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Abstract

Originally thought to only take part in motor control, the cerebellum emerged over the last decades

as an important organ in various higher cognitive functions, such as learning and speech [1]. Be-

sides this, the cerebellum is associated to various diseases, such as spinocerebellar ataxia, autism

spectrum disorder, and medulloblastoma [2]. The basic structure and connective properties of it

are well understood, but single-cell-technologies made it possible to study the cerebellum at higher

resolution. Many questions about molecular details of its development and evolution are still not

answered. Cerebella are present in all jawed vertebrates, though structural diversity is macroscopic

and microscopic detectable, such as the number of deep nuclei, the presence of the vermis, or the

mode of production of one of the most important cell types in the cerebellum - granule cells [2–4].

Using single-nucleus RNA-sequencing (snRNA-seq) and bioinformatic approaches, I studied cere-

bellum data of human, mouse (Mus musculus) and opossum (Monodelphis domestica). The dataset

contained samples spanning the organs development at high temporal resolution. It was possible

to track the differentiation of the major cerebellar neuronal and glial cell types, as well as identify

states and subtypes. This generated a comprehensive map of cellular complexity through eutherian

(human and mouse) and marsupial (opossum) development. Leveraging the evolutionary distance

of approximately 160 million years between the eutherian and marsupial lineage, conserved and

diverged cell type marker genes could be identified which might be promising candidates for under-

standing the basic blueprint of cerebellar cell type identity.

Stage correspondence mapping aligned the vastly different developmental time frames of the

three studied species and allowed the identification of a two-fold increase in Purkinje cell progenitors

in the human lineage, which might be connected to a recently identified human-specific secondary

ventricular zone progenitor pool [5].

It was possible to model the differentiation path of granule and Purkinje cells from early pro-

genitors to mature neurons. Conserved and diverged gene expression trajectories were discovered.

Using in vitro and in vivo intollerance scores [6], I could show that genes which are dynamically

expressed during differentiation show higher functional constraint as non-dynamic genes, fitting to

previous bulk-RNA-seq studies [7], showing similar results across the development of the full organ.

Some orthologs with diverging patterns were disease-associated genes, which could have implications

on clinical research on conditions like autism spectrum disorders and medulloblastoma.

Furthermore, fundamental changes of gene expressions, established as gain or loss of expression

within a cell type and species, were detected. Affected genes showed decreased functional constraint,

verifying evolutionary principles on single cell scale [8].

Taken together, this study shows the strength of state of the art methodology combined with

high resolution developmental sampling in an evolution biological context to discover fundamental
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principles of organ development at single-cell scale.

II



Zusammenfassung

Ursprünglich dachte man, dass das Kleinhirn (Cerebellum) nur an motorischer Kontrolle beteiligt ist,

aber in den letzten Jahrzenten erkannte man, dass es auch bei der Verarbeitung höherer kognitiver

Funktionen wie z.B. Lernen und Sprache beteiligt ist [1].

Außerdem steht das Kleinhirn in Verbindung mit verschiedenen Krankheiten wie der spinozere-

bellären Ataxie, der Autismus-Spektrum-Störung und dem Medulloblastom, einem pädiatrischen

Hirntumor [2]. Die Grundstruktur und die Verbindungseigenschaften des Kleinhirns sind gut ver-

standen, aber die Einzelzelltechnologien ermöglichten, das Kleinhirn detaillierter zu untersuchen.

Viele Fragen zu molekularen Details seiner Entwicklung und Evolution sind noch nicht vollständig

beantwortet. Kleinhirne sind bei allen Gnathostomata vorhanden, doch strukturelle Unterschiede

sind makroskopisch und mikroskopisch nachweisbar, wie etwa die Anzahl der sogenannten “deep

nuclei”, das Vorhandensein der Vermis oder die Produktionsweise eines der wichtigsten Zelltypen

im Kleinhirn - den Körnerzellen [2–4].

Mithilfe der Einzelkern-RNA-Sequenzierung (single-nucleus RNA-seq, snRNA-seq) und bioinfor-

matischer Ansätze habe ich Kleinhirndaten von Mensch, Maus (Mus musculus) und Opossum (Mon-

odelphis domestica) untersucht. Der Datensatz enthielt Proben, die die Entwicklung des Organs in

hohe zeitliche Auflösung abbilden. Es war möglich, die Differenzierung der wichtigsten neuronalen

und glialen Zelltypen des Kleinhirns zu verfolgen, sowie Zellstadien und Subtypen zu identifizieren.

So entstand eine umfassende Karte der zellulären Komplexität des Kleinhirns während der En-

twicklung von Eutheriern (Mensch und Maus) und Beuteltieren (Opossum). Unter Ausnutzung

des evolutionären Abstands von etwa 160 Millionen Jahren zwischen der Eutherier- und Beuteltier-

linie konnten konservierte und divergierende Zelltyp-Markergene identifiziert werden, die vielver-

sprechende Kandidaten für das Verständnis des grundlegenden Bauplans der Kleinhirn-Zelltypen

sind.

Durch Verfahren zur Angleichung der sehr unterschiedlichen Entwicklungszeiträume zwischen

den drei untersuchten Spezies, konnte eine doppelte Abundanz an sich entwickelnden Purkinje Zellen

im Menschen detektiert werden. Es wäre möglich, dass diese Beobachtung im Zusammenhang mit

einem jüngst identifizierten Vorläuferpool an der ventrikulären Zone steht [5].

Es konnte der Differenzierungsweg von Körner- und Purkinje-Zellen von frühen Vorläuferzellen

zu reifen Neuronen modelliert werden. Es wurden konservierte und divergierende Genexpression-

strajektorien entdeckt. Mit Hilfe von in vitro und in vivo Intolleranzwerten konnte ich zeigen,

dass Gene, die während der Differenzierung dynamisch exprimiert werden höheren funktionelle

Einschränkungen aufweisen als nicht-dynamische Gene. Dies passt zu früheren RNA-seq-Studien

[7], die ähnliche Ergebnisse bei der Entwicklung des gesamten Organs zeigten. Einige Orthologe

mit divergierenden Mustern waren krankheitsassoziierte Gene, was Auswirkungen auf die klinische
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Forschung zu Krankheiten wie Autismus-Spektrum-Störungen und Medulloblastom haben könnte.

Darüber hinaus wurden grundlegende Veränderungen der Genexpression, die als Zunahme oder

Verlust der Expression innerhalb eines Zelltyps und einer Spezies definiert wurden, festgestellt.

Betroffene Gene wiesen eine geringere funktionelle Einschränkung auf, was evolutionäre Prinzipien

auf der Ebene der einzelnen Zelle bestätigen [8].

Alles in allem, zeigt diese Studie die Stärke einer modernen Methodik in Kombination mit tem-

porär hochauflösenden Probenschemata in einem evolutionsbiologischen Kontext, um grundlegende

Prinzipien der Entwicklung eines Organs auf Einzelzellebene zu erforschen.
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2 INTRODUCTION

2 Introduction

Humans have been studying their own anatomy probably since the beginning of their existence.

Written historic evidence for anatomical studies in surgical context is available from as early as

1,600 years BC and known as the Edwin Smith papyrus [11]. Helenistic Alexandria was the origin

of ancient anatomical studies with anatomists and philosophers such as Aristotle, Praxagoras and

Herophilus. As early as the second century BC, scholars invesitaged human major organs, among

which the brain and its adjacent structures were discussed, even though their functions remained

to be elucidated [12]. Posterior to the “brain”, a smaller structure was observed - an organ which

we know today as the cerebellum (diminutive form of the latin word cerebrum, which means brain,

therefore the “small brain”). 400 years later, the cerebellum and its possible function was described

by Claudius Galenus, also known as Galen, in the Roman empire. Galen suggested that the cere-

bellum might play a role in motor control by being the source of motor nerves and the spinal cord

([13], p. 629). Amazingly, this suggestion regarding the function of the cerebellum is not far from

the current understanding of its main purposes.

2.1 Cerebellar functions and structure

In the modern age, the cerebellum has been mainly recognized to function in motor control and

planning [14]. As early as the beginning of the nineteenth century, two scientists, named Pierre

Flourens [15] and Luigi Rolando [16], observed that after lesions in the cerebellum, motor control

was impaired in different areas of the body. They did not find obvious changes in intellectual

capacity of their subjects, which made them believe that the cerebellum does not influence higher

cognitive functions. In fact, this observation, even though, at the same time, the cerebellum is highly

connected to cerebral association networks, is still a mystery to be resolved [1]. Mounting evidence

suggest that the cerebellum is involved in memory, language and processing of sensory information

(reviewed in [1, 17]). The role of the cerebellum in these non-motor control activities is also reflected

in its association to diseases such as autism spectrum disorder and schizophrenia [4, 17], besides

diseases affecting motor control such as spinocerebellar ataxia [4]. Pediatric brain tumor research

is also focusing on the cerebellum, due to the development of embryonic and childhood cancers in

this brain region. The cerebellum to the most often observed site of central nervous system cancers,

which are the leading cause of cancer related deaths in children [18, 19]. The cerebellar tumors are

divided to different types: medulloblastoma, ependymoma, and pilocytic astrocytoma [19].

The main macroscopic regions of the mammalian cerebellum are the two hemispheres and the

vermis, located in between the hemispheres. The boundary between vermis and either of the hemi-

spheres is called paravermis. Laterally, the cerebellar hemispheres extend to the paraflocculi and

flocculi. Ten conserved lobules are visible, organized on the anterior - posterior axis. Histological
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2 INTRODUCTION 2.1 Cerebellar functions and structure

cuts through the organ reveal the foliation pattern of the adult cerebellum. The cerebellar cortex

presents itself as a three-layered structure, which was described by the founding father of modern

neurobiology, Ramon y Cajal, more than 100 years ago [20]. The outer layer, the so called molec-

ular layer (ML), contains axons of granule cells, also called parallel fibers, Purkinje cell dendrites,

interneurons (stellate and basket cells), and the termini of climbing fibers. Below the molecular

layer, the Purkinje layer (PL) resides, which is only one cell layer thick. The namesake of this layer

are the there located Purkinje cells. The innermost layer of the cerebellar cortex is called granule

cell layer. Again, the name-giving granule cells are located in this area. Granule cells are the most

numerous cell type of the brain (up to 80% in mammals) and have a comparatively small cell body

[21]. Below the cerebellar cortex, buried inside the cerebellar white matter, the cerebellar nuclei are

located.

The cerebellum has a highly stereotyped microcircuitry. Neurons of the inferior olivary complex

of the brainstem project to Purkinje cells. Via granule cells, Purkinje cells also receive signals from

mossy fibers which have their origin in nuclei in the brainstem and spinal cord. The connection

between granule and Purkinje cells is mediated by bifurcated axons (parallel fibers in the molecular

layer) which can be contacted by up to 300 Purkinje cells. Firing of Purkinje cells can be modulated

by interneurons, such as stellate and basket cells [22]. Due to the high number of granule and very

low number of Purkinje cells, incoming signals undergo extensive integration. Besides granule

cells, unipolar brush cells (UBC) are modulating signals from mossy fibers to Purkinje cells. The

processed signal is projected from Purkinje cells to the cerebellar nuclei, which in turn contact

various parts of the cerebrum [21]. Buckner et al., building on previously conducted work on

cerebellar - cerebrum connectivity (reviewed in [24]), traced cerebellar connection to association

networks and could identify regions of the cerebellum mapping to different parts of the body [23].

Interestingly, visual and auditory cortex were not found to be represented in the human cerebellum

[23].

This comparably simple cytoarchitecture, foliation and connectivity circuits form only the first

level of cerebellar complexity. In situ hybridization, trascriptomic and functional studies revealed

a more complex architecture: along the parasagittal axis an antigen called zebrinII was identified

in Purkinje cells, revealing a striped pattern [25]. Later studies identified zebrinII as aldolase C

(ALDOC), which among other genes is differentially expresed within the detected stripes [21, 26]

(White & Sillitoe figure 4 [21]). ALDOC-positive and negative regions are present in all mammalian

and avian species [27]. The ALDOC stripes are not equally distributed but subcoordinated within

four groups of lobules [21]. This highlights that the cerebellum shows intricate substructures besides

the visible layering.
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2.2 Development 2 INTRODUCTION

2.2 Development

The blueprint for cerebellar development is mainly based on mouse studies, therefore the following

summary refers to the mouse developmental timeline. Early cerebellar primordia are established

at around embryonic day 8.5 (E8.5). Two antagonizing homeobox transcription factors establish

the midbrain / hindbrain boundary: Otx2, expressed in the midbrain, and Gbx2, expressed in the

hindbrain. Where their effects cancel each other, the isthmic organizer is established. Fgf8 is the

key organizing signalling molecule [28–30]. The timing of Fgf8 expression is tightly regulated to

accomodate correct initiation and development of the cerebellar anlage [31]. Many transcription

factors control the initiation, maintenance and development of the cerebellum, e.g., Pax2, Pax5

[32], En1, En2 [33].

To generate the different cell types, resident in the adult cerebellum, two progenitor zones

are established: inhibitory GABAergic cells are descendants of the ventricular zone, excitatory

glutamatergic neurons are born at the rhombic lip [34]. The progenitors of both pools are thought

to be multipotent radial glia cells [35]. These progenitor zones are defined by two major transcription

factors: pancreas-specific transcription factor 1a, Ptf1a, is expressed at the ventricular zone [36].

Atonal homolog 1, Atoh1, is active in cells of the rhombic lip [37, 38]. The loss of either of these

genes results in the lack of GABAergic, or glutamatergic neurons, respectively [38–40].

Neurognesis at both progenitor zones follows a sequential program giving rise to the different

cell types found in the adult cerebellum. The earliest cell types, born at the rhombic lip and

ventricular zone at E10.5 to E11.5, are cerebellar nuclei neurons (GABAergic and glutamatergic).

Shortly thereafter Purkinje cells are born and leave cell cycle latest at E13.5. They migrate from

the ventricular zone along the processed of radial glia cells into clusters dispersed between the

migrating cerebellar nuclei cells [21]. The decision on which cluster a Purkinje cell belongs to is

influenced by birth date [41, 42]. The migration of Purkinje cells is modulated by Reelin [43].

Interea, Purkinje axon development and maturation occurs and can be detected as early as E14.5

[44, 45]. The establishment of the previously mentioned ALDOC-positive and -negative patterning

is not yet fully understood, but some key factors have been reported: Ebf2, En1, and En2. It was

shown that Ebf2 can supress phenotype [46, 47].

At the same time, the external granule cell layer (EGL) starts to form from cells originating

at the rhombic lip, and engulfs the cerebellum at E15.5. The EGL is a transient structure in

which granule cell progenitors proliferate, and is the exclusive source of granule cells [34, 37, 38].

Postmitotic differentiating granule cells migrate along radial glia cells through the Purkinje layer

to the granule cell layer [48]. An interesting interplay between Purkinje cells and granule cells

orchestrates the exit from cell cycle of granule cells via the secretion of SHH by Purkinje cells

[21]. The granule cell neurogenesis can be traced up to postnatal day 14 (P14) and migration of
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2 INTRODUCTION 2.3 Evolution

postmitotic granule cells is completed at P20 [21]. This protracted development of the cerebellum

is thought to make it especially susceptible to be the origin of various neurodevelopmental disorders

[49]. Unipolar brush cells (UBC) can be detected as early as E14.5. These cells migrate to the

granule cell layer through the white matter [40]. Like granule cells, UBC are generated through a

prolonged period of time, up to early postnatal stages [50].

Ventricular zone originating GABAergic interneurons, such as Basket cells, Golgi cells, and stel-

late cells arise from a pool of precursor cells and are produced from E13.5 till postnatal development

[51–54].

Additionally to the neurons, the cerebellum contains various glial cell types, such as microglia,

oligodendrocytes, Bergmann glia and parenchymal astrocytes.

2.3 Evolution

The cerebellum is found in all jawed vertebrates and its basic connectivity is thought to be conserved.

Nevertheless, major differences in the development or organisation of the cerebellum can be found

in various lineages. One of the most striking differences within the jawed vertebrate lineage is

the presence or absence of a proliferative external granule cell layer. In birds and mammals, a

transient structure emerges, surrounding the developing cerebellum, with proliferative granule cell

progenitors. The presence of this group of cells is tighly regulated by SHH which is secreted by the

underlying Purkinje cell layer [55]. In other lineages the presence of a proliferative EGL is not proven

or debated [2, 3]. Whether the ancestral EGL had proliferative potential is under investigation [2].

Amphibians develop a non-proliferative external granule cell layer during metamorphosis which is

suspected to help in distributing granule cells evenly throughout the cerebellum. This structure is

also only transient in existence and its disappearance coincides with completed metamorphosis [2].

Zooming out from cellular development and complexity, the size of cerebella correlates directly

with the size of the neocortex in mammals [56, 57]. A constant ratio of four cerebellar neurons to

one cerebral cortex neuron was observed [56, 57]. This is an interesting observation, given that most

evolutionary studies of mammalian brain development focused on the expansion of the neocortex.

This cerebral structure is specific to mammals and exhibits the greatest increase in size in primates

[58, 59]. Astonishingly, the ratio of cerebellar to cerebral volume seems to be elevated in great

apes, assuming the previously established linear relationship [60, 61]. Most probably the increase in

cerebellar size, co-occurring with the expansion of the cerebral cortex has its origin in the emergence

of additional secondary progenitor zones, as recently shown for subventricular zone and rhombic lip

progenitors in human [5]. Since the study by Haldipur et al. was mainly based on histological data,

the molecular basis of the observed expansion is yet to be uncovered.

Another example of cerebellar specialization is the presence of the vermis, which is a region

distinguished in mammals only. As mentioned initially, the emergence of the cerebellar anlage
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2.4 Studying evolution in developmental context 2 INTRODUCTION

is FGF8 dependent [21]. The same gene regulates the appearance of the vermis in mammals,

and additionally the isthmus. It is believed that the presence of FGF8 is important to initiate

the cerebellar primordia but the reduction of FGF8 signalling is needed to allow cerebellar cell

differentiation, though constant FGF expression is needed for vermis generation [2]. This illustrates

the fine-tuned molecular mechanisms during cerebellar development, which can exhibit lineage-

specific variations, and lead to different phenotypes in the adult.

The evolution of brain regions is thought to happen in a similar manner as the development

of novel cell types and genes: using previously present predecessors and allowing them to change

their function and behavior after duplication in another context. Recently, using cerebellar nuclei

as a model, Kebschull et al. demonstrated that the multimerization of cerebellar deep nuclei from

a single pair in cartilaginous fishes and amphibians, to two pairs in reptiles and birds, and three

pairs in mammals followed the same principle [62]. This process involved the duplication of the full

set of neuronal cell types which were present in the ancestor of the deep nuclei [62].

2.4 Studying evolution in developmental context

One of the fundamental questions biologists asked (and still ask) themselves is: how can the huge

variety of phenotypes, even within similar or the same lineage be explained? After understanding

the basics of genetics, this question grew to be an even greater mystery: many species share very

similar genomes, yet the phenotype can establish itself as extremely different. One example, which

goes back to the father of evolutionary theory, Charles Darwin, are the accordingly named Darwin

finches. Even though genomic alterations are present between the species [63], the variety in beak

phenotypes could not directly be understood. Studies showed that expression level differences of

key genes can modulate the phenotype and therefore contribute to evolutionary processes [64].

Carroll wrote about the dilemma evolutionary biologists faced when studying genomic alterations

in isolation: “The second major surprise was the similarity of proteins from species that looked and

behaved as differently as, for example, chimps and humans. Mary-Claire King and Allan Wilson

underscored the apparent paradox that presented and the challenge »to explain how species, which

have such substantially similar genes can differ so substantially in anatomy. . . « (King and Wilson,

1975). They, like Zuckerkandl and others (Britten and Davidson, 1971), suggested that the evolution

of anatomy occurred more by changing gene regulation than by changing protein sequences.” [8].

Nevertheless, it is not enough to compare gene expression profiles of adult tissues to understand

the phenotypic evolution. The adult function, morphology and connectivity is established during

development. Therefore, changes in developmental processes during evolution can have a major

impact on the phenotypes in the adult [8]. One famous example of differential expression of key

genes during development is the expression of Shh during snake development [65]. Shh expression

in limb bud of snakes is not initiated due to the loss of an important enhancer region [65]. Without
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studying Shh gene expression during snake and vertebrate development (figure 2 in [65]), this

mechanism underlying the loss of limbs in the snake lineage, would probably have been missed.

This realization laid the groundwork for modern evolutionary and developmental (evo-devo)

studies. [7, 66, 67]. Using bulk RNA-sequencing (RNA-seq) evo-devo data, gene expression in

multiple tissues was studied by Cardoso-Moreira et al. [7]. The results of these studies confirmed

multiple expectations evo-devo biologists had previously and added multiple additional questions

which need to be answered by following studies. For example, the authors distinguished genes that

are utilized during development in multiple organs (i.e. pleiotropic genes), and demonstrated that

these genes are under higher evolutionary constraints than tissue-specific genes. This fits with the

principles of evo-devo theory, as summarised in [8]. The bulk RNA-sequencing studies also identified

genes that have evolved new expression trajectories during development in different lineages, but

the molecular mechanisms underlying these changes remain to be elucidated.

