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Summary

Motivated by the increasingly common technology for collecting data, like cellphones, smart-

watches, etc, functional data analysis has been intensively studied in recent decades, and along

with it, functional regression models. However, the majority of functional data methods in gen-

eral and functional regression models, in particular, are based on the fact that the observed data

present the same domain. When the data have variable domain it needs to be aligned or reg-

istered in order to be fitted with the usual modeling techniques adding computational burden.

To avoid this, a model that contemplates the variable domain features of the data is needed,

but this type of models are scarce and its estimation method presents some limitations. In this

article, we propose a new scalar-on-function regression model for variable domain functional data

that eludes the need for alignment and a new estimation methodology that we extend to other

variable domain regression models.

∗To whom correspondence should be addressed.
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2 1 INTRODUCTION

The efficiency of our proposal is demonstrated in a simulation study where we compare the
obtained results with other existing methodologies. We illustrate our method with the analysis
of data from the telEPOC study (Esteban and others, 2016).

Key words: Variable domain functional data; B-splines; Mixed models; COPD.

1. Introduction

Functional data analysis is a very active area of research and one of the fastest growing fields

of statistical analysis. Prove of this are the great number of books and papers published in the

past two decades, see for example Ramsay and Silverman (2005); Horváth and Kokoszka (2012),

as well as the references therein. The interest in this area has been fueled by the technological

advances that provide increasingly complex and high-dimensional data with functional nature.

In practice, functional data are usually found as discrete and often noisy observations of the

true underlying function, measured at different locations in time, space, or other continuums.

The domain where the data is observed is usually assumed to be the same across observations.

Functional data where the domain is not the same for all the observations is named variable-

domain functional data. This type of data can be found in many data sets and a variety of

research fields like biology (Kulbaba and others, 2017), agriculture (Panayi and others, 2017),

medicine (Gaynanova and others, 2022), among others.

Our particular motivation is the telEPOC study (Esteban and others, 2016). In this study

a wide range of data from 119 patients suffering from Chronic Obstructive Pulmonary Disease

(COPD) is collected, being the most important one the physical activity performed by each

patient. The physical activity is measured as daily steps, with the particularity the number of

days where steps are collected is different from patient to patient, varying from 64 days up to

1287 days, as shown in Figure 1. There are two major reasons for this: (i) the exact day of sign-

up in the study is different from patient to patient (the inclusion dates go from 31-05-2010 to

07-12-2013) and (ii) the time each patient spends in the study is different, being one of the causes
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that 21 patients died during the study period. Therefore, we are in presence of a variable-domain

functional dataset.

Fig. 1: Daily Steps of 3 different patients of the telEPOC study.

One of the goals of the telEPOC study is to determine how physical activity affects health in

COPD patients. More precisely, the aim is to estimate the relationship between the number of

hospitalizations due to COPD (scalar discrete r.v.) and physical activity (functional covariate).

To accomplish this a scalar-on-function regression model should be required.

The scalar-on-function regression model was one of the first regression models extended to the

case of functional data. The main theoretical aspects related to this model were studied in Cardot

and others (1999) and in James (2002), in the more general framework of generalized linear

models. This model has been widely used in the literature, leading to numerous applications

and new methodological developments. Penalized versions of the functional generalized linear

models can be seen in works, such as Cardot and Sarda (2005), Goldsmith and others (2011),

Aguilera-Morillo and others (2013), among others.

This methodology is very useful for modeling functional data when the domain is constant

across observations, but to deal with variable-domain functional data a previous transformation

of the sample curves is needed. One of the most common choice is based on the registration of the

sample curves to a common domain. This additional step presents some drawbacks in the case of
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variable-domain functional data: it can add errors to the sample curves or lose some information

given by the specific shape of the curves; the resulting estimation of the functional parameter

will be more difficult or impossible to interpret since it will be a single curve estimated from the

forced common domain; this registration procedure could be computational expensive in some

cases. For some insights in registration of curves see Ramsay and others (2009).

Moreover, in a variable-domain dataset, the length of the sample paths is informative itself.

Therefore, incorporating this information in the formulation of the functional regression model

is essential for dealing with this type of data.

Is not until Gellar and others (2014) that variable domain functional data was successfully

modeled while maintaining the variable domain features of the data. The variable domain func-

tional regression model (VDFR) proposed in Gellar and others (2014) introduces the variable

domain information directly into the design of the model by considering specific domains in

the integration limits and a two-dimensional functional coefficient, meaning that the functional

data will have different influence in the response variable according to its specific domain. The

estimation method proposed by the authors is based on the basis representation of the func-

tional parameter and the use of the well known relation of functional models with mixed model

representation. However this approach presents some limitations. On the one hand, the basis

representation of the functional covariate is not considered, leaving out the possibility of recover

the true functional form of the data and not filtering the possible noise commonly present in the

discrete observation of the sample curves. Additionally, this approach limits the use of thin-plate

spline functions in the basis representation of the functional coefficient. As a consequence, only

isotropic penalization can be used, which forces the use of the same degree of smoothness in both

dimensions of the functional coefficient.

