc1 < om?.

n2n+1) - [F: Q]
[F:Qp+1

. =dec (1)
dim Xg = < n(2n+1)[F: Q] —4(n — 1)[F : Q]
. —=pair (2 2
dim X5 < n7[F:Qp]+1
Using th ification Xg = Xo'* UX2” UXg® UXZ" from Propositi btain th
sing the stratification =4 UAg UAg UAg lrom Proposition 6.26; we obtain the
desired dimension bound for Xg. If Xg contains a non-special point, we obtain equality from
Proposition (1)(b).

O

Corollary 6.35. Assume G = Sp,,, and that © comes from a residual representation p : I'r — Spy, (),
which is absolutely irreducible under the standard embedding into GLa, (). Then dim Xg = n(2n+1)[F :
Q] and in particular Yg contains a non-special point.

Proof. By Proposition and Lemma Yg identifies with the deformation functor of p. From
[Ti196, Proposition 5.7] and the Euler characteristic formula [BJ19, Theorem 3.4.1], we know, that Xg >
h*(Tp,5ps,) — h2(Tr,8pa,) = hP(Lp,5p,,) + n(2n + 1)[F : Qp]. By absolute irreducibility and Schur’s
lemma h°(T'r,spy,) = 0. So from Proposition we see, that the special locus Ygd is strictly
contained in Y@ and there must be a non-special point in Y@ O

Remark 6.36. It is likely that the arguments of Section [6.3.3] carry over to G = GSpy,, with minor
modifications. It is also likely that in future work we will be able to deduce the existence of non-special
points for arbitrary residual Sp,,,- and GSp,,-pseudocharacters, so that in Theorem M (3) equality
holds.
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7 The rigid analytic space of G-pseudocharacters

Let ' be a profinite group, that satisfies Mazur’s condition ®,. In [Chel4, Thm. D] Chenevier shows,
that the functor Xy : Anf@i — Set on the category Ang, of rigid analytic spaces over Q,, that associates

to every Y € Ang, the set cDets (O(Y)) of continuous d-dimensional determinant laws with values in
the global sections O(Y'), is representable by a quasi-Stein rigid analytic space. Here O(Y") carries the
topology of uniform convergence on open affinoid subsets. By Proposition the set cDet} (O(Y))
identifies with cPCng((’)(Y)). The goal of this section is to generalize Chenevier’s construction to
generalized reductive group schemes.

We fix notations:

e Let I' be a topologically finitely generated profinite group.

o Let K be a finite extension of QQ, with ring of integers Ok, uniformizer w and residue field F.
o Let Aff x be the category of affinoid K-algebras.

e Let Ang be the category of rigid analytic spaces over K.

e Let G be a generalized reductive group scheme over Ok

Definition 7.1. Define X : Affx — Set as the functor, that associates to every affinoid K-algebra A
the set of continuous G-pseudocharacters cPCg(A).

All of Chenevier’s results carry over in case G = GL4 by base change from Q, to K. Using invariant
theory, it is certainly possible to give a direct construction of X from Xqi,, for the classical groups
SLy, Sp,,, GSp,,; Op, or GO,,. They will be closed subspaces of Xgr1,,. We will not do this, but instead
give directly a functorial construction for general G, which does not depend on the choice of a faithful
representation of G.

7.1 The formal scheme of G-pseudocharacters

Before we construct the p-adic analytic space of G-pseudocharacters, we define an auxiliary functor on
the level of admissible Og-algebras, which will turn out to be representable by a disjoint union of formal
spectra of deformation rings of residual representations, recovering [Chel4, Cor. 3.14] in case G = GLg.

Definition 7.2. Let A be a complete Hausdorff commutative topological ring. We say, that A is admis-
sible, if 0 has a neighborhood basis of ideals, there is an ideal I C A, called ideal of definition, such that
an ideal J C A is open if and only if there is some n > 1, such that I™ C J.

Lemma 7.3. Let A be a commutative topological ring. The following are equivalent:

1. A is complete linearly topologized and has an ideal of definition. This is the notion of admissiblity
defined in [Stal9, 07ES].

2. A is, in the category of commutative topological rings, isomorphic to a cofiltered limit of discrete
rings I'LHA Ay, where the index category posesses a final object 0 and the transition maps Ay — Ay
are surjective with nilpotent kernel. This is the notion of admissibility defined in [Chel4] §3.9].

This is [Gro60, Lemme 0.7.2.2], we recall the proof for convenience of the reader.

Proof.

(1) = (2) Let I C A be an ideal of definition. Since A is complete, we have A = Hm A/I™. The
final object of our index category is A/I. The kernel of the projection map A/I"™ — A/I is nilpotent for
all n.

(2) = (1) As an inverse limit of discrete rings, A is complete. We claim, that I := ker(A — Ap) is an
ideal of definition. Let U C A be an open neighborhood of 0. We have to show, that U contains a power
of I. By definition of the topology on the projective limit, there is a finite number of indices A1, ..., A,
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and open neighborhoods U; C Ay, of 0 € Ay,, such that ﬂ?zl W)Til(Ui) C U, where 7\ : A — A, are the
projection maps. Since the Ay are discrete, we can take U; = {0}. Since the index category is cofiltered,
there is an index object y, that admits maps p — A; for all i = 1,...,n. It follows, that ker(m,) C U.
Let m be a natural number, such that ker(A4, — Ag)™ = 0. We conclude I"™ C ker(m,) C U. O

Definition 7.4. Let X5 : Admp, — Set be the functor, that attaches to an admissible Ox-algebra A
the set of continuous pseudocharacters cPCg(A).

Next, we will define a set which will lateron be the index set of a disjoint decomposition of X into open
subspaces.

Definition 7.5. We denote by | PCE | C PCE the subset of closed points z with finite residue field k,,
such that the canonical G-pseudocharacter ©, € PCr(k.) attached to z is continuous for the discrete
topology on k.

Although the above definition is possible in general, we will always assume, that the Og-algebra BE
representing PCE is finitely generated.

Lemma 7.6. Let A be a discrete Og-algebra and © € cPCg(A). Then © factors over an open normal
subgroup A <T.

Proof. The idea is the same as in the proof of Proposition Let 0 = (01,...,0,) € I'" be a tuple
of topological generators of I and let ¥ be the subgroup generated by o1,...,0,.. By [Ses77, Theorem 2
()], Ok [GT+1)%" is a finitely generated O-algebra. Let fi,. .., fs € Ox[G"T]C" be a set of Of-algebra
generators. Since A is discrete and I'" ! is a profinite set, a map ©,41(f;) : ["t! — A is constant on
a finite partition of open subsets of I'"*!. Such a partition can be refined to consist of open sets in a
topological basis of I"*!. So we can assume, that the partition of I'"*! consists of products of sets in a

topological basis of I'. Refining further, we can assume, that the basis of " consists of cosets of an open
normal subgroup A; of I'. We take A := ();_, A; and observe, that for all v € "1, all § € A and all

f € OK[GTJFI}GO, we have ®T’+1(f)(717 s s 1) = ®T+1(f)(717 cee 777‘76)'

Letm > 0,7 = (71,...,7m) €™, f € OK[G’”]GO and § € A. Our goal is to show, that ©,,,(f) (71, ..., Ym) =
O (f)(71,- .., ¥md) and therefore A C ker(O) (see Definition [4.26)). Since ©,,(f) is continuous and A is
discrete, we can choose v = (71,...,7,,) € ™ close enough to ~, such that both ©,,(f)(71,...,7m) =
Om (V- 575 and O, (F) (11, -+ -y ¥md) = Om(f)(V, ..., 75,0) hold. There is a homomorphism of
free groups « : FG(m) — FG(r), such that the composition with the projection FG(r) - T', z; — s;
maps z; to v,. We extend o to a homomorphism & : FG(m+1) — FG(r +1), such that &(xm11) = Trg1.
Let n : FG(m) — FG(m + 1) be defined by n(z;) := x; for i <m — 1 and n(m) = TmTm+1-

Using, what we have just proved, we conclude:

Om ()11, m0) = On(f)(11, - -, Mm0)

= Om+1(f) (Vs -5 Vims 0)

= 0,11((fM) (o1, -, 0.,0)
= 0,11 ((fM*) (o1, 00, 1)
= Oma1 (V- Ymr 1)

= Om ()5 7m)

=O0m ()1, m)

By the homomorphisms theorem Lemma O factors over a unique pseudocharacter of I'/A. O

We have a more explicit description of | PCE |:

Lemma 7.7. There is a canonical bijection between |PCE~| and the set of continuous G-completely
reducible representations I' — G(F) up to G(F)-conjugation and the F-linear Frobenius action on G(IF)
on the coefficients.

Proof. Let S be the set of continuous G-completely reducible representations I' — G(F) modulo the action
of G(F) by conjugation and modulo the action of the F-Frobenius of F on the entries of G(F). Let S —
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| PCE | be the map, that maps an equivalence class [p] to the well-defined and unique point in the image
of Spec(F) — PCL, attached to 0O,. Surjectivity follows from the reconstruction theorem Theorem
together with the fact, that a continuous pseudocharacter over F factors over an open normal subgroup
Lemma For injectivity suppose p, p’ : I' — G(F) are such, that the attached pseudocharacters 0,
and ©, are supported on the same point z € |PC5 |. Then there are F-homomorphisms f, f’ : k, — F,
such that ©, ®y_ s F = O, and O, Xy, s F= ©,. We can take a power of the [F-Frobenius ¢ : F — T,
such that p o f = f’, in particular ©, ®F ., F = ©,. The uniqueness part Theorem tells us, that

P OF,, F and p’ are conjugate. O

Lemma 7.8. Let I be a finite group and let G be a generalized reductive group scheme over Ok /@w" Ok .
Then Bg is finite as a set.

Proof. We first show that Bg ®TF is a finite-dimensional F-vector space. By Proposition we already
know that Bg ® F is a finitely generated F-algebra. By Theorem the canonical map Repg’D(F) —»
PCL(F) = HomCAlgﬁ(Bg ® F,F) is surjective. But Repg’D(F) is finite, so B ® F has finitely many
F-points and thus its nilreduction (Bg ® F);eq must be a finite product of F with itself. The nilradical
N := Nil(Bg ®F) is finitely generated and hence nilpotent. So by induction each N is a finitely generated
(Bg ®@TF)req-module. It follows, that Bg ®F is a finite-dimensional F-vector space. Hence Bg /o is finite.
Since Bg is w’-torsion, there is a finite descending sequence

BL DwBE D w?BLD---20

With quotients wiBg / w”lBg. These are finitely generated Bg /wo-modules, hence finite and thus Bg
is finite. O

Lemma 7.9. Let A be an admissible Og-algebra. Let © € cPCL(A) be a continuous pseudocharacter.
Let A’ C A be the closure of the Og-subalgebra of A generated by ©,(f)(v1,...,7n) for all n > 1, all

feOk [G"]G0 and all (y1,...,9,) € I'™. Then A’ is an admissible profinite Ox-subalgebra of A.

Proof. Assume, that A is discrete. Then there is some r > 1, such that @w"A = 0. By Proposition
© factors over the Go, /mr-pseudocharacter ©/w" := © ®p, Ok /w". By Lemma O/w" factors

/A of F’Cg/oA Jor is finite by Lemma E
K/

Ok /="

through an open subgroup A < TI'. The representing ring Bg
r/A
Gog /=’

By Theorem [4.46{ A’ is the image of the map B
hence admissible.

~ — A attached to ©/w", in particular A’ is finite,

Now let A = 1'&11/\ A, be a presentation of A as an inverse limit of discrete rings as in Lemma @ Let
mx : A — A\ be the canonical projection and let ©y := m,,0. Since A is discrete, the image A’ of A’
in A, is finite by the previous step. Since ker(A} — Aj) C ker(Ax — Ao), the former kernel is nilpotent
for all A. It follows from Lemma that A’ = @1/\ A’ is admissible. O

We have just shown, that © can be uniquely descended to a continuous A’-valued pseudocharacter.

Definition 7.10. If A’ in Lemma is local, we say that © is residually constant.

In Lemma we will see that A’ is a finite product of local profinite admissible Ok-algebras. So if ©
is not residually constant it is essentially a finite product of residually constant pseudocharacters, defined
over different connected components of A’. This picture will be crucial for the description of the functor
of points of the generic fiber in Theorem

Suppose O is residually constant. In Lemma the natural map Bf — Af) (with Aj as in Lemma
is surjective by definition. The radical of the kernel of this map does not depend on the choice of the
presentation of A’ as an inverse limit as in Lemma It is a maximal ideal of BL with finite residue
field and therefore determines a closed point z € | PC |. The residue field of A’ is canonically isomorphic
to the residue field k(z) of z. Therefore © can be reduced to a continuous k(z)-valued pseudocharacter
along the map A" — k(z). This reduction is the pseudocharacter O, attached to z.

Proposition 7.11. Let A be a local profinite admissible Z,-algebra with residue field k. Then A admits
a unique Teichmiiller lift w : £ — A*.
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Proof. Let m be the maximal ideal of A. The residue field & is finite of order ¢ := |k| a power of p. We
have A* = A\ m. First, suppose A is finite. It follows, that |[A*| = |A| — |m| and A* is a product of
finite groups E and T with |E| = ¢ — 1 and T = |m| of p-power order. Since p does not divide ¢ — 1, T
must be in the kernel of the canonical projection A* — k*. It follows, that the inverse of the restriction
of the projection to E is a unique Teichmiiller lift. If A = lim Ay, all Teichmiiller lifts wy : k™ — A
constructed in the previous step are compatible and define a Teichmiiller lift for A. O

Theorem 7.12. Let z € |PCg | and let X¢.. : Admp, — Set be the functor, that attaches to an
admissible Ox-algebra A the set X . (A) of continuous pseudocharacters © € cPCg(A), such that © is
residually constant and equal to ©.. Then X . is representable by RP®, which is a complete noetherian
local Og-algebra with residue field k(z).

