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a b s t r a c t 

We present a novel deep generative model based on non i.i.d. variational autoencoders that captures

global dependencies among observations in a fully unsupervised fashion. In contrast to the recent semi- 

supervised alternatives for global modeling in deep generative models, our approach combines a mixture

model in the local or data-dependent space and a global Gaussian latent variable, which lead us to ob- 

tain three particular insights. First, the induced latent global space captures interpretable disentangled

representations with no user-defined regularization in the evidence lower bound (as in β-VAE and its 

generalizations). Second, we show that the model performs domain alignment to find correlations and

interpolate between different databases. Finally, we study the ability of the global space to discriminate

between groups of observations with non-trivial underlying structures, such as face images with shared

attributes or defined sequences of digits images.

© 2022 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
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. Introduction

Since its first proposal by [21] , Variational Autoencoders (VAEs) 

ave evolved into a vast amount of variants. To name some repre- 

entative examples, we can include VAEs with latent mixture mod- 

ls priors [9] , adapted to model time-series [4,8,11] , trained via 

eep hierarchical variational families [32,35] , with enhanced, para- 

etric and robust priors [20,35,36] , that include advanced tech- 

iques for gradient estimation [7,33] or that naturally handle het- 

rogeneous data types and missing data [26,27,29,31] . 

The large majority of VAE-like models are designed over the as- 

umption that data is i.i.d., which remains a valid strategy for sim- 

lifying the learning and inference processes in generative mod- 

ls with latent variables. A different modelling approach may drop 

he i.i.d. assumption with the goal of capturing a higher level of 

ependence between samples. Inferring such kind of higher level 

ependencies can directly improve current approaches to find in- 

erpretable disentangled generative models [5] , to perform domain 

lignment [15] or to ensure fairness and unbiased data [3] . 

The main contribution of this paper is to show that a deep 

robabilistic VAE non i.i.d. model with both local and global la- 

ent variable can capture meaningful and interpretable correlation 

mong data points in a completely unsupervised fashion. Namely, 

eak supervision to group the data samples is not required. In the 

ollowing we refer to our model as Unsupervised Global VAE (UG- 
∗ Corresponding author.:.
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AE). We combine a clustering inducing mixture model prior in 

he local space, that helps to separate the fundamental data fea- 

ures that an i.i.d. VAE would separate, with a global latent variable 

hat modulates the properties of such latent clusters depending 

n the observed samples, capturing fundamental and interpretable 

ata features. We demonstrate such a result using both CelebA, 

NIST and the 3D FACES dataset in [30] . Furthermore, we show 

hat the global latent space can explain common features in sam- 

les coming from two different databases without requiring any 

omain label for each sample, establishing a probabilistic unsuper- 

ised framework for domain alignment. Up to our knowledge, UG- 

AE is the first VAE model in the literature that performs unsuper- 

ised domain alignment using global latent variables. 

Finally, we demonstrate that, even when the model parame- 

ers have been trained using an unsupervised approach, the global 

atent space in UG-VAE can discriminate groups of samples with 

on-trivial structures, separating groups of people with black and 

lond hair in CelebA or series of numbers in MNIST. In other 

ords, if weak supervision is applied at test time, the posterior 

istribution of the global latent variable provides with an informa- 

ive representation of the user defined groups of correlated data. 

The principal contributions of this work are: 

• To our knowledge, we propose the first deep generative

model for generating groups of samples with shared properties

learned in a fully-unsupervised fashion, named UG-VAE.
• We demonstrate that the information captured in the struc- 

tured latent space of UG-VAE is highly interpretable in compar- 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
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Fig. 1. Comparison of four deep generative models. Dashed lines represent the graphical model of the associated variational family. The Vanilla VAE (a), the GMVAE (b), and 

semi-supervised variants for grouped data; ML-VAE (c) and NestedVAE (d). 
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ison with other related methods, leading to an improved disen- 

tanglement in both local and global spaces. 
• We demonstrate that, by simply training UG-VAE with mini- 

batches of samples from several datasets, the structured latent 

space aligns them and captures common interpretable proper- 

ties without any label or supervision. 
• We demonstrate that, although the training unsupervised, the 

global space is able to effectively separate the global posterior 

of different groups when weak supervision is included at test 

time for grouping observations with a given label or attribute. 