2.5 Motivation and aims

Among the organs studied using bulk RNA-sequencing data [7], the cerebellum emerged as the one

with the highest numbers of genes that show species-specific gene expression trajectory changes

during development. Whether these changes occur due to gene regulatory alterations, or cell type

composition changes could not directly be answered using the bulk RNA-seq data. This observa-

tion, the correlation between the numbers of neurons in the cerebellum and cerebral cortex during

mammalian evolution, and the importance of the cerebellum in childhood carcinogenesis motivated

the project in focus of this thesis. Thus, I aimed to characterise the development and evolution

of the mammalian cerebellum, using cutting edge single-cell RNA-seq technologies that allow the

dissection of gene expression at single-cell resolution.
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3 RESULTS

3 Results

I investigated the development and evolution of the cerebellum in three mammalian species: human,

mouse (Mus musculus) and opossum (Monodelphis domestica). Eutherian mammals (human and

mouse) split from the marsupial lineage (opossum) approximately 160 million years ago, and the

rodents from the human lineage 90 million years ago (figure 1). Single-nucleus RNA-sequencing

(snRNA-seq) data was produced for a wide range of pre- and postnatal cerebellar samples. The

tissue samples were prepared by Dr. Mari Sepp and if not otherwise mentioned, the whole developing

cerebellum or its representative parts were used. This approach generated a detailed picture of the

transcriptomic landscape of the developing and adult cerebellum for the studied species.

3.1 Dataset overview

This project was designed that it covers the development of the cerebellum in all three species with

high resolution. Dr. Mari Sepp, Prof. Henrik Kaessmann and I decided to produce the data using

the 10x Chromium 3’ method. This approach is a droplet-based system which needs about 15,000

nuclei as input material and can generate about 5,000 nuclei per run. The nuclei isolation protocol

was developed by Dr. Mari Sepp based on previously published methods [68].

Due to the strong differences in developmental pacing, especially between human and mouse,

a priori estimate of agreement between the three timelines was needed. The work of Margarida

Cardoso-Moreira et al. [7] guided the initial stage selection with the addition of earlier stages (down

to embryonic day 10.5 (E10.5) in mouse). The project was designed to capture major landmarks of

cerebellar development, including the birth and differentiation of the main cerebellar neuron types.

Selected stages were: (I) E10.5, E11.5, E12.5, E13.5, E14.5, E15.5, E17.5, P0, P4, P7, P14 and

adult (P63) in mouse; (II) 7 weeks post conception (wpc), 8 wpc, 9 wpc, 11 wpc, 17 wpc, 20 wpc,

newborn, infant, toddler and adult in human; (III) E14.5, P1, P4, P5, P14, P21, P42, P60 and

adult in opossum. For each stage, at least two biological replicates were included and for some

individuals data from multiple runs (batches) were produced to increase the number of sequenced

nuclei (summarized in figure 1). The raw data of each batch underwent quality control and barcode

selection as described in section 5. In general, approximately 10,000 nuclei passed the filtering steps

per stage per species (figure 1.A). Due to the known limitations in transcriptome coverage in single

nuclei experiments, the distribution of UMIs (unique molecular identifiers) per cell was evaluated

(figure 1.B). During data generation, 10x Genomics changed the available Chromium 3’ kits from

version 2 to version 3. The improved transcript capturing rate is clearly visible in the distributions

of unique molecular identifiers (UMI) per cell: version 2 kits generated about 1,000, version 3 about

3,000 UMIs per nucleus. This difference in UMI counts is also reflected in the number of detected

genes (figure 1). In total 395,736 nuclei from 87 libraries were sequenced and passed all quality

9
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Figure 1: Dataset overview A: Phylogenetic tree (not to scale) of the three studied species.
Upper barplots depict the total number of nuclei passing all quality control filters. Colors indicate
10x Chromium version (yellow shades: v2, blue shaded v3). Shading separates prepared libraries
replicates. Black brackets enclose libraries prepared of the same individuals. For adult human the
cerebellar regions of sample origin are indicated. The lower row of plots shows the distribution of
unique molecular identifiers (UMI), grouped by the used 10x Chromium version, with log-scaled x-
axis. B: Overall alignment statistics per library of the dataset. n[reads] = Number of reads sequenced;
exonic = Number of reads aligned using exonic counting mode; intronic = Number of reads aligned
using intronic counting mode; intergenic = Number of reads aligning in intergenic regions, exonic
counting; sense = Number of reads aligning sense to the feature, exonic couting; antisense = Number
of reads aligning antisense to the feature, exonic couting.
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control filters with a median of 2,354 UMIs per cell across the studied species. For human 180,956,

for mouse 115,282 and for opossum 99,498 nuclei were considered in the following analyses.

To assess the reproducibility of the generated data, I summed reads from each library in pseu-

dobulks. Spearman correlations between pseudobulk profiles were calculated within each species

using all genes that were expressed in at least 10% of all cells in any given sample (figure 2). The

calculated species-internal correlation coeffients range from Spearmans -0.5 to 0.9 (figure 2). Clear

aggregation of high agreement between samples from the same stage is visible (figure 2). Neverthe-

less, substantial drops in correlation within a stage are detectable, driven by the difference between

Chromium 3’ version 2 and version 3. The correlation coeffients are the highest between libraries

generated from the same individual / pool of individuals. Taken together, these results demonstrate

high quality of the datasets.

3.2 Initial data processing approach

During the phase of data generation, I explored various approaches to process and analyze the

data. The main goal during initial data processing was the correct identification of informative

genes and cell clusters in individual batch datasets. Prior steps of data processing and QC are are

described in detail in the material and methods section (section 5). Compared to classical bulk

RNA-seq experiments, the complexity of a single snRNA-seq library is already very high: the data

includes approximately 5,000 nuclei and UMIs for about 25,000 genes. Due to technical drop-outs

or biological variation (where the latter is probably the main source, see [69]), the majority of genes

in single cell experiments have zero counts. To reduce the dimensionality of the data and therefore

increase the signal to noise ratio, first the data was normalized by sampling depth (sum of UMIs),

and then the highly variable genes (HVG) were called. For the identification of informative genes

(i.e. HVG) I used an approach that was originally developed by Prof. Simon Anders. The approach

is based on the hypothesis that uninformative genes follow a Poisson distribution: a gene has the

same probability of detection (generating a UMI) in all sampled cells. This means that the mean

UMI count, µ, is equal to the variance of the given gene, σ2. If, however, a gene is specifically

detectable in a subset of cells, for example being cell type specific, or at least higher expressed in a

group of cells, the gene will exhibit a Poisson mixed model, which means that σ2 > µ. Furthermore,

due to differential sequencing depth between cells, normalization is needed prior to further analyses

and modeling. Per gene, its mean and variance relationship (VMR) is calculated and compared to

the Poisson expectation (Ξ = 1
N

∑
j

1
sj
). If the VMR exceeds Ξ, a mixed Poisson distribution is

assumed and the gene is regarded as informative.

I chose this approach, even though other, similar methods exist, for example Seurat [70]. The

reasons for my decision were the easily understandable statistical basis and the possibility to de-

termine the number of HVGs by selecting a factor for Ξ, thus allowing the number of HVG to be
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informed by the data itself rather than assuming a specific number. For comparison, in Seurat it is

required to set a fixed number of HVGs.

Following normalization and selection of HVGs, further dimensional reduction was accomplished

by applying principal component analysis (PCA) to the normalized and scaled HVG by cell matrix.

An elbow plot, visualizing the variance explained by each principal component (PC) could be used to

determine the number of PCs to keep, but anecdotally, I observed that keeping more components less

strongly influences the final uniform manifold approximation and projection (UMAP) and clustering

than removing too many components. Henceforth, I decided to keep at least 25 components per

sample.

For accessible data visualization and summarization, the UMAP [71] algorithm was applied to

the principal component embedding. UMAP is the de facto standard for single cell data visualization

and the R implementation (uwot [72]) provides easy access to the approximated neighborhood graph,

which is used as an imput for some of the downstream analyses.

After these initial preprocessing steps, cells need to be grouped into meaningful clusters due to

the low sequencing depth of individual cells. Whether the called clusters reflect individual cell types

need to be explored using literature and other available data resources. We opted for the Louvain

clustering [73] as implemented in the Python scanpy package [74]. As with UMAP, the Louvain

algorithm is the default in many single cell analyses. Since the clustering should only give an initial

approximation at the possible groupings, and variation of the dataset, annotation based on previous

literature on cerebellar cell types will allow post-hoc merging of similar clusters.

All of the aforementioned steps, done for individual samples, allowed evaluation and establish-

ment of data processing methods. Given that the presented study includes 87 snRNA-seq libraries

from 78 independent samples, batch correction and data integration were needed for further analy-

ses.

3.3 Batch correction and data integration

To take batch effects into account is needed in most single cell studies which include more than one

biological replicate, due to the delicate technology and strong reduction of dimensionality. Many

methods are leveraging a k-nearest neighborhood to model the high dimensional manifold, such as

UMAP and Louvain clusters. If individual biological or technical replicates show differential gene

expression, these neighborhoods are called within each batch and, depending on the size of the

dataset, the k-nearest neighborhood graph is partitioned by batch due to the limited number of

neighbors (i.e. number of edges in the graph) considered.

The easiest methods to remove these influences include linear regression to model the confound-

ing factor, others use more complex statistical approaches to model technical artifacts [70, 75–77].

If the correction algorithm is too greedy in pushing the datasets on top of each other, true biolog-
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ical signals can be masked or severely distorted. The datasets presented here span a whole organs

development and therefore, differences between stages are expected and are biological meaningful.

On the other hand, the same cell type which is present in multiple stages, should exhibit a distinct

signal which should be recoverable to discriminate one cell type from the others. Finding the bal-

ance between integration across stages and not losing stage-specific signals was the main goal. I

tried various methods, but the results of these tests shall not be part of this thesis. The conclusion

was that LIGER [77] performed best in merging without over-integration of the datasets, judged by

naive UMAP inspection and gene enrichment analyses. It was not only able to integrate data from

batches of single stages (figures S1,S2,S3), but also to construct a continuous integration across

stages (figure 3). Nonetheless, especially in the human dataset, strong deviations of the embedding,

correlating with the batch (or biological replicate), are detectable (see figure S2 facet: newborn).

Figure 3: UMAP embeddings of the human, mouse and opossum datasets integrated
by LIGER Nuclei are colored according to the stage they were sampled from. Colors reflect aligned
stages (according to the results in the following chapter).

Even though the different stages overlap substantially after the LIGER integration, individual

areas of the UMAP enrich for specific stages. This is very pronounced for the postnatal and

adult stages, which are present in very specific clusters without much pre-natal cell contribution.

The occurrence of individual stages within the UMAP are often in chronological order, meaning,

14



3.4 Mouse data annotation 3 RESULTS

for example, cells of stage E13.5 in mouse are flanked by cells of the adjacent E12.5 and E14.5,

indicating a preservation of a developmental signal, despite the batch correction. Additionally, this

preservation of the developmental signal in the datasets of all three species results in a trajectory,

like appearance of multiple broad cell type lineages in the integrated UMAPs .
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Figure 4: Effect of integration on distance values To illustrate the effect of batch correction,
using LIGER correction as example, I calculated the 10%-percentile within stage distance and the
same percentile interstage distance, using the mouse dataset. The quotient of both values is calculated
per stage. The naive calculation was based on a PCA embedding, based on normalized expression
matrices and the LIGER values were calculated based on a 100-dimensional LIGER non-negative
matrix factorization result.

To investigate the effect of integration on the interpretability of the low dimensional embeddings

of the data, I quantified the within-stage and across-stage Euclidean distance relationships: I first

naively processed all cells without any batch correction by HVG selection, normalization and PCA.

After that, I used the pan-stage LIGER embedding to retrieve the same values. I extracted for each

stage the 10%-percentile distance within stage and to all other stages. This was done for the PCA

and for the LIGER factors. Finally, I calculated the ratio of within-stage Euclidean distance to

out-of-stage distance (figure 4). For the naive PCA approach, the median ratio was 0.65 and for the

LIGER integration approximately 0.9. If the PCA dimensional reduction can be assumed to reflect

the transcriptomic landscape ab initio, the difference of the within- to out-of-stage 10%-percentile

distance captures the shift in transcriptomic space during development. Once LIGER was applied,

the difference shrinks substantially, facilitating cell type clustering (see below) but underestimating

stage-specific expression differences. This distortion is captured in the UMAP visualizations as well,

and therefore needs to be kept in mind when interpreting the low dimensional embeddings.

3.4 Mouse data annotation

When Dr. Mari Sepp and I started to annotate the cell types in our snRNA-seq datasets, we

knew that the majority of literature sources are based on mouse development. Thus, we decided to

annotate the mouse dataset first and use the gained knowledge and cell type associations for transfer
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to the other two species. Transferred annotations were then set to be validated with external sources

and checked for biological relevance to circumvent spurious matches that result in wrong conclusions.

As mentioned before, single cell RNA-seq data is very noisy and individual cell expression profiles

lack the stringency to call presence or absence of a particular transcript or the expression levels.

Hence, I clustered the datasets using the aforementioned Louvain algorithm with high resolution into

61 (mouse), 68 (human) and 67 (opossum) clusters. Since these clusters were called on the merged

datasets, I assumed that even this high number of clusters does not fully capture the complexity

of the datasets. To improve the resolution, I integrated the data separately for each cluster using

LIGER, and called subclusters. This iterative clustering approach resulted in approximately 590

clusters per species. It is important to note here, that I did not assume that there are 590 cell types

or states present in the dataset, but this very granular clustering allowed me to characterize each

group of cells and merging of (sub)clusters, wherever needed.

Using a term-frequency inversed document frequency (TF-IDF) transformation for gene scoring

and a hypergeometric test for p-value estimation, for each cluster significantly enriched (p < 0.01)

genes were called. The called genes were used by Dr. Mari Sepp and me to annotate the mouse

clusters using literature [4, 78] and freely available data repositories, such as the Allen mouse

developing brain atlas [79, 80] and GenePaint [81].

The high complexity of the dataset made it necessary to apply a hierarchical annotation strategy

(figure 5):

(I) Based on developmental origin, we grouped cells into broad cell type lineages. The VZ lineage

includes GABAergic neurons born at the cerebellar ventricular zone; RL/NTZ comprises early-born

rhombic lip-derived glutamatergic neurons that assemble at the nuclear transitory zone; RL/EGL

includes neurons originating from the late rhombic lip that is associated with a secondary germinal

zone in the external granule cell layer. The remaining groups are glia, cells of mesodermal origin,

and neural cells from neighbouring brain regions (other).

(III) We defined cell states as groups of cells sharing the same cell type and the same level

of differentiation, no matter whether they originated from the same developmental stage (e.g.,

granule cell (GC) states are distributed over multiple stages). For instance, for the granule cells, we

differentiated GC progenitors (GCP), differentiating GCs (GCdiff1 and GCdiff2), and defined GCs.

Similarly, the astroglia cell type includes cell states of neural progenitors, glioblasts and astrocytes.

(IV) We further divided cell types at some cell states into subtypes. This depended on the

remaining variability and the number of cells collected. Examples of subtype categories include

“progenitorRL”, “progenitorVZ”, and “progenitorgliogenic”.

All labels used at different levels of annotation are summarised in table 10. Altgothere, we

specified 4 broad lineages, 26 cell types, 44 cell states and 48 subtypes. This approach allowed

analyses at different states of cell type differentiation and, down the line, a more detailed comparison
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Figure 5: Mouse dataset annotation To compile a detailed annotation of the dataset, nuclei were
annotated at different levels: upper left - Broad lineage, indicates the major developmental lineages.
Upper right - Cell type, broad cell type which could be associated to each cell. Lower left - Cell types
were split into cell states. This annotation level describes transcriptomic states of differentiation.
Lower right - If residual variance was detectable, cells were labelled according the identified subtypes.
Often these subtypes are named according to one major marker gene. Cells lacking a subtype label
are depicted in grey.
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of the human, mouse and opossum datasets.

3.5 Cross-species integration and annotation transfer

Once the mouse dataset was annotated, I integrated the human and opossum dataset separately

with the mouse dataset. Since at the time of integration, most popular integration methods did not

work with datasets the size and complexity of the one here presented, I needed to develop a custom

approach to transfer the highly detailed mouse annotation to the human and opossum datasets. I

settled on a two-step approach, which was then used to transfer the mouse annotation to the other

species. First, I ran LIGER to project two species in the same 100 dimensional embedding . I only

provided batch information and not the species information to the algorithm, using shared (between

all batches of both species) detectable one-to-one orthologs in pre-mRNA counting mode (mouse

with human = 6101 orthologs, mouse with opossum = 5019 orthologs). Previous tests informed me

(data not shown), that the species label increased the runtime and did not improve the integration

overall. In this initial projection, stage effects were reduced but the two species were still separate

from each other. To further correct the species signal, I then applied MNN-correct [75] to the 100

dimensional embedding, only providing the species label. I then generated a UMAP, based on the

MNN-corrected LIGER embedding. In this UMAP the two species shared a common structure and

appeared overall merged (figure S4). I concluded that the correction was successful.

Now, that I had generated pairwise the corrected 100 dimensional embeddings for human and

mouse as well as for opossum and mouse, I grouped the cells based on their Louvain subclusters, de-

fined in the single species embeddings. For each subcluster I calculated the centroid in the corrected

100-dimensional pairwise embedding. I used the subcluster to component centroid matrices of both

species and calculated a human to mouse and opossum to mouse correlation matrices (Pearson

correlation). This matrix was then used as a guide to assign each human and opossum subcluster to

the highest correlating mouse subcluster. As the mouse subclusters were linked with different level

annotation labels (as described above), each human and opossum subcluster was associated with

the corresponding annotation from the mouse and correlation coefficients were used as a confidence

measure. To account for potential differences in sampling, all transferred labels were then scruti-

nized and if needed subclusters were re-annotated. This allowed the identification of cell types and

states that were not captured in the mouse dataset, helping to get an unbiased view on cerebellar

development and cell type composition in human, mouse and opossum (figure 8.A).

During the annotation transfer process, it became apparent, that one of the human samples

(SN296) contained many cells that showed HOX gene expression, which is not expected to be

expressed in the cerebellum, but in adjacent hindbrain regions. We concluded that the sample had

not been correctly dissected and henceforward removed this sample from further analyses.

Additionally, I integrated all three species in one common embedding using the same approach
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as described above. This full embedding was used for an analysis, inspired by La Manno et al. [82],

which aims to create a continuous stage vector out of the discrete stage assignments via neighborhood

grouping, called pseudoage. I modified the pseudoage calling by letting each human and opossum

cell call its k-nearest neighbor in the mouse dataset within the common embedding. Using this

information the human and opossum cells were assigned to a mouse corresponding pseudoage.

3.6 Stage correspondence calling

To compare human, mouse, and opossum over the vastly different developmental time-periods, the

sampled discrete stages need to be paired. Human prenatal development lasts for approximately

nine months, mouse prenatal development spans roughly 20 days, and opossum embryos are born

at a very immature stage that is comparable to human six week embryos [83]. In all three species,

neurogenesis in the cerebellum is ongoing for several weeks (mouse and opossum) or years (human)

after birth (see introduction, section 1). I aimed to robustly match the sampled developmental stages

across the three species based on three measures: (I) transcriptomic correlation, (II) pseudoage

agreement and (III) cell state composition (figure 6). Dr. Mari Sepp and Ioannis Sarropoulos gave

major input to this analysis.
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Figure 6: Stage correspondences A: Spearman correlation distances between developmental
stages, calculated on normalized expression matrices, based on all detectable one-to-one orthologous
genes. B: Manhattan distances between developmental stages, calculated using proportions of pseu-
doage assignments. C: Manhattan distances between developmental stages, calculated using propor-
tions of developmental state (cell state) assignments. D: Aligned stage assignments. Colors reflect
the alignment vector between all three species. Gaps show non-matched stages. The lines within each
heatmap are the result of dynamic timewarp to determine the shortest path through the correlation
matrices. Tiles with stars indicate the final decisions of stage correspondences.
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I called transcriptomic correlations by aggregating all cells from the same developmental stage

into a pseudobulk. To estimate pairwise Spearman correlation distances between the stage-specific

pseudobulks, I considered all pairwise one-to-one orthologous genes that were detected in both

compared species and called as highly variable in at least one of the species (figure 6.A). To find

the pseudoage distances, I used the pseudoage assignments of the cells (see above), calculated

the proportional pseudoage abundances for each developmental stage, and estimated the pairwise

Manhattan distances between the pseudoage abundances (figure 6.B). Finally, to compare cell sate

compositions, I determined Manhattan distances between the relative cell state abundances of the

developmental stages (figure 6.C). For all three measures, dynamic timewarping was applied to

identify the best alignment sequence between human and mouse or opossum and mouse (figure

6.D). Overall, the three measures agreed. In a few cases, where slight shifts in the assignments were

detected (e.g., human 17 wpc assigned to E17.5 or P0 by the different measures), the consensus

stage assignment was made based on the smallest transcriptome distance. Based on this analysis,

we assigned, for example, the following correspondences: mouse E11.5 corresponds to human CS18

and CS19 and opossum E14.5, Mouse E12.5 is unmatched in the human data and matches with

opossum P1. Mouse E15.5 matches with human 11 wpc but does not have a correspondence in the

opossum dataset. Mouse E17.5 matches with human 17 wpc and opossum P14. The first mouse

postnatal sample, P0, matches to the last human embryonic sample at 20 wpc and is not matching

to any opossum sample. Mouse P7 matches to human newborn and opossum P21. Mouse P14

matches to human infant and opossum P42. Toddler in human and P60 in opossum which was not

matched to mouse was called “intermediate”.