Proof. Let © € X¢,,(A). By Lemma O descends to an A’-valued pseudocharacter for some admissible
profinite Og-subalgebra A’ C A, which we will also denote by ©. Using the Teichmiiller lift of A’
(Proposition , we see that there is a finite unramified extension L/K, such that Oy, has residue field
k(z) and A’ is an Op-algebra. By Proposition © can be regarded as a Go,-pseudocharacter. As
such it is a lift of ©, in the pseudodeformation functor Defg, : 2o, — Set. It follows, that Defg_ and
X,. are naturally isomorphic as functors on 2Ap,. By Theorem the pseudodeformation functor
Defg_ is representable by a complete noetherian local Op-algebra with residue field k(z). O

From now on, we denote by X . the formal scheme Spf (jo).

Lemma 7.13. Let A be a profinite admissible Og-algebra. Then A is a finite product of local profinite
admissible Og-algebras.

We emphasize, that Lemma [7.13] holds independently of any noetherianity hypothesis.

Proof. We only show, that A is a finite product of local rings, the rest of the claim then follows easily.
Let m be a maximal ideal of A and let I be an ideal of definition of A. Then {(I"™ +m)/m},>1 is a system
of open subgroups of A/m, that induces the quotient topology of A/m. But I"™ 4+ m is either m or A,
so A/m is either discrete or indiscrete. Since F is discrete and there is a continuous injection F — A/m
induced by the natural map Ox — A, we have that A/m is discrete, hence finite. So there is some n > 1,
such that I +m = m, hence I C m.

We know that mA/T is a maximal ideal of A/I and by [Mat70| (24.C)], we know that A/T has only finitely
many maximal ideals. It follows, that A has only finitely many maximal ideals. Since A is commutative,
it follows that A is semilocal and thus the claim follows from [Mat70, (24.C)]. O

Lemma 7.14. Let A be an admissible local Og-algebra and let © € cPCg(A). Then © is residually
constant.

Proof. According to Lemma there is an admissible profinite subring A’ C A, over which © is defined.
From Lemma we obtain a system of primitive orthogonal idempotents for A’, which also leads to
a product decomposition of A. It follows, that the only nonzero idempotent of A’ is 1 and that A’ is
local. O

Corollary 7.15. The functor X¢ : Adme, — Set is representable by the coproduct Hze‘ PCL, | Xag,, in
the category of formal schemes over Og.

Proof. It is clear, that on the level of Zariski sheaves on Adme, , there is an injective natural transfor-
mation Hze\ch | X¢,. =& Xg. We want to show surjectivity. Let A be an admissible Ok-algebra. If
O € Xg(A), then by Lemma O is defined over a profinite admissible Ok-algebra, so we may assume
A is profinite. Then by Lemma A is a finite product A =[], A; of local profinite Ok-algebras A;.

Since every continuous G-pseudocharacter over an admissible local Ok-algebra is automatically residually
constant (Lemma 7 the map of sets (][, X¢,.)(A4i) = 1. X¢,2(Ai) = Xc(4;) is bijective for all i.
This will be used in the third equality below. Recall also, since the decomposition of A is finite, we have
Spf(A) = [T, Spf(A4;) in the category FScho, of formal Og-schemes.
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We calculate
Hompscn,,, (Spf(A H Xq,2) H Hompsene, (Spf(A H Xa.:)
= Hi Hz HomFSchoK Spf( i)a xG,z)

= Hi Hompseno . (Spf(4i), Xc)
= Hompseno, (SPE(A), Xg)

7.2 The rigid analytic space of G-pseudocharacters

The goal of this subsection is to construct the p-adic analytic space of G-pseudocharacters, which will be
obtained by taking Berthelot’s generic fiber (see [Ber96, (0.2.6)] or |[De 95, §7]) of Xg. Let FSchlgid be
the category of locally noetherian adic formal schemes X over Spf(Of) such that the mod w reduction
Xea of X is a scheme locally of finite type over Spec(F).

We briefly recall the features of Berthelot’s functor. It is a functor
()ie. FSchh““‘Gl — Ang
X X8

from FSchlna‘d to the category of rigid analytic spaces over K.

If X is of the form Spf(A) for some quotient A = Ok|[[z1,...,2,]]/(f1,--., fs) of a formal power series

ring Ok |[z1, ..., x,]], the space X™& will be a closed analytic subvariety of the rigid analytic open unit
disk D™ of dimension n, defined by vanishing of the functions fi,..., fs interpreted as analytic functions
on D™

If A is an affinoid K-algebra, a model of A is a continuous open Og-algebra homomorphism A — A for
some admissible Og-algebra A, such that the induced map A[1/w] — A is an isomorphism. For a fixed
model A — A, there is a canonical map

LA }:G(.A) — Xg(A)

that maps a continuous pseudocharacter with values in A to its base change to A.

We also have a natural map

¢ lim Xo(A4) = Xo(4) ©)
A

where the colimit on the left hand side is taken over the category of all models of A with continuous ring
homomorphisms over A. The next goal is to show, that ¢ is bijective. For d-dimensional determinant
laws (i.e. G = GLg4 here by Emerson’s isomorphism) and K = Q,, and this has been shown by Chenevier
in [Cheld] Lemma 3.15].

Lemma 7.16. Assume, that G is connected. Let A be an affinoid K-algebra and let © € X (A).

1. For all m > 1, all f € Ox[G™]% and all v € '™, we have that ©,,(f)(y) is contained in the
subring A° of power-bounded elements of A.

2. Assume, that I is topologically finitely generated. Then ¢ in Equation @ is bijective.
3. Assume, that I is topologically finitely generated. If A is reduced, then X5 (A°) = X (A).

Proof.

1. An element of an affinoid K-algebra is power-bounded if and only if for every maximal ideal m C A,
its image in A/m is power-bounded. This follows from [BGR84}, Proposition 6.2.3/1] and the
boundedness of the supremum norm [BGR84l §6.2.1 and Corollary 3.8.2/2]. We may thus assume,
that A is a finite field extension of K and that A° the ring of integers of A. The claim follows
directly from [BHKT) Theorem 4.8 (i)].
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2. ¢ is injective, as every model A of A maps to a w-torsionfree model (take the image of A in A)
and for a torsionfree model A, the map ¢4 is injective. We are left to show surjectivity of ¢, so
let © € Xg(A) and let A C A be some (torsionfree) model of A. Since we assume, that T is
topologically finitely generated, we can choose a finitely generated dense subgroup ¥ C I'. Let
o1,...,0. € ¥ be group generators of X.. Let fi,...,fs € OK[GT]GO be Ok-algebra generators,
which we find by [Ses77, Theorem 2 (i)].

We define a compact subset C :=JI_; ©,.(f;)(I'") € A. As A is an open subset of A, C meets only
finitely many additive translates of A in A. So there are k; € C with 4 = 1,... ¢, such that

t
CCD (ki+A)
i=1

We claim that the algebra A’ := A(kq,...,ks) (the closure of A[ky,...,ks] in A) is a model of A
containing C. First, since A is open in A, A’ is also open. It is also clear, that A'[1/w] = A. For
admissibility of A’, we note, that by (1) each of the k; is power-bounded, so there is a continuous
surjection by a Tate algebra A(T},...,Ts) — A’ mapping T; — k;, and this map is also open, since
after inverting w, we obtain a surjection A(T7y,...,Ts) — A, which is open and a quotient map
by the open mapping theorem for p-adic Banach spaces [BGR84) §2.8.1]. Tt follows, that A’ is a
complete Hausdorff ring, which carries the I-adic topology for some ideal of definition of A and is
therefore admissible.
We claim, that © actually takes values in A’, so that © is the image of a pseudocharacter in
Xa(A'), as desired. Let m > 1, f € Og[G™]¢ and § € £™. As in the proof of Lemma we find
a homomorphism « : FG(m) — FG(r), such that 0,,(f)(d) = 0,(f%)(c). Since f¢ is in the Ok-
algebra span of the f; and ©,(f;)(c) € A’ by construction, we find that 0, (f*)(c) € A’. Overall,
we have shown that ©,,(f)(X™) C A’. Since ©,,(f) : I'" — A is continuous, I'™ is compact, A is
Hausdorff and A’ is closed in A, we conclude that ©,,(f)(I'"™) C A’ and therefore © takes values
in A'.

3. This is a direct consequence of (2), since if A is reduced, then it is known that A° is the terminal
model of A [Cheld} §3.14.1].

O

Definition 7.17. Let z € |PCy | and define for every affinoid K-algebra A the set X¢ .(A) as the set
of © € X (A), such that there exists a model A — A, such that © is the image of a pseudocharacter
ONS %G’Z(A).

Suppose A is an affinoid K-algebra and z is a point in the maximal spectrum of A with residue field L.
We know, that L is a finite extension of K.

Definition 7.18. The reduction map at x is defined as red, : Xg(A) — | PCY, |, where for © € Xg(A),
red, (©) shall be the reduction of the unique pseudocharacter © € X (OL) (see Lemma (3)) mapping
to O ®4y L.

Definition 7.19.

1. Define X : An}? — Set as the functor, that associates to every rigid analytic space Y € Ang the
set of continuous G-pseudocharacters cPCg(O(Y)).

2. For z € |PCL |, let X be the subset of Xg of G-pseudocharacters ©, such that for all z €
Specmax(A), the specialization ©, of © at z defined as the image of © under X¢(A) — Xg(k:) —
X (Oy,) is residually equal to z.

The proofs of Lemma and Theorem are the same as the proofs of [Cheld, Lemma 3.16] and
[Cheld, Theorem 3.17].

Lemma 7.20. Assume, that G is connected. Suppose A is an affinoid K-algebra and z € | PCL |. Then

Xe.2(A) ={0 € X¢(A) | Vz € Specmax(A) : red,(0©) = z}
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Proof. Let © € X(A), so that for all z € Specmax(A), we have red,(©) = z. By Lemma[7.16] (2), there
is some model A — A and some O € X;(A) that maps to ©. Let A’ C A be the ring attached to ©' as
in Lemma We know, that A’ is a product of local Ok-algebras [[;-; A;. The idempotents of this
decomposition induce a decomposition of A4 into a product []}_; A;. Let x; € Specmax(A;) be a closed
point with residue field L;. By assumption, the kernel of the composition B, — A} — Oy, /mo, is the
maximal ideal of B, that corresponds to z. By definition of A’, the map BL — A’ — A’/ Jac(A') is
surjective and thus A’ itself must be local. This shows, that O is residually constant and residually equal
to O,, s0 O € X .(A'). It follows, that © € X¢ ,(A). O

Lemma in particular implies, that XGJ is representable by f{ggz

Theorem 7.21. Assume, that G is connected. Then X is representable by the quasi-Stein space
Hz€| PCL | xg%z

Proof. To verify, that f{gg = Hze\ch | %Eifz represents X¢ it is enough to check that the functor of

points agree on affinoid analytic spaces Y € Ang, since X and the functor of points of xgg are sheaves
for the Zariski topology on Ang. We have

Hom (Y, X08) = lim Homgscn o, (Y, Xa)
Y=Y

= lim X6(0())
y—-Y
= Xc(O(Y)) = Xa(Y)

Here the first equality is the universal property of Berthelot’s generic fiber functor [De 95| §7.1.7.1], the
third equality is using Lemma (2). O

Remark 7.22. In [PQ23] we will show, that a continuous representation p : I' — G(A) is G°(A)-
conjugate to a representation with values in G(A°). In particular the same arguments show, that
Lemma Lemma and Theorem hold for generalized reductive group schemes.

Remark 7.23. It would also have been possible to take the adic generic fiber X%d X Spa(0x) Spa(K) of
the adic space X2 attached to Xg. It is canonically isomorphic to X2. Although we found no advantage
in the usage of adic spaces so far, this point of view might be more natural for further applications.
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8 Symplectic determinant laws (joint with M. Moakher)

In joint work with Mohamed Moakher, we have developed a notion of symplectic determinant law for
Spyg (d > 1) over Z[3] in analogy to Chenevier’s definition |[Chel4| for GLs. We give a classification
of symplectic determinant laws over fields and show that every symplectic determinant law over an
algebraically closed field comes from a unique semisimple symplectic representation. We prove, that
the natural map from the GIT quotient of framed symplectic representations into the moduli scheme
of symplectic determinant laws is a finite universal homeomorphism. We also establish a comparison
bijection with Lafforgue’s Sp,,,-pseudocharacters provided the coefficient ring is reduced. At last we
compute generators of the invariant algebras A[M]¢ and A[G™]%, where G € {Sp,, O4, GSpy, GO4}
over a commutative ring A generalizing results of Zubkov [Zub99].

Introduction

In [Chel4] Chenevier has given a definition of pseudocharacters of algebras over arbitrary base rings
using the notion of multiplicative d-homogeneous polynomial laws. He calls them determinant laws and
we follow this terminology. The goal of this paper is to give a definition of determinant laws of involutive
algebras for the symplectic groups Sp,,, over arbitrary Z[%]—algebras and study their general properties
in analogy to Chenevier’s determinant laws.

The first and most important result we obtain is that geometric points of our symplectic pseudocharacter
variety (see Proposition [8.15)) are in bijection with conjugacy classes semisimple symplectic representa-
tions. This is the symplectic analog of [Cheld, Theorem 2.12].

Theorem E (Theorem . Let k be an algebraically closed field (2 € EX) and let (R,o) be an
involutive k-algebra. There is a bijection between isomorphism classes of semisimple 2d-dimensional
symplectic representations of (R,0) over k and 2d-dimensional symplectic determinant laws of (R, o)

over k given by sending p : (R,0) — (Ma4(k),]) to (det op, Pfop).