. Related work 

Non i.i.d. deep generative models are getting recent attention 

ut the literature is still scarse. First we find VAE models that im- 

lement non-parametric priors: in [14] the authors make use of 

 global latent variable that induces a non-parametric Beta process 

rior, and more efficient variational mechanism for this kind of IBP 

rior are introduced in [38] . Second, both [22] and [34] proposed 

on i.i.d. exchangable models by including correlation information 

etween datapoints via an undirected graph. Third, conditional de- 

endencies with supervised classes are modeled in [1] with the 

im at performing natural clustering at the latent space and dis- 

ntangle class-dependent factors. Finally, some other works rely 

n simpler generative models (compared to these previous ap- 

roaches), including global variables with fixed-complexity priors, 

ypically a multi-variate Gaussian distribution, that aim at mod- 

lling the correlation between user-specified groups of correlated 

amples (e.g. images of the same class in MNIST, or faces of the 

ame person). In [5] or [18] , authors apply weak supervision by 

rouping image samples by identity, and include in the probabilis- 

ic model a global latent variable for each of these groups, along 

ith a local latent variable that models the distribution for each 

ndividual sample. In [24] , authors use co-supervision for achieving 

tationary state in learning graphs for multi-view clustering. Below 

e specify the two most relevant lines of research, in relation to 

ur work. 

VAEs with mixture priors Several previous works have demon- 

trated that incorporating a mixture in the latent space leads to 

earn significantly better models. In [19] authors introduce a la- 

ent GMM prior with nonlinear observations, where the means are 

earned and remain invariant with the data. The GMVAE proposal 

y Dilokthanakul et al. [9] aims at incorporating unsupervised clus- 

ering in deep generative models for increasing interpretability. In 

he VAMP VAE model [35] , the authors define the prior as a mix-

ure with components given by approximated variational poste- 

iors, that are conditioned on learnable pseudo-inputs. This ap- 

roach leads to an improved performance, avoiding typical local 

ptima difficulties that might be related to irrelevant latent dimen- 

ions. 
2 
Semi-supervised deep models for grouped data In contrast to 

he i.i.d. vanilla VAE model in Fig. 1 (a), and its augmented ver- 

ion for unsupervised clustering, GMVAE, in Fig. 1 (b), the graph- 

cal model of the Multi-Level Variational Autoencoder (ML-VAE) in 

5] is shown in Fig. 1 (c), where G denotes the number of groups. 

L-VAE includes a local Gaussian variable S i that encodes style- 

elated information for each sample, and a global Gaussian vari- 

ble C G is shared within a group of samples. For instance, they 

eed their algorithm with batches of face images from the same 

erson, modeling content shared within the group that character- 

ze a person. This approach leads to learning disentangled repre- 

entations at the group and observations level, in a content-style 

ashion. Nevertheless, the groups are user-specified, hence result- 

ng in a semi-supervised modelling approach. In [37] authors use 

eak supervision for pairing samples. They implement two outer 

AEs with shared weights for the reconstruction, and a Nested VAE 

hat reconstructs latent representation off one to another, mod- 

lling correlations across pairs of samples. The graphical model for 

ested VAE is depicted in Fig. 1 (d). Despite the fact that semi- 

upervision is proved to improve performance for some deep gen- 

rative models [12,13] , it requires prior knowledge about the data 

hat we do not assume in this work. 

. Unsupervised global VAE 

We present UG-VAE, a deep generative VAE framework for 

odeling non-i.i.d. data with global dependencies. It generalizes 

he ML-VAE graphical model in Fig. 1 (c), combining the global 

odel with a mixture prior to (i) remove the group supervision, 

ii) include a clustering-inducing prior in the local space, and (iii) 

ropose a more structured variational family. The latent discrete 

ariable d is expected to represent the inferred group with no su- 

ervision needed. 

.1. Generative model 

Fig. 2 represents the generative graphical model of UG-VAE. The 

lobal variable β ∈ R 

g modulates the prior, inducing shared prop- 

rties within a group of B samples X = { x 1 , . . . , x B } ⊆ R 

D , while the

ocal variable z encodes the local properties for each datapoint. Al- 

hough we use this notation for the global latent space, we would 

ike to remark that β is not a parameter as the β defined in [17] .

e denote by G the number of groups we jointly use to amor- 

ize the learning of the model parameters. During amortized vari- 

tional training, groups are simply random data mini-batches from 

he training dataset, being G the number of data mini-batches. We 

ould certainly take B = N (the training set size) and hence G = 1 ,

ut this leads to a less interpretable global latent space (too much 

ata to correlate with a single global realization), and a slow train- 

ng process. On the contrary, a small batch size might result in 
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Fig. 2. Generative (left) and inference (right) of UG-VAE. 
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ighly dispersed global properties, difficult to capture and again 

ardly interpretable. The difficulty in choosing a proper value for 

he batch size limits the potential of learning useful representa- 

ions, and arises in the lack of agnostic metrics for performing 

bjective validations. Although some useful representation met- 

ics (e.g. [16] ) could be used for validating B , we show results in

ection 4 demonstrating that reasonable batch sizes values that are 

idely employed in similar works (namely B = 128 ) successfully 

earn disentangled global representations. 