Throughout this thesis, when I mention matched stages or aligned staging, I am referring to the

correspondences assigned in this analysis.

Overall the assigned stage correspondences, which I identified in this study, match to our assump-

tions, derived form Cardoso-Moreira et al. [7] (figure 7). As the stage matching in Cardoso-Moreira

et al. is based on all somatic tissues and these assignements are in agreement with the assign-

ments based on cerebellar snRNA-seq data of this project, I conclude that there is no detectable

heterochrony in cerebellar development between the studied mammalian species.

3.7 Atlas of cell types and states

3.7.1 Overview of identified cell types

All previous analyses and approaches were done with the aim to compare the cerebellar development

in the three species in as detailed manner as possible. In this chapter, I describe . . . Gene names

mentioned refer to the human ortholog, as long as the homology is unambiguous to the other

species. Enriched genes listed below were called using a combination of TF-IDF transformation and
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Figure 7: Stage matching comparison to bulk RNA-seq of somatic tissues [7] The illus-
tration was prepared by Dr. Mari Sepp.

hypergeometric test for p-value determination.

Assuming that the integrated UMAPs of each of the three species reflect the overall cell type re-

lationships correctly (which is rarely the case without major limitations [84]), mammalian cerebellar

development is characterized by a star-like shape in transcriptomic space. Proliferative progenitor

cells, as judged by cell cycle scoring (figure 8.B), are located centrally with differentiating cells of dif-

ferent lineages spreading out. At the cell type level, the progenitor cells together with the glioblasts

and astrocytes (SLC1A3 and AQP4 ) form the astroglia lineage. A clear separation between cy-

cling ventricular zone progenitors (KIRREL2 ) and rhombic lip progenitors (SLIT2, LMX1A) is not

detectable in any species, instead the progenitor cells are arranged along a continuum that reflects

their position in space and time. The three major arms, originating in progenitor cells, represent

the broad lineages of cerebellar neurons. RL/NTZ lineage comprises cells that differentiate into

glutamatergic deep nuclei neurons and extra-cerebellar isthmic nuclei neurons. RL/EGL lineage

gives rise to granule cells (PAX6, GABRA6 ) and unipolar brush cells (LMX1A). VZ lineage gives

rise to, depending on the stage, parabrachial neurons (LMX1A and LMX1B), noradrenergic neurons

(LMX1B and PHOX2B), GABAergic deep nuclei neurons(SOX14 ), Purkinje cells (SKOR2 ), and

GABAergic interneurons (PAX2 ). Parabrachial and noradrenergic neurons will migrate out of the

cerebellum to the brainstem, later in development [85].

Oligodendrocyte differentiation could also be observed in all three datasets. We detected oligo-

dendrocyte progenitors (OPC, PDGFRA), committed oligodendrocyte precursors (TNR) as well

as postmitotic oligodendrocytes (MAG). In human and opossum, a group of cells that resembles
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a transitory state between astroglial progenitors and OPCs could be singled out (EGFR), which

likely represent the previously described preOPCs [82]. The abundance of preOPCs is high in

the opossum dataset but very low in the human dataset Ependymal cells (SPAG17 ) were readily

detectable in mouse and opossum, but were lacking in the human dataset (likely as a result of

sampling differences). Some extracerebellar cell types were also detected: cells expressing LEF1,

which reside in the adult cerebellum but are born in the midbrain, and cells that can be considered

contaminations from adjacent brain regions, such as motor neurons, isthmic neuroblasts, midbrain

neuroblasts and GABAergic midbrain cells. Finally, typical non-neuronal cells could also be found:

mural and endothelial vascular cells, erythroid and immune cells (the majority of which were mi-

croglia) and meningeal cells. A general pattern of cell cycle score reduction during development

could be observed in all cycling cell types (figure 8.C)
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3.7.2 Cellular dynamics

Having a high resolution picture of cell types in the human, mouse and opossum cerebellum next to

a refined stage matching scheme, allowed me to compare the cellular composition dynamics during

cerebellar development across the mammalian species. I conducted this analysis using the “cell

type” annotation level to have a robust foundation for comparisons. As expected, the mammalian

cerebellar development is a highly dynamic process with strong shifts in relative cellular abundances.

All three species share a common pattern (figure 9.A). Early in development, the majority of cells

are cycling progenitors, making up 50 - 70 % of all cells. Next, there is a phase of GABAergic

cell expansion (mainly VZ neuroblasts and Purkinje cells) and these cells dominate the cell type

composition up to around mouse stage E15.5. The last GABAergic cells to appear are interneurons.

After this wave, granule cells take over the cell type landscape: the external granule cell layer is

established already at mouse embryonic stage E13.5, but the majority of granule cells are produced

at later stages. The strong amplification of GCs in EGL results in granule cells making up more

than 80% of the adult cerebellar cells. For this analysis it is important to note, that human samples

up to 11 wpc should be representative of cell type proportions, but after that, only pieces of the

human cerebellum could be sampled, possibly leading to biases in the estimation of relative cell

type abundances.

Besides these similarities in overall cell type dynamics, differences could be recognized: during

two consecutive matched timepoints (stages matched to E13.5 and E14.5 in mouse), Purkinje cells

have twice as high relative abundances in human as compared to the other two species (60% vs 30%)

(figure 9.B). To investigate whether this difference is supported by statistical methods, I created a

Bayesian hierarchical model to capture the observed cell type proportion measures: I assumed that

cell type proportions in each stage, batch, and species follows a binomial distribution, where the

proportion is represented as the probability pb, the total number of cells per cell type, batch, stage,

and species as yb, and the total number of cells as Nb (equation 1).

pb is assumed to be sampled from a species and stage wide hidden normal distribution with stan-

dard deviation σ2. The mean of this distribution, p0, is sampled from a Students-T distribution.

This was chosen to make the mean of the per species and stage normal distribution more resilient

against outliers. The goal was the estimation of hyperparameter p0 to compare the expected pro-

portion of cells per cell type, stage and species to each other. As I modelled all stages and species

at the same time, I sampled from the posterior of p0 and estimated the posterior difference (figure

9.B).
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yb = Binomial(Nb, pb)

pb = Normal(p0, σ
2)

σ2 = Exponential(1)

p0 = StudentsT (1, 1.5, 1)

(1)

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

−0.2

0.0

0.2

0.4

0.6

E11
.5

E13
.5

E14
.5

E17
.5 P7

matched stage

po
st

er
io

r 
di

ffe
re

nc
e

astroglia

●
●

●
●● ●

−0.2

0.0

0.2

0.4

0.6

P7
Adu

lt

matched stage

po
st

er
io

r 
di

ffe
re

nc
e

oligo

●
●● ●●

●

−0.2

0.0

0.2

0.4

0.6

E13
.5

E14
.5

matched stage

po
st

er
io

r 
di

ffe
re

nc
e

GABA_DN

●

●

●

●

●

● ●

●●

●

●

●

−0.2

0.0

0.2

0.4

0.6

E11
.5

E13
.5

E14
.5

E17
.5

matched stage

po
st

er
io

r 
di

ffe
re

nc
e

Purkinje + 
VZ neuroblast

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

−0.2

0.0

0.2

0.4

0.6

E14
.5

E17
.5 P7

P14
Adu

lt

matched stage

po
st

er
io

r 
di

ffe
re

nc
e

GC

●
●

●

● ●

●●
●

●

−0.2

0.0

0.2

0.4

0.6

E13
.5

E14
.5

E17
.5

matched stage

po
st

er
io

r 
di

ffe
re

nc
e

Purkinje

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

−0.2

0.0

0.2

0.4

0.6

E13
.5

E17
.5 P7

P14
Adu

lt

matched stage

po
st

er
io

r 
di

ffe
re

nc
e

interneuron

Difference 
Comparison

●

●

●

d(Human, Mouse)

d(Human, Opossum)

d(Mouse, Opossum)

7 
wpc

8 
wpc

9 
wpc

11
 w

pc

17
 w

pc

20
 w

pc

ne
wbo

rn
inf

an
t

to
dd

ler
ad

ult

E10
.5

E11
.5

E12
.5

E13
.5

E14
.5

E15
.5

E17
.5

P0 P4 P7 P14P63

E14
.5

P1 P4 P5 P14 P21 P42 P60
ad

ult
0

25

50

75

100

A
bu

nd
an

ce
 [%

]

Mouse Human OpossumA

GABAergic DN
Purkinje
interneuron

parabrachial
noradrenergic

VZ neuroblast

VZ
NTZ neuroblast
isthmic nuclei neuron
glutamatergic DN

RL/NTZ

granule cell (GC)
unipolar brush cell (UBC)
GC/UBC

RL/EGL

oligodendrocyte
astroglia (progenitors+astrocytes)

ependymal

mesoderm
erythroid
immune
mural/endothelial

other neural

isthmic neuroblast

GABA MB

MB-originating cell

motorneuron

MB neuroblast

meningeal
neural crest prog.

glia

B

Figure 9: Bayes modelling of differences in cell type relative abundances A: Proportions
per cell type per developmental stage per species. Cells not assigned to a cell type are in grey B:
Posteriors of Bayesian model, modelling the pairwise difference of cell type abundances. The point
represents the mean, the line range represents the 95%-highest density interval (HDI) of the posterior
distribution. Zero difference is indicated with a dotted black line. This plot can be used for region
of plausible equality (ROPE) estimation: when the HDI intersects the zero difference line, plausible
equality is assumed. Pairwise comparisons between species are shown in different colors. The model
was built for each matched stage (x-axis) and labelled according to the mouse stage.

The majority of cell types, which were modelled, showed no strong cell type overrepresentation

at specific timepoints between the species. Here, it is important to note, again, that comparability

between all three species is only given up to matched timepoint E15.5. Slight increases in the

abundance of human astroglia cells could be detected at matched timepoints E11.5 and E17.5, which

were approximately 10% above the abundances in mouse and opossum. The most striking difference

was detected for Purkinje cells in human, as mentioned before. The highest density interval (HDI,
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mass = 95%) indicates statistical evidence, that the observed difference can be supported by the

chosen model. To circumvent possible variations in the blurry boundary between VZ neuroblasts

and Purkinje cells, another model was fit to a group of cells that combines Purkinje cells with all VZ

neuroblasts. Again, the HDI shows no intersection with zero difference, hence the model supports

the presence of increased abundances of developing Purkinje cells in human.

3.7.3 Global gene expression patterns

Next, my goal was the characterization of the global gene expression patterns during cerebellar

development.
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Figure 10: Principal component analysis (PCA) of cell type pseudobulk transcriptomes
A: First three principal components (PC) of non-median centered expression matrix. Cell types are
color-coded and species shown in different shapes. B: First three PCs of median centered expression
matrix. Both PCA were generated using three-way one-to-one orthologs (n = 10,276) and exonic
UMI.

I created cell type-specific pseudobulks for each biological replicate, mimicking bulk RNA-seq

experiments. Next, I subsetted the genes for one-to-one orthologous genes between all three species

(10,276 genes, exonic UMI counts). Inspired by an analysis by Cardoso-Moreira et al. [7], I ran a

principal component analysis on the combined dataset to assess the broad transcriptional landscape

and to investigate the sources of variation (figure 10). According to the variation explained by the

first 3 principal components, the main sources of variation are independent of the species (PC1,

explains 83% of variance), and less variation is associated with species-specific signals: PC2 explains

3% of variance and separates opossum from therian mammals, PC3 explains 2% of variance and
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separates human from the other two species (figure 10.A). I decided to center the expression values

per gene and species to given that centering enables the PCA to capture relative expression patterns

in each species, and ignore absolute expression differences, which might arise due to technical

artifacts (e.g., differences in sequencing depth, Chromium version). The first two components of

the centered PCA show clear developmental and cell type specific signals, the separation of neuronal

from glial cell types is especially evident (figure 10.B). The third component further separates the

individual neuronal cell types (figure 10.B). Pseudobulks of early stages cluster closer together and

clusters widen up when cell type differentiation progresses (PC1 and PC2). Overall the first three

components of the centered PCA capture 35% of variance, compared to 88% in case of the not-

centered input. General visual inspection of the PCA shows strong similarities to the single cell

UMAPs (compare 10.A and figure 8.A).

Altgother, these analyses indicate that developmental and cell type signals explain the majority

of gene expression variance in the developing cerebella from the three mammalian species.

3.7.4 Conserved and divergent cell state markers

The eutherian and marsupial species are separated by at least 160 million years of mammalian

evolution. The above PCA indicated, that the core gene programs of relative gene expression are

shared between the three studied species. Hence, Dr. Mari Sepp and me speculated that genes

which have cell state-specific expression pattrens that are conserved in all three studied species, are

likely of high importance in defining the cerebellar cell types during development. I tested whether

a given gene is enriched in a given cell state, compared to all other cell states, combined. To ensure

comparability between the species, only cell states and stages which were sampled in all species

were considered in this analysis. TF-IDF transformation was done, followed by hypergeometric

test. The data was reduced to only contain one-to-one orthologs. An illustration of species-specific

and conserved marker gene scaled expression values is shown in figure 11.

In each species approximately 61% of all identified markers are specific to a single cell state,

followed by genes which are enriched in two cell states (on average 26%) and genes which are

enriched in three or more cell states (averaging to 13%). For overlapping marker genes (called as

markers in multiple cell states), only a minority (approximately 10%) is called for cell states of the

same cell type (data not shown).

Additionally, the majority of cell state markers, amongst the one-to-one orthologs were only

called in a single species (figure 12). Various combinations of shared expression pattern were also

observed, like enrichment in human and mouse and a lack thereof in opossum (figures 12, S7).

A general characterization of the conserved cell state marker genes (examples in figure 14) was

done by enrichment analysis (p < 0.01, empirical enrichment > 2) of associated gene onthology (GO)

terms. Progenitor conserved marker genes enrich in cell cycle associated GO-terms like “chromo-
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Figure 12: Overlap of conserved cell state markers between the cell states Upset plot
showing conserved cell state markers identified in more than one cell state. Upset intersects are in
decreasing order and capped at more than five genes.
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Figure 13: Conserved shared cell state marker overlap Upset plot showing all conserved
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occurrence and capped at more than five genes.
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Figure 15: Conserved transcription factor expression and predicted activity Transcription
factor expression was estimated on scaled expression values within the single nucleus RNA-seq dataset.
Transcription factor activity was modelled for human and mouse using SCENIC. If the target network
of a transcription factor could not be modelled by SCENIC, a dot is shown. Transcription factor
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some condensation”, “meiotic spindle” and “mitotic sister chromatid segregation”. Granule cell cell

states exhibit an enrichment of GO terms as follows (a selection): (I) GCP: “kinetochore organiza-

tion”, “meiotic chromosome segregation”, “positive regulation of cytokinesis”. (II) GCdiff1: “neuron

migration”, “regulation of gene expression”, “negative regulation of cell proliferation”. (III) GCdiff2:

“signal transduction involved in regulation of gene expression”, “synaptic vesicle membrane”, “axon

guidance”, “postsynaptic membrane” and “synapse”. (IV) GCdefined: “glutamate-gated calcium

ion channel activity”, “locomotion”, “GABA-A receptor complex” and “glutamate-gated calcium ion

channel activity”. Oligodendrocyte associated cell states showed first (OPC) enrichments in oligo-

dendrocyte differentiation GO terms, such as “oligodendrocyte development” and more general in

“cell maturation”, followed by myelination related GO terms in mature oligodendrocytes. Mature

Purkinje cells overrepresented GO terms associated with Purkinje cell maturation, “axon develop-

ment” and “synaptic transmission, GABAergic”.

Marker genes which are conserved and shared between cell states, are mainly overlapping in

cell states which are closely related (figure 13), for example 63 genes mark both progenitors and

GCPs, and 32 markers are shared between astrocytes and glioblasts. Cell states differentiating, such

as VZ and NTZ neuroblasts, differentiating interneurons (interneurondiff), GCs and UBCs exhibit

an enrichment of transcription factors amongst the conserved marker genes (figure S6). In total,
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Table 1: Examples of known cell type marker transcription factors

Cell type / state Transcription factor [mouse gene symbol]
progenitors Pax3
astrocytes Hopx
Purkinje Foxp2

Esrrb
interneurons Pax2
granule cells Pax6

Etv1

there are 187 transcription factors among the conserved cell state markers. To investigate whether

the apparent conserved expression of transcription factors agrees with their activity in regulating

downstream effector genes, I modelled the transcription factor activity using pySCENIC [86, 87].

Using known cell type, or state, specific transcription factors, known from literature [4, 88–90],

such as transcription factors listed in table 1, I compared the observed expression patterns across

all three species with the SCENIC modeled activity in human and mouse (figure 15). Since at the

time of writing, there was no opossum-specific RCisTarget database available, the marsupial was

left out of the SCENIC runs. Some transcription factor activities could not be predicted in human

or mouse, either due to the lack of sufficient expression, low number of identified target genes, or

unknown binding motifs, which are important for the SCENIC pipeline.

Overall this analyses show that a core set of genes could be identified, which are conserved for at

least 160 million years, that show cell state-specific enrichment. These genes could be assumed to be

cell state defining due to their conservation. Especially, transcription factors are prime candidates

for cell type identity [91]. The high overlap of SCENIC models and the detected transcription factor

activity confirms the importance of the conserved transcription factors.

3.7.5 Characterization of Purkinje cell subtypes

The following section is focussed on a more detailed analysis of the Purkinje cells. More precisely,

it descibes the Purkinje subtype and cell state distributions and their gene expression patterns. As

mentioned previously, Purkinje cells are a major defining cell type of the cerebellum and exercise

key signal integration functions.

When Dr. Mari Sepp and I studied the heterogeneity of mouse and opossum Purkinje cells, we

were able to identify four groups of cells, which we assumed to represent distinct subtypes (figure

16.A). I performed marker gene enrichment for the four subtypes to investigate gene expression

patterns in differentiating Purkinje cell subtypes. Four genes, ranking high in the enrichment, cap-

tured the observed diversity: Rorb, Foxp1, Cdh9, and Etv1 (figure 16.D). When considering the

developmental stages of subtype emergence and spatial organization of the developing cerebellum,

using the Allen developing mouse brain atlas [80], spatiotemporal patterns emerged that were re-
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Figure 16: Purkinje cell diversity In each species Purkinje cells and ventricular zone neuroblasts
assigned to the Purkinje cell lineage were separately re-integrated. A: UMAP embedding of the re-
integration using LIGER. Identified subtypes are color-coded, nuclei which did not receive a subtype
label are shown in light grey. B: Spearman correlation coefficients between mouse and human or
mouse and opossum subtypes. Dots represent comparisons with the highest correlaton coefficient. C:
Scheme on developing mouse cerebellum at stage E13.5 with areas of mapped location of the subtypes
marked accordingly (made by Dr. Mari Sepp). Below are ISH images showing the signals for the four
subtype marker genes Rorb, Foxp1, Cdh9, and Etv1. D: Dotplot of marker gene expression. Size of
dots represents proportion of cells per group showing at least one UMI of the respective gene, color
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shown (by Dr. Mari Sepp).
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flected in the expression of the aforementioned genes (figure 16.C). Early-born Purkinje cells express

Rorb or Foxp1, whereas late-born cells express Cdh9 or Etv1. Medially located Purkinje cell sub-

types are marked by Rorb or Cdh9 expression, and laterally located subtypes express Foxp1 or

Etv1. Furthermore the expression of transcription factors Ebf1 and Ebf2 complete the combina-

torial patterning of the captured developmental Purkinje cell diversity. Medially located subtypes

show higher Ebf1 expression than laterally located subtypes; late-born subtypes exhibit higher Ebf2

expression compared to early-born Purkinje subtypes. When conducting GO-term enrichment on

the highly variable genes between the Purkinje subtypes, I observed an enrichment in the GO term

“homophilic cell adhesion” (p < 0.01), a GO-term which contains many Cadherin family genes.

When studying the diversity Purkinje cells in human, only partial matches to the mouse and

opossum subtypes could be found (figure 16.A,B,D): EBF1 and EBF2 expression mainly captures

the difference between early- and late-born cells, the medial to lateral signal could not be detected.

Using orthologous gene expression of variable genes (n = 107), Spearman’s correlation was

computed (figure 16.B). Highest subtype to subtype correlation between mouse and opossum was

reached for matching cell types (ρ ≈ 0.3). The mouse to human comparison scored highest for

mouse Purkinje Rorb and human early-born Purkinje cells, and mouse Purkinje Cdh9 and human

late-born Purkinje cells with being approximately 0.1.