Secondly, we obtain a description of Cayley-Hamilton x-determinant laws lifting absolutely irreducible
symplectic (or orthogonal) representations. This is the symplectic and orthogonal analog of |[Chel4,
Theorem 2.22].

Theorem F (Proposition . Let R be an A-algebra with involution equipped with a d-dimensional
Cayley-Hamilton *-determinant D : R — A such that D = det op for some absolutely irreducible or-
thogonal (resp. symplectic) representation p : (R,0) — (Mg(k), ") (resp. (Mgy(k),j)). Then there exists
an isomorphism of involutive algebras p : (R,0) — (My(A), ") (vesp. (My(A),j)) lifting p such that
D = det op.

We also study the connection between the moduli stack of symplectic representations and the quotient
stack of framed symplectic representations and obtain the following expected equivalences. This is the
symplectic analog of [Wanl3, Theorem 1.4.1.4].

Theorem G (Theorem [8.33). The canonical functors
0,2d ~ 0,2d ~ a——2d
[SpRep(3;’s) / Spaa] = SpRep(f,.) and  [SpRep ;) / PGSpyg] = SpRep(p, .
are equivalences of étale stacks on Sch/S. On the left hand sides we take the étale stack quotient.

There is a natural comparison map between the GIT quotient of framed symplectic representations and
the pseudocharacter variety. We prove that it is a finite universal homeomorphism. This is almost the
symplectic analog of [Wan18, Theorem 2.20].

Theorem H (Theorem [8.34). v : SpRepl(jézf) // Spag — SpDet%j‘%,*) is a finite universal homeomorphism.

We would be happy to show, that v is an isomorphism in characteristic 0, but we have run into difficulties
that come from lack of knowledge about the relations between the natural generators (see Proposition
and Proposition of the invariant algebras Z[MJ7]5P2¢ and Z[Sp4y|5P2¢. We expect, that an analog
of Vaccarino’s theorem [Vac09] for involutive Q-algebras would be sufficient.

We also obtain a bijection between Lafforgue’s pseudocharacters and symplectic determinant laws for
reduced rings. This is a weakened symplectic analog of [Emel8| Theorem 4.0.1].
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Theorem I (Proposition ) . Let A be a reduced commutative Z[}]-algebra. Then the map PCgpM (A) —
SpDetb,(A) defined in Proposition is bijective.

Again, the proof of a full analog of [Emel8, Theorem 4.0.1] cannot be carried out without a symplectic
analog of Vaccarino’s theorem, this time over Z. We expect to resolve these issues in future work by
strenghening the definition of symplectic determinant laws, circumventing the problem of determining
relations between invariants.

At last, we adapt Zubkov’s results [Zub99] on generators of invariant algebras for the symplectic groups
over algebraically closed fields to Z. The method can be used to compute generators of invariant algebras
of various different kinds over Z, once the results over algebraically closed fields are available. So we see
this as an interesting technical result in its own right.

Theorem J (Proposition Proposition [8.45]).

1. Let Spsyy act rationally by simultaneous conjugation on the scheme of m-tuples of 2d x 2d-matrices
M3% and thereby on the coordinate ring Z[MJ7]. Then the invariant algebra Z[MJ?]SP2¢ is generated
by the elements

(X1,.... Xm) = o (Y5, -+ Y

where every matrix Y; is either X; or the symplectic transpose X j and o;(X) is the i-th coefficient
of the characteristic polynomial of X.

2. The invariant algebra Z[Sphy]5P2¢ is generated by the restriction of the elements defined in (1)

(X1yeeo, X)) = 0i(Yy o2 V)

)

along the closed embedding Sp,; € Msy4. Note, that symplectic transpose becomes inversion in
Spag-

8.1 Notations

Let A be a commutative ring.

—_

T ( _?dd i ) € Maa(A)

2. Transposition of matrices in M, (A) is (—)T. It is also called the orthogonal standard involution of
M, (A).

3. The symplectic standard involution (=) : Maq(A) — Mag(A) is defined by M := JMTJ~".

4. We define the symplectic group Sp,,,(A) := {M € GLg,(A) | M~t = JMTJ~1}.

5. If (R, x) is an involutive ring, let R™ := {x € R | 2* =2} and R~ := {z € R | 2* = —z}. We say,
that the elements of RT are symmetric and the elements of R~ are antisymmetric.

6. The swap involution is defined as

swap : Mg(A) x My(A) — My(A) x My(A), (a,b)— (b",a").

7. CAlg, is the category of commutative A-algebras.
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8.2 Polynomial laws

Chenevier’s original definition [Chel4] of determinant laws is based on the notion of polynomial laws.
The basic references are [Rob80; [BC09; |(Chel4 Wanl3|. We give the basic definitions and explain how
to introduce the structure of an algebra with involution on the graded pieces of a divided power algebra.
We consider a commutative ring A.

Definition 8.1. Let M and N be any A-modules and let R and S be not necessarily commutative
A-algebras.

1. An A-polynomial law P : M — N is a collection of maps Pg : M ®4 B — N ®4 B for each
commutative A-algebra B, such that for each homomorphism f : B — B’ of commutative A-
algebras, the diagram

M®ABi>N®AB

J{idc@f lidé@f

Dp
M ®y B/HN(X)A B’

commutes. In other words, an A-polynomial law is a natural transformation M — N, where
M(B) := M ®4 B is the functor of points of M. We denote the set of A-polynomial laws from M
to N by Pa(M,N).

2. A polynomial law P : M — N is called homogeneous of degree d € Ny or d-homogeneous, if for all
commutative A-algebras B, all b € B and all x € M ® 4 B we have Pg(bx) = b¢Pg(z). We denote
the set of d-homogeneous A-polynomial laws from M to N by P4 (M, N).

3. A polynomial law P : R — S is called multiplicative, if for all commutative A-algebras B, we have
Ps(lgg,B) = lsg,p and for all z,y € R ®4 B, we have Pg(zy) = Pg(x)Pg(y). We denote the
set of d-homogeneous multiplicative A-polynomial laws from R to S by M% (R, S).

4. If R and S are equipped with A-linear involutions, both denoted by *, we say that a polynomial
law P : R — S preserves the involution if Pg(z*) = Pg(x)* for every commutative A-algebra B,
and all z € R® B.

5. A d-dimensional determinant law on R is a d-homogeneous multiplicative polynomial law D : R —

A.

6. If x : R — R is an A-linear involution, a d-dimensional *-determinant law on (R, %) is a d-
homogeneous multiplicative polynomial law D : R — A, which preserves the involution .

Definition 8.2. Let P : M — N be an A-polynomial law. We define ker(P) C M as a sub A-module
whose elements are the m € M such that for every commutative A-algebra B, b € B and m’ € M ®4 B,
we have:

Pm®b+m') = P(m)

Definition 8.3. Let R be an A-algebra, and P : R — A be a d-homogeneous A-polynomial law. For a
commutative A-algebra B an element r € R ® 4 B, we define its characteristic polynomial by:

Xp(r, t) := Pppy(t —r) € Bl[t]

For an integer n > 1, r1,...,7r, € R, and ordered tuple of integers a = (aq,...,a,), we consider the
function % : R® — R defined by:

Xp(tlrl + oty T At Ty) = ng(rl, .o, Tp)tY € Rt
«

where t* = [, t*. Note that x§ = 0if >, o # d.

It is debatable, whether characteric polynomial is an appropriate name in Definition [8:3] This definition
will only be applied in case P is a determinant law or P is the Pfaffian of a symplectic determinant law.
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We will now describe a few representability results for polynomial laws, that are already explained in
[Chel4].

Recall that for any commutative ring A and any A-module M, the divided power algebra I 4 (M) is the
commutative graded A-algebra generated by the symbols ml! in degree i for m € M, i € Ny, which is
subject to the following relations:

e ml =1 for all m € M.
o (am)l =a'mll for alla € A, m € M.

o mlilmlil = (iﬁ—jj‘!)!m““] for all 7,7 € Ng, m € M.

o (m+m)lil= Zpﬂ:im[p]m’[q] for all i € Ng, m,m’ € M.

We denote by 'Y (M) the d-th graded piece of T'4(M). It represents the functor P4 (M, —) : Mod 4 — Set
with the universal d-homogeneous polynomial law given by P"V : M — I‘ff\(M ), m ml4. We have
P4(M,N) = Hom4(T'% (M), N) for any A-module N.

For an A-algebra R, we can equip I'4 (R) with the structure of an A-algebra as follows:

The map R& R — R®a R, (r,7’) = r @1’ is homogeneous of degree 2 and is compatible with — ®4 B
for any B € CAlg,. Thus it gives rise to a 2-homogeneous A-polynomial law. Composing this map
with the universal d-homogeneous polynomial law R®4 R — I'4 (R ®4 R), we obtain a 2d-homogeneous
polynomial law R & R — I'Y (R ®4 R). By the universal property of I'4(R & R), we get a morphism of
A-modules:

n:T%2(R®R) - T4 (R®4 R)

There is canonical isomorphism I'}¢(R @ R) = D, =24 T4 (R) @4 T%Y(R) (see [Wanl3, §1.1.11]) and n
kills T% (R) @4 T'% (R) for p # q. From the multiplication map 6 : R®4 R — R, we obtain an A-linear
map

d d ", 1d L4(0), 1d

defining the structure of an A-algebra on I'4 (R). In fact, we have a natural isomorphism M¢% (R, S) =
Homyg, (T4(R), S) for any commutative A-algebra S.

If R is equipped with an A-linear involution , we want to equip I'% (R) with an induced involution. For
this, let R°P be the opposite algebra of R. Then * induces an isomorphism R = R°P. We define the
A-linear maps s : R® R — R® R, (a,b) — (bya) and s : R4 R — R®4 R, a®b = b® a, and we
have a commutative diagram

d (pop
I (R) @ T4 (R) —" It (Roa R) — ) 14 (R)
lri%s) lFii(s’) fd

dip
T4 (R) @ T4(R) — T4 (R4 R) — % T4(R)

which shows that we have a canonical isomorphism I'4 (R°P) =2 'Y (R)°P. Here §°P : R®4 R — R,a®b
ba is the multiplication of R°P and I'4 (R) ® I'Y (R) is identified with a subset of I'}(R & R).

Definition 8.4. Let (R, *) be an A-algebra with involution. We define the involution * on T'% (R) by the
isomorphism

% ()

P4(R) === T4 (RP) = T4 (R)*

Since the above diagram is compatible with tensoring with any B € CAlg,, the isomorphism T'4 (R) ® 4
B =T%(R®a B) is compatible with the involution.

8.3 Symplectic representations

Definition 8.5. Let (R,*) be an involutive A-algebra and B a commutative A-algebra. A symplec-
tic representation of (R, *) is a homomorphism of involutive A-algebras (R,*) — (Maq(B),j). We let
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SpRepI(jé?f) be the functor of symplectic representations of (R, *):

SpRepD ,2d : CAlg 4 — Set
B — {symplectic representations (R, *) — (Ma4(B),])}

Lemma 8.6. The functor SpRep( 5 *) is representable by a commutative A-algebra A[SpRep(Dé’Qf)]. We
let u"™V : (R, %) — (Myq(A [SpRep s *)]) j) be the universal representation. If R is a finitely generated
A-algebra, then A[SpRepl(jRQf] is a finitely generated A-algebra.

Proof. f R = A{x;,x Z >l€ s is a free (non-commutative) A-algebra with involution on a set S, then clearly
[SpRepEI 2d] [fh k] is the polynomial algebra over A in the variables fh 0 8 €8, 1< hk <2d and

w (2;) = & = (6% nk-

For a general A-algebra with involution R, there is a presentation R = A(x;,z})/I for some involution-
stable two-sided ideal I of A(x;,x}), respecting the involution. Then u"V(]) generates a two-sided ideal

in MQd(A[ (Z) .]), which is as any two-sided ideal in a matrix algebra, of the form My4(J), with J an ideal
of A[ ] Then the universal map for R is given by:

Ali, wf) —— Maa(AlE)))

| !

umv

R —"" s Mog(A[€S)/T)

By the universal property Myg(A[¢ ;(Ll)k] /J) is independent of the presentation of R. O

8.4 Symplectic determinant laws

8.4.1 Definition and basic properties

The definition of symplectic determinant laws is based on the following observation. Let A be a com-
mutative ring with 2 € A* and let M € M4(A) be a matrix with M7 = M. We will call such matrices

symplectically symmetric. Then
D B
w=(e )

where D € My(A) is arbitrary and B,C € My(A) are antisymmetric. The matrix

-B D
MJ = (_DT C) = JM"T =—J"M" =—(MJ)"

is alternating and therefore the Pfaffian Pf(MJ) is defined. We have det(M) = det(M.J) = Pf(M.J)2.