The goal of this work is to extend the VDFR model to what the authors call “fully functional

variable-domain functional regression” (FF-VDFR). Both approaches (VDFR and FF-VDFR)

assume that the predictor is a functional variable but they are conceptually different and hence
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present some differences in the estimation procedure. The fully functional approach assumes the

sample paths (raw data) belong to a finite-dimensional space spanned by a basis of functions in

order to correctly filter the inherent noise on these. Moreover, a novel and flexible way to estimate

the basis coefficients of the functional parameter is proposed, permitting the use of any kind of

basis and considering an anisotropic penalty. Finally, the FF-VDFR model uses the connection

to mixed model framework to gain computational efficiency by introducing the separation of

overlapping penalties (SOP) algorithm, developed in Rodŕıguez-Álvarez and others (2019).

The rest of the document is organized as follows. In section 2 we present the FF-VDFR

model with the corresponding estimation procedure. In section 3 we present a simulation study

to evaluate the performance of the proposed method in compared to the existing methods. In

section 4 we show the results of applying the proposed methodology to the telEPOC study.

Finally we conclude with a discussion in Section 5.

2. Variable-domain functional regression

The main goal of telEPOC study is to explore the performance of the physical activity, measured

as number of daily steps (X), among patients and to study its relation with the number of hospi-

talizations (Y ) due to COPD. Then, we are focused on a regression problem where the response

variable Y is a scalar and the predictor X is a function whose values varying over a continuous

domain of varying length among subjects, i.e., {Xi(t) : t ∈ [di, Ti], i = 1, . . . , N .}. Essentially,

this means that every curve can have observations points that fall in different domains. In our

case study, the data can be left-aligned and ordered without affecting the information of the

results, having for all the data the same initial point t ∈ [0, Ti] and Ti ⩽ Ti+1 ∀i.

In most of functional data problems, the functional predictor is assumed to have a com-

mon domain for all sample units. In this context, the sample information is usually given by

{Yi, Xi(t), Ci}, i = 1, . . . , N , where Ci is a vector of non-functional covariates, Yi is a scalar

outcome following an exponential family distribution with mean µi and {Xi(t) : t ∈ T} is the
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functional predictor. From this information, the functional generalized linear model is given by

ηi = g(µi) = α+ Ciγ +

∫ T

0

Xi(t)β(t) dt, (2.1)

with g(·) being the corresponding link function.

This model has been widely studied by authors such as Cardot and others (1999); James

(2002); Cardot and Sarda (2005); Ramsay and Silverman (2005); Goldsmith and others (2011);

Aguilera-Morillo and others (2013), between others, arising from the classical formulation to

penalized versions that provide a smooth estimation of the functional parameter β(t). The func-

tional parameter represents the optimal way of weighting each sample curve across the full do-

main. Because of this, when the sample curves have different domains, the estimation of model

2.1 results in poor estimates of the functional parameter, which makes difficult to interpret the

relationship between predictors and response variable.

As solution, Gellar and others (2014) proposed a formulation of the classical model 2.1 to

deal with variable-domain functional data:

ηi = g(µi) = α+ Ciγ +
1

Ti

∫ Ti

0

Xi(t)β(t, Ti) dt, t ∈ [0, Ti], (2.2)

where the univariate coefficient function β(t) is now replaced by the bivariate coefficient func-

tion β(t, T ), that now depends on the time instant t and the data domain T . This functional

parameter is now a surface and the curves obtained by fixing the variable T = Ti represents

the optimal function for Xi(t) to express its contribution over g(µi). Moreover, the integration

limits, previously fixed to be from 0 to T , are now subject-specific, avoiding then the necessity

of a previous curve registration.

In practice, an additional problem of the functional regression is that we only have discrete

observations xik of each sample curve xi(t) at a finite set of points {tik : k = 0, . . . ,mi}. The au-

thors deal with this problem by assuming the basis representation of the functional parameter in

therms of thin-plate regression spline basis. Moreover, in order to get smooth estimations in both

t and Ti directions, the basis coefficients of β(t, Ti) are penalized with a second-order derivative
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penalty. The estimation methodology proposed by Gellar and others (2014) falls within what we

call “partially functional approach”, since it does not take into consideration the functional form

of the variable X(t), working directly on the row data matrix (sample curves at the observation

points), leaving out the possibility of recovering the true functional form of the data and not

filtering the noise commonly present in its discrete observations.

Additionally, this approach limits the options of basis selection when making the basis rep-

resentation of the functional coefficient, more particularly, leaves out the choice of B-spline basis

as an optimal selection and then only isotropic penalization can be used. This might result in

biased estimates of the functional coefficient, as it will be shown in the simulation section.