Conditioned to β, data samples are distributed according to 

 Gaussian mixture local (one per data) latent variable Z = 

 z 1 , . . . , z B } ⊆ R 

d , and d = { d 1 , . . . , d B } ⊆ { 1 , . . . , K} are independent
iscrete categorical variables with uniform prior distributions. This 

rior, along with the conditional distribution p( z i | d i , β) , defines a

aussian mixture latent space, which helps to infer similarities be- 

ween samples from different batches (by assigning them to the 

ame cluster), and thus, d i plays a similar role than the semi- 

upervision included in [5] by grouping. Our experimental results 

emonstrate that this level of structure in the local space is crucial 

o acquire interpretable information at the global space. 

The joint distribution for a single group is therefore defined by: 

p θ ( X , Z , d , β) = p( X | Z , β) p( Z | d , β) p( d ) p( β) (1)

here the likelihood term of each sample is a Gaussian distribu- 

ion, whose parameters are obtained from a concatenation of z i 
nd β as input of a decoder network: 

p( X | Z , β) = 

B ∏ 

i =1 

p( x i | z i , β) = 

B ∏ 

i =1 

N 

(
μθx ([ z i , β]) , �θx ([ z i , β]) 

)
(2) 

n contrast with [19] , where the parameters of the clusters are 

earned but shared by all the observations, in UG-VAE, the param- 

ters of each component are obtained with networks fed with β. 
hus, the prior of each local latent continuous variable is defined 

y a mixture of Gaussians, where d i defines the component and β
s the input of a NN that outputs its parameters: 

p( Z | d , β) = 

B ∏ 

i =1 

p( z i | d i , β) = 

B ∏ 

i =1 

N 

(
μ(d i ) 

θz 
( β) , �(d i ) 

θz 
( β) 

)
(3) 

ence we trained as many NNs as discrete categories. This local 

pace encodes samples in representative clusters to model local 

actors of variation. The prior of the discrete latent variable is de- 

ned as uniform: 

p( d ) = 

B ∏ 

i =1 

Cat ( π) πk = 1 /K (4) 
3 
nd the prior over the continuous latent variable β follows an 

sotropic Gaussian, p( β) = N ( 0 , I ) . 

By making use of the presented generative model, we propose 

 flexible hierarchy of both global and local mixture of compo- 

ents that, while being trained on random-mini batches, it is able 

o exploit the augmented degrees of freedom for capturing group- 

eatures in the latent space in an unsupervised manner. A graphical 

epresentation of how UG-VAE structures the information in the la- 

ent space is provided in Fig. 3 . Further, as shown in Section 3.2 ,

he posterior approximation results from an individual contribu- 

ion of each data point that favors group separation across latent 

paces. 

.2. Inference model 

The graphical model of the proposed variational family is 

hown in Fig. 2 (b): 

 φ( Z , d , β| X ) = q ( Z | X ) q ( d | Z ) q ( β| X , Z ) (5)

here we employ an encoder network that maps the input data 

nto the local latent posterior distribution, which is defined as a 

aussian: 

 ( Z | X ) = 

B ∏ 

i =1 

q ( z i | x i ) = 

B ∏ 

i =1 

N ( μφz 
( x i ) , �φz 

( x i )) (6)

iven the posterior distribution of z , the categorical posterior dis- 

ribution of d i is parametrized by a NN that takes z i as input 

 ( d | Z ) = 

B ∏ 

i =1 

q (d i | z i ) = 

B ∏ 

i =1 

Cat (πφd 
( z i )) (7) 

he approximate posterior distribution of the global variable β
s computed as a product of local contributions per datapoint 

ithin a randomly sampled batch. This strategy, as demonstrated 

y Bouchacourt et al. [5] , outperforms other approaches like, for 

xample, a mixture of local contributions, as it allows to accumu- 

ate group evidence. For each sample, a NN encodes x i and the Cat- 

gorical parameters πφd 
( z i ) in a local Gaussian: 

 ( β| X , Z ) = N 

(
μβ, �β

)

= 

B ∏ 

i =1 

N 

(
μφβ

([ x i , πφd 
( z i )]) , �φβ

([ x i , πφd 
( z i )]) 

)
(8) 

f we denote by μi and �i the parameters obtained by networks 

φβ
and �φβ

, respectively, the parameters of the global Gaussian 

istribution are given, following [6] , by: 

β = �−1 
β = 

B ∑ 

i =1 

�i 

μβ = ( �β ) −1 
B ∑ 

i =1 

�i μi (9) 

here �β = �−1 
β is defined as the precision matrix, which we 

odel as a diagonal matrix. 