Definition 8.7. A 2d-dimensional symplectic determinant law on an involutive A-algebra (R, ) with
coefficients in a commutative A-algebra B is the data of an A-linear 2d-dimensional *-determinant law
D : R — B together with a homogeneous polynomial law P : R™ — B of degree d, such that P? = D\r+
and P(1) =

Example 8.8. Let A be a commutative ring and let p : (R, x) — (Ma,(A),]) be symplectic representation.
Define for any commutative A-algebra B:

1. Dp: R®a B — Man(B) by Dp(r @ b) = b det(p(r)).
2. Pg: R" @4 B — Ms,(B) by Pg(r ®b) :=b"Pf(p(r)J).

Then (D, P) is a symplectic determinant of (R, *) over A.
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Lemma 8.9. Let (R, *) be an A-algebra with involution equipped with a symplectic determinant (D, P).
Then for every commutative A-algebra B, any x € R ®4 B, and any y € Rt ®4 B such that Pgp(y) is a
non zero divisor, we have that:

Pp(xyx*) = Dp(x)Pp(y)

Proof. For a fixed y as in the statement, consider the polynomial laws Q1 : R®4 B — B, © — P(xyx™)
and Q2 : R®4 B — B, x — D(x)P(y). Then it is clear that Q? = Q3, and so evaluating at the formal
power series ring Bl[t]], we have:

(Qi(tz —t+1) — Qatr —t + 1)) (Q1(tx —t + 1) + Qatx —t +1)) =0

The evaluation of the second summand at ¢ = 0 gives 2Pg(y), thus Q1 (tx —t+ 1)+ Q2(tx —t+1) is a non
zero divisor. And so, Q1 (tx —t + 1) = Q2(tz — t + 1) whose evaluation at ¢ = 1 gives us the result. [

We record the following property discovered in |[CC21}, Proposition 3.1]:

Lemma 8.10. Let (R, *) be an A-algebra with involution equipped with a symplectic determinant (D, P)
of dimension 2d. Then for any commutative A-algebra B any commuting elements z,y € Rt ® 4 B, we
have that 2y € RT ®4 B and :

Pp(ry) = Pp(z)Pp(y)

Proof. The fact that xy € R* ® 4 B is immediate. Now we introduce the commuting elements 1+#;2,1+
toy € RT ®4 Blt1,ts], and the polynomials:

Qz:PB(1+t1$), Qy :PB(1+t2y), me:PB((1+t1x)(1+t2y))

in Blt1,t2]. The Q, is a polynomial in #; of degree at most d whose coefficient of t¢ is Pg(x). Similarly
Qy is a polynomial in ¢, of degree at most d whose coefficient of td is Pp(y), and Q+y is a polynomial
in t1,t, whose coefficient of t¢t is Pg(zy). Thus to prove the statement, it suffices to show the equality
Q2Qy = Qy, which can be checked inside the power series ring B|[t1, t2]].

Note that for every power series g € B[[t1,t2]]* with ¢(0,0) € B> and every square root fy € B* of
g(0,0), there exists a unique power series f € B[[t1,t2]]* with f(0,0) = fo such that f? = g. This can
be seen by considering the power series expansion of the square root function at 1. Using this fact, the
equality Qiy = QQ%QZ (coming from multiplicativity of D), and Q,(0,0) = Q,(0,0) = Q4(0,0), we ge
that Q,Qy = Quy as desired. O

For an A-algebra with involution (R, %), and a symplectic determinant (D, P) : (R, *) — A, we introduce
the polynomial laws

Ai:R— A forl1<i<2d
7}:R+—>A for1 <j<d

defined for any A-algebra B by the formulas:

2d

XD(T7 t) = DB(t — r) = Z(_l)iAi,B(T)tgd_i, reR®iB
=0
d 4 4
XF(rt) = Pt —r) =Y (-)'Tip(rt*", reR* @B
=0

The following result explains how the characteristic polynomial of P is related to the characteristic poly-
nomial of D when restricted to symmetric elements. In particular, we see that a symplectic determinant
law (D, P) is determined by D.

Proposition 8.11. If D: R — A and P, P’ : Rt — A are polynomial laws, such that (D, P) and (D, P’)
are symplectic determinant laws, then P = P’. Further, we have the recursion formula

Ailp+ = 27}7;—]‘

Jj=0

for 1 <14 < 2d with 7; = 0 for 7 > d.
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Proof. Since 1 = P'(1) = P(1), we have To = 7. The coeflicients A; for 0 < i < 2d of D are defined by

the equation
2d

XP(r,t) = Dyt —r) = Y _(=1)'Aip(r)t**~" € B[]
i=0

and similarly the coeflicients 7; for 0 < i < d of P (and T, of P’) are defined by

d

X (r,t) = Pppy(t —r) = > (=1)'Tip(r)t*~" € B[]

=0

for all A-algebras B. By comparing the coefficients 7; and 7, and the coefficients A; using x? (-, t)|g+ =
P (-, 1)2 = X' (-, )2 we obtain

i

Nilgs =Y TiTiej =Y T T,
=0

§=0
forl1<i<2dand Tg=Pand T, = P'. Fori:O,weknow,that1:A0:762:76’2.
By induction over the above equations and using 2 € A*, we obtain 7, = 7; for all 0 < ¢ < d, in particular

P =P O

Taking r = 1, we see that T;(1) = :I:(‘Z) for 0 < i < d and the assumption P(1) = 74(1) = 1 implies
7:(1) = (%) by downward induction.

Example 8.12. Let I be a group. By [Chel4, Lemma 1.9], the datum of a 2-dimensional determinant
law D : A[l'l — A is equivalent to the datum of a pair of functions (d,¢) : T' — A such that d : T' — A*

is a group homomorphism, and ¢ is a function satisfying #(1) = 2 and for all ,+" € T the following two
equations:

(a) t(yy) = t(v),
(b) d(Mt(y~1y') = (') + t(yy') = 0.
Here the functions ¢ and d are obtained from the determinant law D by considering the characteristic

polynomial xP(z,7) = 22 — t(y)x + d(y) € Alz] for all ¥ € T. In particular they are defined as functions
t,d: A[l'l - A and we have the usual polarization formula

t(r)? —t(r?)

d(r) = 5

(10)

for all r € A[T].

We are interested in the case, that D is a symplectic determinant law in the sense of Definition [8.7]
Note, that this means that D is a determinant law for Sp, = SLs. So we require that there exists a
1-homogeneous A-polynomial law P : A[l'|" — A with P? = D|r+ and P(1) = 1. So let us assume
such a P exists. By [Chel4, Example 1.2 (i)] P is determined by the A-linear map P4 : AT — A.
By Proposition we have P4(r) = 4t(r) for all € A[I'|". Evaluating the equation P} = d| 4jrj+ at
v+~ for some v € T, we thus obtain

1 _ _
1+ =dly+97) (11)
Equation gives
d(y +771) = d(y) +d(y™H) + (Nt 2 (12)
Combining Equation with Equation we get:
1 _ _ _
11772 =d() +dOT + ) 2

and thus
t)? 2t (Vv ) + (v = 2t(4) —2t(y*) =8 =10
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In Definition 8.7 we also require that the determinant law D is invariant for the A-linear involution on
A[l'] extending inversion I' — T', 4 +— 4. This implies that the functions ¢, d are invariant under the
inversion map. So we have

4t(7)* —4t(y*) =8 =0

and hence d(v) = 1 by Equation .
Example 8.13. For d = 4, one finds that:

1 1 1 1 3
P=—-Ay— =AjAs+ —A2Ay + —A2 — 2 A4
g e = hifls g fife gy = ol

In particular we see that the recursion formulas of Proposition provide us with a way to define P as
a d-homogeneous A-polynomial law on the entire algebra R for every 2d-dimensional determinant law D
when 2 € A*. Requiring, that D is symplectic is requiring that P satfies the conditions in Definition

Lemma 8.14. Let (R,*) be an A-algebra with involution equipped with a symplectic determinant law
(D, P). Then ker(D) is stable under * and ker(D) N RT C ker(P). In particular for every #-ideal
I C ker(D), (D, P) factors uniquely through a symplectic determinant law (D, P) : (R/I,*) — A.

Proof. Since D is x-invariant, it follows that ker(D) is a #-ideal. Using |Chel4, Lemma 1.19] we have
that:
ker(D)={r e R|VB € CAlg,, Ym € R®4 B, Vi > 1, A;(rm) =0}

By Proposition we know that P can be expressed as a polynomial in the A;, thus to show that
r € ker(D) N RT is in ker(P), it suffices to show that A;(r ® b+ m) = A;(m) for all commutative A-
algebras B, b € B and m € R™ ® 4 B. But this follows from the definition of the A; and the definition of
ker(D).

Since 2 € R*, we have a surjection Rt — (R/I)T and (R/I)T is identified with R*/(I N RT). Since

INR" C ker(D) N RT C ker(P), P descends to a well-defined A-polynomial law P : (R/I)T — A
satisfying the desired properties. O
Proposition 8.15. Let (R, ) be an A-algebra with involution. Then the functor
SpDet(f; ) : CAlg, — Set
B — {symplectic determinant laws (D, P) : R — B}

is represented by a commutative A-algebra denoted by A[SpDet%g*)]. If R is a finitely generated A-
algebra, then A[SpDet?Id%’*)] is a finitely generated A-algebra.

Proof. We let I be the ideal of Sym ,(I'%(R")) generated by the element [1]2 — 1. Then the ring
Sym 4 (T4 (R))/I represents the functor which associates to a commutative A-algebra B the set of
homogeneous polynomial laws P of degree d such that P(1) = 1. Using the isomorphism

FA(R+ X R+) = FA(R+) XA FA(R+)
[(re, )] = D [P @ [ra)?

p+q=i
we get a morphism of A-modules:

~ Ta(A
7 T2(RT) 222, Dy (R x RT) = T4 (RY) @4 T4 (RT) — Sym , (T4 (RH)) /1

which for [rq]® -+ [r,,]" € TX(RY) with iy + -+ + i, = d, is given by:

P - frml™) = > (P [rlP™) © (] - [ ™)

where the sum runs over the integers p;, ¢; satisfying p; +¢; =i and p1+---+ppm =1 + -+ - + gm = d.
Here ® denotes the product in the symmetric algebra.
Therefore we get a morphism of A-algebras ¢ : Sym 4 (I'%¢(R*)) — Sym 4 (T4 (RT))/I.
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On the other hand, the canonical map I'3(R*) — I'4Y(R) induces a morphism of commutative A-algebras
Sym 4 (T%4(R*)) — T2 (R)*". Then we take:

A[SpDet?%*)] = (PF(R)*" /) Osym 4 (T%4(R+)), Sym (T4 (RY))/1
Here I'%Y(R)*P /x is the quotient of T%?(R)?P by the ideal generated by v — v* for v € T'3%(R)2P. O

We can define direct sums for symplectic determinant laws. On the level of representations it corresponds
to the orthogonal direct sum of symplectic spaces carrying an equivariant group action. We will use the
direct sum to state the structure theorem Proposition for symplectic determinants over fields.

Lemma 8.16. Let A be a commutative ring, let (R, *) be an involutive A-algebra and let (D, Py) and
(D2, P2) be symplectic determinant laws of (R,*) over A of dimension 2d; and 2dy respectively. Then
(D1 Dy, P P,) is a symplectic determinant law of dimension 2(d; + ds).

We also write (D1, P1) @ (Da, P3) for (D1 Ds, P;Py) in analogy to the direct sum of representations.

Proof. Asin [Cheld| §2.1], D1 Dy is a determinant law of dimension 2(d; +d2) and one checks, that it is a *-
determinant. Similarly Py P, : RT — A is homogeneous of degree d; +dsz. Further (PyP2)? = Dq|g+ Do| g+
and (Plpg)(l) =1. O]

Remark 8.17. Let A be a commutative ring and (R,#) be an involutive A-algebra. If (Di,P;)
and (D, P;) are the symplectic determinants attached respectively to the symplectic representations
p1: (R,%) = (Mag, (A),)) and p2 : (R,*) — (M24,(A),j) then (D1, P1) @ (D3, P») is the symplectic
determinant attached to p; & ps.

Proposition 8.18. Let (D1, P1) and (D2, P») be symplectic determinant laws of dimensions 2d; and 2ds
satisfying CH(P;) C ker(D;) for i = 1,2. Then CH(P,P;) C ker(D;Dy).

Proof. Suppose (Dy, Py) and (D2, P») are symplectic determinant laws of dimensions 2d; and 2ds. Sup-
pose CH(P;) C ker(D;). We will show, that CH(P, P) C ker(D1Ds). Let P := PyP, and D := Dy Ds.
Recall Definition of the functions %, where a € NI with Zz;l aj = d;. For ri,...,r, € R, the
equation

XU (it - 4 rntn) = X7 (it 4t X (rit e atn)

in R[ty,...,t,] implies

Xe(rieenr) = D0 Xat (ra o mn)Xgh (11, )

a'+a’'=a

by comparing the coefficients of t*. To check that D(1 + xZ (ry,...,r,)r) =1 for all r € R, it suffices to
check that D;(1+ xZ(r1,...,rn)r) =1 for all r € R. This is clear, since

Z xf;? (ri,... ,TH)XS,Z, (r1,...,r)r € ker(D1) Nker(D5)

o' +a''=a

and by [Chel4] Lemma 1.19]. O

8.4.2 Symplectic determinant laws over Azumaya algebras

Recall, that an Azumaya algebra over a commutative ring A (where we still assume that 2 € A*) is
a unital A-algebra R, such that there is an étale covering {A — B;};cr, such that for all i € I the
B;-algebra R ® 4 B; is isomorphic to a matrix algebra of positive rank over B;. The rank of this matrix
algebra may vary over Spec(A) and we will assume, that the rank is constant on Spec(A). In this section,
we explain what we mean by a symplectic, orthogonal or unitary involution of an Azumaya algebra of
constant rank.

Definition 8.19. Let A be a commutative ring and let R be an Azumaya algebra of constant rank d?
over A. Let o be an A-linear involution of R.
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1. We say, that o is an involution of the first kind of symplectic (orthogonal) type, if there is an étale
covering {A — B;}ier, such that the involution 0 ® 1 on R ® 4 B; is induced by an antisymmetric
(symmetric) non-degenerate bilinear form 5 : V xp, V. — L on a locally free B;-module V' of
constant rank d with values in a locally free B;-module L of constant rank 1.

2. Let A° — A be an étale covering of degree 2, where A° is connected, and let ¢ be an A°-linear
involution on R. We say, that o is an involution of the second kind (wrt. A°) or unitary involution,
if it restricts to the unique nontrivial A°-linear automorphism of A.

We put A° := A by convention if ¢ is of the first kind.

Proposition 8.20. Let (R, o) be an Azumaya algebra of constant rank d? over A with involution of the
first or second kind over A°. Then étale locally over A°, (R, o) has one of the following three forms.