3. Fully functional Variable-domain functional regression

Partially functional approaches work on the discrete observations xij of each sample curve Xi(t)

at a set of points {tik, k = 0, . . . Ti}. However, in practice it is very common to find functional

datasets observed with error or noise. In that sense, a fully functional approach will perform

a pre-smoothing of the sample curves, recovering the smooth functional form of the data by

means of a basis representation of the sample curves. A review on the different ways to estimate

the basis coefficients as well as the different penalties used and their performance is shown in

Aguilera and Aguilera-Morillo (2013).

The main advantages of the proposed fully functional variable-domain functional regression

model with respect to the approach described in Section 2 are the following: it allows to filter the

inherent noise in the discrete observations of the sample curves, offering a better performance in

the context of sparse data and partially observed data, because it makes an approximation of the

missing data; it considers a more flexible representation of the functional parameter permitting

that any basis can be chosen and then, anisotropic penalties can be used. Notice that when the

discrete observations can be assumed free of error and the number of observations is sufficiently

large, these two approaches perform very similarly.
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3.1 Model formulation in terms of basis functions

Let Y be the scalar response variable and X(t) the functional predictor. Let us consider X(t)

is a second order continuous-time stochastic process, with sample functions {Xi(t) : t ∈

[di, Ti], i = 1, . . . , N} in the Hilbert space H1 = L2(T ) of integrable square functions, with the

usual inner product.

Let us assume the basis representation of the sample curves and the functional coefficient as

follows:

Xi(t) =

pi∑
j=1

aijϕj(t) = ϕ
′
i(t)ai,

β(t, T ) =

q∑
l=1

r∑
k=1

blkφl(t)ψk(T ) =M(t, T )b,

where ϕi(t) = (ϕ1(t), ϕ2(t), . . . , ϕpi
(t))′ and M(t, T ) are the basis used in the representation of

the functional data and the functional coefficient and ai and b their respective basis coefficients.

Notice that M(t, T ) is a bivariate basis function resulting from the tensor product of φ(t) and

ψ(T ), with ψ(t) = (ψ1(t), ψ2(t), . . . , ψr(t))
′ and φ(t) = (φ1(t), φ2(t), . . . , φq(t))

′.

Here pi, q and r are the respective number of basis of ϕi(t),φ(t) and ψ(t). For simplicity,

hereinafter the same number of basis (p) is considered for the basis representations of all sample

curves, i.e., pi = p and ϕi(t) = ϕ(t) ∀i = 1, . . . , N , but this can be easily relaxed.

The choice of the basis is important. This decision is often data driven: if data have periodic

trends a Fourier basis can be used; if data present a strong locally behavior and its derivatives

are not of interest, wavelets basis are the common choice. In this paper B-splines basis (De Boor,

2001) have been considered, which is the common choice when the underlying signal is assumed

to be smooth and their derivatives up to a certain order are needed.

By assuming the basis representation of both, sample curves and functional coefficient, the

model in 2.2 turns into the following multivariate regression model:

η = α+Cγ +
1

T

∫ T

0

X(t)β(t, T ) dt = α+Cγ +AΨb = Bθ, (3.3)
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where T represents the vector considering the length of all curves, so for each sample curve the

integration limits are different.

Notice that the matrix of coefficients A is a block diagonal matrix, where the i-th block of

the diagonal is the estimated vector of basis coefficients a′
i. For the estimation of these basis

coefficients, and following the results in Aguilera and Aguilera-Morillo (2013), we use penalized

least squares with a discrete penalty based on the second order differences between adjacent coef-

ficients of the B-splines (Eilers and Marx, 1996). Finally the matrix of inner products Ψ is a block

column matrix of weighted inner products with the i-th block being a weighted inner product

between the basis ϕ(t) and M(t, Ti): ΨNp×qr = (Ψ1, . . . ,ΨN )′ where Ψi =
1
Ti
⟨ϕ(t),M(t, Ti)⟩,

A =


a′
1 0 . . . 0
0 a′

2 0 . . .
. . . . . . . . . . . .
0 0 . . . a′

N


N×Np

Ψ =


1
T 1

∫ T1

1
ϕ(t)M(t, T1) dt

1
T 2

∫ T2

1
ϕ(t)M(t, T2) dt

...
1

TN

∫ TN

1
ϕ(t)M(t, TN ) dt


Np×qr

.

The elements of the inner products matrix are given by a new operation named partial inner

product defined very recently in Masak and others (2022) and which is detailed below.

Proposition 1: Let H1 = L2(T ) and H2 = L2(F ) be two separable Hilbert spaces as in

Section 1 with F = {T : Tmin ⩽ T ⩽ Tmax} being the space corresponding to all the different

values of the data domains.