The adult cerebellum exhibits a complex structural compartmentalization which is focused

around Aldoc (Zebrin II) positive and negative Purkinje cells, organized in parasagittal stripes

[4, 9, 62]. Kozareva et al. produced snRNA-seq data of adult mouse cerebellum and specified 9

adult Purkinje cell suptypes. [9]. I used this dataset and created pseudobulks of the adult Purkinje

cell subtypes. Pseudobulks of mouse developing Purkinje cell subtypes described in this study were

then compared with the adult Purkinje cell subtypes of Kozareva et al. Even though the significant

gap in sampling is present between the described subtypes, possible matches between the develop-

ing and adult subtypes can be proposed based on Spearman’s correlation, calculated on 337 shared

highly variable genes (summarized in table 1, figure 16.E).

These results demonstrate that Purkinje cell diversity is defined both by birth date and place

during early development.

3.7.6 Diversity of GABAergic interneurons

I performed similar analyses as done for Purkinje cells for the GABAergic interneurons (figure 17).

After integration, clustering and marker gene enrichment analysis, five interneuron subtypes could be

distinguished in mouse: early interneurons (Zfhx4 ), granule cell laye interneurons (Rgs6 ), Purkinje

cell layer interneurons (Klhl1, Nxph1 ) and two subtypes of molecular layer interneurons (ML1 -

Sorcs3, ML2 - Nxph1 ) (figure 17.B). The identified subtypes in the developing cerebellum could be

directly matched to the subtypes found by a previous study in adult mouse cerebellum [9]. Using

33



3 RESULTS 3.7 Atlas of cell types and states

Table 2: Adult mouse Purkinje groups matching to developmental Purkinje cell subtypes

Adult mouse Purkinje group Developing Purkinje group
Aldoc+ subtype 1 Purkinje Foxp1
Aldoc+ subtype 2 Purkinje Etv1
Aldoc+ subtype 3 Purkinje Rorb
Aldoc+ subtype 4 Purkinje Cdh9
Aldoc+ subtype 5 Purkinje Cdh9
Aldoc+ subtype 6 Purkinje Foxp1
Aldoc+ subtype 7 Purkinje Etv1
Aldoc− subtype 1 Purkinje Etv1
Aldoc− subtype 2 Purkinje Etv1

pseudobulk Spearman’s correlation analysis (0.3 < < 0.7, figure 17.C). A spatiotemporal patterning

could be observed: the interneuron subtypes emerge in the temporal order of (I) early interneurons,

(II) granule cell layer interneuron, (III) Purkinje cell layer interneurons and (IV) molecular layer

interneurons (1 and 2); and this ordering is reflected in the known spatial distribution of the subtypes

in the adult cerebellum (figure 17.D).

The same subtypes could be detected in human and opossum. All aforementioned marker genes

are conserved in all species and subtypes. In opossum, an additional subtype was found that

expresses MEIS2. However, these cells mainly originate from a single individual, so further studies

are needed to elucidate if these cells represent a true cerebellar cell type in the opossum.

3.7.7 Diversity of glutamatergic neurons and astroglia

Besides the aforementioned Purkinje cell and interneuron subtypes, I was able to cluster and identify,

together with Dr. Mari Sepp, subtypes and cell states of other cell types. This section summarizes

the characterized diversity. In total 48 subtypes could be distinguished, out of which 26 were present

in all three species (table 10). The differences in the representation of subtypes between species are

mostly associated with the differences in sampling.

RL/NTZ lineage shows two subtypes of glutamatergic deep nuclei neurons, which could be

associated to spacial patterning. Glutamatergic deep nuclei subtype neurons (Lmo3 ) are located

ventrally; the other subtype (Lmx1a), shows enrichment in the posterior portion of the developing

cerebellum. Both subtypes reach high Spearman correlation coeffients (ρ > 0.5, 225 shared highly

variable orthologs) when compared across species. The ventral subtype appears first, at E12.5 in

mouse, the relative abundance of the posterior subtype gradually increases during development up to

birth, when the strong increase in granule cells purges the abundances of glutamatergic deep nuclei

cells. The other NTZ/RL-related cells were isthmic nuclei neurons. This cell type was robustly

detected in all three species, with two shared and one subtype detected in mouse and opossum

only. The shared subtypes are marked by Nr4a2 or Sst. A subtype expressing Slc5a7 was not

detectable in human. Correlation coefficients between the species for each subtype was lower than
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Figure 17: Interneuron diversity In each species interneurons and ventricular zone neuroblasts
assigned to the interneuron lineage were separately re-integrated . A: UMAP embedding of LIGER
guided re-integration per species. Identified subtypes are shown in different colors. Cells that were not
assigned to a subtype are shown in grey. B: Dotplot of scaled subtype marker gene expression values
(minimum-maximum scaling). Size represents the fraction of cells per group showing at least one
UMI per subtype. Expression values are color-coded. C: Spearman correlation coefficients between
pseudobulks generated per subtype. Left: Comparison of mouse subtypes with previously reported
adult interneuron subtypes [9]. Center and right: Comparison between mouse and either human or
opossum. Tiles with highest correlation coefficient per subtype are marked with dots. D: Dynamics
of mouse interneuron subtype relative abundances across development. The scheme below shows
relationships between temporal patterns during development and spatial distributions in adult.
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for the glutamatergic deep nuclei neurons subtypes, but still clearly matchable across species when

compared internally (0 << 0.3).

Unipolar brush cells and granule cells embed continously with each other in all three species.

Dr. Mari Sepp and I were able to differentiate two UBC subtypes, one of which expresses the

known UBC marker Eomes in addition to known UBC subtype markers such as Trpc3, Grm1, and

Calb2 [4, 9]. Furthermore, we identified a previously unknown subtype expressing Hcrtr2 but low

Eomes expression. Mapping Hcrtr2 expression on the mouse developing cerebellum using the Allen

Developinmg Mouse Brain Atlas, Hcrtr2 marks a scattered group of cells in the granule cell layer.

Granule cells foremost clustered into an early (Pax6 ) and late (Synpr) group of cells in all three

studied species. In mouse and opossum, I was also able to capture a subtype expressing Kcnip4 and

Otx2, which was not detectable in human. Comparing the here presented mouse data to published

adult mouse data [9], which contains spacial annotation, the early group does not exhibit spatial

specialization. The late group shows evidences to correspond to the posterior hemisphere group

and the Kcnip4 expressing subtype might be associated to the nodulus.

Heterogeneity in the progenitor populations in the studied species was detectable, including a

group of cells that might be apoptotic (low Nckap5, high Bcl2l11 expression). Early progenitors

reveal spatial signals: from anterior ventricular zone progenitors (Lgr5 and Pax5 ) to posterior VZ

progenitors (Clybl and Cyp26b1 ) and the RL progenitors (Slit2 ) . During cerebellar development,

the role of the progenitor pool changes, from production of neuronal cell types to glial cells. This

switch is also captured in the three species. The number of bipotent progenitors gradually increases,

outnumbering purely neurogenic progenitors, during fetal and early postnatal stages (referencing

here to mouse stages). Bipotent progenitors that give rise to interneurons and parenchymal as-

trocytes [4, 92], and gliogenic progenitors that give rise to parenchymal and Bergmann astrocytes

display a decreased cell cycle score, compared to the early progenitors. Furthermore, two types

of glioblast were readily detectable in the three species studied here: prospective white matter

glioblasts and astroblasts. Human to mouse and opossum to mouse pseudobulk Spearman’s corre-

lation analysis showed agreement between the identified subtypes (0.2 < p < 0.6).

The above analyses demonstrate that the cellular diversity in the developing cerebellum is highly

conserved in mammals, even at the level of subtypes.

3.8 Gene trajectories along neuronal differentiation

3.8.1 Pseudotime framework to model differentiation

Cell type differentiation is a gradual process which can not be easily modelled with clustered data.

To meticulously characterize the differentiation processes, I decided to focus on the two major

cerebellar neuron types: Purkinje cells and granule cells. For both cell types, due to their high
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abundance during consecutive timepoints along mammalian cerebellar development, plenty of cells

could be profiled and the transition from differentiating to defined cell states was captured. The

UMAP embedding (figure 8.A) also reflects the process in projected transcriptomic space, where

both neuronal lineages exhibit a continuum-like structure. To model Purkinje cell differentiation

process, I included ventricular zone neuroblasts from the developmental time window when Purkinje

cells are generated in the cerebellum (E12.5-E13.5 in mouse, 7-8 wpc in human, P4-P5 in opossum;

see Methods for details).

First, the order of cells at different states of differentiation must be established. The main

idea is that cells of similar differentiation state should exhibit a comparable transcriptomic profile,

which separates these cells from cells at earlier or later states of the differentiation process. If

enough cells were captured along the differentiation trajectory, a low dimensional embedding of

the transcriptomic space should exhibit a stretched, continuum-like structure. This structure is

assumed to capture and represent the signal of differentiation. After the low-dimensional embedding

is established, a vector of differentiation must be fitted to the projection, in a way, that every

cell is associated with a continous value, representing its progression through differentiation, often

called pseudotime. I chose the classical diffusion pseudotime (DPT) algorithm as the method to

call pseudotimes, given its well-established framework and straightforward interpretability,. Next,

genes which show dynamic expression along the pseudotime-modelled path of differentiation, need

to be identified. Correlation analysis is not sufficient to capture all the varying genes, due to the

linearity assumption used by most correlation analysis methods. I tested various other approaches

to identify genes that show a differentiation related linear or non-linear expression trajectory. One

method that I tested, for example, leverages mutual information (MI) between pseudotime and gene

expression values, but this approach had mixed results. The main issue is to set a MI threshold,

which separates genes with dynamic expression from background noise [67]. This issue could be

solved by using an approach that is based on the binning of the pseudotime vector und using the

bins as units to call HVGs, similarly as I did for the cell type clusters, previously. This approach

allowed me to call genes with dynamic expression along the pseuodotime-modelled differentiation

without the assumption of linearity, and by using an explainable cut-off (based on overdispersion).

Next, I assumed that there are fundamental patterns of expression along the pseudotime-modelled

differentiation, hence I applied fuzzy clustering to group genes based on their expression trajectories

(details in the following sections).

Since I aimed to characterize neuronal differentiation simultaneously in human, mouse, and

opossum, and seeked to identify similarities and differences between the species, I needed to make

sure that I compare gene expression profiles from cells that are at similar points of differentiation.

First, I integrate the cells of a specific cell type from all species, and then call the pseudotime

values on the integrated projection. This allowed me to skip the error-prone post hoc alignment
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and to be sure that cells of similar global transcriptomic status of all three species are in the same

neighborhood. To assert that this assumption holds true, I visualized the distribution of pseudotime

values for the aligned developmental stages of all species (figures 19.E, 18.E).

In the final framework, cross-species integration was accomplished using the Harmony tool [76],

based on a PCA, learned on a three-way one-to-one orthologous expression matrix. The root cell

of the integrated embedding was chosen based on the UMAP embedding, and diffusion pseudotime

was calculated. To call HVGs, I only considered genes, if a three-way one-to-one ortholog was called

highly variable in all three species. Pseudobulks were created per pseudotime bin for each biological

replicate. For the clustering of gene expression trajetories, each species contributed its specific

ortholog trajectory, and free clustering of ortholog triplets was allowed within the given number of

fuzzy clusters (n=8). To establish the order of fuzzy clusters along the pseudotime vector, hinting

on the time of highest expression of a given cluster, I calculated the center of mass for each cluster

and used these values for ordering the clusters (figure 19.G, 18.G). This framework was applied

separately to Purkinje cells and granule cells. The results of these analyses are discussed in the

following sections.

3.8.2 Purkinje cell differentiation

Purkinje cell pseudotime values distribute across developmental stages unequally. The earliest

matched timepoint E12.5 shows the lowest pseudotime values (median = 0.6; figure 18.E). All

following time points aggregate at the upper 10%-percentile of the pseudotime values (figure 18.D,E).

This observation is shared between the species, though it is worth mentioning, that the opossum

dataset lacks the group of very early Purkinje cells. The assignment of cell states reveals a consistent

distribution, within all species, throughout pseudotime values (figure 18.F): early ventricular zone

neuroblasts group 1 showed the lowest pseudotime values, and the value gradually increases in

the row of VZ neuroblasts group 2 and 3, differentiating Purkinje cells (Purkinjediff), defined

Purkinje cells (Purkinjedef), and mature Purkinje cells. This ordering is accompanied by very

similar interquartile ranges for all cell states, with the exception of larger ranges for VZ neuroblasts

group 2 in all species. These results are in agreement with the known transient mode of Purkinje

cell emergence [2, 4], indicating that the pseudotime model accurately captures the differentiation

of Purkinje cells.

The number of identified one-to-one orthologous HVGs, i.e. genes that have dynamic expression

profiles during Purkinje cell differentiation, was: human = 3,651; opossum = 5,676; and mouse =

3,133. The intersection of these genes summed up to 1,846 genes, which were studied in the following

analyses. Among these shared dynamic genes, there was a significant enrichment of transcription

factor genes (binomial test, p < 0.01).

Shared dynamic genes were assigned to eight fuzzy clusters, based on their scaled expression
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3 RESULTS 3.8 Gene trajectories along neuronal differentiation

profiles. These clusters exhibited varied gene expression trajectories (figure 18.G), but could be

divided into three groups based on their temporal expression peaks: expression of genes in clusters

3, 7, and 8 is the highest in early differention (pseudotime bins 1-2), expression of genes in clusters

8, 6, 4, and 2 peaked transiently during differentiation, whereas genes in clusters 1 and 5 clearly

showed the highest expression levels in late differentiation.

Since each orthologous gene was assigned to a cluster independently, I could evaluate the agree-

ment between the species on a gene by gene basis. To test for differences in cluster assignments

between the orthologous genes I calculated a p-value and classified each gene into one of the fol-

lowing groups (figure 21.A): (I) preserved - all p-values >0.5; (II) species-specific - p-value < 0.05

for of one species against the other two and p-value > 0.5 between the other two species (the gene

with species-specific trajectory needed to be assigned to a different cluster than its orthologs in the

other two species); (III) diverse - p-value < 0.05 for all comparisons; (IV) intermediate - if all of the

previous conditions were not fulfilled; (V) not assigned - at least one ortholog in an ortholog group

did not reach a maximum membership score of 0.5. I used the opossum as an evolutionary outgroup

to the eutherian mammals to polarize the trajectory changes detected in human and mouse. For

instance, if the orthologous gene expression trajectories were similar in mouse and opossum, but

different in human, the gene was assigned as having a human-specific trajectory. Changes detected

in opossum could not be polarized, i.e. it is unclear whether the change occured in the branch

leading to opossum, or whether the change was established in the eutherian lineage. These genes

are denoted as ‘marsupial’ in table 3.

Table 3: Number of genes assigned to classes in Purkinje cell differentiation

Class n
conserved 285
human-specific 47
mouse-specific 42
Marsupial 93
diverse 58

not assigned 1321

First, I characterized the genes with preserved (i.e. strongly conserved) trajectories during

Purkinje cell differentiation in human, mouse and opossum. Similar to the previous marker gene

analysis (section 3.7.4), conservation was assumed to enrich for genes which are important in cell

type differentiation. A total of 285 genes were classified as exhibiting preserved trajectories during

Purkinje cells differentiation. I grouped these genes by trajectory cluster and preformed a GO-term

enrichment analysis based on mouse genome GO term assignments. This analysis revealed cluster-

specific signals and enriched GO terms that were in agreement with the temporal expression profiles

of the genes in each cluster. A selection of enriched GO terms for all trajectory clusters can be
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3.8 Gene trajectories along neuronal differentiation 3 RESULTS

found in table 4.

Table 4: Selected enriched GO terms for conserved genes in different trajectory clusters
in Purkinje cells

Fuzzy cluster GO term enrichment
3 neural tube development 4.9

cilium assembly 4.1
ruffle 3.95
positive regulation of cell proliferation 2.47

7 cell fate determination 5.45
smoothened signaling pathway 4.09
RNA binding 2.23

8 translation regulator activity 6.82
positive regulation of neuron differentiation 5.11
regulation of transcription, DNA-templated 2.19

6 nucleosomal DNA binding 20.58
ATP-dependent chromatin remodeling 20.58
transcriptional repressor activity 10.29
cell-cell signaling 10.28

4 magnesium ion binding 24.1
receptor binding 24.1
integral component of synaptic vesicle membrane 24.1
synaptic vesicle membrane 18.1

2 GTPase activity 9.2
inhibitory synapse 9.2
myelin sheath 8.3
dendrite 4.9

1 phospholipid binding 7.6
glycine binding 7.6
protein homooligomerization 7.6
excitatory postsynaptic potential 5.7

5 GABA-A receptor activity 3.2
glutamate receptor activity 3.2
adult behavior 3.2
neuron projection development 2.6
postynaptic membrane 2.1

Next, transcription factors, which have preserved expression trajectories, were invesitgated

whether their spatial expression patterns are in agreement with the temporal expression profiles.

Using ISH data from the Allen Developing Mouse Brain Atlas [80], it was confirmed that the se-

quential expression of the transcription factors, as detected in the pseudotime analysis, is mirrored

in the migrations patterns of Purkinje cells within the developing cerebellum (figure 3.H).
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3 RESULTS 3.8 Gene trajectories along neuronal differentiation

3.8.3 Conserved granule cell differentiation

I proceeded with the characterization of differentiation of granule cells, the other key cell type in

the cerebellum, and performed similar analyses as done for the Purkinje cells.

Granule cells are produced during an extended period of time of cerebellar development [4]. For

example, in mouse the earliest granule cell precursors are detectable as early as E13.5. The external

granule cell layer is established which generates granule cells up to P14 [2, 4].

Dynamic genes were called in each species (human = 5,768, mouse = 2,831 and opossum =

4,782) and subsetted for three-way one-to-one orthologs: in total 1,846 shared dynamic genes were

identified. After fuzzy clustering, these orthologous genes were assigned as having preserved, species-

specific or diverse expression trajectories during granule cell differentiation, using the same criteria as

applied in the analysis of Purkinje cells. The distribution of assignments is reported in table 19. The

majority of orthologous gene groups remained as not assigned, due to their low maximum cluster

membership scores. The next biggest category is formed by genes showing preserved expression

trajectories.

Table 5: Number of genes assigned to classes in granule cell differentiation

Class n
conserved 414
human-specific 136
mouse-specific 54
Marsupial 81
diverse 56

not assigned 1,163

GO enrichment analysis of the genes with preserved expression trajectories during granule cell

differentiation revealed pertinent GO terms for each trajectory cluster, as summarized in table 6.

In contrast to the Purkinje cell shared dynamic genes, no transcription factor enrichment was

detected among the granule cell shared dynamic genes (binomial test, p > 0.05). I extracted

transcription factors, which exhibited preserved expression trajectories during granule cell differen-

tiation to evaluate, whether a spatial distribution of the expression of these genes could be observed.

Scaled expression of these transcription factors through granule cell differentiation is depicted in

figure 19.H, next to ISH stainings from the Allen Developing Mouse Brain Atlas [80]. For the tran-

scription factors with available ISH data, a clear correlation between the expression trajectory and

granule cell migration patterns was observed. For example, Trp53 and E2f2 are expressed in the

external granule cell layer (i.e., early in differentiation); migratory granule cells express Lhx1 and

later Pax6 ; GCs reaching the internal granule cell layer express Etv1.
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3 RESULTS 3.8 Gene trajectories along neuronal differentiation

Table 6: Selected enriched GO terms for conserved genes in different trajectory clusters
in granule cells

Fuzzy cluster GO term enrichment
4 mitotic sister chromatid segregation 2.5

DNA replication checkpoint 2.5
G2/M transition of mitotic cell cycle 2.5
cell division 2.3
DNA replication 2.3
cell cycle 2.2

6 structural constituent of ribosome 21.5
translation 13.4
mRNA binding 10.8
RNA binding 8.6
regulation of translation 7.2

7 anterior/posterior pattern specification 26.1
dorsal/ventral pattern formation 23.2
negative regulation of neuron differentiation 23.2
regulation of gene expression 17.4
smoothened signaling pathway 11.6

1 positive regulation of filopodium assembly 11.4
cell fate commitment 7.5
dendrite morphogenesis 7.5
positive regulation of cell migration 5.6
cell migration 4.5
neuronal cell body 2.4

2 heterophilic cell-cell adhesion via plasma membrane 27.7
cell-cell adherens junction 15.8
apoptotic process 5.8

3 membrane depolarization during action potential 14.3
voltage-gated sodium channel complex 10.7
neuronal action potential 10.7
cell-cell adhesion 8.6
learning or memory 7.1
synaptic transmission, glutamatergic 7.1

5 memory 11.4
vesicle 7.6
cytoplasmic microtubule 7.6
neurotransmitter secretion 7.6
axon extension 7.6
SNARE binding 5.7
adult walking behavior 5.7
axolemma 5.7

8 sodium:potassium-exchanging ATPase activity 3
potassium ion import 3
neuronal signal transduction 3
synaptic vesicle membrane 3
axonal growth cone 3
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3.8 Gene trajectories along neuronal differentiation 3 RESULTS

3.8.4 Functional relevance of the dynamic genes

Dr. Mari Sepp and I asked, whether the identified dynamic genes are enriched for genes that are

essential for normal development. To address this question, I grouped genes either in cross-species

shared dynamic or not dynamic groups. Furthermore, I assigned each gene into one of three bins,

depending on whether and in which cell type a gene is pseudotemporal dynamic (none, Purkinje,

GC, both). About 57% of all dynamic genes are shared between the two cell types. This group of

genes, and Purkinje dynamic genes show signs of transcription factor enrichment: Purkinje dynamic

genes exhibited an empirical enrichment of 1.5 (p < 0.001) and shared dynamic genes showed an

enrichment of 1.2 (p = 0.078) of transcription factor coding genes.
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Figure 20: Functional significance of dynamic genes A: proportion of transcription factors
among variable and non-variable genes during either Purkinje cell, granule cell or both cell types
differentiation. B: lethality in vivo score for either dynamic or non dynamic genes. C: lethality in vitro
score for either dynamic or non dynamic genes. D: LOEUF scores (loss-of-function observed/expected
upper bound fraction, lower scores = higher constraint). E: enrichment analysis within dynamic and
non-dynamic genes for brain disease associated genes either with developmental influence or without.
Size of dots represents the number of associated genes, the x-axis shows the observed enrichment.
F: enrichment analysis for cerebellum disease associated genes. CBLM = cerebellar malformations,
JOUBERT = Joubert syndrome, AUTISM = autism spectrum disorder, ID = intellectual disorder,
SCA = spinocerebellar ataxia, MB =medulloblastoma. Significant enrichments (p < 0.1) are indicated
with a star.