1. (M4(A°),j), if o is symplectic.
2. (My(A°),T), if o is orthogonal.
3. (M4(A°) x M4(A°),swap), if o is unitary.

Following the book [Knu91|, we define a symplectic determinant law for an Azumaya algebra R over a
commutative ring A equipped with a symplectic involution.

Let R be an Azumaya algebra over A of rank d? with an involution o. Let S be a faithfully flat A-algebra,
such that we have a splitting o : S ®4 R = My(S) of R over S and let & = a(1 ® o)a~"! be the induced
involution on My(S). The map x — &(z") is an automorphism of My(S). We can choose S so that
o(x) = u(x " )ut for some suitably chosen u € GL4(S) and all € My(S). The fact that 5% = id implies
that u' = eu for some € € uy(S). By |[Knu9l, p. 8.1.1], one can choose S so that € € us(A) and this
element is independent of the choice of S. We call it the type of the involution ¢ on R. An involution of
type 1 is called an orthogonal involution, and an involution of type —1 is called a symplectic involution.

To define the Pfaffian on an Azumaya algebra, we first consider the case of the endomorphism ring
End (V) for V a finitely generated projective A-module of rank 2d. In this case, one can show by glueing
local Pfaffians (c.f. [Knu91, p. 9.2.1]), the existence of a (unique) map

Pf: A2V — A2V
that commutes with base change and that is given by the usual Pfaffian if V is free.

In order to generalize this construction, let R be an Azumaya algebra of rank 4d? over A such that
its class in the Brauer group Br(A) is of order 2. Let ¢ : R® R = Enda(P) be an isomorphism of
A-algebras for P a faithfully flat finitely generated projective A-module. We call the triple (R, P, ) a
2-torsion datum. The triple (End4(V),V ®4 V,can), where V is a finitely generated projective A-module
and can is the canonical isomorphism can : Enda(V) ®4 Enda(V) = Enda(V ®4 V) is called a split
datum. By [Knu9ll p. 9.3.1], any 2-torsion datum (R, P, ¢) admits a splitting by a faithfully flat étale
A-algebra S, i.e. an isomorphism

(,9): (R,P,p) ® S = (Enda(V),V ®4 V,can)

of 2-torsion data for a finitely generated projective S-module V.

By |[Knu9l, p. 8.4.1], there exists an element u € (R ®4 R)* such that for any splitting (o, g), the
conjugation i, : R®4 R — R ®y R is the switch map, ie. i,(r ® ') = @ r for all r,7/ € R, and
(a®@a)o(1®u): VsV =V gV is also the switch map wy. The element ¢ := p(u) € Endg(P) is
called the module involution of P with respect to ¢ and we call the set

5.(P) = {z— (@) |z € P}

the set of alternating elements of P. We shall identify S_(V) = {z —wy(x) | z € V ®g V} with A2V
through the map 2 ® y —y @z — z A y.

Theorem 8.21. [Knu91, p. 9.3.2] For any 2-torsion datum (R, P, ) with R of rank 4d?, there exists up
to isomorphism a unique invertible A-module Pf(P) and a map Pf : S_(P) — Pf(P), which is unique
once Pf(P) is fixed, with the following properties:
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1. If (R, P, ) = (Endg(V),V ® V,can), then Pf(P) = A2V, and Pf is the Pfaffian A2V — A2V,

2. For any commutative A-algebra B, there exist canonical isomorphisms g : Pf(P)®4 B — P{(P®4
B) such that v5(1 @ Pf(z)) = Pf(1® x), z € S_(P).

3. Viewing P as an (R, R°P)-bimodule through ¢, we have Pf(rar) = Ng(r) Pf(z) where Ng : R — A
is the reduced norm, and Pf(Az) = A4 Pf(x) for all 7 € R, z € P and \ € A.

Now suppose that R is equipped with an involution o of type € € us(A). We have an isomorphism
Yo : R®a R = Endg(A) given by ¢, (r ® r')(z) = rzo(r’). Thus (R, R, ¢,) is a 2-torsion datum and
using [Knu91l p. 9.5.1], we can show that:

S_(R)={z—e€o(z) |z € R}
Moreover, in this case there is a canonical nonsingular pairing:
o :Pf(R)xPI(R) — A
such that o(Pf(r), Pf(r)) = Nrdg(r) for r € S_(R) (c.f. [Knu9ll p. 9.5.2]).

Proposition 8.22. [Knu91, p. 9.5.4] Let R be an Azumaya algebra over A with an involution o of
symplectic type, then Pf(R) = A and the pairing & is the trivial one.

Therefore if R is an Azumaya algebra over A equipped with a symplectic involution o, we use the explicit
generator of Pf(R) given in the proof of [Knu91, p. 9.5.4], to get an A-valued function that we denote by
Prdg : R — A. Explicitly, let o : R4S — Mag(S) be a splitting such that (ao(1®c)oa™!)(z) = ur Tu~!
with u an alternating matrix in Ma,4(S). The matrix u=*(a(1®z)) for z € S_(R) is skew-symmetric and

Prdp(z) = Pf(u) Pf(u ' (a(l®))), z€S_(R)=R"

and we have that Prdg(z)? = Nrdg(z). Since the construction is stable under base change, we can make
the following definition:

Definition 8.23. The pair (Nrdg, Prdg) defines a symplectic determinant law on (R, o).

8.4.3 Symplectic determinant laws over fields

The goal of this subsection is to give a precise structure theorem for symplectic determinants over general
fields of characteristic # 2. It is the symplectic analog of [Chel4, Thm. 2.16]. A crucial ingredient in the
GL,,-case is the Artin-Wedderburn theorem. Here we need a version of the Artin-Wedderburn theorem
for semisimple rings with involution.

If D is a division algebra over a field K and t : D — D is an involution, we extend { to a map
t 1 Mn(D) — M,(D) by defining AT by (A") = (Ar)" for A € M, (D). Note, that o T = T of is
an involution on M, (D), but in general neither { nor T is an involution. In the following, we identify
Z(M, (D)) with Z(D).

Proposition 8.24. Let k be a field. Let R be a semisimple k-algebra, such that every simple factor of
R is finite-dimensional over its center. Let % : R — R be a k-linear involution. Then (R, *) is isomorphic
as an involutive k-algebra to a product

t

(R7 *) = H(Tia Li)

i=1
for some t € N>, where the involutive rings (7', ¢) := (T}, ¢;) have one of the following three forms:
(I-1I) T = M, (D) is an n X n matrix algebra over a finite-dimensional division k-algebra D with center

K and ((A) = SATTS™! for some S € M, (D)*, where f : D — D is a K-linear involution and
STT = +£8. If char(k) # 2, then the involution ¢ is of the same type as t if and only if STT = S.

(ITIla) T = M, (D) is an n X n matrix algebra over a finite-dimensional division k-algebra D with center
L and «(A) = SATTS~! for some S € M,,(D)*, where t : D — D is a K-linear involution for some
index 2 subfield K of L with L/K separable, t is not the identity on L, and STT = .

100



(IIIb) T = M, (D) x M, (D°P) for some finite-dimensional divison algebra D over k and t(a,b°?) =
(bT, (aop T).

Proof. Applying Artin-Wedderburn to R, we see, that R is isomorphic to a finite product H;Zl M, (Dy)
of matrix algebras My, (D;) over finite-dimensional division algebras D; over k. This product decom-

position corresponds to a unique set of orthogonal central primitive idempotents ej,...,es € R with
e1 + -+ es = 1. The involution * defines a bijection * : {e1,...,es} — {e1,...,es}. This defines a
*-stable partition of {ey,...,es} into singletons {e;}, when e} = e; (case (I-II-Illa)) and pairs {e;,e}}

otherwise (case (IIIb)). Let ¢ be the number of classes of this partition and choose some numbering of
the partition by ¢ € {1,...,t}.

Since e; R is #-stable for all j with e7 = e; and (e; +e;)R is x-stable for all j, we obtain *-stable k-algebras
T; with T; = My, (D;) in case (I-II-Ila) and T; = My, (D;) x M, ,(D;) in case (I1Ib) with j’, such that
ejr = €. The involution * induces an isomorphism M, (D;) = M, (Dj/)°P. Thus, we may assume, that
Mnj/ (Dj’) = Mnj (Dj)Op-

We obtain a product decomposition of R into *-stable algebras T;, with either T; = M, (D;) or T; =
M, (Dj) x My, (D§?) for i € {1,...,t}. Let ¢; : T; — T; be the restriction of * to T;.

Fix i and let (T,¢) := (T3, ¢s).

(I-II-I1Ta) These follow from [Knu+98, Chapter I, Proposition 2.20].

(ITIb) Suppose T = M, (D) x M,(D)°?. We know, that ¢({0} x M, (D)°?) C M, (D) x {0}. It defines
an anti-isomorphism M, (D)°? — M, (D). Composed with the anti-isomorphism op : M, (D) —
M, (D)°P, we get an automorphism S : M,,(D)°? — M,,(D)°P This gives an isomorphism of involu-
tive k-algebras (id, 8) : (T,¢) — (T, swap), where (a, b°P)s"2P = (b, a°P). After identifying M, (D)°P
with M, (D°P) using transposition, the claim follows.

O

Example 8.25. Let K/k be a field extension, and let k* C K be the maximal separable extension of k
inside K. We assume that f = [k® : k] is finite. If char(k) = p > 0, assume there is an integer q € p"
such that K? C k°. We take ¢ minimal with this property. If p = 0 we take ¢ = 1.

Let (R, o) be a K-algebra with involution and let (D, P) be a symplectic determinant law of (R, o) over
k. We consider the following cases:

(I) (R,0) is a central simple algebra over K with a symplectic involution. Then (D, P) is power of:

Normys /p oF?oNrdg : R — k
Normys j oF'? o Prdp : RT™ -k

This follows from [Cheld] Lemma 2.17] and the existence and uniqueness Proposition of the
Pfaffian.

(IT) (R, o) is a central simple algebra over K with an orthogonal involution. Suppose that after base
change R ® K' = M,(K'), then there exists some m € Ny such that D(diag(t,1,...,1)) = t4/™ ¢
K'[t]. The existence of P forces ¢fm to be even. Then if m is even, (D, P) is a power of:

Normy s, oF'? o Nrd% : R — k
Normys /, oF'? o Nrdp : RT™ -k

If ¢f is even, This follows from |Chel4, Lemma 2.17], existence and uniqueness of the Pfaffian.

(ITIT) (R, o) is a central simple algebra over an étale K-algebra L of degree 2 equipped with a unitary
involution over L/K. In other words L is either K x K and R = E x E°P with E a central simple
algebra over K, or L is a separable field extension of K and R is a central simple algebra over L.
Also o is K-linear and restricts to the nontrivial element of Autg(L). Then (D, P) is a power of:

Normys /p oF? o Normp /g oNrdg : R — k
Normy: s, oF% o Nrdp : Rt >k
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This is because Nrdr on R* takes values in K. Indeed in the first case, we have that o is given
by o(a,b) = (¢(b), (b)) with ¢ : E — E°P an isomorphism of central simple algebras over K. So for
(a,t(a)) € RT with a € E, we have

Nrdg(a,t(a)) = (Nrdg(a), Nrdger (¢(a))) = (Nrdg(a), Nrdg(a))
The second case follows from the first case by base change [Knu+98, §2, Proposition 2.15].

Example 8.26. There is an infinite field extension K/k, such that there is a determinant D : K — k.
Indeed, we can take k := F,(t! | i € N) and K = F,(¢; | i € N). The extension K/k is infinite with
K? =k, so the Frobenius F? : K — k is a determinant.

Proposition 8.27. Let (D, P) : (R,0) — k be a 2d-dimensional symplectic determinant. Then there is

an isomorphism
S

(R/ker(D),7) = [[(Ri o)

=1

of involutive k-algebras, where each (R;,0;) is equipped with a symplectic determinant (D;, P;) which
takes one of the forms (I)-(III) described in the example and where:

(D,P) = (f[DZ O7Ti7f[PiO7ri>
i=1 i=1

with 7m; : R — R; are the projections given by the isomorphism.

Proof. This proposition follows from [Chel4, Theorem 2.16] and O

Theorem 8.28. Let k be an algebraically closed field and let (R, o) be an involutive k-algebra. There is a
bijection between isomorphism classes of semisimple 2d-dimensional symplectic representations of (R,0)
over k and 2d-dimensional symplectic determinant laws of (R, o) over k given by sending p : (R,0) —

(M2d(k)a.]) to (det op, Pt Op)

Proof. Let (D, P) be a symplectic determinant of (R, o) over k. By proposition there is a decompo-

sition
S

(R/ker(D),7) = [ [(Ri, 00)

i=1
where the R; are K;-algebras of the form described in example for some extension field K;/k.

Arguing as in the proof of [Wan13, Theorem 1.3.1.3], we have K; = k for all i. Thus we have the following
three cases:

(I) (Ri,04) =& (May,,(k),j). Welet p; : (R,0) — (Ma,,(k),j) be the corresponding symplectic represen-
tation.

(1) (R;,04) = (M,,(k), T). We let

(IIT) (R;,04) = (M, (k) x My, (k),swap). We let

Pi - (R, (T) — (M2n,¢ (E)aJ)
“ﬁGMmW) 0 )

0 pro(mi(r))°P

In these three cases (D;, P;) is of the form (det op;, Pf op;). In particular (D, P) is of the form (det op, Pf op),
where p = @;_, p;. Since R surjects onto the R;, the p; are semisimple and thus p is semisimple.
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To prove that the map is injective, let us consider two semisimple representations p; and py of R over k
of dimension 2d that have the same symplectic determinant. By [Cheld, Theorem 27.12], p1 and po are
conjugated by an element g € GLa4(k). We need to show that we can take g € Spyy(k).