Let H = H1 ⊗ H2 where ⊗ represents the tensor product and let f(t), u(T ) and h(t, T ) be

functions in H1, H2 and H , respectively.

Then the partial inner products are two unique bi-linear operators K1 : H × H1 → H2 and

K2 : H × H2 → H1 defined by:

K1(T )h,f =

∫
T

f(t)h(t, T ) dt

K2(t)h,u =

∫
F

u(T )h(t, T ) dT .■

Finally, the elements of the new matrix of inner products are given byΨNp×qr = (Ψ1, . . . ,ΨN )′

are Ψi =
1

Ti
K1(Ti)M,ϕ =

1

Ti

∫
Ti

ϕ(t)M(t, Ti) dt.
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Numerically we approximate these integrals by the Composite Simpson method. The key

difficulty is to perform the integration only in the t dimension while maintaining the proper two

dimensional structure of the basis M(t, Ti). In order to overcome this problem, for each iteration

of the integration, a matrixM i is obtained by performing the Kronecker product of two matrices

φi and ψi. The matrix ψi is the result of evaluating the basis ψ(T ) in the corresponding domain

Ti, i.e., ψi = ψ(Ti). The matrix φi is the result of evaluate the basis φ(t) in a set of points

determined by the integration method, this set of points change according with the domain of

every curve. The basis ϕ(t) is evaluated in the same set of points as the basis φ(t) in every

iteration resulting in a matrix ϕi. Finally when the matrix M i is recalculated, the product

between M i and ϕi is performed.

Notice that the matrix ψi is the i-th row of a more general matrix (ψ)N×r, associated to all

the different domains present in the data: T = [T1, . . . , TN ] and then, for subject i, we select the

corresponding row. Two or more different sample curves can have the same domain; in this case

the corresponding row of the matrix ψ will be the same for all of them.

We use B-splines for all our basis representations because of their desirable properties, but is

not a restriction.

3.2 Model estimation through a mixed model representation

The multivariate regression model (3.3) falls into the category of generalized linear models and

therefore the maximum likelihood method is used in order to estimate the model parameters. In

our motivational example the response variable follows a Poisson distribution with likelihood:

L(θ,y) =
N∑
i=1

yiηi − exp

{
N∑
i=1

ηi

}
.

Since the functional coefficient has been represented using a B-spline basis, the smoothness

of the resulting estimated coefficient is determined by the basis dimension. To avoid the problem
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of choosing the optimal number of basis functions we follow the penalized likelihood approach

by Eilers and Marx (1996) with the final penalized likelihood equation:

Lp(θ,y) = L(θ,y)− 1

2
θ′Pθ,

where L(θ,y) is the likelihood of Y and P is the penalty term. Penalties are, in general, based

on derivatives of curves (Wood, 2017) or differences between adjacent B-splines coefficients (Eilers

and Marx, 1996). We take here this second approach.

Considering that the functional parameter is two dimensional an anisotropic two dimensional

penalization is used, allowing to control the smoothness of the functional coefficient independently

for each dimension. The penalization added is:

P = λt(Ir ×D′
tD

′
t) + λT (Iq ×D′

TDT ), (3.4)

where the matrices Dt and DT are second order differences matrices, where × represents the

Kronecker product.

This penalized approach make the choice of the number of basis not relevant (provided that

the size of the basis is large enough), controlling the smoothness through the smoothing param-

eters λt and λT .

Finally, we use the mixed model reparametrization of a penalized spline to estimate the

parameters of the FF-VDFR model. This transformation allows the estimation of all parameters

in the model, including the smoothing parameters, simultaneously. A brief description of this

reparametrization is done next to help the reader understand the used methodology. For a more

detailed insight into the mixed model reparametrization of a penalized spline when functional

data do not present variable domain see Lee (2010). Our aim is to transform

η = Bθ ⇒Xν +Zδ, δ ∼ N(0,G), (3.5)
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with X and Z are the model matrices, ν and δ are the fixed and random effects respectively,

and G is the variance-covariance matrix of the random effects which depend on two variance

components τ2t and τ2T . This reparametrization is done through a transformation matrix T based

on the SVD factorization of the product of the differences matrices D′
iDi. Let

D′
iDi = [U in|U is]

[
02

Σ̃i

] [
U ′

in

U ′
is

]

be the SVD factorization of the matrixD′
iDi, for i = {t, T} where U in and U is are the eigen-

vectors associated with the zero and non-zero eigenvalues respectively. Then the transformation

matrix T is define as:

T = [T n|T s] = [UTn ×U tn|UTs ×U tn : UTn ×U ts : UTs ×U ts] .