I used an in vivo essentiality score that measures tolerance to heterozygous inactivation in the

human population, as well as an in vitro essentiality score, which was determined by viability assays

in human cell lines [6]. Both metrics can be used to evaluate the level of functional constraints.

Compared to the non-dynamic genes, dynamic genes have a clearly higher in vivo gene essentiality

score, whereas the in vitro essentiality scores were slightly lower (permutation test (n = 10, 000),

H1 = ’greater’,α = 0.05). Genes that are dynamic both in Purkinje and granule cells showed
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3 RESULTS 3.8 Gene trajectories along neuronal differentiation

significantly higher intolerance to heterozygous inactivation in the human population, compared to

genes, which were called in only one of the two cell types. Dynamic genes in Purkinje cells showed

higher in vivo intolerance, compared to granule cell-associated dynamic genes (permutation test

(n = 10, 000), α =′ greater′, p < 0.01). Additionally, we used the recently described LOEUF scores

(loss-of-function observed/expected upper bound fraction) [93], the most up-to-date measure of in

vivo essentiality provided by the Genome Aggregation Database (gnomAD). Again, dynamic genes

show stronger constraint than non-dynamic genes (permutation test (n = 10, 000), H1 =′ lower′,

p < 0.01), and among the dynamic genes, genes which are shared between Purkinje and granule

cells exhibit the strongest constraint (permutation test (n = 10, 000), α < 0.01, p < 0.01) (figure

20).

In light of these results, I next studied possible disease associations of the dynamic genes. I ob-

tained as list of inherited disease and gene associations from the Human Gene Mutation Database

(HGDM, PRO 17.1) [94]. I subsetted this list to disease driver genes, utilizing frameworks es-

tablished in our lab [66]. Furthermore, I defined ‘Brain disease’ genes as the genes associated to

disease types ’Nervous system’ and ’Psychiatric’, according to the Unified Medical Language System

(UMLS). Due to the developmental nature of the data in this thesis, I additionally grouped the fil-

tered genes whether they are also associated with the high level disease type ’Developmental’. This

led to the following sets of ‘Brain disease’ genes: developmental (n = 373) and other (n = 200). A

binomial test was applied to investigate whether any dynamic or non-dynamic cell type-associated

gene group is enriched in any of the described disease gene groups. Significant results (α = 0.1)

were obtained in only one group: developmental brain disease associated genes are enriched among

the shared dynamic genes with an empirical enrichment of approximately two (figure 20.E).

Next, I focussed on the diseases that are directly associated with the functions of the cerebellum.

I downloaded a curated list of neurodevelopmental and adult-onset neurodegenerative disorders

linked genes from Aldinger et al. [95]. Genes linked to spinocerebellar ataxia, medulloblastoma

or cerebellar malformations, including Dandy-Walker syndrome and cerebellar hypoplasia, showed

enrichment in dynamic genes shared between Purkinje and granule cells (table 7, figure 20). Ad-

ditionally, genes dynamic in Purkinje cell differentiation showed enrichment of high-confidence risk

genes in autism spectrum disorder and intellectual disability.

Taken together this shows that genes, playing a role in granule and Purkinje cell differentiation,

exhibit increased functional constraint compared to non-regulated genes. Furthermore develop-

mental associated brain diseases show enrichment among both cell types. Zooming into specific

syndromes and diseases, often genes associated with differentiation of both cell types are affected,

indicating that the studied diseases are interfering not only with one but presumably multiple cell

types in the cerebellum.
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Table 7: Disease associations for genes with dynamic expression during Purkinje and
granule cell differentiation

Disease Group Empirical enrichment p FDR
high confidence risk genes of GC 0.795 0.765 1.000
autism spectrum disorder Purkinje 2.981 0.000 0.000

GC/Purkinje 1.856 0.010 0.054

cerebellar malformations GC 0.557 0.874 1.000
Purkinje 1.789 0.123 0.555
GC/Purkinje 3.248 0.000 0.001

intellectual disorder GC 0.843 0.755 1.000
Purkinje 2.544 0.000 0.000
GC/Purkinje 2.324 0.000 0.000

Joubert GC 0.418 0.909 1.000
Purkinje 0.894 0.655 1.000
GC/Purkinje 0.325 0.954 1.000

medulloblastoma GC 1.228 0.385 1.000
Purkinje 1.578 0.184 0.737
GC/Purkinje 2.675 0.001 0.007

spinocerebellar GC 0.380 0.929 1.000
ataxia Purkinje 0.407 0.915 1.000

GC/Purkinje 2.657 0.008 0.048

3.8.5 Comparisons of functional constraints of genes with preserved or diverged ex-

pression trajectories

As described in the previous sections, besides genes with preserved trajectories during Purkinje and

granule cell differentiation, I also identified orthologous genes that had diverged trajectory patterns

in at least one of the studied species. To investigate the functional constraints of the genes with

different level of trajectory similarities between the species, I grouped the genes with either species-

specific or diverse trajectories as ‘diverged’ genes (µ = 17%), and compared these to the genes

with preserved trajectories (µ = 12%) and with genes in the intermediate category (µ = 60%). To

increase the resolution of this analysis, the genes of the three groups of conservation were split by

the assigned fuzzy cluster in human, into groups of gene with the highest expression in early, middle

or late differentiation (as determined by center of mass per cluster in human) (figure 21.D-F).

First, I investigated the in vivo functional constraints using two measures – the LOEF scores

[93] and the in vivo intolerance scores from [6]. Genes with preserved trajectories in granule cells

and expression peak in mid differentiation exhibited significantly lower LOEF scores (indicating

stronger in vivo functional contraints) compared to diverged and intermediate genes (permutation

test (n = 10, 000), p = 0.047, p = 0.089, α = 0.1)(figure 21.D). Considering in vivo intolerance

scores, I only observed significantly higher (indicating stronger in vivo functional contraints) in
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early expressed intermediate genes, compared to preserved genes in granule cells ($p=0.001) (figure

21.E). In Purkinje cells, significant decreases in LOEF scores were identified for late expressed

preserved genes, compared to intermediate and diverged genes (permutation test (n = 10, 000),

p = 0.02, p = 0.052, α = 0.1, figure 21.D). Consistently, mid and late expressed preserved genes

showed significant increases in in vivo intolerance scores, compared to the respective intermediate

and diverged genes (p < 0.05,figure 21.E).

Next, I investigated the in vitro functional constraints [6]. Human in vitro intolerance scores were

significantly increased (indicating stronger functional contraints) for early expressed preserved genes,

compared to intermediate (p < 0.001) and diverged (p < 0.001) genes in granule cell differentiation.

In Purkinje cell differentiation, the early an mid expressed preserved genes showed higher in vitro

functional constraints than the diverged genes (p < 0.001 figure 21.F).

The following comparisons showed significant differences: in early expressed preserved were

increased compared to diverged genes (p = 0.016) and intermediate higher than diverged genes (p =

0.0014); For genes peaking in the middle of differentiation, preserved were higher than intermediate

genes (p = 0.004) and preserved vs. diverged genes (p < 0.001, figure 21.F).

I also tested, whether any of the defined groups enrich in cancer associated genes, but none of

the analyses revealed significant enrichments (α < 0.05).

Taken together, genes with preserved expression trajectories during Purkinje or granule cell dif-

ferentiation show higher levels of functional constraints than the diverged genes. However, the mode

of constraint differs between the genes with different temporal expression patterns. In general, ear-

lier expressed preserved genes are required for cellular viability (in vitro constraints), later expressed

preserved genes are intolerant to heterozygous inactivation in humans (in vivo constraints).

3.8.6 Characterization of the diverged gene expression trajectories

After obtaining the global view on three-way orthologs with conserved and diverged trajectories, I

zoomed in on genes with species-specific trajectory changes in granule and Purkinje cells. I used

the opossum as an evolutionary outgroup to the eutherian mammals to polarize the expression

trajectory changes detected in human and mouse. Differences detected in opossum could not be

pinpointed to whether the change occurred in the branch leading to opossum, or whether the change

was established in the eutherian lineage.

A summary of the number of orthologs called either human-specific, mouse-specific, marsupial,

or diverse (no resemblance of trajectory between in any of the species) is depicted in figure 21.A. In

granule cells, a total of 136 genes exhibited human-specific trajectory changes. Statistical analysis

(binomial test) revealed that this is a clear enrichment, compared to the other groups (p < 0.001).

No other group exhibited significant overrepresentation (α = 0.05). In Purkinje cells, the numbers of

human and mouse changes were comparable (47 and 42). The number of genes with species-specific
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Figure 21: species-specific trajectories in Purkinje and granule cells A: number of classified
trajectories per species-specific and totally diverged (no direct resemblance between any species)
for Purkinje and granule cell differentiation. B: groups of gene expression peaks characterized by
either “tightly regulated” (conserved trajectories), “diverged” (species-specific or totally different) and
“intermediate” (other variable genes). Total numbers are printed and relative proportion plotted.
C: per ortholog triplet the pairwise difference in center of mass was determined to quantify the
directionality of possible changes (e.g. early to late, or late to early). Quantification was done for
Purkinje and granule cell differentiation. D: LOEUF scores per trajectory group for both cell types
(lower values = higher constraint). BG = non variable genes detectable in all species per cell type. E:
in vivo lethality score per trajectory group and time of peak for human ortholog. F: in vitro lethality
score per trajectory group and time of peak for human ortholog. G: examples of genes per trajectory
group in Purkinje and granule cells. H: minimum vs maximum dynamic timewarp distance observed
per ortholog triplet in Purkinje cells. I: minimum vs maximum dynamic timewarp distance observed
per ortholog triplet in granul e cells. Examples are highlighted and trajectory groups color-coded.
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trajectories in both Purkinje and granule cells was low (1 - 4).

Next, I investigated whether the identified changes in trajectories show biases in directionality,

i.e. if the expression shifts systematically towards earlier or later differentiation. For each gene, I

quantified the change in the center of mass values between the species. As expected, these values

were distributed around 0 for the genes with preserved trajectories. Genes with human-specific,

mouse-specific, marsupial or diverse trajectories showed distributions that deviated further away

from 0, in the expected pairwise species comparisons. Importantly, no clear tendency for shift

directionality could be detected by visual investigation in either of the cell types (figure 21.C).

Till this point, the classification of the orthologs was done on a categorical scale. To provide a

quantitative measure of the change, I estimated dynamic timewarp distances (DTW) between all

orthologous groups of genes. I calculated the DTW distances pairwise between the orthologs from

the three species, and determined the maximum (Dmax) and minimum (Dmin) distance observed.

I observed the following patterns on the DTW distance plane: genes with preserved trajectories

show low minimum and maximum; genes with high Dmax and low Dmin diverged in one of the

species; and genes with high Dmax and high Dmin are indiciations for a diverse trajectory pattern

(different trajcetories in each species)(figure 21.H/I). Among the genes with human-specific changes

in granule cells, SNCAIP showed the lowest for its order of magnitude, thus representing a gene

with the most pronounced human-specific trajectory change in granule cells (figure 21.G). For

comparison, KANSL1 and MYTL1 show human-specific trajectory changes that are of medium or

low degree, respectively (figures 21.H and G). Similarly, in Purkinje cells, MAML2 displays a the

most pronounced human-specific trajectory change, whereas FOXP1 is an example of genes with a

mild change. Further examples of genes with trajectory changes are shown in figure 21.G

Taken together, these analyses revealed many genes that have evolved a new expression trajec-

tory during Purkinje or granule cell differentiation.

3.9 Fundamental changes in gene expression - gains and losses

In this section I summarise the work that focuses on fundamental differences in cell type-specific

gene expression profiles in the cerebella of human, mouse and opossum. Previous work from our

laboratory used bulk RNAseq data covering the development of the cerebellum from different mam-

malian species, and identified many radical differences in developmental gene expression trajectories

between the species [7]. One hypothesis raising from this work, is that the trajectory differences at

the whole tissue level (bulk) might reflect events of cell type-specific expression gains and/or losses.

Therefore I asked, whether there are genes that have gained or lost expression in at least one of the

cerebellar cell types in the three mammalian species studied. The main challenge with this analysis

was to identify a robust framework to call presence or absence of gene expression in the snRNA-seq

datasets with high confidence.
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3.9.1 Framework to call presence or absence of expression

In these analyses, I decided to use the exonic counts to avoid biases in detectability caused by

the differences in the number of intronic adenine mononuceotide repeats between the species [96].

Also, I excluded Y-coded genes. I collapsed all cells of a given cell type and biological replicate

into pseudobulks. To my knowledge, there is no framework for presence and absence calling using

snRNA-seq data. Most previously published work focuses on considerable expression changes, only

[97]. Therefore, I designed a custom algorithm to classify the expressed 12,756 three-way orthologs

into groups, depending on their expression pattern comparison.

First, pseudobulk gene expression counts were normalized as counts per million (CPM). Next, for

each cell type, a gene’s maximum expression (M) across all samples from all developmental stages

was determined. The maximum expression values were used to classify genes as expressed (present)

or not expressed (absent) in the cell type during the development in each species. Furthermore, a

minimal expression per gene to be considered present was arbitrarily set to 50 CPM.

For the comparison, the pairwise quotient of expression (Q) for each cell type between the species

was calculated by dividing the maximum expression in the species of focus by M of the other two

species. Additionally, to be called as expressed (present) I required that a gene’s M in a cell type

is at least 30% of its maximum expression across all cell types of this species (P )1. The rules for

classification are summarized in equation 2.

Cij =



n(Mj > 50) ≥ 2 ∧Qjk > 5 ∧ Pj > 0.3 ∧ Pk < 0.5 specificj

n(Mj > 50) = 0 ∧ n(Mk) ≥ 2 ∧ Pj < 0.3 ∧ Pk > 0.3 lostj

n(Mj > 50) ≥ ∧n(Mk > 50) ≥ 2 ∧ Pj > 0.3 ∧ Pk > 0.3 conserved

else ambiguous

, (2)

where gene i is classified for cell type j and tested against both other species k and n the number

of logical evaluations to “true”.

Since technical dropouts could not be ruled out, I added another layer of filtering: if a gene was

not considered to be reliably expressed (<50 CPM) in any of the cell types in the snRNA-seq dataset,

I checked its expression in the bulk RNA-seq data covering the development of the cerebellum [7].

If the maximum expression levels of the gene in the bulk data were above 5 CPM, I assumed a

technical issue with this gene’s detectability in snRNA-seq data, and therefore excluded it from all

further analyses. In total 3,271 genes of 12,756 three-way orthologs, passing the initial filters, were

classified as not-resolvable due to technical limitations. For each cell type, the remaining genes were

classified as follows: genes which were confidently expressed in all three species were classified as

conserved among therian species. Genes which were called expressed in human but not in mouse,

1This filtering step was suggested by Dr. Mari Sepp and implemented by me.
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or vice versa, were classified using the opossum as an outgroup species as gained or lost in human

or mouse. Similar to the trajectory analysis, marsupial specific expression differences could not be

assigned to a lineage (eutherian or marsupial), therefore, opossum-specific expression changes were

labelled as either “Marsupial expressed” (only detected in opossum), or “Eutherian expressed” (not

detected in opossum, but present in human and mouse). The genes that did not meet our stringent

criteria to be called present (expressed) or absent in a cell type in at least one of the three species,

were classified as “ambiguous”. The application and validation of this framework is described in the

following section.
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Figure 22: Gain / loss classification statistics A: number genes per class and studied cell
type. B: number of genes per class and plotted according to proportion per cell type. C: classification
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class was quantified and faceted. Maximum expression in bulk data was determined for all available
cerebellum samples and plotted per class. D: classification results per mouse gene. Proportion per
class per mouse chromosome was determined to study chromosome biases.

Dr. Mari Sepp and I decided to focus on the main neuronal and glial cell types in the cerebellum,

which were also readily detectable in all three species: astroglia, GABAergic deep nuclei neurons,

glutamatergic deep nuclei neurons, granule cells, interneurons, oligodendrocytes, Purkinje cells, and

unipolar brush cells. The results of this analysis are summarised in figure 22. In all analysed cell
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types, I could classify genes in all defined classes (figure 22.A). In all cell types, the vast majority

of genes were classified as ‘ambiguous’ (µ ≈ 4, 000), ‘not analysed’ (µ ≈ 3, 000) or ‘conserved’

(µ ≈ 2, 300, not shown in the figure). The number of genes in the other classes varied between

15 and 166. Across the studied cell types, the number of ‘Eutherian expressed’ genes and ‘human

gained’ genes is the highest. In general, the smallest group is the class of ‘human lost’ genes (figure

22.A/B). Overall, the numbers of genes in different classes are comparable between cell types (figure

22.B).

To validate the framework used to call presence or absence expression in snRNA-seq data, I

studied the maximum expression levels of the classified genes, grouped by the number of affected

cell types, in the bulk RNA-seq data of cerebellum development [7] (figure 22.C). This analysis

showed, for example, that genes which were classified as ‘human gained’ in more than six cell types,

show a higher bulk RNA-seq signal in human than in mouse and opossum. In contrast, genes of

the class “human lost” exhibited a very low signal in human compared to the other two species.

‘Conserved’ genes show a tendency to be among the most highly expressed genes according to the

bulk RNA-seq data. ‘Ambiguous’ genes span a wider range of expression values that were between

the values observed for the ‘conserved’ and genes that were called absent in all species (low; figure

22). ‘Not analysed’ genes group lies in RPKM order of magnitudes between ‘ambiguous’ and ‘low’

category genes. The more cell types affected by the expression difference of the same class, the

clearer the signal in the bulk data. Additionally, I sought to investigate, whether the genes in

different classes exhibit any biases in their chromosomal locations. For this, I counted for each

chromosome in mouse the number of genes in different classes (figure 22.D ). Ignoring the contigs

that were not associated to a chromosome (very low number of genes), all chromosomes exhibit

comparable distributions of genes from different classes (figure 22.D).

Since each gene could be assigned to a different class in different cell types, I quantified specific

and shared classifications for the above mentioned subset of cell types (figure 23.A & figure S8). The

highest number of cell type exclusive ‘human gained’ genes could be attributed to oligodendrocytes

(47 genes), followed by Purkinje cells (45), UBCs (38) and astroglia (29). The highest number

of shared ‘human gained’ genes was five, shared between oligodendrocytes and astroglia. The

‘human lost’ class had its most abundant cell type specific classifications in UBCs (22), followed

by glutamatergic deep nuclei cells (19), GABAergic deep nuclei cells (18), and interneurons (11).

Six genes, shared between Purkinje cells and GABAergic deep nuclei cells, were the most abundant

intersect between cell types in this class. The number of cell type exclusive ‘Mouse gained’ genes

is the highest for granule cell (20), oligodendrocytes (19), and astroglia (15). UBCs aggregated the

highest number of exclusive “mouse lost” genes (65), followed by oligodendrocytes (44), astroglia

(22), and granule cells (45). The number of ‘Marsupial expressed’ genes is the highest in UBCs

(39), oligodendrocytes (30), and interneurons (22). 73 genes were classified as “eutherian expressed”
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in oligodendrocytes, 37 in astroglia and 35 in granule cells. To conclude, the majority of the

presence/absence expression differences are called in a single cell type.
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Figure 23: Gained and lost genes characteristics A: number of affected cell type within each
gain/loss class. Absolute numbers are printed, proportion per class is plotted. B: number of genes
per human and mouse-specific class per cell type of genes which are either exclusively in the observed
cell type expressed, or were detected in any other cell type. Absolute numbers are printed, proption
per class and cell type is plotted. C: gene scores per class determined per cell type for human and
mouse. Scores were calculated per biological replicate and median (point) as well ass minimum and
maximum observed expression (linerange) was calculated. For lost genes (dashed line), the expression
was estimated by values taken from the other species (lost in human = expression in mouse, lost
in mouse = expression in human). Biological replicates were assigned to matched timepoints. D:
cell type specificity [98] per gene per class per cell type was determined for either species-specific or
conserved genes.