.3. Evidence lower bound 

Overall, the evidence lower bound reads as follows: 

 (θ, φ; X , Z , d , β) = E q ( β) 

[
L i (θ, φ; x i , z i , d , β) 

]

− E q ( d ) 

[
D KL 

(
q ( β| X , Z ) ‖ p( β) 

)]
(10) 

he resulting ELBO is an expansion of the ELBO for a standard GM- 

AE with a new regularizer for the global variable. As the reader 
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Fig. 3. Illustration of the inductive bias introduced by the generative model in β-VAE (a), ML-VAE (b) and the proposed UG-VAE (c). β-VAE compresses all features in a 

single latent space, while ML-VAE uses a global component that needs to be supervised during training. In UG-VAE, we propose a flexible hierarchy of both global and local 

mixture of components that enables learning group-features in the latent space in an unsupervised manner. 
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ay appreciate, the ELBO for UG-VAE does not include extra hyper- 

arameters to enforce disentanglement, like other previous works 

s β-VAE, and thus, no extra validation is needed apart from the 

arameters of the networks architecture, the number of clusters 

nd the latent dimensions. We denote by L i each local contribu- 

ion to the ELBO: 

L i (θ, φ; x i , z i , d , β) = E q ( d i , z i ) 

[
log p( x i | z i , d i , β) 

]

E q ( d i ) 

[
D KL 

(
q ( z i | x i ) ‖ p( z i | d i , β) 

)]
− D KL ( q (d i | z i ) ‖ p(d i )) ) 

(11) 

The first part of (10) is an expectation over the global approx- 

mate posterior of the so-called local ELBO. This local ELBO differs 

rom the vanilla ELBO proposed by Kingma and Welling [21] in the 

egularizer for the discrete variable d i , which is composed by the 

ypical reconstruction term of each sample and two KL regulariz- 

rs: one for z i , expected over d i , and the other over d i . The second

art in (10) is a regularizer on the global posterior. The expecta- 

ions over the discrete variable d i are tractable and thus, analyti- 

ally marginalized. 

In contrast with GMVAE ( Fig. 1 (b)), in UG-VAE, β is shared by 

 group of observations, therefore the parameters of the mixture 

re the same for all the samples in a batch. In this manner, within

ach optimization step, the encoder q ( β| X , Z ) only learns from the
4 
lobal information obtained from the product of Gaussian contri- 

utions of every observation, with the aim at configuring the mix- 

ure to improve the representation of each datapoint in the batch, 

y means of p(Z | d , β) and p(X | Z , β) . Hence, the control of the

ixture is performed by using global information. In contrast with 

L-VAE (whose encoder q (C G | X ) is also global, but the model does

ot include a mixture), in UG-VAE, the β encoder incorporates in- 

ormation about which component each observation belongs to, as 

he weights of the mixture inferred by q ( d | Z ) are used to obtain
 ( β| X , Z ) . Thus, while each cluster will represent different local

eatures, moving β will affect all the clusters. In other words, mod- 

fying β will have some effect in each local cluster. As the training 

rogresses, the encoder q ( β| X , Z ) learns which information emerg-

ng from each batch of data allows to move the cluster in a way 

hat the ELBO increases. 

. Experiments 

In this section we demonstrate the ability of the UG-VAE model 

o infer global factors of variation that are common among sam- 

les, even when coming from different datasets. In all cases, we 

ave not validated in depth all the networks used, we have merely 

ely on encoder/decoder networks proposed in state-of-the-art VAE 
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Fig. 4. Sampling from UG-VAE (first three columns) and ML-VAE (last column) for CelebA (top) and MNIST (bottom). We include samples from 3 local clusters of UG-VAE 

from a total of K = 20 for CelebA and K = 10 for MNIST. In CelebA (top), the global latent variable disentangles in skin color, beard and face contrast, while the local latent 

variable controls hair and light orientation. In MNIST (bottom), β controls cursive grade, contrast and thickness of handwriting, while z varies digit shape. In ML-VAE (right 

column), both spaces are unimodal and the disentanglement is hardly interpretable when we feed the data without semi-supervision. 
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Fig. 5. Interpolation in the prior latent space of β-VAE with β = 10 , using the same 

networks architecture than in the local part of UG-VAE. Interpolation consists on 7 

steps from z = [ −1 , −1 , . . . , −1] to z = [1 , 1 , . . . , 1] . 
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apers such as [5,21] or [17] . Our results must be hence re- 

arded as a proof of concept about the flexibility and represen- 

ation power of UG-VAE, rather than fine-tuned results for each 

ase. Hence there is room for improvement in all cases. Details 

bout network architecture and training parameters are provided 

n Appendix B . 