Since the product of copies of the symplectic group embeds diagonally in a symplectic group up to
conjugation, it suffices to check this for direct summands of p; and ps. We can match the irreducible
symplectic subrepresentations of p; and ps. An irreducible subrepresentation of p;, which is contained
in an indecomposable symplectic subrepresentation of p; that is not irreducible, is mapped into an
indecomposable symplectic subrepresentation of ps that is also not irreducible. Thus, we can assume
that p; and ps are indecomposable as symplectic representations.

We distinguish two cases:

(a) p1 and pg are irreducible as representations. In this case, they are both surjective onto Maq(k), so
that Inner(g) € Aut((Mzq(k),j)) = PSpyy(k).

(b) The representations are of the form p; = p;1 @© p;2 with pi(r?) = (pi2(r) T, pia(r)T). There
exist g1,92 € GLg(k) such tht p1 = glp2719f1 and p1 o = ggngg;l. The compatibility of the
representations with the involution implies that go = g1—1,‘r’ and so diag(g1, g2) = diag(g1, gl_l’T) €

szd(k)-
O

Corollary 8.29. Let (R,0) be an involutive k-algebra equipped with a symplectic determinant (D, P)
over k of dimension 2d. Assume, that R/ker(D) is a finitely generated k-algebra. Then there exists
a finite field extension k'/k and a symplectic representation p : (R ®y k',0) — (Mz2q(k’),j) such that
(D@ k', P®y k') = (det op, Pf op).

Proof. By Lemma 8.14] we may assume, that ker(D) = 0 and that R is a finitely generated k-algebra. By
Theorem let p-: (R@pk, o ®idy;) — (Ma(k),j) be a symplectic representation with D®y k = det opy-
and P ®, k = Pf Opﬁ|(R®kE)+‘ Then the image p;-(R) C M,y (k) is as a k-subalgebra generated by finitely

many matrices in My(k), hence there is a finite field extension k'/k, such that p-(R) C My(k"). We

have p-(R") C Mga(k') N Ma(k)™ = Mg(K’')*. Thus the restriction of p- to k" defines a symplectic
representation p : (R ®y k', 0 ® idg) = (Ma(K'),]).

For every commutative k’-algebra B we obtain a diagram

R®w B Do B
M /
My(B)
_ DB®k * _
R Q@ (B Q k) B ®y k
m l det
My(B @ k)

By the functorialities of D, det and the base changes of p, we know that every square commutes. The
bottom triangle commutes by Theorem [8.28] The vertical maps are all injective and so it follows, that
the top triangle commutes, hence det op = D ®;, k. We proceed similarly for the Pfaffian. O

8.4.4 Symplectic determinant laws over Henselian local rings

We fix a Henselian local ring A with maximal ideal m 4 and residue field k, and we suppose that 2 € A*.

Proposition 8.30. Let R be an A-algebra with involution equipped with a d-dimensional Cayley-
Hamilton *-determinant D : R — A such that D = det op for some absolutely irreducible orthogonal
(resp. symplectic) representation 7 : (R, o) — (Mgy(k), ") (vesp. (My(k),j)). Then there exists an isomor-
phism of involutive algebras p : (R,0) — (Ma(A), 7) (resp. (Ma(A),j)) lifting p such that D = det op.
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Proof. First we treat the orthogonal case. By [Cheld] Theorem 2.22], we know that R = M4(A) and that
(R/ker(D),5) = (My(k), 7). Welet €;; € My(k) be the matrix with 1 at the (i, j) entry and 0 elsewhere.
By [Chel4, Lemma 2.10 (i)], we know that rad(R) = ker(R — R/ker(D)). This allows us to use the
proof of [BC09, Lemma 1.8.2] to show the existence of o-fixed orthogonal idempotents e;; lifting €;; for
1 <i<d with >, e; = 1. Since A is local, we have a decomposition A% = ;1A% @ -+ & eqqA? into
free of rank 1 summands, and we may choose generators a; of e; A? such that the base change matrix
g € GL4(A) from the canonical basis of A% to the basis (a,...,a4) reduces to the identity modulo
my4. Thus after conjugaction by g, we can suppose that e;; is the matrix with 1 at the (7,¢) entry and
0 elsewhere. By |Alj+21, Remark 3.4.19], every automorphism of My(A) is inner, so there exists an
invertible matrix P € GL4(A) such that o(M)T = P~*M " P for every M € My(A) = R. Tt follows from
the fact that o(e;;) = e;; that we have P = diag(\1,...,\g) with A; =1 mod m4. Since A is Henselian
and 2 € A%, there exists elements \; € A such that \> = )\;. Letting Q = diag(\},...,)\}), we get an
isomorphism of involutive algebras (My(A), o) — (Mg(A), ") : M — QMQ~! which is what we want.

The symplectic case reduces to the orthogonal case after conjugating the involution by J. O

8.5 Moduli of symplectic representations

8.5.1 Setting

Let A be a noetherian commutative ring with 2 € A* and let (R, *) be a finitely generated A-algebra with
involution. Let d > 1 be an integer. The goal of this section is to compare the moduli of 2d-dimensional
symplectic representations of (R, *) to the space of symplectic determinants of dimension 2d.

We put S = Spec(A) and recall the following functors on S-schemes. They are defined in analogy to
[Wanl18, Definition 2.1].

Definition 8.31.
1. Define the functor on S-schemes to SpRepl(];j) : (Sch /S)°P — Set by setting

SpRep(DI’ff)(X) := {A-algebra morphisms (R, *x) — (Maq(I'(X, Ox)),j) respecting the involution}

2. We also define a functor SpRep%Idi*) : (Sch /S)°P — Gpd by setting

ob SpRep?f;l,q*)(X) :={V/X a rank 2d vector bundle,
b:V xV — Ox a non-singular skew-symmetric O x-bilinear form,

and an A-algebra morphism p : (R, *) — (I'(X, Endo, (V)), 0p) respecting the involution}

An isomorphism of two objects (V,b, p) and (V',¥,p’) is an isomorphism « : V' — V', such that
b o(axa)=>band I'(X,Endp, (a))op=/p.

3. We also define a functor SpRep?Id%’*) : (Sch /S)°P — Gpd by setting
ob SpRep?é*)(X ) :={(£,0) a rank 4d* Azumaya algebra over X equipped with a symplectic involution,
and an A-algebra morphism p : (R, *) — (I'(X, £), o) respecting the involution}

An isomorphism of two objects (€, 0,p) and (£/,07,p') is an isomorphism « : £ — &’ of Azumaya
algebras over Ox, such that aop=p'.

SpRep(DéQf) is representable by an affine scheme, which is of finite type over S, if R is finitely generated

over A. The functors SpRep%}%’*) and SpRep?é*) are (2-)representable by categories fibered in groupoids
over Sch/S.

Lemma 8.32. Let X be a scheme and d > 1.

1. There is a natural bijection of pointed sets between the set of symplectic vector bundles of rank 2d
on Sch/X up to isomorphism and the set of étale Spy -torsors on Sch/X up to isomorphism.
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2. There is a natural bijection of pointed sets between the set of Azumaya algebras of rank 4d? equipped
with a symplectic involution on Sch/X up to isomorphism and the set of étale PGSp,, -torsors on
Sch/X up to isomorphism.

Proof. We first observe, that symplectic vector bundles are the same in the Zariski and in the étale
topology. This follows from the equivalence of categories [Stal9, 03DX], which is also used in the proof
of Hilbert’s Theorem 90 [Stal9, 03P7] in the case of line bundles.

The bijection between étale symplectic vector bundles and étale Spy,-torsors is now the standard one:
Take an étale symplectic vector bundle (V, o) to the étale Zsom-sheaf

Zsom((V,0), (0%, std))(U) := Isom((V, ) |u, (0%, std)|)

with Spy -action induced by the standard action on O32. It follows directly from local triviality of (V, o),
that Zsom((V, o), (03¢, std)) is an Spy,-torsor.

Take an étale Spy,-torsor T to the étale sheaf quotient T xSP2¢ O% := (T xSP2a O%)/ Sp,,, which by
local triviality of T is again easily seen to be an étale symplectic vector bundle.

By the same argument using that the automorphism group of the standard Azumaya algebra with sym-
plectic involution is PGSp,,; and that Azumaya algebras are étale locally trivial, we see that the groupoid
of Azumaya algebras with symplectic involution is equivalent to the groupoid of étale PGSp,-torsors. [

Theorem 8.33. The canonical functors

~ ~ =——2d
[SpRep(;) / Sp2a] =+ SPRep(fr.)  and  [SpRep;’s) / PGSpay] = SpRep(g...

are equivalences of étale stacks on Sch/S. On the left hand sides we take the étale stack quotient.

The proof follows closely the proof of [Wanl3, Theorem 1.4.1.4]. We remark, that the result is a version
of [Wan13| Theorem 1.4.4.6] for representations of algebras instead of groups.

Proof. By [Stal9l |0037Z] it is enough to show, that the functors induce equivalences of fiber categories
(which are groupoids). For the purpose of this proof the stacks will be described as pseudofunctors from
(Sch /S)°P to the (2, 1)-category of groupoids in the sense of [Stal9, 003V].

[SpRep(Dé’Qf) / Sps,| parametrizes for each S-scheme ¢t : T — S pairs (f : G = T, G — SpRep?é?f)) €

[SpRep‘(jéQf) / Spag|(T), where G is an étale Spy -torsor over 7' and G — SpRep‘(jéQf) is an Spyg-equivariant
map of S-schemes.

Using Lemma we attach to G a symplectic vector bundle (V) on T. Since G(G) contains idg, (V,b)
is canonically trivialized over G. The composition

[t R — (M24(0Og),j) — Endog (f*V, 01)

can be descended to a map t*R — Endo, (V, 03) using Spyg-equivariance of G — SpRep(Dé?f). The functor

G — (V,b) realizes the identification Lemma between symplectic vector bundles and Sp,,-torsors. In
particular it induces an equivalence between the groupoid of symplectic vector bundles and the groupoid
of Spy4-torsors.

To show, that the functor [SpRep(DéQf) / Spog|(T) — SpRep%g*)(T) is an equivalence, we give a functor
in the other direction. It is then formal to verify that this realizes an equivalence of groupoids.
An object of SpRep%g*)(T) is a triple (V,b, p) as in Definition We define an Spy,-torsor G over T'
by setting

G(X) :=Isomo, ((z*V,b), (0F*%, bsa))

for all T-schemes x : X — T. Here bgq is the standard symplectic form and isomorphisms shall preserve
the bilinear forms. G is represetable by a flat scheme f : G — T of finite presentation over T [You,
Theorem 3.24]. The identity map in G(G) corresponds to an isomorphism f*V = Og 2d compatible with
b and bgyq. The composition

(" Rox) % (Endog (f°V), o) = (Endo, (05*),J)
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defines a representation in SpRepI(:l;f)(g), so we obtain a map G — SpRepl(jéZf). The latter is Spyy-

equivariant, for the action of Sp,, realizes a change of basis. We have constructed an object of [SpRep‘(]éQf) / Spog)(T).
The equivalence [SpRep(lef) /PGSp,,] = SpRep?;;l{’*) follows by an analogous argument. We only men-

tion, that PGSp,, is the automorphism group scheme of (Mag,j). We are using Lemma to identify
étale PGSpy,-torsors and Azumaya algebras with symplectic involution. O

8.5.2 Comparison with the GIT quotient

Assume, that A is noetherian and that R is finitely generated over A.

By |Alp14, Theorem 9.1.4] the canonical map [SpRep(Dé,Qf) / Spag] — SpRep‘(:l};ff) // Spag is an adequate
moduli space. Since the canonical map [SpRep‘(:l}ff) / Spag] — SpRep?g*) is an equivalence of stacks
|D the map ¢ : SpRep?fgﬁ*) — SpRep(Dé?f) /| Spa, is an adequate moduli space as well.

The map " : SpRepl(]é?f) — SpDet%ﬁ)*) given by mapping a representation to its determinant factors

over the stack quotient and thus through a map  : SpRep%j‘%’*) — SpDet%ﬁﬁ*), which in turn factors
through the adequate moduli space ¢. We obtain a commutative diagram

SpRep{z .

T

SpDet%g*) ~— SPRGPS%?:I) // Spaa

Recall, that an adequate homeomorphism is an integral universal homeomorphism, which is a local iso-
morphism at all points with residue field of characteristic 0 (see [Alpl4, Definition 3.3.1]).

Theorem 8.34. v is a finite universal homeomorphism.
We follow closely the structure of the proof of [Wanl8, Theorem 2.20].

Proof. We know, that v is surjective and radicial, since v is a bijection on geometric points [Pro76,
Theorem 15.4]. Hence by |Gro67, Corollaire 18.12.11] it suffices to show, that v is integral and by [Stal9,
01WM] it suffices to show, that v is universally closed.

We will apply the valuative criterion for universally closed morphisms in the version of [Gro61, Remarques
7.3.9 (1)].

Let B be a complete discrete valuation ring with an algebraically closed residue field and fraction field
K.

We will show, that given a diagram of A-schemes:

Spec K —%— SpRepl(:’é?f) // SPoy

| |

Spec B & SpDet%g*)

there exists a finite field extension K" /K and letting B” be the integral closure of B in K" there is a
morphism f : Spec B — SpRep%j‘%,*), such that ¢ o f fits in the diagram

Spec K" —— Spec K —%— SpRepl(]é?f) / SPay

l ‘ﬂ, 3

Spec B —— Spec B —— SpDet%ﬁ’*)
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and thereby verifies the valuative criterion.