Next, I asked whether the high number of cell type specific classifications might indicate gener-

ally higher cell type specificity of the genes affected by presence/absence expression differences. I

calculated the specificity metric called tau [98] at the level of cell types in the snRNA-seq datasets.

The genes with species-specific expression in different cell types have higher tau than the conserved

genes, confirming my hypothesis. (figure 23.D)

I then investigated the temporal patterns of the genes with presence/absence expression differ-

ences. For each class I calculated a gene score (as done earlier) that summarizes the expression

of all genes in the class, and studied the summarized expression in different cerebellar cell types

across developmental stages (figure 23.C) For the gained (species-specific) genes, the score was cal-

culated using the expression values within the respective species. The score for human lost genes

was calculated using the mouse data, and vice versa for the mouse lost genes. For the majority of

cell types, the expression scores of genes with gained or lost expression in human or mouse increase

during development. Interestingly, this pattern does not hold true for genes that gained expression
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in human granule cells. Specifically, the expression of human-gained genes is high in early granule

cell development, declines till matched timepoint P0, and stabilizes during postnatal development.

Taken together, with a few exceptions, the genes with presence/absence expression differences tend

to have higher expression in late developmental stages.

Next, I sought to identify ‘human gained’ and ‘mouse gained’ genes that are not expressed in any

other cerebellar cell type. Using the criteria to call presence and absence of expression, I quantified

how many of the genes that gained expression in a cell type were called as present in other studied

cell types (figure 23.B). The results of this analysis show that the majority of genes with expression

gains are expressed in other cerebellar cell type(s) within the same species, and only a minority of

thes genes can be considered as newly recruited to cerebellar transcriptomes.
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Figure 24: Evolutionary characteristics of gains and losses A: Left: CPLX4 and ZP2 protein
signal in either the cerebellar cortex (upper two), or dentate nucleus (lower, ZP2 only) (Human
Protein Atlas [99]). Right: bulk RNA-seq determined expression of genes coding for either protein
in human, chimpanzee, bonobo, gorilla, orangutan, macaque, mouse, opossum, platypus, and chicken
within the cerebellum or cerebrum (brain). Mean expression (point) and minimum/maximum are
shown (errorbars). B: gene score for expression of genes classified as either human (upper), or mouse
(lower) gains in astroglia cell type grouped by subtype. Dots represent individual biological replicate
pseudobulks per subtype. The red line shows the assigned cut-off of 0.25, separating “high” and
“low” gene scores. C: metrics of functional constraint per gain/loss class across all investigated cell
types. D: examples of human gained expression in astroglia cells (Fgf2 and Dscam) shown in all three
species across all studied cell types. Astroglia and GABAergic deep nuclei (GABADN) are color-coded,
the other cell types are shown in gray. Pseudobulks were generated to estimate the expression per
individuum, cell type and matched timepoint. Points represent median expression, errorbars minimum
and maximum detected expression.

Two genes, which were newly recruited to a cerebellar cell type trancriptome in human, and
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3 RESULTS 3.9 Fundamental changes in gene expression - gains and losses

not detected in the other species, were CPLX4 in interneurons and ZP2 in granule cells. Using

the immunohistochemistry data from the Human Protein Atlas, we found that the spatial distribu-

tion of protein expression signals fit with the cell type predicted from the snRNA-seq data (figure

24.A). Attempting to time the occurrence of these genes expression in the primate lineage, we used

published bulk RNA-seq data Brawand et al. [100], to map their expression in the adult cerebellum

of six primates, mouse, opossum, platypus, and chicken. CPLX4 expression was clearly detectable

in the cerebella of human, chimpanzee, bonobo, gorilla, and platypus. For comparison, in the

cerebrum CPLX4 expression was only detected in platypus. In contrast to that, the only species

which showed strong expression of ZP2 in the cerebellum was human. These results suggest that

cerebellar expression of CPLX4 emerged in the great apes lineage, and ZP2 in the human lineage.

Since many human and mouse gains were attributed to astroglia cell type (including progenitors

and astrocytes), I zoomed in on the identified subtypes, and calculated the gene expression score

for the gained genes in these groupings for human and mouse. Comparing both species, it became

apparent that human progenitor subtypes of posterior VZ and RL exhibited higher scores, compared

to their mouse counterparts. When conducting differential gene expression analysis between the

astroglia subtypes in human, 19 human-specific genes enrich in both aforementioned subtypes (table

8, hypergeometric test, p < 0.01). These genes represent interesting targets for downstream spacial

transcriptomic and functional work to understand human specific astroglia behavior. Furthermore,

these genes might be directly connected to the recently identified human-specific ventricular zone

secondary progenitor pool [5].

Table 8: human-specific expression in VZ subtypes

Gene symbol [Human]
SLC16A
CORO2A
GRM1
DUOX1
SCN11A
PIEZO2
PLCZ1
GHRL
ACAP1
LEAP2
EPB42
KCTD19
LMOD3
ZC2HC1C
HES2
CPS1
BOLL

Further characterization of the genes with presence/absence expression differences was done

by observing these groups in context of previously introduced intolerance scores (figure 24.C).
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Intolerance to functional mutations in human populations (LOEUF) is more relaxed for any classified

specific gain or loss group, compared to genes, expressed in a given cell type in all therian species

(conserved). Similar signals were also present for in vivo and in vitro scores. It is to note, that

for in vivo scores, gained expression classes were always significantly relaxed in tolerance than their

lost class counterparts.

In sum, these analyses reveal numerous candidate genes that may contribute to the phenotypic

differences in the cerebella from different mammalian species. The here selected genes could be

used in further functional assays to investigate their contributions within the specific cell type and

species.
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4 Discussion

To gain insights into gene expression dynamics during development and evolution, studies analysing

large bulk RNA-seq datasets have been conducted (e.g. [7, 66, 100]) Even though the high sequenc-

ing depth in bulk RNA-seq datasets enables capturing the variability of expression profiles across

development and evolution, the detected signals represent average gene expression profiles across

all cell types in the studied tissues, and are therefore influenced by the changes in the relative

abundance of the different cell types in the studied tissues. Thus, the observed differences in gene

expression levels, for example between species, cannot be unambiguously attributed to true expres-

sion changes in the specific cell types in the tissues. Methods like FACS sorting can help to resolve

this issue by allowing enrichment of specific cell types based on marker genes [101], however these

approaches are very time-consuming and require previous knowledge about the marker genes. In

the last years, single-cell transcriptomics (and more recently multiomics) approaches have emerged

[102]. These technologies enable studying gene expression profiles of heterogeneous cell populations

in complex tissues.

4.1 snRNA-seq atlases of cerebellum development

I, together with Dr. Mari Sepp and a team at the Kaessmann lab2, applied single-nucleus RNA-seq

techniques to study the evolution and development of the mammalian cerebellum. Data for three

species was generated: human, mouse (Mus musculus), and opossum (Monodelphis domestica). The

generated datasets allowed me to describe the development of the cerebellum in all three species on

a single cell level and with high temporal resolution starting at early neurogenesis and extending

into adulthood. Similar experiments have previously been carried out to characterize cerebellum

development in the mouse [78, 88, 103] and human [95], but the datasets presented here have

the advantage that they allow to study cerebellum development from the evolutionary perspective.

Using opossum as the outgroup for eutherian mammals, it is possible to contrast changes detected in

either human or mouse, and to estimate on which evolutionary lineage the change in gene expression

or in cell type abundance emerged.

To be able to draw meaningful biological conclusions from this work, I had to overcome several

technical limitations associated with a change in Chromium library preparation chemistry and

different quality of genome annotations between the studies species. During the data generation

phase of this study, 10x Genomics updated the 3’ gene expression kit chemistry from version 2 to

version 3. In our data the version-dependent shift in the number of detectable genes is clearly visible:

nearly double the number of UMIs per cell are detected in version 3 libraries compared to version

2 libraries. This increase in UMI numbers correlates with a higher number of genes detected. To

2As described in the beginning of this thesis.
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estimate gene expression levels, I determined both exonic counts as well as pre-mRNA counts. The

latter approach use the whole gene model as basis, and is known to increase the depth of single-

nucleus and single-cell RNA-seq data [96]. Evgeny Leushkin helped to re-annotate the opossum

genome to improve gene detectability. The obtained alignment metrics in the three species were

very similar. Overall, the samples, when combined to pseudobulks, showed clear developmental

signals and clustered accordingly. Though, differences in libraries prepared with different Chromium

versions were detectable and lead to higher than expected variability in the dataset. Nonetheless,

the main signal was of biological nature, outweighing the technical influences.

4.2 Annotation and species alignment

The first steps in the analyses of the snRNA-seq datasets involved integration of data across de-

velopmental stages and species, annotation of the mouse dataset, transfer of the annotations from

mouse to human and opossum, and finding the cross-species correspondences between the sampled

developmental stages. I used LIGER [77], an established method for batch-correction, to integrate

the snRNA-seq datasets across development. Integration of complex datasets always bears a risk

to remove too much signals that differentiates biological units, for example stages or cell types. I

found out, that the initial LIGER non-negative matrix factorization integrates the data but does

not remove all stage specific effects, if the final recommended step of aligning the datasets after

factorization is omitted. I quantified the within and between stage Euclidean distance, and even

though the cells set closer together in the LIGER embedding, stage specific signals are still present.

This led me to conclude that major developmental signals are preserved in the integrated dataset.

LIGER was also used to integrate data across species, however further correction using MNN correct

[75] was required to achieve well integrated datasets in low dimensional space.

After iterative clustering of the integrated mouse dataset and identification of the marker genes,

Dr. Mari Sepp and me annotated the cell types in the dataset as detailed as possible, using literature

and online resources like the Allen Developing Mouse Brain Atlas and GenePaint [79, 80, 99]. A

Hierarchical annotation model was applied: cells were assigned to a broad developmental lineage,

cell type, cell differentiation state and, if possible, to a subtype. The annotations in the mouse

dataset were then transferred to the human and opossum datasets using the pairwise integrated

embeddings and manually curated to allow identification of cell types or states which were not

found in the mouse dataset. Using this procedure we were able to detect all cell types expected to

be present in the developing cerebellum [4, 88, 95]. In terms of resolution the annotations in the

current study exceeded the previous studies on mouse [88] and human [95], as also described in the

following sections.

When development of an organ is studied in evolutionary context, developmental correspon-

dences need to be established prior to cross-species comparisons [7, 66]. The species studied here

60



4.3 Cellular composition and abundance dynamics 4 DISCUSSION

exhibit vast differences in developmental tempo. To establish correspondences between the samples

developmental stages, I measured correlations beween transcriptomal profiles, pseudoages [82], and

cell state proportions. All three measures show a high degree of agreement, which also overlaps with

the bulk RNA-seq data [7]. Thus, no major heterochronies between the species can be reported.

4.3 Cellular composition and abundance dynamics

Cerebellar development is a very dynamic process [4, 67, 95, 104]. The data of this study reflects

this. At level of the main neural lineages in the cerebellum, we identified in all species: glial cells,

GABAergic neurons originating at the ventricular zone, and glutamatergic neurons originating at

the early or late rhombic lip.

The RL associated lineages comprise glutamatergic cells: isthmic nuclei cells, glutamatergic

deep nuclei neurons, granule cells and unipolar brush cells. Granule cells are the most abundant

cell type in the brain and make up more than 80% of the adult cerebellum [2]. After initial

specification, granule cell progenitors (GCPs) accumulate in the external granule cell layer where

secondary proliferation occurs [51]. Cells at the GCP state were detected in all three species,

clearly showing granule cell progenitor characteristics and cell cycle activity. A related subgroup

of cells, denoted as GCP/UBCP, showed expression profiles that shared features with both granule

cells and unipolar brush cells. It remains to be determined in future studies if GCP/UBCP cells

represent true multipotent progenitors that give rise to the two neuron types, or a mixture of

transcriptionally similar unipotent progenitors. Among differentiating granule cells early and late

cells could be distinguished. An additional group of differentiating GCs in mouse and opossum

was distinguished on the basis of KCNIP4 and OTX2 expression. Although this group was not

distinguished in human, it is likely explained by sampling differences. Granule cell diversity in the

adult cerebellum was recently reported [9], and it was proposed that different subtypes of GCs arise

at distinct developmental timepoints. Comparing the profiles of the differentiating GC subtypes

with the profiles of adult GC subtypes, this notion can be confirmed. Therefore, the analysis

of the data in this thesis helps to explain the sources for variety of granule cell subtypes in the

adult cerebellum. Unipolar brush cells could be separated into two subgroups: one expressing the

canonical marker EOMES [9] the other, previously not reported, shows only low EOMES expression,

but is HTCRTR+. This novel subtype of UBCs was detected in all species and according to the

in situ hybridization data [80] locates in the internal granule cell layer in early postnatal mice.

Further studies are needed to elucidate the functions of this UBC subtype in the cerebellum, but

initial investigations by Dr. Lena Kutscher have already confirmed the UBC-like morphology of

these cells.

Astroglia cell type lineage includes neural progenitors and astrocytes. Progenitors show clear

cell cycle activity and form a continuum of subtypes representing different germinal zones in the

61



4 DISCUSSION 4.3 Cellular composition and abundance dynamics

cerebellum. I tried to dissect the progenitors in more detail by removing the cell cycle associated

genes from the analysis, but this approach was not successful. This might be due to the fact, that

the cell cycle influences the whole transcriptome and even when the directly associated genes are

removed, the signal of the ongoing cell division is still imprinted into the observable transcriptome.

In addition to this observation, a group of cells sharing characteristics between astroglia and oligo-

dendrocytes was detected in opossum and human. These cells might represent preOPCs, fitting

with their expression of EGFR [82]. In mouse this cell group was not detected, which could be

explained by the non-cerebellar origin of most oligodendrocytes in mouse [105].

The emergence of GABAergic cell populations in the all three datasets follows the expected

temporal pattern [4] with GABAergic deep nuclei neurons being produced early in development,

followed by Purkinje cells and interneurons. In all species, five interneuron subtypes were distin-

guished, marked by distinct marker genes (ZFHX4, RGS6, KLHL1, NXPH1, SORCS3 ). Four of

these subtypes were directly matched to recently described adult interneuron subtypes in the differ-

ent layers of the cerebellar cortex data [9]. In opossum, an additional group of interneurons could be

identified (MEIS2 ). It is currently unknown, if these cells are contaminating cells from other brain

regions, or a more rare interneuron subtype in opossum. We identified four Purkinje subtypes in

mouse and opossum, which can be differentiated by EBF1 and EBF2 combinatorial expression pro-

files, with RORB (EBF1 high, EBF2 low), CDH9 (EBF1 and EBF2 high), ETV1 (EBF1 low and

EBF2 high) and FOXP1 (EBF1 low, EBF2 high) as markers. These subtypes show distinct spa-

tiotemporal patterns in the developing mouse cerebellum. It is known that adult Purkinje cells show

spatial patterning in adult cerebellum and form parasagittaly arranged stripes of ALDOC-positive

and negative cells [21]. Comparisons to recently described adult Purkinje subtype transcriptomes

[9] revealed correspondences between the developing and mature subtypes, thus adding a spatial

component to the previously postulated temporal origin [41, 42, 46, 106–108] of the patterning of

Purkinje cells. Chung et al. described EBF2 as repressor of ADLOC positive phenotype previously,

which fits to the observations made in this study. In line with these findings, genes with variable ex-

pression across Purkinje subtypes are enriched for cadherin family genes, confirming the importance

of cadherins in Purkinje cell patterning [109]. Notably, human developing Purkinje cells did not

show the same subtype composition as seen in the mouse and opossum. The two identified human

subtypes differentiated by birth date, and were either EBF1 and EBF2 low (early born) or high

(late born). Whether this difference between the species is due to technical variations in sampling,

and/or of biological origin remains to be investigated. Another notable observation for Purkinje

cells was their approximately two fold higher relative abundances in human compared to mouse

and opossum at the developmental stages when Purkinje cells are generated in the cerebellum. I

created a Bayesian hierarchical model to test whether the observed difference could be explained

by random events. I chose this approach to be able to leverage the biological replicates present in
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the data, but allowing variability in measured abundances per biological sample. Furthermore, the

Bayesian approach allowed me to estimate the mean per species and stage as a hyperparameter,

which could not directly be measured but needs to be inferred. And finally, Bayesian models don’t

suffer from multiple testing, as well as using the region of practical equivalence (ROPE, reviewed

in [110]). By determining the highest density interval for the modelled posterior distance, practical

equivalence between species could be confirmed if it crosses zero difference, which is not possible

in frequentistic statistics. Assuming the model approximates reality well enough, the difference in

abundance in human could be attributed to a true increase in developing Purkinje cells. Whether

the difference could be connected to recently described basal progenitors [5] in human is yet to be

elucidated.

These results show that the overall cellular diversity in the developing cerebellum has been

conserved for at least 160 million years. Shifts in relative cell type abundance are shared between

the three studied species. The most obvious species-specific deviation can be observed in developing

human Purkinje cells, which double in proportion during two consecutive stages. Comparing the

developmental data with published adult mouse cerebellar cortex data allowed to match adult

patterning to developmental programs, thus adding valuable information about the process that

gives rise to specialized areas of the adult cerebellum.

4.4 Conservation of gene expression programs

The overall cellular dynamics during cerebellar development is conserved between the species, as

discussed above. Next, the degree of gene expression conservation was investigated. I propose that

genes that have conserved expression profiles between the species are key players in defining cell

type identities. A broad similarity of gene expression patterns was studied by principal compo-

nent analysis of cell state pseudobulks. This analysis demonstrated that the overall transcriptomic

landscape of cell type programms is conserved throughout the studied species. Even though the

naive PCA showed species-specific components appearing early on, the first principal component,

capturing about 80% of all variance in the dataset does not show species separation. This com-

ponent captured the signal of development which must therefore be largely shared. The centered

expression matrices remove the species specific signals within the first ten principal components and

captured the variety of cell types, species agnostic, similar to the bulk RNA-seq based analysis of

organ development [7].

I identified the conserved marker genes for each cell state by calling marker genes and filtering

for the ones that are shared between the three species. The majority of cell state markers called are

not shared between species (i.e. not conserved), in line with previously made observations in adult

mouse cortex data [97]. Nevertheless, if a marker is called in a single species, it does not always

mean that the gene is not expressed in the same cell state in the other two species. Instead, in these
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cases the differences often lie in the expression specificity of the gene (figure S7). However, a set of

conserved markers that show the same expression specificity in all species, could be defined for all

cell states in the datasets.

Interestingly, among the conserved marker genes, transcription factors are enriched. This is

indicative that transcription factors play a vital role in cell type and state definition, whereas the

target genes might vary between species, supporting the proposed hypothesis [91]. Comparison of

the transcription factors with known marker genes also contributed to this notion, since many were

reported before [4, 88–90] . Besides these known connections between transcription factors and cell

types or states, novel candidate cell type-defining transcription factors were found, For instance, in

GABAergic interneurons these include PRDM8 and BHLHE22, gene products of which are known

to form a repressor complex functioning in pallial circuit formation [111]. SATB2, known to play a

role in neocortical upper layer neuron differentiation [112], was identified as a conserved marker of

differentiating granule cells. The identified transcription factor associations were supported by the

SCENIC analysis that models transcription factor activity based on the single-cell RNA-sequencing

data [87]. Overall, a high degree of agreement between modelled transcription factor activity the

two analyses are not independent due to the fact that the SCENIC model was trained on the

expression data. The main drawback of the SCENIC analysis was the lower coverage, likely due to

unknown binding motifs, the limitations of the method in detecting repressor activity [87], or sparse

detectability of transcription factor expression in the single-nucleus RNA-seq data. Furthermore, the

SCENIC analysis performed here was only based on promoter sequences, a more detailed view could

be achieved by additionally including the enhancer sequences [113], mapped, for instance, by single-

nucleus ATAC-seq [67]. Altogether, these analyses generated a shortlist of transcription factors

with potentially important roles in the specification of cerebellar cell types during development.

The roles of these transcription factors could be studied in more detail in functional experiments.