.1. Unsupervised learning of global factors 

In this section we first asses the interpretability of the global 

isentanglement features inferred by UG-VAE over both CelebA 

nd MNIST. In Fig. 4 we show samples of the generative model 

s we explore both the global and local latent spaces. We per- 

orm a linear interpolation with the aim at exploring the hyper- 

phere centered at the mean of the distribution and with radius 

i for each dimension i . Instead of finding influential latent fac- 

ors [25] and interpolate them (fixing the rest), we choose to max- 

mize the variation range across every dimension, moving diago- 

ally through the latent space. Rows correspond to an interpolation 

n the global β between [ −1 , 1] on every dimension ( p( β) follows

 standard Gaussian). As the local p( z | d, β) ( (3) ) depends on d and

, if we denote μz = μ(d) 
z ( β) , the local interpolation goes from 

 μz0 − 3 , μz1 − 3 , . . . μzd − 3] to [ μz0 + 3 , μz1 + 3 , . . . , μzd + 3] . The

ange of ±3 for the local interpolation is determined to cover the 

ariances �(d) 
z ( β) that we observe upon training the model for 

NIST and CelebA. The every image in Fig. 4 correspond to sam- 

les from a different cluster (fixed values of d), in order to facili- 

ate the interpretability of the information captured at both local 

nd global levels. By using this set up, we demonstrate that the 

lobal information tuned by β is different and clearly interpretable 

nside each cluster. In order to visually remark the advantage of 

apturing global correlations among samples with UG-VAE, we in- 

lude in Fig. 5 an interpolation in the latent space of β-VAE. We 
5 
xplore from z = [ −1 , −1 , . . . , −1] to z = [1 , 1 , . . . , 1] , given that the

rior is an isotropic Gaussian. As the reader may appreciate, only 

ne row is included as β-VAE does not include global space. In 

his case, moving diagonally through the latent space start from a 

lond woman and ends in a brunette woman with the same angle 

ace. Thus, the local space is in charge of encoding both content 

nd style aspects. Although in β-VAE, authors analyze the disen- 

anglement in each dimension of the latent space, we do not study 

hether each dimension of z represents an interpretable genera- 

ive factor in UG-VAE or not, as it is out of the scope for this work.

he novelty lies on the fact that, apart from the local disentan- 

lement, our model adds an extra point of interpretability through 

he disentanglement in the global space. 

The total number of clusters is set to K = 20 for CelebA and

 = 10 for MNIST. Three of these components are presented in 

ig. 4 . We can observe that each row (each value of β) induces
 shared generative factor, while z is in charge of variations inside 

his common feature. For instance, in CelebA (top), features like 

kin color, presence of beard or face contrast are encoded by the 

lobal variable, while local variations like hair style or light direc- 

ion are controlled by the local variable. In a simple dataset like 

NIST (bottom), results show that handwriting global features as 

ursive style, contrast or thickness are encoded by β, while the lo- 

al z defines the shape of the digit. The characterization of whether 

hese generative factors are local/global is based on an interpre- 
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Table 1 

FID score between subsets of 1280 images from the test 

sets of CelebA and MNIST and 1280 images generated 

with UG-VAE, ML-VAE and β-VAE. Results are provided 

as the mean ± std FID score of 9 repetitions. 

Method UG-VAE ML-VAE β-VAE 

CelebA 162 . 3 ± 1 . 2 204 . 7 ± 2 . 4 173 . 5 ± 0 . 6 

MNIST 63 . 6 ± 2 . 4 108 . 9 ± 4 . 5 133 . 2 ± 0 . 8 
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ation of the effect that varying z and β provokes in each image 

ithin a batch, and in the whole batch of images, respectively. 

n A.1 , we reproduce the same figures for the all the clusters, in

hich we can appreciate that there is a significant fraction of clus- 

ers with visually interpretable global/local features. 

We stress here again the fact that the UG-VAE training is fully 

nsupervised: data batches during training are completely ran- 

omly chosen from the training dataset, with no structured cor- 

elation whatsoever. Unlike other approaches for disentanglement, 

ee [17] or [28] , variational training in UG-VAE does not come with 

dditional ELBO hyperparameters that need to be tuned to find a 

roper balance among terms in the ELBO. 

One of the main contributions in the design of UG-VAE is the 

act that, unless we include a clustering mixture prior in the local 

pace controlled by the global variable β, unsupervised learning 
f global factors is non-informative. To illustrate such a result, in 

ig. 4 (last column) we reproduce the same results but for a proba- 

ilistic model in which the discrete local variable d is not included. 

amely, we use the ML-VAE in Fig. 2 (c) but we trained it with ran-

om data batches. In this case, the local space is uni-modal given 

and we show interpolated values between -1 to 1. Note that the 

isentanglement effect of variations in both β and z is mild and 

ard to interpret. 