Let (D, P) be the symplectic determinant of (R, *) associated to the point Spec B — SpDet?f%*). Our
Theorem together with [Wan18, 2.19 (1)] implies, that there is a K-linear semisimple symplectic
representation p : (R ®4 K,*) — (M4(K),]j) such that the corresponding point Spec K — SpRep?fé’*)
lies above a:

Spec K — 2 SpRep?j’;l{’*)

| I

Spec K —*— SpRep(Dé?f) // SP2a

By [Chel4, Theorem 2.12] and [Cheld, Lemma 2.8] we have ker(p) N (R ®4 K) = ker(D ®4 K), so
the action of R®4 K on K factors through (R ®4 K)/ker(D ® 4 K), which is finite-dimensional over
K by |Wanl8| Corollary 2.14]. By Corollary there is a finite extension K’/K and a symplectic
representation p: R®4 K’ — (Maq(K'),]), which induces (D ®4 K', P ®4 K').

Let B’ be the integral closure of B in K’. Let V' := (K')?? be the K’-vector space realizing p. Let
L C V' be a B'-lattice and as in the proof of [Wanl18, Theorem 2.20], we may assume that L is R-stable.
The symplectic bilinear form on V' restricts to a B’-bilinear form 8 : L x L — K’; beware that we don’t
know a priori whether 8 has values in B’. Choose a basis x1, ...,z of L and let F' be the fundamental
matrix of 3, i.e. Fj; = B(z;,2;). Let w be a uniformizer of B’. Then det(F) = aw”, where a € (B)*
and r € Z.

We find a finite extension K”/K’, such that there is an element z € K" with 2% = ", Let B” be the
integral closure of B’ (and B) in K”. Let L"” := L ® gr B”, which is a lattice in V" := V' @, K" with
basis z1,...,%24. B extends to a B”-bilinear form 3 : L"” x L"” — K" with fundamental matrix F'. The
rescaled lattice 2L” has basis zx1, ..., 2224 and fundamental matrix z2F. It follows, that det(z2F) = a
and thus (8 is non-degenerate on zL”. So there is a representation on the B”-lattice zL” compatible
with (the involution induced by) 3, which gives p ® K" after extension of scalars. To obtain an actual
symplectic representation R® 4 B” — (Maq(B"),]), we use [MH74, Corollary 3.5]: Every non-degenerate
bilinear form over B’ is congruent to the standard symplectic form. O

8.6 Comparison With Lafforgue’s pseudocharacters

We recall the definition of Lafforgue’s pseudocharacters for reductive groups. See |[Lafl8 §11] for the
original definition and [BHKT), Definition 4.1] for a definition in the context of deformation theory. For
GL,, Lafforgue’s definition has been proven to be equivalent to Chenevier’s notion of determinant laws
|[Emel8| Theorem 4.0.1]. We expect, that the bijection constructed in [Emel8, Theorem 4.0.1] restricts to
a bijection between Lafforgue’s pseudocharacters for the symplectic groups and symplectic determinant
laws over commutative Z[%}—algebras. The main goal of this section is prove this conjecture in some
special cases.

Recall for the next definition, that a reductive group scheme over Z is connected by definition [Conl4b].
Only G = GL4 and G = Sp,,; will be relevant here.

Definition 8.35 (G-pseudocharacter). Let G be a reductive Z-group scheme, let T be an abstract group
and let A be a commutative ring. A G-pseudocharacter © of I over A is a sequence of ring homomorphisms

O : Z[G™])Y — Map(I'™, A)
for each m > 1, satisfying the following Conditionsﬂ

1. For all n,m > 1, each map ¢ : {1,...,m} — {1,...,n}, every f € Z[G™]% and all vy,...,7, €T,
we have
On(F) 153 7m) = Om () (V) - Ve(m))

where f<(g1,...,9n) = f(9cr)s -+ Ie(m))-

Here G acts on G™ by g - (g1,...,9m) = (99197, ...,99mg~"). This induces a rational action of G on the affine
coordinate ring Z[G™] of G™. The submodule O[G™]¢ C O[G™] is defined as the rational invariant module of the G-
representation O[G™]. It is an O-subalgebra, since G acts by O-linear automorphisms.
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2. For all m > 1, for all v1,...,%ms1 € I and every f € Z[G™]%, we have

Omr1(/)0, -, Ymt1) = Om(F)(V, - o, Ym Y1)
where f(g1,.. ., gm+1) = f(g1.- - GmGm+1)-

We denote the set of G-pseudocharacters of I' over A by PCIE;(A). If f: A— B is aring homomorphism,
then there is an induced map f, : PCG(A) — PCh(B). This defines a functor PCL, : CRing — Set,
which is representable by a commutative ring Bg Theorem m

The definition of G-pseudocharacter can be brought into a more convenient and practical form. Let
F :={FG(m) | m > 1} be the category of finitely generated free groups FG(m) on m letters. Then the
associations Z[G*]¢ : FG(m) — Z[G™]% and Map(T®, A) : FG(m) +— Map(I'™, A) give rise to functors
F — CRing. It can be proved, that there is a natural bijection

PCL(A) = Nat(Z[G*]%, Map(I*, A))
for any commutative ring A, where Nat stands for natural transformations. See Corollary [£:45] for more
details.

Now assume, that G = Sp,,. For m > 1, the Sp,,;-module Z[Sp3y] has a good filtration by [Jan03| §B.8]
and Mathieu’s tensor product theorem [Mat90] (which holds also over the integers, see e.g. Theorem [4.16))
and H*(Spyy, Z[Sphy)) = 0 for all i > 0 |[Jan03} §B.9]. In particular for any homomorphism of commutative
rings A — B, we have

B[Spyy]5P2a 22 Z[Sph|SP2e @4 B 2 (Z[Spyy]SP2 @7 A) @4 B = A[Spyy]®P2¢ @ 4 B

We recall the definition of characteristic polynomials of Lafforgue pseudocharacters here.

Definition 8.36. Let A be a commutative ring and let © € PCng (A). Then we define the characteristic

polynomial of © by
d

XO(v, 1) =Y (=)' Or(s) (Mt € Al

i=0
where s; € Z|GL4]%L4 are the unique invariant regular functions, which satisfy

d

det(t —X) = > (=1)"s;(X)t?~

=0

in Z[GLg4][t]%"¢, where X is the generic matrix coordinate in GL4(Z[GL4]) which corresponds to the
identity under the Yoneda isomorphism.

Proposition 8.37. Let A be a commutative ring. Then the map
PCGLd( ) — Map(ra A[t])a O — X@
is injective.

Proof. Tt suffices to show, that a GLg4-pseudocharacter © is determined by the values ©1(s;) for 1 < i < d.
By Corollary these are generators of the F-Z-algebra Z|GLJ]“, so the claim follows. O

Now we are in shape to define a comparison map in one direction:

Proposition 8.38. Let O € chp d(ng ) be the universal Sp,;-pseudocharacter and let C' be a

commutative Bg, -algebra. We have seen, that C[Sphy|5P2¢ = ngm [Sphy]SPad ®Br C and Oy, induces

a homomorphism O, ., : C[Sp5y]*P2¢ — Map(I'"™, C) for all m > 1. We define maps
D¢ - C[F] — O, Z Ci%i — @?mc (det (Z 01X1>> (’}/1, A ,’ym)
=1 =
PC:C[F]+_>C’ Z ’YZ+’71 = Gum,c< (Z X +X ))(71377771)
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Then D is a 2d-dimensional determinant law over ngm and P is a d-homogeneous polynomial law with
P? = D|ng2dm+ and P(1) = 1. In particular we have a natural map chpzd (A) — SpDet5,(A) for every

commutative Z[1]-algebra A.

Here X; € Spyy(Z[Spsy]) is the generic i-th coordinate, i.e. the unique element of Sp,,(Z[Sp3y]), such
that for all commutative rings A and all tuples T' = (T4, ..., 1) € Spyy(A)™, we have X;(Th, ..., Tyn) =

Spoa(T)(Xs) = Ti.
(D, P) is formally a symplectic determinant law attached to the universal Sp,;-pseudocharacter over Z,

but in Definition we require that 2 shall be invertible on the base, so we refrain from calling it a
symplectic determinant law.

Proof. The way the maps are defined is functorial, so clearly D and P are polynomial laws. We check

2d-homogeneity of D:
Om.c (det (Z cciXZ)) = chGZ%C (det <Z cﬁ&))
i=1 i=1

for all m > 1, C' € CRing, ¢,¢; € C and X; € Spy,(Z[Spsy]) the generic matrix corresponding to the i-th
projection Spgy — Spy, by Yoneda. d-homogeneity of P follows similarly. For multiplicativity, we notice,
that

m m’ m m’
eﬁn+m/,C <det <Z CiXi>> ng—i-m/,C det Z C;Xm_;,_j = @um+m’,C det Z Z Cichixm_;,_j

i=1 j=1 i=1 j=1

Define
m m’ m m’
o= det Z Z C; C;Xixm_;,_j 'u/ = det Z Z CiC;‘Xi—i-(j—l)m
i=1 j=1 i=1 j=1

Now

O (1) (V15 -+ Yoy Yo -+ o Vo)
=05 .o (1) (MY M1Yas - -+ > Ym Vo)

holds by a suitable substitution in an F-Z-algebra. *-invariance of D, P% = Dl¢irj+ and P(1) = 1 follow
by a similar substitution. O

Let © € PCF ,,(A) and write (De, Pe) for the image of © under the natural map PCEp (4) —

SpDeth(A). We observe, that the COIIlpaI"lbOIl map is compatible with characteristic polynomials: We
have © = ¢ (0%) for the arrow pg : Z[1 HPCSpZd] — A associated to ©. Then De = g o D with D as-
sociated to ©" as in Proposition [8.38] We see that the comparison map is compatible with characteristic
polynomials:

for all v € T'.

Lemma 8.39. The map PCgpm (A) — SpDetb,(A) defined in Proposition is injective.
Proof. Indeed, the map PCgpM (A) — PCqy, ,,(A) induced by the standard representation ¢ : Spy; —
GLyq is injective, since the maps Z[GLY;| G 2¢ — Z[Sph}]SP2a are surjective by Proposition The

map SpDety,;(A) — Deth,(A) forgetting the Pfaffian is injective by Proposition The claim follows,
since we have a bijection PCELM (A) — Deth,(A) by [Emel8, Theorem 4.0.1]. O
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Lemma 8.40. If A — B is an injective homomorphism of Z[1]-algebras and PCgpzd(B) — SpDety,(B)
defined in Proposition is a bijection, then chp% (A) — SpDets,(A) is a bijection.

Proof. By Lemma it is enough to show surjectivity. Let (D, P) € SpDetgd(A). By Proposition
the natural map SpDetb,(A) — Detb,(A) is injective. By assumption (D ®4 B, P ®4 B) € SpDeth,(B)
corresponds to a unique © € PCgpM(B). We know, that x”(v,t) = xP®48(y,t) for all v € T and
thus (for the standard representation ¢ : Sp,; — GLag) the coefficients of x“(®)(v,t) lie in A. By
Proposition these coefficients determine ©; : Z[Sp,,|°P2¢ — Map(T', B). But also by Corollary [8.46
these elements already generate the entire F-Z-algebra Z[Sp3,]°P2¢ and thereby all homomorphisms O, :
Z[Spyy|3P2¢ — Map(I'™, B). By considering substitutions with morphisms of the category F, it follows,
that the image of ©,, is contained in Map(I'", A). Thus © descends to an Sp,,-pseudocharacter in
chpgd (A), which we will also call ©. It remains to show, that © is indeed mapped to (D, P), but
this follows from the compatibility of the comparison map with characteristic polynomials: We have
X{©)(v,t) = xP®4aB(v,t) = xP(v,t). Since D is determined by x? and P is determined by P, © is
necessarily mapped to (D, P). O

Proposition 8.41. Let A be a reduced commutative Z[i]-algebra. Then the map PCgpzd (A) —
SpDetb,(A) defined in Proposition is bijective.

Proof. By Lemma it is enough to show surjectivity. If (D, P) € SpDeth,(A), we know by [Emel8,
Theorem 4.0.1], that there is some © € PCELM (A), that maps to D. So it is enough to show, that ©,,
factors over Z[Sphy]5P2a for all m > 1.

By Lemma [8:40] the proof of the proposition reduces to the case of an algebraically closed field in three
steps: First embed A — Hp A/p, where p varies over all prime ideals of A. Second, representable
functors preserve products, so the claim for Hp A/p reduces to the claim for A/p. Third, embed an
integral domain A/p into an algebraic closure of its fraction field. If A is an algebraically closed field,
then by Theorem there is a semisimple representation p : I' = Spyy(A), that induces (D, P). The
Spag-pseudocharacter induced by p is necessarily mapped to (D, P). O

8.7 Symplectic and orthogonal matrix invariants

The main theorem of [Zub99] is stated as follows:

Theorem 8.42. Let G = Sp, or Oy and let K be an algebraically closed field (of characteristic # 2 in
the orthogonal case). Then the invariant algebra K [Mg”]G is generated by the elements

(X1,..., X)) = 0i(Yj, -+ Y5)

s

where every matrix Y; is either X; or the symplectic (or orthogonal) transpose Xg and 0;(X) is the i-th
coefficient of the characteristic polynomial of X.

Using this theorem, we use the idea of Donkin (cf. [Don92|) to find generators of the symplectic invariants
of several matrices with integral coefficients.

Proposition 8.43. Let G = Sp,, then the invariant algebra Z[M, ;”]G is generated by the elements
(X1, X)) = 0i(Yj, -+ Y5,)

defined above.

Proof. Let us write R= ZIM ZZ””]G and let R C R be the subalgebra generated by the functions defined in
the statement of the proposition. We need to show that this inclusion is an equality.
Note that the algebra of regular functions on m matrices has a natural grading K[M7'] = @, cym K[M']a
defined by giving to the (4, j)-entry acgl]) of the I-th matrix X; (1 <1 < m) the degree (0,..,1,..,0) (the 1
is in the [-th position). In particular, the grading on C[M}"] induces a grading on R and R.