4.5 Differentiation programs in granule and Purkinje cells

Single cell techniques not only open up the possibility to identify new cell types or states, but also

allow modelling of complex differentiation processes. In this study, I modelled the non-bifurcating

differentiation pathways of Purkinje cells and granule cells, two important neuronal cell types in the

cerebellum. The high-resolution sampling strategy of this project facilitated the capturing of cells

committed to either cell type lineage throughout the differentiation process up to (GC) or close to

(Purkinje cells) maturity. Using cell type specific data integration and diffusion pseudotime [114], I

fitted a differentiation vector through the low dimensional embedding to model continuous changes

in the gene expression space. Comparisons of the pseudotime distributions across developmental

stages (real time) revealed clear differences in the modes of differentiation between Purkinje cells

and granule cells, in agreement with previous knowledge. Specifically, for granule cells changes is
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pseudotime values across developmental stages are gradual. This is in line with the protracted mode

of GC neurogenesis that covers a substantial period of pre-and postnatal development [51, 55, 115,

116]. In contrast, Purkinje cells show sharp changes in pseudotime values between stages, reflecting

a pulse of Purkinje cell production and subsequent differentiation [117, 118]. These observations

suggest that the pseudotime models capture the neuronal differentiation processes accurately.

Identification of genes that show dynamic expression during differentiation of granule cells or

Purkinje cells revealed a substantial overlap between the dynamic genes between the neuron types.

This points to shared neuronal differentiation mechanisms. The shared dynamic genes are under

stronger functional constraints than genes dynamic in one cell type only, or genes that are not

dynamic. This observation is in line with studies linking genes with higher pleiotropy to more

severe phenotypes [7, 66]. Moreover, genes associated with cerebellar malformations, intellectual

disability, spinocerebellar ataxia or medulloblastoma are enriched in the group of shared dynamic

genes, further confirming the functional relevance of these genes. Genes which are dynamic in

Purkinje differentiation only are additionally enriched in genes of autism spectrum and intellectual

disorder. Together, these results indicate that many of the diseases, associated with cerebellum

development, most probably affect not only a single cell type but rather influence the development

of the organ as a whole.

To describe the most common gene expression trajectories during Purkinje cell and granule cell

differentiation, and to compare orthologous gene trajectories across species, I used fuzzy clustering.

Among the genes that show conserved profiles across species (i.e., orthologous genes were assigned

to the same cluster), transcription factors are enriched. For both cell types, I identified core tran-

scription factors active in early, mid or late differentiation. For some of these transcription factors,

spatial expression patterns could be traced in public ISH data [80]. This allowed replication of

the known migration patterns of granule and Purkinje cells during the differentiation process, thus

verifying the chosen approach.

Comparing the expression trajectories between human, mouse and opossum, and using the lat-

ter as an outgroup to eutherian mammals, I identified genes that show human- or mouse-specific

expression trajectories in granule cells or Purkinje cells. Interestingly, the number of genes with

human-specific trajectories is significantly higher than expected (136 human-specific vs 54 mouse-

specific), whereas similar numbers of genes with trajectory changes were identified for Purkinje

cells (47 human-specific, 42 mouse-specific). Only a very low number of genes (1 to 4) exhibited

changes in trajectories in both cell types. This indicates, that despite the high number of dynamic

genes shared between the cell types, evolutionary alterations happen rarely in multiple cell types

at once. This is in line with previous observations at the level of organs Cardoso-Moreira et al.:

“Notably, although genes with trajectory changes are broadly expressed, the changes themselves

are organ-specific. Trajectory changes are restricted to one organ in 93–96% of the cases. This
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is consistent with the underlying mutations affecting regulatory elements, which control a subset

of the total spatiotemporal profile of each gene, and with evolutionary theory, as mutations that

affect several organs are less likely to fix in populations” [7]. Similarly, the more cell types affected

by a change, the higher the risk of detrimental outcomes and hence lower probability of fixation

in populations. Additionally, genes with species-specific trajectories in Purkinje cells or granule

cells are under weaker functional constraints than genes with preserved trajectories. This suggests

that the preserved genes likely represent genes with important functions in neuronal differentia-

tion. Expression alterations of these genes will most likely be detrimental, thus less likely to fix in

populations.

Looking at single genes, SNCAIP is the most diverged human-specific gene in granule cells.

Compellingly this gene is known to be frequently duplicated in medulloblastoma group 4 [119].

This specific medulloblastoma subtype has remained hard to model in the mouse [120]. The dif-

ference between human and mouse SNCAIP expression trajectories in granule cells could be one

of the reasons that complicates imodelling this tumour subgroup in mice. Additionally, two genes

associated to autism spectrum disorder, MYTL1L and KANSL1, show human-specific trajectories

in granule cells, as well [121, 122]. These examples highlight the importance of comparative studies

in informing research on the disease mechanisms in model species.

In sum, the detailed caharcterisation of the transcriptomic landscape of Purkinje cell and gran-

ule cell differentiation provides a shortlist of candidates important in neuronal differentiation for

functional work, identifies the core gene expression programs in neuronal differentiation on the ba-

sis of evolutionary conservation, and informs on genes with lineage-specific expression trajectories,

which may underlie phenotypic differences between the species.

4.6 Fundamental expression differences

I further assessed if fundamental/radical differences in cell type-specific transcriptomes are present

between the studied species by invastigating gains and losses of gene expression. Classification of

orthologous genes into the groups of conserved, gained or lost in each cell type was a complicated

endeavor. Variations in clustering, cell type identification, differences in Chromium version and

numbers of cell were not easy to circumvent. The chosen approach was designed to be conservative

rather than exhaustive. Stringent cutoffs of expression levels and fold changes were used, as well

as prior information from bulk RNA-seq data [7], and internal expression controls. Even though,

all of these measures were applied, technical artifacts cannot be entirely ruled out. Therefore, I

would like to stress that this analysis aims to enrich for genes that gained and lost expression in the

different cell types in a species , but does not prove either of it for individual genes without further

experimental validation. This is also reflected in the number of genes classified as ambiguous or not

analysed, which were by far the biggest groups.
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The highest numbers of genes, besides the conserved and aforementioned classes, are in the

classes Eutherian expressed and human gained. The smallest group is “human lost”. I tried to

verify the classification by using bulk RNA-seq data to test, whether genes that are lost or gained

species-specifically at the cell type level, also exhibit expression differences at the bulk level. A

general trend in the expected direction was observed: the more cell types are affected by a gain or

loss, the clearer the signal in the bulk data. Though, exceptions are also detectable, most probably

driven by expression deviations within the granule cell lineage. Since this is the dominating cell

type in the postnatal cerebellum, changes within this group of cells are more easy to pick up in the

bulk RNA-seq data. Gained or lost genes are mainly classified as such only in one cell type, though

this does not mean that their expression is specific to that cell type. This is very similar to the

observation made for trajectory changes, where a given gene is dynamic in both studied cell types

but only altered in one. Cell type specificity is higher for genes with species-specific expression

gains, indicating that expression changes are more likely to occur in genes with less pleiotropic

expression profiles. However, I found that it is more likely to gain expression of a gene in a given

neural cell type if it was expressed in another neural cell type before, possibly due to similarities

in gene regulation between neural cells in general. By studying aggregated expression profiles of

genes with expression gains or losses, I found that expression levels are in general higher at later

stages of development with one exception: human gains in granule cells. The latter genes show

high expression in at early stages. This might indicate a specific alteration of GCP transcriptomic

landscape in the lineage leading to humans.

Regarding functional constraints, genes with conserved expression (i.e. called present in all

species) show highest constraint, and genes that exhibit mouse or human-specific expression pro-

files the least. Among the latter, genes with expression losses in specific species are under higher

constraints than genes with expression gains. This could be a hint that gains of expression are

evolutionary speaking cheaper to explore than losses, due to the high number of interconnections

of a present gene and the less tight and yet to be established regulation of a newly expressed gene.

Among the genes, which were identified to be human gains, were CPLX4 (interneurons) and ZP2

(granule cells). According to immunohistochemistry data [99], both gene products are distributed

with expected patterns in the human cerebellum: CPLX4 is detected in granule cell interneurons

and ZP2 in granule cells themselves. CPLX4 has been shown to be expressed in the mammalian

retina and functions in synaptic vesicle exocytosis [123]. ZP2 (zona pelucida 2) was previously

shown to be expressed in the human cerebellum but not in the cerebella of two other primates

[124]. Using the bulk RNA-seq data from Brawand et al. [100], we found that ZP2 expression in

the cerebellum is unique to humans, whereas CPLX4 is also expressed in the cerebella of other

great apes. This analysis helps to hone in when during evolution the gain in expression happened.

Additionally, observing human gains in astroglia lineage, high expression levels were observed in
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posterior ventricular zone and rhombic lip progenitors, when compared to the expression level of

mouse gains in the same subtypes in mouse. Among the genes with gained expression in astroglia,

19 were detected as enriched in posterior VZ and RL progenitors. It could be speculated that these

gains of expression might be connected with the higher relative abundances of developing Purkinje

cells in human, as well as the recently identified basal progenitors in the human cerebellum [5].

Among the gene with expression gains in human are several known disease-associated genes.

For instance FGF2, linked to pilocytic astrocytoma, and DSCAM, which is connected to Down

syndrome, gained expression in human astroglia. FGF2 shows clear human astroglia specificity and

is not expressed in other cell types in the cerebellum. In contrast, DSCAM is expressed in other cell

types, shared between the species, for example in GABAergic deep nuclei neurons. Human-specific

expression patterns of disease associated genes can highly impact clinical research and need to be

investigated further.

Taken together, the analysis of presence and absence of expression allowed enrichment for genes,

which are potentially gained or lost in a given cell type in a species-specific manner. The results

are in line with previous analyses in this thesis, highlighting a generally conserved framework of

cerebellar development but also anraveling lineage-specific alterations.

5 Conclusion

Using the state-of-the-art single-nucleus RNA-seq technologies, combined with a high resolution

developmental and evolutionary dataset allowed the study of the mammalian cerebellum in un-

precedented detail. The development of the mammalian cerebellum is a tightly regulated process,

which leads to immense cell proportion shifts during its maturation. These patterns and fundamen-

tal gene expression programs are conserved between eutherian and marsupial species separated by

160 million years of evolution. Key cell type and state-specific markers could be identified, which

can be the basis for further research that focuses on the functional characterization of specific groups

of cells. Even though cerebellar development is highly conserved, changes in gene expression in in-

dividual cell types were detected. Some of the genes with altered expression profiles are associated

with neurodevelopmental diseases or cancer, indicating that for these genes not all aspects of the

disease can be modelled in the mouse, assuming the associated genes truely contribute to the disease

phenotype. Key concepts of evolutionary research could be confirmed on a cell type level: changes

in gene expression often affect single cell types, even if a given gene is expressed in a variety of cell

types and states.
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6 Material & Methods

6.1 Sample preparation and data generation

My PhD project focused on the analysis of the presented data. I did not contribute to any wet-

lab work which was the basis for any data that was present in this thesis. Please refer to our

preprint [10] for any details about experimental procedures like dissections, tissue dissociation,

library preparation and sequencing settings. All of these experiments were conducted by Dr. Mari

Sepp with support of Noe Mbengue, Celine Schneider and Julia Schmidt. Data was produced using

10x Chromium 3’ chemistry versions 2 and 3.

6.2 Alignment reference generation

The basis of all genome annotations used in this work was ENSEMBL version 91. Mouse (mm10)

and human (hg38) assemblies and associated genome annotations were retrieved. For opossum

ENSEMBL version 87 annotations were extended with stranded poly-A bulk RNAseq based predic-

tions[7] using a previously reported approach[125]. The predictions of additional features were done

by Evgeny Leushkin. Cellranger (10x Genomics) references were generated with default settings

using the cellranger mkref (v3.0.2) function with default settings. Opossum chromosomes 1 and

2 were too big to be processed by cellranger, hence I split both chromosomes at position 536,141,000

after verifying that no annotated feature is disrupted.

6.3 UMI countmatrix generation and data preprocessing

Sequencing results were demultiplexed using cellranger mkfastq (v3.0.2) and aligned with cellranger

count to the appropriate genome. This generated not only alignments but also unfiltered UMI count

matrix for all detectable barcodes. Annotations for either full gene models (pre-mRNA), or exon

only were provided and each dataset quantified with each set of features. If not stated otherwise,

we used the pre-mRNA counting for the majority of analyses.

Loaded barcodes were identified by calculating the fraction of intronic UMIs of all detected

UMIs. Once, the fraction was calculated by dividing the difference of pre-mRNA and exonic counts

by the pre-mRNA counts, a Gaussian mixed model (k=2) was fitted (mclust, v5.4.3, [126]) to these

values. The cluster with the highest average intronic UMI fraction was chosen as valid barcodes.

Potential doublets were removed using Scrublet (v0.2, [127], python 3.6) by calculating the doublet

scores for all valid barcodes and removing the barcodes above the 90%-percentile.

In total 115,282 mouse, 180,956 human and 99,498 opossum nuclei passed all previous filters

and were subjected to the downstream analyses3.

3Except a single human sample, which was later identified to contain a high fraction of contaminating neighboring
tissue, see subsection “Data Annotation” for details.
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6.4 Quality control and sanity checks

To infer general data quality, reproducibility and sanity, data of all nuclei of any given sample were

aggregated, only genes which showed expression in at least 10% of cells in at least one batch were

considered. Spearman correlation calculated (data not shown). Samples of the same developmental

stage showed high correlation (> 0.75), even between different chromium versions.

6.5 Per species data integration and clustering

A major obstacle in the here presented analysis was to overcome batch effects, Chromium version

influences and developmental signal induced transcriptomic shifts, to identify cell types and states,

without removing differentiation signals. Various methods and approaches were investigated and

in the end I settled with LIGER[77] (v0.4.2). Batch annotations were provided without further

definition of stage or biological replicate attributes. LIGERs standard approach for normalization

and highly variable gene detection was applied, followed by integration using optimizeALS function

with parameter k = 100. The resulting per-batch non-negative components were combined and

subjected to uniform manifold approximation projection, UMAP [71], using the R uwot (parameters:

n_neighbors = 15, min_dist = 0.15, metric = "cosine"). [128] package (v0.1.10).

To resolve the complexity of the datasets at highest possible resolution, I chose an iterative clus-

tering approach: first, I applied the Louvain community detection algorithm [129] as implemented

in SCANPY [74] (v.1.5.1) with the resolution parameter set to 3. Each cluster then underwent

the same treatment as the full dataset: LIGER integration (k = 25) and a second round of Lou-

vain clustering. Batches which contributed less than 50 cells to the cluster were excluded from the

LIGER integration. The number of top-level clusters were: 68 in human, 61 in mouse and 67 in

opossum. The number of low-level clusters was approximately 600 per species. Marker genes were

identified for all clusters using the quickMarker function of the SoupX package [130]. This function

uses TF-IDF transformation (term frequency - inversed document frequency) for specificity scoring

and hypergeometric test for enrichment p value estimation. Markers were selected by ranking the

genes by TF-IDF values and a p-value cutoff of α = 0.01.

6.6 Cross-species integration

To leverage the high amount of mouse-cerebellum-specific literature for annotating the other two

species, I decided to integrate all three species in one common high dimensional embedding. This

allowed me to transfer the mouse annotation to human and opossum (see following sections). After

testing various strategies, the following proved itself to be the most effective: first, all species were

integrated using LIGER, to which I provided only the batch information per cell. This step projected

the data into one common embedding with 100 dimensions. UMAP investigations of this embedding
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revealed that the data per species was ntegrated, overcomming developmental and batch signals, but

species-specific clustering dominated the embedding. Hence, the next step was to correct the non-

negative matrix factorization coordinates using MNN correct [75] (fastMNN function of the batchelor

package, v1.0.1). This resulted in an embedding which overcame most of the batch-, differentiation,

and species-specific-effects. The same strategy was used to perform pairwise integrations between

mouse and human and opossum and mouse.

6.7 Data annotation

The integrated mouse dataset was the first to be annotated, due to the high amount of literature

concerning mouse cerebellar structure, functions and development. Marker genes were called per

cluster4 and the resulting gene lists underwent thorough literature research by Dr. Mari Sepp

and me. Additionally to literature resources, we used publicly available databases: Allen Brain

and Developing Brain Atlas [79, 80] and the Human Protein Atlas [99]. The annotation strategy

Dr. Mari Sepp and I developed based on a hierarchical annotation structure is defined as follows:

Clusters were assigned to a broad lineage (ventricular zone, rhombic lip+, neuroepithelium and

mesoderm). Per lineage cell types were identified and cell types were split into cell states, reflecting

differentiation maturity. If residual variance was detectable, cell states were further subdivided

into subtypes, which might reflect spatiotemporal specifications of the observed cell states. The

hierarchical annotation scheme is shown in table 10. The following exceptions were made to this

scheme: “GC/UBC” cell type was implemented, due to the mixed signal in these clusters, showing

markers for granule cells and unipolar brush cells. Often, early neuroblasts could not be resolved in

regards to their cell fate, therefore the catch-all cell types “VZ neuroblast”, or “NTZ+ neuroblast”

were created, describing post-mitotic cells. Subtypes of astroglia cells often reflect spatiotemporal

groups which are not necessarily different subtypes but can originate from the same cell state.

Oligodendrocyte differentiation was captured at the subtype level. And finally, all immune cells

were grouped into a single cell type (immune) due to low numbers.

To annotate human and mouse, I used the pairwise integration with the now annotated mouse

dataset: within the common embedding each cluster was aggregated to its centroid within the 100

dimensional embedding. This centroid was used for correlation coefficient calculations (Pearson)

between the species. Highest correlation coefficient between any human/opossum and mouse cluster

lead to initial mouse to human/opossum label transfer. Using the correlation coefficient as a measure

of confidence, all transferred labels were manually validated using published literature. Table 9

summaries the results.

Furthermore, within the human dataset, after initial human-specific integration, one dataset

(SN296) showed expression of HOX genes, which were not expected in the cerebellum, within two

4For either toplevel or lower level clusters.
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Table 9: Dataset annotation status per species

Human Opossum Mouse
Match verified 69% 51%
Re-annotated (sampling difference) 4.2% 9.9%
State / subtype adaption 23% 19%
Cell type adaptation 1.7% 4.7%
Remove (unclear identitiy) 2.8% 4.8%

Total:
Annotated after curration 98% 94% 97%
Subtype assigned 47% 40% 51%
Unlabeled 1.2% 3.7% 2.5%

distinct clusters (cluster 23, 34). Hence, this single batch was removed for all further downstream

analyses.