Other options for the transformation matrix T are possible but the one proposed in this paper

allows to recover the estimated original functional parameter θ̂ from the estimated mixed model

coefficients thanks to the orthogonality property of the matrix T and, hence, recover the esti-

mated functional coefficient β̂(t, T ). Using this transformation matrix the model is reparametrized

as follows:

η = Bθ = BTT ′θ =Xν +Zδ,

where BT = [BTn|BTs] = [X|Z], T ′θ = ω with ω′ = (ν′, δ′) and the variance-covariance

matrix G is obtained from applying this transformation to the penalization used before, G−1 =

T ′PT with

G−1 =


1

τ2T
Σ̃T × I2

1

τ2t
I2 × Σ̃t

1

τ2T
Σ̃T × Iq−2 +

1

τ2t
Ir−2 × Σ̃t

 , (3.6)

where for the variance components we have the relations τ2t =
1

λt
and τ2T =

1

λT
(Brumback

and others, 1999)

Finally, penalized quasi-likelihood (Breslow and Clayton, 1993) is used to estimate the mixed
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model coefficient. In order to speed up computations, the SOP algorithm has been applied

(Rodŕıguez-Álvarez and others, 2019).

4. Simulation study

In order to evaluate the performance of the FF-VDFR model, a simulation study has been

carried out in this section and the obtained results have been compared with the one offered

by the VDFR and the usual scalar-on-function (SOF) regression models. For the SOF model, a

previous registration of the curves was performed. The simulation scheme is inspired by the one

performed in Gellar and others (2014).

4.1 Simulation scenarios

For simplicity, only models with one functional covariate and no non-functional covariates have

been considered. In this study 100 data sets have been simulated for each combination of the

following parameters in a total of 3× 2× 2× 2× 4 = 96 different scenarios:

• Three sample sizes: N = {100, 200, 500}.

• Two different types of outcomes: continuous data and count data. In both cases the fol-

lowing linear predictor is used:

ηi =
1

Ti

Ti∑
t=1

Xi(t)β(t, Ti), t = 1, . . . , Ti ⩽ 100,

and Yi = ηi + ϵi, ϵi ∼ N(0, 1) for the continuous outcome and Yi ∼ Poiss(µi) with

µi = exp(ηi) for the count data.

• Two different distribution for the data domain Ti: Uniform(Ti ∼ U(10, 100)) and Negative

Binomial (Ti ∼ NegBin(1, p = 0, 04)).

The domain of the sample curves is set to ensure that every curve have a minimum of 10

and a maximum of 100 observations in both distribution settings (we considered 10 to be an
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acceptable minimum to consider the observed points as observation of the true underlying

functional data Xi(t)). When Ti is simulated using a negative binomial distribution we

truncate the generated values to belong in the interval (10, 100), when a generated value is

lower than 10 (higher than 100) this is set by default as 10 (100).

• Two levels of noise for the true functional covariate.

The true functional covariate Xi(t) is simulated according to the following:

Xi(t) = ui +
10∑
k=1

{
vik1 · sen

(
2πk

100
t

)
+ vik2 · cos

(
2πk

100
t

)}
+ δi(t),

with ui ∼ N(0, 1), vik1, vik2 ∼ N(0, 4
k2 ), δi(t) ∼ N(0, σx), t = 1, . . . , Ti ⩽ 100 and

σx = {0, 1}. Here σx = 0 indicates that the true functional data has been considered as

smooth curves and σx = 1 indicates that the true functional data has been considered as

noisy curves.

• Four different possibilities for the functional coefficient β(t, T ) defined by

β1(t, Ti) = 10
t

Ti
− 5 β2(t, Ti) =

(
1− 2Ti

T

)
×

(
5− 40

(
t

Ti
− 0.5

)2
)

β3(t, Ti) = 5− 10

(
Ti − t

T

)
β4(t, Ti) = sen

(
2πTi
T

)
×
(
5− 10

(
Ti − t

T

))
,

where T = max{T1, . . . , TN} = TN .

For the basis representation of the functional data in the FF-VDFR and SOF models 25

cubic B-splines have been used (p = 25). For the functional coefficient and in the case of the

SOF model, 25 cubic B-splines were used while for the FF-VDFR model, 25 basis functions were

considered for both marginal basis (q = r = 25), resulting in a bi-dimensional basis of size 625.

The penalties used for the estimation of FF-VDFR and SOF models are based on a matrix of

difference of order 2. The VDFR model considers a thin plate basis of size 89 for the functional

coefficient, which is the maximum size allowed by the software, and an isotropic penalty based



4.2 Performance criteria 15

on second-order derivatives.

All simulations were implemented in R Core Team (2013). The package SOP (Rodriguez-

Alvarez and Oviedo de la Fuente, 2021) have been used for the mixed model reparametrization

of the multivariate regression model and its estimation. The estimation of the SOF and VDFR

models have been performed using the refund package (Goldsmith and others, 2021).