By [Don92, §3], K[M}"], has a good filtration as a GL4(K)-module. But as mentioned in the proof of
[Don94, Theorem 3.9], the restriction to Sp, of a GLg-module with a good filtration has a good filtration.

110



From [Don90, Proposition 1.2a(iii)], we get that dim K[M| is the coefficient of the character of the
Weyl module V(0) in the expension of the character of the G-module K[M}'] as a Z-linear combination
of the characters of V()) for A € Xt (loc.cit.). In particular d, = dim K[M]$ is the same for all
algebraically closed fields K.

Let Ry := RNZ[M]"]o. Since C ®z R, = C ®7 Ea = C[M]]a, we get that rankz R, = rankg Rl =d,.
Also by Theorem we have a sequence of morphisms

m

K @7 Ry — K @y Ry —— K[M|C

where all of the vector spaces have the same dimension d, so all of the arrows are isomorphisms. In
particular, we have K ®z R, = K ®7 R for every algebraically closed field K, and so R, = R, which
is enough to conclude. O

Consider the general symplectic group GSp,,, over Z whose funtor of points is as follows:
GSpy,,(A) = {g € M2, (A) | g9" = A(g) - id for some A(g) € A*}

There is a natural embedding of GSp,,, inside My, x Al given by g — (g, A(g)~1). This way, we see that
Z|GSp,y,,| = Z|c; ;,0]/1 where I is the ideal generated by the relation det(c; ;);,;-0™ = 1 and the relations
coming from the identity (c; ;)i - (cij);; = 0~ '-id. Thus we see that for the grading on Zlc; ;, 6] such
that deg(c; ;) = 1 and deg(d) = —2, I is homogeneous and so the grading can be transferred to Z[GSp,,,].
More generally we will consider the graded ring

Z[GSpy,] = €D ZIGSp3yla (13)

agzm

Lemma 8.44. Let K be an algebraically closed field, then the invariant algebra K [GSpS]Spd is generated
by the functions

(X1, Xg) = 0i(Xj, - X;,)  and  (Xq,... Xp) = AHXD)
where 0;(X) is the i-th coefficient of the characteristic polynomial of X.

Proof. The proof is based on a remark in [Zub99, §3]. Consider the canonical morphism of alge-
braic groups m : Spy XG,, — GSp, which is surjective since it is surjective on the K-points (see
[Knu+98, Proposition 22.3]). The same is true for 7 so we get an embedding (7®%)* : K[GSp%] —
K[(Spy XG,)*]. Note that for h € Sp,(K) and f € K[GSp%], we have h - (7®¥)* f) = (7®F)*(x®*(h) -
f) (the action is by conjugation). Therefore we get that (7®)*(K[GSpk]SPe) = (#®F)*(K[GSpk]) N
K|[(Spy XG,,)¥]3Pa = (7®F)*(K[GSpk]) N K[Spk)P« @ K[GE,] hence the result. O

Proposition 8.45. The invariant algebra Z[Sph}]5P24 is generated by the elements

(X15o Xim) = 00(Y5, -+ Y5,)

)

defined in Theorem 842

Proof. Let T be a maximal torus of Sp,y,; and let (m,),>1 be an ascending sequence of finite saturated
subsets of X+ (T) such that |J,~; 7, = # = X (T'), which is possible since Sp,, is semisimple. For a
field K, let O, be the truncation functor associated to a finite saturated subset 7 C X+ (T™) whose
definition and properties we are going to use are given in [Jan03}] §A]. This definition makes sense over
Z for a finite saturated 7 by setting O, (Z[Spsy]) := O-(Q[Sp5y]) N Z[Sp5y], which is a finitely generated
free Z-module. We have for any field K (|Jan03, §A.24]):

O (Z[Sp3q]) ®z K = O+ (K[Sp3]) (14)
For the cartesian power 7 = XT(T)™, we have 7™ = J,~; 7" and 7" are finite saturated sub-
’rré =

n>
sets for the group Spsy. By definition, we have O,=(Q[Sphy]) = Q[Sphy] and since Orm (Q[Spsy]) =
Uns1 Oxm (Q[Spag)) ([Jan03, §A.1]), we get that (Oxm (Z[Spsg]))n>1 is an ascending filtration of Z[Spsg].
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Now let R be the subalgebra of Z[Sp5}]5P2¢ generated by the elements in the statement of the proposition
and let R, := RN Oxm(Z[Spyg]). By [Jan03, Lemma A.15], for any field K Onm (K[Spyy]) is finite-
dimensional and admits a good filtration as an SpJy x Spsy-module (for the left action induced by left
multiplication by the first factor and inverse right multiplication by the second factor on Spj;) with
factors V(A) @ V(—wgA) for A € 77", By [Don94, Theorem 3.3], the tensor product of two induced
modules V(A) ® V(X') admits a good filtration, hence O, (K[Spsy]) admits a good filtration as an Sphy-
module under conjugation. But by [Jan03, Lemma 1.3.8], V(X)) = ®;V(\;) for A = (Ai)1<i<m € XT(T™),
so by the same argument as before, we get that Orm (K [Spyg]) admits a good filtration as an Sp,,-module.
It follows from [Jan03|, Lemma B.9] that Om (Z[Spyy]) admits a good filtration as an Sp,;-module, hence
by [Don90, Proposition 1.2a (iii)]

ranky, Orm (Z[Sphy])®P2¢ = dim g Oy (K[Sphy])¥P2¢ =: d,,
for any field K.
We have an exact sequence
0= Rn — Z[Spyq] — (Z[Spzal/R) x (Z[Sp2al/ Oxyp (Z[Sp3al))
so tensoring with QQ gives an exact sequence

0= Ry ©@Q = Q[Spzq] — (Q[Spzal/ (R ® Q)) x (Q[Spzal/ Oy (QlSp2a]))
By [Zub99, Proposition 3.2], we have R ® Q = Q[Sp5y]5P2¢, so the kernel of the rightmost arrow is
Q[Sp3a>P2¢ N Oryr (Q[Sp3a]) = Oy (Q[Sp3g]) 2.
Hence R, ®7 Q = O, (Q[Sph}])5P2¢, and in particular we get that ranky R, = d,,.

We claim, that R, is cotorsionfree in R: We know, that by definition R/R,, embeds into Z[Sp5y]/Oxm (Z[Spay]),
which is free.

Let K be an algebraically closed field. The top map in the following diagram is an isomorphism by
|Zub99, Proposition 3.2].

R®K = . K[Spyy|Spaa

R, ® K~ Ozm (K [Spyy])Spad

So the bottom map injective. Since ranky R, = d,, it must be an isomorphism. We deduce, that in the
following diagram all maps are isomorphisms.

/\

Rn Rz K —— Oﬂ;n (Z[Spg&])Sp'zd Rz K —— Oﬂ-;n (K[Sp%])sr’%

Since this is true for every algebraically closed field K, the map R, — Oxm(Z[Spyy])°P2¢ of finitely
generated free Z-modules is an isomorphism. So R = Z[Sph}]5P2¢, as desired. O

Corollary 8.46. The F-Z-algebra Z[Sp3,]°P2¢ is generated by the elements o7y, ..., 0oy defined in The-
orem

Proof. This follows directly from Proposition 845 and subsitutions with morphisms from F. O
Remark 8.47. The statements of Proposition [8.43 and Proposition hold after replacing Z by

an arbitrary commutative ring A. Since the Spg;-modules Z[M]"] and Z[Spy;'| have good filtrations,
taking invariants commutes with tensoring with A, so A[M7'|3Pa = Z[M7']Pa ®; A and A[Sp}'|3Pe =
Z[Sp}]®P¢ @7 A. The same arguments go through for the odd orthogonal groups O, (d > 3) using
Zubkov’s computation [Zub99] of generators of these invariant rings over an algebraically closed field.
The arguments in Lemma can be adapted to the general orthogonal groups GOy (d > 2) and
we obtain the same generators with the inverse of the orthogonal similitude character in place of the

symplectic similitude character.
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A  On common R-Levis and G-semisimplification

The content of this section of the appendix also occurs in [PQ23]. As this work is not yet available, the
relevant preparations for the proof of reconstruction theorem for disconnected groups Theorem [£.56] are
taken from there.

Let G be a (possibly disconnected) reductive group over an algebraically closed field .

Lemma A.1l. Let P and @ be R-parabolic subgroups of G. Then PN (@ contains a maximal torus of G.

Proof. By |[Mar03, Rmk. 5.3], P° and Q° are parabolic subgroups of G°. By [BT65, §2.4] P° N Q°
contains a maximal torus 7" of G°. T is also a maximal torus of G. O

Lemma A.2. Let P and @) be R-parabolic subgroups of G. Assume, that ) contains an R-Levi of P
and P contains an R-Levi of (). Then P and @ have a common R-Levi.

Proof. Let T be a maximal torus of G contained in PN (LemmalA.1f). Let L be an R-Levi of P, which
contains T" and let M be an R-Levi of (), which contains T'. Existence and uniqueness of L and M follow
from [BMRO5, Cor. 6.5]. Since by assumption P N Q contains an R-Levi of P as well as an R-Levi of Q,

the maps
PNnQ@ — P/R,(P)

PNQ— Q/R.(Q)
are surjective. Since by [BMRO5, Lem. 6.2 (iii)], PN Q = (LN M)R,(P N Q), we obtain surjections

LNM — P/R,(P)

LNM— Q/R,(Q)

Hence P = (LN M)R,(P). Since P=L- R, (P) and LN R,(P) =1, we have LN M = L. Similarly, we
have LN M = M. O

Lemma A.3. Let H be a closed subgroup of G. Let P and ) be R-parabolic subgroups of G, both
minimal among R-parabolics containing H. Then P and @ have a common R-Levi.

Proof. The group (P N Q)R,(Q) contains H and is contained in @ and by [BMRO05, Cor. 6.9], (PN
Q)R,(Q) is R-parabolic. By minimality of @, we have @ = (PN Q)R,(P). Again by [BMR05, Cor. 6.9],
P contains an R-Levi subgroup of Q. Similarly @ contains an R-Levi of P. We can apply Lemma[A.2] [

Our definition of G-semisimplification of representations is close to the definition of G-semisimplification
of subgroups of G(x) given in [BMR20, Definition 4.1]. The main difference is, that we have to keep track
of the map from I" to G(k).

Definition A.4. Let p : ' — G(k) be a homomorphism. Let P be an R-parabolic of G, such that
p(T') C P(k) and such that P is minimal among all R-parabolics with this property. Let L be an R-Levi
of P. We have a canonical surjective homomorphism cpj, : P — L. We define the G-semisimplification

p* of p with respect to P and L as the composition I' % P(r) = L(k) — G(k).

When G = GL,, we recover the usual notion of semisimplification of n-dimensional I'-representations,
which is defined as the direct sum of the Jordan-Holder factors of p. By definition p*(T) is a G-
semisimplification of the subgroup p(I") in the sense of [BMR20, Definition 4.1]. It is thus immediate,
that p* is G-completely reducible. If I is a topological group, k is a topological field and p is continuous,
then p** is continuous, but the converse is false in general.

Proposition A.5. In Definition the G°(k)-conjugacy class of p** does not depend on the choice of
P and L.

113



Proof. Let p*% = cp, 1, o p for i = 1,2 be two semisimplifications of p with respect to an R-parabolic P;
and an R-Levi L; respectively. We first assume P := P; = P,. Then there exists some u € R, (P), such
that uLiu~' = Lo. Since the square in the following diagram commutes, we obtain ucRLlu_1 =cCpL,
and thus in particular up®tu=1 = p¥:2,

CrLq

T

P> P/R,(P)<"— 1L,

N

P/R,(P)<—— L,

CLo

If P, # P,, we can apply Lemma to find a common R-Levi L of P, and P,. By [BMR05, Lemma 6.2
(iii)], we have Py N Py = L - (R, (P1) N Ry(P,)). It follows, that the following diagram commutes.

P10P2*>P1

i \LCPLL
CPy.L

Po———1L

This implies ¢p,,, © p = cp,,, © p. We obtain from the first step, that there are u; € R, (P;) with
ui(Cp,i’Li Op)ui_l = Cp;,L O p- O

Corollary A.6. Let p: I' — G(k) be a homomorphism. Then p is G-completely reducible if and only if
p and p* are GY(k)-conjugate.

Proof. The reverse direction is clear. Suppose, that p is G-completely reducible and that p is some G-
semisimplification of p. Let P be a minimal R~parabolic, such that p(I') C P(k). Since p is G-completely
reducible, there exists some R-Levi L of P, such that p(I") C L(k). In particular p = cp,1, 0 p. We can
apply Proposition to conclude, that cp r, o p and p** are conjugate. O

Proposition A.7. Let p: T' — G(k) be a homomorphism. Then the determinant laws attached to 7o p
and 7 o p* agree.

Proof. Let A be a cocharacter, such that p* = lim;_,0 A(£)pA(t)™'. Let D.o, : &[] — & be the de-
terminant law attached to 7 o p and let D, be the determinant law attached to 7o p*. We also
have a family of determinant laws D : s[['] — &[t,t71] over G,, given by D4 : A[l'] — Alt,t71],r —
det(((r(A(®))(Top)T(A(t)) ') ®ida)(r)), which is actually constant in ¢ and equal to D,.,. So this family
extends uniquely to a family over Al. Since the limit of A(¢)pA(t) =t as t — 0 exists and formation of the
determinant is algebraic, we obtain D*=" = D« and hence D;op = Do pes. O

Remark A.8. In general (70 p)® is not isomorphic to 7o p*. But it follows from Proposition that
Diopss = Drop and in particular that (7 o p™)% is isomorphic to (7 0 p)®.
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