Table 10: Levels of data annotation

origin cell type cell state subtype species

mesoderm erythroid erythroid Human/Mouse

mesoderm immune immune microglia Human/Mouse/Opossum

mesoderm immune immune nonparenh macrophage Human/Mouse

mesoderm immune immune T-cell Human

mesoderm immune immune Human/Opossum

mesoderm mural/endoth mural/endoth Human/Mouse

NE astroglia astrocyte astro Bergmann Human/Mouse/Opossum

NE astroglia astrocyte astro parenh Human/Mouse/Opossum

NE astroglia glioblast astroblast Human/Mouse/Opossum

NE astroglia glioblast glioblast PWM Human/Mouse/Opossum

NE astroglia progenitor progenitor bipotent Human/Mouse/Opossum

NE astroglia progenitor progenitor gliogenic Human/Mouse/Opossum

NE astroglia progenitor progenitor isthmic Human/Mouse/Opossum

NE astroglia progenitor progenitor MB Opossum

NE astroglia progenitor progenitor Nckap5 neg Human/Mouse/Opossum

NE astroglia progenitor progenitor RL Human/Mouse/Opossum

NE astroglia progenitor progenitor RL early Human/Mouse/Opossum

NE astroglia progenitor progenitor RP Mouse

NE astroglia progenitor progenitor VZ anterior Human/Opossum

NE astroglia progenitor progenitor VZ early Human/Mouse/Opossum

NE astroglia progenitor progenitor VZ posterior Human/Mouse/Opossum

NE astroglia progenitor Mouse/Opossum

NE ependymal epend progenitor Opossum

NE ependymal ependymal Mouse/Opossum

NE GABA MB GABA MB Human

NE isthmic neuroblast isthmic neuroblast Human/Opossum

NE MB neuroblast MB neuroblast Opossum

NE MBO MBO Mouse/Opossum

NE meningeal meningeal Human/Mouse/Opossum

NE motorneuron motorneuron Mouse

NE neural crest progenitor neural crest progenitor Mouse

Continued on next page
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Continued from previous page

origin cell type cell state subtype species

NE NTZ mixed Human/Mouse/Opossum

NE oligo oligo progenitor COP Mouse/Opossum

NE oligo oligo progenitor COP early Human

NE oligo oligo progenitor OPC Mouse/Opossum

NE oligo oligo progenitor OPC early Human

NE oligo oligo progenitor OPC late Human

NE oligo oligo progenitor pre OPC Human/Opossum

NE oligo oligodendrocyte Human/Mouse/Opossum

RL+ GC GC defined Human/Mouse/Opossum

RL+ GC GC diff 1 GC diff 1 early Human

RL+ GC GC diff 1 GC diff 1 late Human

RL+ GC GC diff 1 Mouse/Opossum

RL+ GC GC diff 2 GC diff 2 early Human/Mouse/Opossum

RL+ GC GC diff 2 GC diff 2 Kcnip4 Mouse/Opossum

RL+ GC GC diff 2 GC diff 2 late Human/Mouse/Opossum

RL+ GC GCP Human/Mouse/Opossum

RL+ GC Human/Mouse

RL+ GC/UBC GC/UBC diff Mouse/Opossum

RL+ GC/UBC GCP/UBCP Human/Mouse/Opossum

RL+ glut DN glut DN defined glut DN posterior Human/Mouse/Opossum

RL+ glut DN glut DN defined glut DN ventral Human/Mouse/Opossum

RL+ glut DN glut DN mature Human

RL+ glut DN glut DN maturing Human

RL+ isth N isth N defined isth N Nr4a2 Human/Mouse/Opossum

RL+ isth N isth N defined isth N Slc5a7 Mouse/Opossum

RL+ isth N isth N defined isth N Sst Human/Mouse/Opossum

RL+ isth N isth N diff Human/Mouse/Opossum

RL+ NTZ neuroblast NTZ neuroblast 1 Human/Mouse/Opossum

RL+ NTZ neuroblast NTZ neuroblast 2 Human/Mouse/Opossum

RL+ NTZ neuroblast NTZ neuroblast 3 Human/Mouse/Opossum

RL+ UBC UBC defined UBC Hcrtr2 Human/Mouse/Opossum

RL+ UBC UBC defined UBC Trpc3 Human/Mouse/Opossum

RL+ UBC UBC diff Human/Mouse/Opossum

VZ GABA DN GABA DN defined Human/Mouse/Opossum

VZ interneuron interneuron defined interneuron early Human/Mouse/Opossum

VZ interneuron interneuron defined interneuron GL Human/Mouse/Opossum

VZ interneuron interneuron defined interneuron Meis2 Opossum

VZ interneuron interneuron defined interneuron ML1 Human/Mouse/Opossum

VZ interneuron interneuron defined interneuron ML2 Human/Mouse/Opossum

VZ interneuron interneuron defined interneuron PL Human/Mouse/Opossum

VZ interneuron interneuron diff Human/Mouse/Opossum

VZ noradrenergic noradrenergic Human/Mouse/Opossum

VZ parabrachial parabrachial Human/Mouse/Opossum

VZ Purkinje Purkinje defined Purkinje defined Cdh9 Mouse/Opossum

VZ Purkinje Purkinje defined Purkinje defined EB Human

VZ Purkinje Purkinje defined Purkinje defined Etv1 / Tsx Mouse/Opossum

VZ Purkinje Purkinje defined Purkinje defined Foxp1 Mouse/Opossum

VZ Purkinje Purkinje defined Purkinje defined LB Human

Continued on next page
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Continued from previous page

origin cell type cell state subtype species

VZ Purkinje Purkinje defined Purkinje defined Rorb Mouse/Opossum

VZ Purkinje Purkinje defined Human/Opossum

VZ Purkinje Purkinje diff Human/Mouse/Opossum

VZ Purkinje Purkinje mature Human/Mouse/Opossum

VZ VZ neuroblast VZ neuroblast 1 Human/Mouse/Opossum

VZ VZ neuroblast VZ neuroblast 2 Human/Mouse/Opossum

VZ VZ neuroblast VZ neuroblast 3 Human/Mouse/Opossum

6.8 Cell type abundance quantification and comparison

To quantify the cell type abundances in the developing cerebellum in human, mouse, and opos-

sum, cells were grouped according to the assigned cell type label per developmental stage. Batch

information was disregarded and assumed that cellular abundances are similar in each batch per

developmental stage5 (figure S5). Additionally, I quantified the relative cell type abundance per bio-

logical replicate. If multiple technical replicates were present, median cell type abundance was used.

For this analysis, I removed the human samples focusing on deep nuclei, furthermore, I removed

cell types which do not belong to the cerebellum6 and cells which were not annotated.

To circumvent edge-cases of the clustering done on the integrated dataset7, only cell types

were considered in the aforementioned analyses, which were represented with at least 50 cells per

developmental stage. This filter removed up to 280 cells per stage.

Difference in cell type abundances were modelled using a Bayesian approach by building a

hierarchical model for cell type abundances (equation 1) and comparing the posterior difference

distribution per stage. Biological replicates were aggregated and cell type abundances were fit to

the previously mentioned model. Bayesian modelling was done using the rstan package. Highest

density intervals were calculated by the hdi function of the HDInterval package with 95% credibility

mass.

6.9 Overdispersed gene identification

Overdispersed genes were calculated as described in the results (section 3.2). In short, the data was

normalized by sequencing depth via division of UMI values by the total sum of UMI per cell. Mean

and variance were calculated per gene and the variance mean relationship, calculated by dividing

variance by mean. The Poisson expectation was calculated by the mean of the inverse sum of UMI

per cell. An arbitrary factor was added to the Poisson expectation to increase stringency. Genes

5High correlation coefficients between batches of the same stage confirmed, that reproducibility was given. Addi-
tionally, the cell type abundances between batches were very similar (figure S5).

6GABA MB, progenitor MB, progenitor isthmic, motor neuron, neural crest progenitor, isthmic neuroblast, and
MB neuroblast.

7Such as “pulling” of cells of adjacent developmental timepoints.
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which exhibited a higher variance mean relationship than the offsetted Poisson expectation were

assumed to be overdispersed and therefore highly variable genes.

6.10 Pseudoage estimation

To establish stage correspondences between the species, I applied a previously published idea [82] of

creating a continuous scale of developmental stages by averaging the discrete stage assignments of a

given cells nearest neighborhood. Each developmental stage was assigned to its developmental rank

(early to late: 1 to N). True time differences were not considered but equally sized steps between

stages were assumed. Nearest neighborhood was estimated per cell by exploiting the option of the

umap function within the uwot [128] package to return the approximated nearest neighborhood per

cell. I extended this idea by not calling pseudoages species internally, but using the fully integrated

embedding, containing all three species, I asked for each human and opossum cell to which stages

the nearest 25 mouse cells are assigned to. Then, I calculated the pseudoage on these values, which

aligned all three species, according to their highest similar mouse stage and created a continuous

scale.

6.11 Establishment of stage correspondences

Due to the vastly different timings of development between human, mouse and opossum, stage

alignment was vital to do comparative work on the dataset. Dr. Mari Sepp and I came up with

three measures to judge stage similarity and hence identify possible stage matches:

(I) Overall transcriptomal similarity. This correlation based approach was calculated on all

shared highly variable genes between either human and mouse, or opossum and mouse. Spearman’s

rho correlation coefficient was determined between pseudobulks resulting from the merger of all

cells belonging to the same species-specific stage. Expression values were CPM normalized and

mean-centered.

(II) Pseudoage similarity. As described above (subsection 6.10), shared pseudoages were de-

termined. The resulting continuous scale was binned to get aligned stage assignments and per

species-specific stage, the proportion of pseudoage bins was determined. Pairwise Manhattan dis-

tance was used as distance measure between the stages.

(III) Cell state proportion similarity. Per species-specific stage, the proportion of annotated cell

states was evaluated. Pairwise Manhattan distances were calculated from the resulting proportion

matrices.

To find the shortest path between human and mouse and opossum and mouse, dynamic timewarp

algorithm, as implemented in the dtw package [131] (v1.20), was used. Stage correspondences were

then based on the mouse developmental stages. The agreement between all three approaches was

evaluated and best matching stages assigned.
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6.12 Gene expression score calculation

If multiple genes expression was to be visualized and analysed, I applied an approach inspired by

La Manno et al. [82]:

Cij =
Uij∑
i Uij

106

Ekj =
Ckj − M̄k(Ckj)

V̂k(Ckj)

Sj = M̄k(Fkj)

(3)

where U is the UMI count for gene i in cell j. M̄ is the the mean, and V̂ the variance along the

indexed dimension. F is calculated by capping per gene k scaled expression vector Ekj at the 0.01

- and 0.99 percentile. Genes k are the genes selected for score calculation. This approach does not

weight genes with generally greater UMI counts, than low-UMI-counts genes, as done in La Manno

et al..

6.13 Cell subset integration

Due to the mixing of all ventricular zone associated cells in the low dimensional embedding no clus-

ter based selection could be performed. Though, differential gene expression within clusters between

developmental stages allowed a marker based selection of the presumed Purkinje and interneuron

precursors, respectively: Purkinje associated VZ in mouse were picked from E12.5 and E13.5. In-

terneuron progenitors were chosen from VZ neuroblasts older than E13.5. In human, VZneuroblast1

cells from Carnegie stages 18-19, VZneuroblast2 cells from Carnegie stages 18-22 and VZneuroblast3 cells

from Carnegie stages 19-22 were assigned to Pukinje lineage and older than CS22 to inteneurons. In

opossum all VZ cells expressing PAX2 and/or SLC16A5 were labelled as interneurons in addition

to VZ cells older than P14. Purkinje progenitors were VZ cells, LMX1A and LMX1B negative and

from stages P4 and P5.

Subsets of cells were integrated as described above, using LIGER for batch correction. The

number of components per non-negative matrix factorization was chosen as follows: Purkinje cells:

mouse (k = 70), human (k = 50), and opossum (k = 70). Granule cells: mouse (k = 30), human

(k = 40), and opossum (k = 40).

6.14 Cross-species correlation

Subtypes matches for Purkinje cells and interneurons were achieved by Spearmans correlation anal-

ysis. For interneurons, cells originating in human deep nuclei (n = 57) were removed prior to the

correlation coefficient determination. The geneset was defined by shared highly variable one-to-one
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ortholgs. The number of used orthologs in cross-species correlation of Purkinje subtypes was 107,

of interneuron subtypes was 198.

6.15 Comparison to adult mouse data by Kozareva et al.

Adult mouse data was collected as UMI count matrices from Kozareva et al.. First, I subsetted the

mouse data to Purkinje or granule cells associated cells (as described above) and did the same for

the published data. Overdispersed genes were called independently and intersected between both

studies. Subtype pseudobulks were generated as previously described and normalized matrices were

used for Spearmans correlation analysis.

6.16 Principal component analysis

Principal component analysis (PCA) was applied to investigate generally shared expression profiles

between the studied species. First, groups defined by biological replicate, stage and cell type

were combined to pseudobulks, as described above, using only three-way 1:1 orthologs. Only such

pseudobulks were kept, that contained at least 150 cells. Genes which were not expressed in at least

10% of any pseudobulk, and did not show variability (V̂ (CPM) > 0) were removed to improve the

signal-to-noise ratio. Expression vectors per species and gene were median-centered. The matrix

was combined and PCA was conducted using the prcomp_irlba function of the irlba [132] package

(v2.3.3).

6.17 Conserved marker gene calling

Only cell states and stages which were shared between species were used for downstream processing.

To overcome differences in sampling per species and cell state, cell states were randomly sampled

to 1,000 cells. If the number of cells was lower than 1,000 cells, the present cells were randomly

upsampled to 1,000. Per species, marker genes were identified for each cell state, as described

previously. Marker genes were then filtered to show an enrichment of at least two fold, a false

discovery rate of < 0.01 and a percentage of expressing cells within the cell state of at least 10%.

The intersect of the genes, passing this filter in all three species were ranked according to their

distance to the origin of the Cartesian coordinate system in three-dimensional TF-IDF (T ) space

(equation 4).

Sj =
√
T 2
j,human + T 2

j,mouse + T 2
j,opossum

(4)
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6.18 Pseudotime calling

To investigate genes that are regulated along Purkinje cell or granule cell development, I first

extracted cells of both lineages from the dataset (as explained previously). Genes were subsetted to

the three-way 1:1-orthologs and data was integrated per cell type using the Harmony [76] pipeline.

I decided to call the pseudotemporal vector on the integrated dataset to prevent species-specific

variations in assignment and to remove the need of a post-hoc alignment of the pseudotime using

dynamic time warping. The starting cell for the integrated pseudotime calling was chosen based

on a learned UMAP embedding, which was trained on the Harmony corrected components. The

pseudotime vector was determined using the SCANPY implementation of diffusion pseudotime [114].

6.19 Expression trajectories along pseudotime vectors

To capture gene expression changes along the determined pseudotemporal ordering in Purkinje and

granule cells, I binned the pseudotime vector into ten equally sized bins. Per bin, UMI values were

averaged across biological replicates, if the pseudobulk consisted of at least 50 cells. Due to the non-

linear nature of some expected trajectories, instead of calculating correlation coefficients, I filtered

for highly variable genes, by applying the aforementioned strategy to the binned and averaged UMI

counts (α = 1). Only genes which were called as highly variable in all three species were subjected

to the following algorithm: CPM values were calculated per species and expression values were

scaled. Next, each ortholog was assigned to the specific species, the genes signal was generated from

and the resulting three matrices were combined that all members of a three-way ortholog group

were present in the final matrix8. To identify major trajectory patterns, fuzzy clusters were called

using the Mfuzz package [133] (v2.44.0), allowing for eight trajectory clusters (fuzzy parameter set

to 1.2). Cluster members were accepted as confident when the membership value scored higher than

0.5. Per feature, the center of mass was calculated (custom function). To rank fuzzy clusters, all

center of mass values were averaged across confident members and results were sorted increasingly.

If a given gene scored lower than 0.5 in any species, the orthologs were removed from any further

analysis. Similarity between pairwise comparisons of orthologs was accomplished by calculating the

agreement between cluster memberships p as shown in equation 5

p(x, y) =

k∑
i=1

mximyi (5)

where the agreement between species x and y for orthologous gene i is determined using the

cluster membership vector m per ortholog.

Classification was applied according to the following rules:

8This means, that each gene was present three times, once per species.
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classi =



x specific p(x, y) < 0.05 ∧ p(x, z) < 0.05 ∧ p(y, z) > 0.5 ∧ Cy = Cz

conserved Cx = Cy = Cz ∧ p(x, y) > 0.5 ∧ p(y, z) > 0.5

diverse p(x, y) < 0.05 ∧ p(y, z) < 0.05 ∧ p(x, z) < 0.05

intermediate otherwise

(6)

where C represents the cluster call for species x, y, or z ortholog, according to maximum

membership assignment. As additional measure, dynamic timewarp distance was measured using

the dtw package in R [131]. Per ortholog group the maximum and minimum pairwise distance was

evaluated. Patterns of change were visualized using alluvial plots (ggalluvial [134], v0.12.3)

6.20 Gain and loss classification

The approach to find candidate genes which gained or lost expression in a species-specific fashion

in a specific cell type can be summarised as follows: I focused on the following cell types: astroglia,

GABAergic deep nuclei neurons, glutamatergic deep nuclei neurons, granule cells, interneurons,

oligodendrocytes, Purkinje cells, unipolar brush cells. Only exonic UMI counts were considered to

reduce the effect of differential abundance of intronic poly-A stretches. As previously described,

pseudobulk were generated per cell type annotation, species and biological replicate and kept if more

than 50 cells were grouped. Expression was normalized to CPM and maximum expression per cell

type and species determined. A cutoff of 50 CPM was chosen to differentiate between confidently

expressed genes and lowly expressed genes. Additionally, genes were removed, which did not show

expression in the single nuclei dataset, but exceeded 5 RPKM in bulk RNA-seq of the cerebellum

[7]. Each cell types maximum expression was contrasted against the maximum expression within

the dataset of the selected cell types within the same species. This percent of maximum expression

was used to identify genes which were expressed above background, using a cutoff of 0.3.

The classification strategy is described in detail in the results (section 3.9) and equation 2.

6.21 Cell type specificity

Inspired by Yanai et al. [98], I applied specificity τ to assess cell type specificity of gene expression,

rather tissue specificity. Specificity τ was calculated as shown in equation 7.

τ =

∑n
i=1 1− x̂i
n− 1

x̂i =
xi

max(x)

(7)

where gene x normalized expression is normalized (x̂) to the maximal detected expression within

a species across all cell types and then evaluated against the total number of all detected cell types
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n. This scaling represents broad expression for values close to 0 and absolute cell type specificity

at 1.

6.22 Gene onthology enrichment analysis

Gene onthology annotations were collected from ENSEMBL version 91 for the whole mouse genome

and subsetted for three-way orthologs between human, mouse and opossum. Enrichment p value

was calculated applying the observed counts to the pbinom function in R. I accounted for multiple

testing by applying the Benjamini-Hochberg method to all observed p-values using th p-adjust

function in R.

6.23 Adult bulk gene expression determination

RNA-seq data was retrieved from Brawand et al. [100] for chicken and nine mammalian species

adult brain and cerebellum. Data was aligned against the ENSEMBL version 91 genomes and

annotations. As described in Wang et al. [125], expression values were determined on FPKM scale.

Per gene, the longest protein coding isoform was considered which perfectly align between species.

6.24 Disease gene annotation retrieval

Loss-of-function observed/expected upper bound fraction scores (LOEUF) [93] were retrieved from

the Genome Aggregation Database (gnomAD). Genes are ranked according to their tolerance of in

vivo loss-of-function alterations, judged on human genome and exome sequecing results.

In vivo essentiality scores by Bartha et al. [6], aggregating various essentiality scores (RVIS, pLI,

Phi, missense Z-score, LoFtool and shet) were retreived from the original publication. This measure

is based on human exome and genome sequencing data.

In vitro essentiality scores were retrieved from the same source [6]. This score is based on in-vitro

CRISPR-Cas9 inactivation screens.

The Human Gene Mutation Database (HGMD, PRO 17.1) [135] provided the human inherited

disease gene list9. The genes were subsetted based on the Unified Medical Language System (UMLS)

to genes which are linked to the following disease types (high level annotation): ’Nervous system’

and ’Psychiatric’. Depending on the high level disease type ’Development’, the filtered genes were

grouped into development associated genes, or non-associated genes.

Cerebellum-linked disease lists were collected from Aldinger et al. [95] and Gröbner et al. [136].

Aldinger et al. lists were the following: (I) Genes associated with cerebellar malformations, Dandy-

Walker malformations and hypoplasia. (II) Joubert syndrome list, (III) autism spectrum list, (III)

intellectual disability lists, and (IV) Spinocerebellar ataxia list. From Gröbner et al. [136] the

9Which is manually currated.

80



6.25 General toolset 6 MATERIAL & METHODS

pediatric cancer driver gene list was retrieved, including medulloblastoma, ependymoma, pilocytic

astroctoma, and pleomorphic xanthoastrocytoma.

Enrichments of discrete associations were calculated by applying the pbinom (R) to the counts

per category, using the list of highly variable genes as the possible gene universe. Scores which are on

continuous scale were investigated using permutation test (n = 10,000), accounting for intolerance

directionality by adjusting the alternative hypothesis accordingly.

6.25 General toolset

All analyses, if not stated ortherwise were conducted with R (v3.6). The following R packages were

used for analyses and plotting: tidyverse [137] (v1.3), SingleCellExperiment [138] (v1.6), LIGER

[139] (v0.4.6), rliger [77] (v1.0), batchelor [75] (v1.0.1), pheatmap (v1.0.12), ggplot2 [140] (v3.3.2).

Python (v3.6) was used for the following packages: SCANPY [74] (v1.5.1) and htseq [141] (v0.13.5).
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8 ABBREVIATIONS

8 Abbreviations

8.1 General

• E10.5 (and similar): embryonic day 10.5

• HVG: highly variable genes, informative genes

• GO: gene onthology

• P0 (and similar): Postnatal day 0 (birth)

• PC: principal component

• PCA: principal component analysis

• RNA-seq: RNA sequencing, transcriptomic profiling method

• snRNA-seq: single nucleus RNA-seq

• TF-IDF: term-frequency inversed document frequency

• UMAP: Uniform manifold approximation and projection

• UMI: unique molecular identifier

• wpc: weeks post conception

8.2 Cell types / cerebellar structures

• DN: deep nuclei

• EGL: external granule cell layer

• GABA: gamma-aminobutyric acid

• GC: granule cells

• IGL: internal granule cell layer

• ML: molecular layer

• MB: midbrain

• NTZ: neuronal transitory zone

• PC: Purkinje cells

• PL: Purkinje layer
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8 ABBREVIATIONS 8.2 Cell types / cerebellar structures

• RL: rhombic lip

• UBC: unipolar brush cells

• VZ: ventricular zone
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9 SUPPLEMENTARY FIGURES

9 Supplementary figures

Supplementary Figure S1: Mouse UMAP embeddings per stage Embeddings were gen-
erated from LIGER corrected batch integrations per stage. Colors represent individual libraries.
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Supplementary Figure S2: Human UMAP embeddings per stage Embeddings were gen-
erated from LIGER corrected batch integrations per stage. Colors represent individual libraries.
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Supplementary Figure S3: Opossum UMAP embeddings per stage Embeddings were
generated from LIGER corrected batch integrations per stage. Colors represent individual libraries.

Species
Mouse

Opossum
Human

UMAP

Human / Mouse Opossum / MouseA B

Supplementary Figure S4: UMAPs of pairwise species integration A: UMAP generated
from LIGER and MNN corrected embedding of all human and mouse data. A: UMAP generated from
LIGER and MNN corrected embedding of all opossum and mouse data.
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Supplementary Figure S8: Presence absence calls overlaps Classes of presence and absence
calls are shown with the number of shared classifications across the observed cell types.
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