4.2 Performance criteria

We evaluate the performance of the above mentioned models with respect to two important

aspects. The first one is the prediction ability. To this end, a cross-validation 10-fold approach

has been carried out. The measure that we use for this prediction errors is the mean of the root

mean square error (RMSE) calculated for every fold:

RMSEj =

√√√√√√
Nj∑
i=1

(Yij − Ŷij)
2

Nj
, j = 1, . . . , 10,

where Yij is the i-th response variable in the j-th fold, Ŷij its corresponding estimation and

Nj is the number of responses in the j-th fold.

Another important aspect is the ability of correctly estimate the true functional coefficient

β(t, T ). To this end the average mean square error (AMSE) is considered as follows:

AMSEr =
1

T (T + 1)

T∑
k=10

k∑
t=1

{
β(t, k)− β̂(t, k)

}2

,

where T = max{T1, . . . , TN} = TN and β̂(t, k) is the estimated functional coefficient.

Notice that with the SOF model it is not possible to calculate the AMSE since this models

only considers one fixed domain for the functional coefficient.
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4.3 Results

In this section we comment the results obtained in the simulation study for all the scenarios, but

due to lack of space only tables and figures for the scenarios where Ti is generated from the neg-

ative binomial distribution and the response variable was simulated from a Poisson distribution

are shown. The rest of the tables and figures can be found in the supplementary material.

Table 1 and Table 2 show the mean and standard deviation (in parenthesis) of the RMSE and

AMSE, respectively, for all the possible true coefficient functions and when the true functional

data are smooth or noisy. The lowest values are highlighted.

N=100

Smooth data Noisy data

β1 β2 β3 β4 β1 β2 β3 β4

VDFR 1.343 (0.256) 1.145 (0.141) 3.143 (1.331) 1.924 (0.532) 1.364 (0.279) 1.155 (0.147) 2.793 (1.047) 1.991 (0.617)

SOF 5.35 (3.762) 1.813 (0.851) 3.196 (0.867) 2.798 (1.147) 5.128 (3.039) 1.803 (0.979) 5.199 (2.471) 2.543 (0.881)

FF-VDFR 1.135 (0.134) 1.118 (0.12) 2.423 (0.898) 1.862 (0.568) 1.137 (0.136) 1.148 (0.142) 2.121 (0.667) 1.824 (0.553)

N=200

Smooth data Noisy data

β1 β2 β3 β4 β1 β2 β3 β4

VDFR 1.193 (0.104) 1.1 (0.076) 2.693 (0.59) 1.827 (0.341) 1.206 (0.117) 1.102 (0.077) 2.633 (0.768) 1.831 (0.38)

SOF 5.269 (2.865) 2.316 (1.146) 4.153 (0.88) 2.923 (0.828) 5.78 (3.422) 2.279 (1.123) 5.641 (2.315) 2.953 (0.974)

FF-VDFR 1.12 (0.101) 1.092 (0.077) 2.311 (0.607) 1.69 (0.343) 1.111 (0.1) 1.096 (0.084) 1.858 (0.33) 1.699 (0.39)

N=500

Smooth data Noisy data

β1 β2 β3 β4 β1 β2 β3 β4

VDFR 1.129 (0.053) 1.087 (0.053) 2.721 (0.66) 1.675 (0.216) 1.133 (0.053) 1.09 (0.053) 2.33 (0.452) 1.692 (0.243)

SOF 3.569 (0.85) 2.616 (1.089) 3.848 (0.705) 3.035 (0.848) 3.523 (0.831) 2.487 (1.067) 9.386 (1.221) 3.143 (0.893)

FF-VDFR 1.101 (0.056) 1.084 (0.056) 2.374 (0.508) 1.65 (0.288) 1.096 (0.05) 1.091 (0.061) 1.964 (0.255) 1.695 (0.323)

Table 1: Mean (standard deviation) of 100 measures of RMSE for all the scenarios where the
domain follows a negative binomial distribution and the response follows a Poisson distribution.

Regarding the RMSE we can see that the FF-VDFR model outperforms all others in all the

scenarios shown in the table except in two cases, when the true functional coefficient is β2(t, T )

and β4(t, T ), the true functional data is noisy and the sample size is 500.

Notice that even in these scenarios the performance is very similar even when worse perfor-

mance of the FF-VDFR model is expected. This is because the observed data correspond to the

noisy curves regardless of whether the true functional data was smooth or noisy. For this reason,

it is expected that filtering the noise by making a basis representation of the sampled curves will
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N=100

Smooth data Noisy data

β1 β2 β3 β4 β1 β2 β3 β4

VDFR 0,0187 (0,0086) 0,0155 (0,0052) 0,0118 (0,0068) 0,0196 (0,013) 0,0197 (0,009) 0,0163 (0,0054) 0,0118 (0,0053) 0,0215 (0,0126)

FF-VDFR 0,0079 (0,0075) 0,0176 (0,0074) 0,008 (0,0126) 0,018 (0,0199) 0,008 (0,0073) 0,0177 (0,0067) 0,0083 (0,0103) 0,0229 (0,0231)