It remains a challenge for generative models to obtain a quan- 

itative appropriate metric for evaluating the quality of the gener- 

ted images. In this work, we employ the FID (Frechet Inception 

istance), proposed in [16] , which summarizes the distance be- 

ween the Inception feature vectors for real and generated images 

n the same domain, with the advantage that it is correlated with 

he better quality of the generated images. In Table 1 we include 

he score for samples from UG-VAE, ML-VAE and β-VAE. In both 

elebA and MNIST, UG-VAE obtain lower distance and thus outper- 

orms the other methods in the quality of the generated samples. 
Fig. 6. FID score between subsets of 1280 images from CelebA with a given at

6 
e show empirically that the way the information is structured in 

he latent space of UG-VAE allows an improved generation of im- 

ges. The reasons are: (i) differently from our model and ML-VAE, 

n β-VAE the global information shared by groups of samples is not 

aptured. (ii) UG-VAE latent space is much more expressive than 

L-VAE, where the conditional prior p( z | β) is unimodal. In other 

ords, the prior p( z | d, β) in UG-VAE is a generalization of ML-VAE 

 K = 1 ). Therefore, in UG-VAE the latent space is augmented, which 

ncreases the representation capacity of the model. 

In the following quantitative analysis, and with the intention 

t showing the wide spectrum for factor representation capacity 

rovided by UG-VAE, we compute the FID metric between groups 

f CelebA images that share a given attribute, and samples gener- 

ted by UG-VAE from a selected component d, in order to visual- 

ze whether the attributes are correlated with some of the com- 

onents. These results are given in Fig. 6 . As one may appreciate, 

G-VAE is able to encode human perceptible factors within each 

omponent of the mixture, and images from the same attribute 

resent different FID scores for the set of clusters. Within unimodal 

odels (for instance, ML-VAE or β-VAE), such rich representation 

s not possible. We are able to obtain a set of basis faces that are

uned by the global variable. Incorporating the mixture allows β to 

ontrol the distribution of clusters for representing groups that can 
tribute and 1280 images generated with UG-VAE from a fixed cluster d. 
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Fig. 7. Interpolation in local (columns) and global (rows) posterior spaces, fusing several datasets, using UG-VAE from (a) to (e). In (a) the interpolation goes between the 

posteriors of a sample from CelebA dataset and a sample from FACES dataset. In (b) we plot the t-SNE map of the samples from each dataset. In (c) the interpolation goes 

between samples from the same dataset. In (d) and (e) we include interpolations from 3D Cars to Chairs, and for 3D Cars to Cars Dataset, respectively. In (f) we reproduce 

the interpolation using the latent space of ML-VAE. 
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1 Note that since both β and z are deterministically interpolated, the discrete 

variable d plays no role to sample from the model. 
e compared to the semi-supervision applied in ML-VAE by group- 

ng. 

.2. Domain alignment 

In this section, we evaluate the UG-VAE performance in an un- 

upervised domain alignment setup. During training, the model is 

ed with data batches that include random samples coming from 

wo different datasets. In particular, we train our model with a 

ixed dataset between CelebA and 3D FACES [30] , a dataset of 3D 

canned faces, with a proportion of 50% samples from each dataset 

nside each batch. 

Upon training with random batches, in Fig. 7 , we perform 

he following experiment using domain supervision to create test 

ata batches. We create two batches containing only images from 

elebA and 3D FACES. Let β1 and β2 be the mean global posterior 

omputed using (8) associated for each batch. For two particular 

mages in these two batches, let z 1 and z 2 be the mean local poste- 

ior of these two images, computed using (3) . Fig. 7 (a) shows sam-
7 
les of the UG-VAE model when we linearly interpolate between 

1 and β2 (rows) and between z 1 and z 2 (columns). 1 Certainly β
s capturing the domain knowledge. For fixed z , e.g. z 1 in the first 

olumn, the interpolation between β1 and β2 is transferring the 

elebA image into the 3D FACES domain (note that background is 

urning white, and the image is rotated to get a 3D effect). Alter- 

atively, for fixed β, e.g. β1 in the first row, interpolating between 

 1 and z 2 modifies the first image into one that keeps the domain 

ut resembles features of the image in the second domain, as face 

otation. 

In Fig. 7 (b) we show the 2D t-SNE plot of the posterior distribu- 

ion of β for batches that are random mixtures between datasets 

grey points), batches that contain only CelebA faces (blue squares), 

nd batches that contain only 3D faces (green triangles). We also 

dd the corresponding points of the β and β interpolation in 
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Fig. 8. 2D t-SNE projection of the UG-VAE β posterior distribution of structured batches of 128 CelebA images. UG-VAE is trained with completely random batches of 128 

train images. 
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ig. 7 (a). In Fig. 7 (c), we reproduce the experiment in (a) but in-

erpolating between two images and values of β that correspond 

o the same domain (brown interpolation line in Fig. 7 (b)). As ex- 

ected, the interpolation of β in this case does not change the 

omain, which suggests that the domain structure in the global 

pace is smooth, and that the interpolation along the local space 

 modifies image features to translate one image into the other. 
8 
n Fig. 7 (d,e) experiments with more datasets are included. When 

ixing the 3DCars dataset [10] with the 3D Chairs dataset [2] , in 

ig. 7 (d), we find that certain correlations between cars and chairs 

re captured. Interpolating between a racing car and an office desk 

hair leads to a white car in the first domain (top right) and in 

 couch (bottom left). In Fig. 7 (e), when using the 3D Cars along

ith the Cars Dataset [23] , rotations in the cars are induced. 
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Table 2 

Batch classification accuracy using samples of the posterior β distribution. 