N=200

Smooth data Noisy data

β1 β2 β3 β4 β1 β2 β3 β4

VDFR 0,0246 (0,0039) 0,0217 (0,0057) 0,0142 (0,0051) 0,0254 (0,0101) 0,0243 (0,0044) 0,022 (0,0063) 0,013 (0,0043) 0,0264 (0,0107)

FF-VDFR 0,0083 (0,0094) 0,0193 (0,0098) 0,0085 (0,0058) 0,021 (0,0084) 0,0096 (0,0088) 0,019 (0,0093) 0,0055 (0,0053) 0,0208 (0,0076)

N=500

Smooth data Noisy data

β1 β2 β3 β4 β1 β2 β3 β4

VDFR 0,0291 (0,0079) 0,0455 (0,0138) 0,0115 (0,0199) 0,0229 (0,0165) 0,0281 (0,0094) 0,0451 (0,0142) 0,0106 (0,01) 0,0208 (0,0189)

FF-VDFR 0,0093 (0,0033) 0,0269 (0,0145) 0,01 (0,0046) 0,0195 (0,0101) 0,0093 (0,0039) 0,0228 (0,0141) 0,008 (0,0047) 0,017 (0,0077)

Table 2: Mean (standard deviation) of 100 measures of AMSE when the domain follows a negative
binomial distribution and the response follows a Poisson distribution.

improve the performance of the estimation when the true functional data is smooth but will be

counterproductive when the true functional data is noisy.

Regarding the AMSE, the FF-VDFR model outperforms the VDFR model in all the scenarios

but three, all corresponding to the smallest sample size N = 100, where both methods perform

similarly. Notice that the differences in cases where the FF-VDFR model outperforms the VDFR

model can be significant, for example in the scenarios where the true functional coefficient is

β1(t, T ).

These results by itself could be misleading, because they do not take into consideration the

distribution of all the error measures. Figures 2 and 3 show the violin box-plots for the RMSE and

AMSE measures, respectively, for the scenarios when the true functional coefficient is β3(t, T ). In

these figures, all values that fall outside the interval (q1−1, 5 ·s ; q3+1, 5 ·s) have been excluded,

with q1 and q3 being the first and third quartile, respectively, and s the standard deviation of

the corresponding scenario.

The results shown in the figures reveal that the FF-VDFR model outperforms all other models

for the RMSE and AMSE measurements, in terms of lower error and variability.

From the total of the 96 simulated scenarios, the FF-VDFR model outperformed all the

others in 72 scenarios (75%) in terms of the RMSE. From the scenarios when the proposed

methodology was not the best one, 55% corresponds with noisy true functional data from which
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Fig. 2: Violin box-plots of the RMSE when the domain follows a negative binomial distribution
and the response follows a Poisson distribution and the true functional coefficient is β3(t, T ).
Left column corresponds with the true functional data being smooth while the right column
corresponds with its noisy counterpart. The up, middle, and bottom rows represent sample sizes
of N = 100, 200, 500, respectively. The dot in the middle of the boxes represents the median
value.

a worse performance was expected.

Regarding the AMSE, of the total 96 scenarios the FF-VDFR outperformed the VDFR model

in 82 scenarios (85,5%). And from the scenarios where this model did not offer the best perfor-

mance 50% of the cases correspond with noisy true functional data.

In summary, the FF-VDFR model outperforms all the others in the majority of the scenarios
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Fig. 3: Violin box-plots of the AMSE when the domain follows a negative binomial distribution
and the response follows a Poisson distribution and the true functional coefficient is β3(t, T ).
Left column corresponds with the true functional data being smooth while the right column
corresponds with its noisy counterpart. The up, middle, and bottom rows represent sample sizes
of N = 100, 200, 500, respectively. The dot in the middle of the boxes represents the median
value.

respecting both evaluation criteria used. Furthermore, most of the scenarios when the proposed

model was not the best in performance correspond with the true functional data being noisy from

which a worse performance of the FF-VDFR model is expected. But even in the 48 scenarios of

noisy true functional data the FF-VDFR model is competitive, outperforming both the VDFR

and the SOF models in terms of RMSE in 73% of the scenarios and outperforming the VDFR
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models in terms of the AMSE in 85,4% of the scenarios.

In the next section, we show the results of applying our methodology to our motivational

case study the telEPOC study.

5. Case study: The telEPOC dataset

In this section, we apply the proposed methodology to the telEPOC Study set to determine the

possible relationship between physical activity and the number of hospitalizations due to COPD

in patients.

5.1 telEPOC Study

The telEPOC Study (Esteban and others, 2016) was carried out at the Galdakao-Usansolo Uni-

versity Hospital (Biscay, Spain). Patient collection was done between the years 2010 and 2013,

and the study includes five years of follow-up. The main goal of the study was to evaluate the

efficacy of a telemonitoring-based program (telEPOC) in COPD patients with frequent hospi-

talizations. A total of 119 patients defined as those with frequent hospitalizations previous to

inclusion were selected for telemonitoring at home.