Batch categories Classifier Train accuracy Test accuracy 

Black (0) vs blond (1) Linear SVM 1.0 0.95 

RBF SVM 1.0 0.98 

Black (0) vs blond (1) vs 

random (2) 

Linear SVM 0.91 0.54 

RBF SVM 0.85 0.56 

Male (0) vs female (1) Linear SVM 1.0 0.85 

RBF SVM 1.0 0.85 

Male (0) vs female (1) vs 

random (2) 

Linear SVM 0.84 0.66 

RBF SVM 0.89 0.63 
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Finally, in 7 (f) we show that, as expected, the rich structured 

aptured by UG-VAE is lost when we do not include the clustering 

ffect in the local space, i.e. if we use ML-VAE with unsupervised 

andom data batches, and all the transition between domains is 

erformed within the local space. 

.3. UG-VAE representation of structured non-trivial data batches 

In the previous subsection, we showed that the UG-VAE global 

pace is able to separate certain structure in the data batches (e.g. 

ata domain) even though during training batches did not present 

uch an explicit correlation. Using UG-VAE trained over CelebA 

ith unsupervised random batches of 128 images as a running ex- 

mple, in this section we want to further demonstrate this result. 

In Fig. 8 we show the t-SNE 2D projection of structured batches 

sing the posterior β distribution in (8) over CelebA and MNIST 

est images. In Fig. 8 (a), we display the distribution of batches con- 

aining only men and women, while in Fig. 8 (b) the distribution of 

atches containing people with black or blond hair. In both cases 

e show the distribution of randomly constructed batches as the 

nes in the training set. To some extend, in both cases we ob- 

ain separable distributions among the different kinds of batches. 

 quantitative evaluation can be found in Table 2 . We have em- 

loyed samples from the β distribution to train a supervised clas- 

ifier that discriminates between different types of batches. When 

andom batches are not taken as a class, the separability is evident. 

hen random batches are included, it is expected that the classi- 

er struggles to differentiate between a batch that contains 90% of 

ale images and a batch that only contain male images, hence the 

rop in accuracy for the multi-case problem. 

An extension with similar results when using structured 

rouped batches from MNIST dataset for testing our model is ex- 

osed in Fig. 8 (c). In this experiment, the groups are digits that be-

ong to certain mathematical series, including even numbers, odd 

umbers, Fibonacci series and prime numbers. We prove that UG- 

AE is able to discriminate among their global posterior represen- 

ations. 

. Conclusion 

In this paper we have presented UG-VAE, an unsupervised deep 

enerative model able to capture both local and global factors from 

atches of data samples. Unlike similar approaches in the litera- 

ure, by combining a structured clustering prior in the local la- 

ent space with a Gaussian global prior and a structured varia- 

ional family, we have demonstrated that interpretable group fea- 

ures can be inferred from the global space in a completely unsu- 

ervised fashion. Model training does not require artificial manip- 

lation of the ELBO to force latent interpretability, which makes 

G-VAE stand out w.r.t. most of the current disentanglement ap- 

roaches using VAEs. 

The ability of UG-VAE to infer diverse features from the training 

et is further demonstrated in a domain alignment setup, where 
9 
e show that the global space allows interpolation between do- 

ains, and also by showing that images in correlated batches of 

ata, related by non-trivial features such as hair color or gender in 

elebA, define identifiable structures in the posterior global space. 

The code is publicly available at https://github.com/ipeis/ 

G-VAE . The package includes the UG-VAE model, and all the ex- 

eriments of this paper for reproducibility purposes. 
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ppendix A. Extended experiments 

1. Extended results for Section 4.1: Unsupervised learning of global 

actors 

With the aim at evaluating whether a fraction of the clusters 

nferred by UG-VAE encode visually interpretable global/local fea- 

ures, in Fig. A.9 we include the results for CelebA for K = 20

lusters. We observe that a considerate proportion of the clusters 

aptures disentangled generative factors. Moreover, considering the 

eterogeneity and variety in the generative factors of celebA faces 

up to 40 different attributes), increasing the number of clusters 

ight lead to capture more representative faces, and thus, gen- 

rative global factors modulated by β. In Fig. A.9 , we appreciate 

hat, apart from skin color, beard or image contrast, other genera- 

ive factors controlled by the global variable are hair style (remark- 

ble for components 9, 16, 17 or 18), sex (components 4 and 14), or 

ackground color (components 4, 16 and 17). In order to compare 

hese results with a model trained on a small number of clusters, 

e include Fig. A.10 with samples from UG-VAE with K = 4 . In this

ase, the model compresses the information of the whole dataset 

n only four modes, and thus, the variation of the samples within 

ach cluster is higher. 

2. Extended results for Section 4.2: domain alignment 

We include here the results of a interpolation in both the lo- 

al space obtained when the number of components is K = 1 , i. e.,

sing the ML-VAE approach. As showed in Fig. A.11 , when train- 

ng ML-VAE with randomly grouped data, global space is not capa- 

le of capturing correlations between datasets, and the local space 

s in charge of encoding the transition from celebA to 3D FACES, 

hich is performed within each row. 

With the aim at reinforcing the robustness of UG-VAE in do- 

ain alignment, we include in Fig. A.12 the results of evaluat- 

ng GMVAE with two clusters ( K = 2 ) in a similar setup that in

ection 4.2 . As GMVAE does not have global variables, the inter- 

olation only applies for the latent encodings in z . Note that the 

nterpolation is merely a gradual overlap between the two images. 

https://github.com/ipeis/UG-VAE
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Fig. A1. Sampling from UG-VAE for CelebA. We include samples from each of the K = 20 clusters. 

10 
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Fig. A2. Sampling from each cluster of UG-VAE for CelebA when K = 4 . 

Fig. A3. ML-VAE interpolation in local (columns) and global (rows) posterior spaces, 

fusing celebA and FACES datasets. 

Fig. A4. Interpolation in the latent space of GMVAE with K = 2 for performing 

domain alignment, using the same network architecture than in the local part of 

UG-VAE. We interpolate between the encodings of images from CelebA and FACES 

dataset. 

N
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c
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fi
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f
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Table B1 

Architecture, parameters and hyperparameters for all the models trained for the experime

Dataset 

Architecture 

Pre-encoder Local encoder Gl

CelebA h : 5 CNN layers Filters: 32, 

32, 64, 64, 256 Stride: all 

4 Padding: All 1 ReLU 

activation Batch 

normalization 

φz : Linear layer: 256 → 2 d

First half μz Second half 

diag( �z ) φd : Linear layers: 

d → 256 → K Tanh 

activation Softmax output 

φB

25

Se

MNIST h : Linear layer: 

28 ∗ 28 → 256 ReLU 

activation 

φz : Linear layer: 256 → 2 d

First half μz Second half 

diag( �z ) φd : Linear layers: 

d → 256 → K Tanh 

activation Softmax output 

φB

25

Se

CelebA + 3D FACES Same than for

3D Cars-3D Chairs Same than for

3D Cars-Cars Same than for

11 
amely, the model is not able to correlate the features of both im- 

ges, regardless of their domain. On the other hand, with UG-VAE, 

y keeping fixed the global variable and interpolating in the lo- 

al one, we maintain the domain but we translate the features of 

ne image into the other. This analysis corroborates that the model 

nds this type of correlations in a clearly separated way. 

ppendix B. Networks architecture 

In this section we detail the architectures and parameters used 

or training the models exposed in the main paper. An extended 

verview is included in Table B.3 . 
nts presented in the paper. 

Params Hyperparams 
obal encoder Decoder 

 

: Linear layer: 

6 + K → 2 g First half μB 

cond half diag( �B ) 

θz : Linear layers: 

g → 256 → 2 d First half μz 

Second half diag( �z ) θx : 

Linear layer: d + g → 256 5 

transpose CNN layers 

Filters: 64, 64, 32, 32, 3 

Stride: 1, 4, 4, 4, 4 

Padding: 0, 1, 1, 1, 1 ReLU 

activation Sigmoid output 

d = 20 

g = 50 

K = 20 

σx = 0.2 

B = 128 

 

: Linear layer: 

6 + K → 2 g First half μB 

cond half diag( �B ) 

θz : Linear layers: 

g → 256 → 2 d First half μz 

Second half diag( �z ) θx : 

Linear layers: 

d + g → 256 → 28 ∗ 28 

ReLU activation Sigmoid 

output 

d = 10 

g = 20 

K = 10 

σx = 0.2 

B = 128 

 CelebA d = 40 

g = 40 

K = 40 

σx = 0.2 

B = 128 

 CelebA d = 20 

g = 20 

K = 20 

σx = 0.2 

B = 128 

 CelebA d = 20 

g = 50 

K = 20 

σx = 0.2 

B = 128 
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