Moreover, one of the goals of the study was to analyze the effect of performing physical

activity on the health of the patients, in particular on the rate of hospitalizations due to COPD.

The performance of daily physical activity was measured as the number of daily steps taken by

each patient during their time in the study, which was included in the telemonitoring process.

This has been the motivation of the work we present in this article.

Patients were included in the study at different time points. However, we are not interested

in the effect, if any, that the different dates of admission on patients may have. For that reason,

and a clearer analysis, we have aligned to the left all the collected variables making all patients

begin the study at “day 1”.
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Daily physical activity was analyzed for the 119 patients included initially in the study. The

daily steps were recorded only for 112 out of the 119 patients. Besides, some of the measurements

of the patients were out of the acceptable range of steps that a person can reach during the day,

which were considered as missing data. Two more patients showed too many irregularities in the

measurements, therefore they were eliminated. All the missing values for the daily steps were

replaced by the mean of the previous and next days. Finally, we worked with a sample of 110

patients with a complete follow-up of daily physical activity. This situation reinforces the idea

that observed data present errors and a previous smoothing will provide better results.

The study also collected clinical variables at baseline as possible covariates of interest: smoking

habits, age, gender, previous hospitalizations due to COPD, anxiety, and depression symptoma-

tology, among others. The number of hospitalizations due to COPD during the time in the study,

the mortality, and the time spent in the study were recorded as potential outcomes. For a detailed

explanation of the data collected in the study as well as the enrollment procedures and criteria

of acceptance, we refer the readers to Esteban and others (2016).

5.2 Methodology

The response variable is the number of hospitalizations suffered by each patient and the func-

tional covariate is the daily physical activity for each patient, measured as the daily steps they

performed. Then, a fully functional variable domain functional Poisson regression model has been

considered. However, the length of the follow-up depends on the patient, and so, the annual rate

of hospitalizations was selected as response variable, instead of the number of hospitalizations,

in order to avoid the cumulative effect of time in the study. All basis used for this data set are

B-splines basis, the number of basis used for the functional covariate was 25 and the number of

basis used for the bidimensional coefficient was 625 (25 for each marginal basis).

AIC criteria has been used to select other covariates in the model with adjusting purposes.

The final model presents one functional covariate and four baseline non-functional covariates
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namely: gender, previous hospitalizations, anxious symptomatology and depressive symptoma-

tology. Nevertheless, for the interpretation of the results, we will focus on the effect of the

functional variable on the annual rate of hospitalizations, adjusting by the rest of covariates in

the model.

A negative value of the functional coefficient β̂(t, T ) will imply a positive influence on the

patient’s health, meaning that physical activity is helping to reduce the annual rate of hospi-

talizations. On the other hand, a positive value should not be interpreted as physical activity

worsening the patient’s health; that is, physical activity is not yet helping to reduce the rate

of hospitalizations. However, interpretation should be cautious, without evidence of significant

effect in any direction.

5.3 Results

In this section we will focus on the results obtained for the estimated functional coefficient β̂(t, T ),

which reflects directly the relationship between the daily number of steps and the annual rate of

hospitalizations due to COPD, adjusted by the baseline covariates in the model.

The estimated functional coefficient is a surface, where the curve resulting of fixing a value

of T = Ti represents the influence of physical activity on the annual rate of hospitalizations for

patients who have performed this physical activity during Ti days.

Figure 4 shows the heat map of the surface β̂(t, T ) for all the periods where patients carried

out physical activity. The heat map presents a common feature: doing physical activity regularly

during more than 6 months help to reduce the mean annual rate of hospitalizations due to COPD.

This conclusion is based on the fact that all the curves longer than 180 days (the vertical dotted

line) end up being negative represented with a cold color (green or blue), meaning a favorable

influence of physical activity in the reduction of the annual rate of hospitalizations due to COPD.

For patients whose corresponding curve is shorter than 6 months, represented at the bottom

of the heat map and marked with the red letter B, we can see how having performed physical
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Fig. 4: Functional coefficient β(t, Ti) for patients with Ti days in the study.

activity this amount of time is not sufficient to reduce the annual rate of hospitalizations since

the end of the corresponding curves in the heat map is a warm color (red or orange) meaning a

positive value of the curve.

A more exhaustive examination of the heat map shows several areas where the behavior is

similar between patients. The first one already mentioned corresponds with the bottom part of the

map; above that can be seen the low-mid area where the patient’s influence begins almost null but

turns positive towards the end, reflected in the negative values of the curves, this area is marked

with the yellow letters L-M. The area directly above is the high-mid region and corresponds to

patients whose curves start out negative, reflecting a positive influence on their health, but then

increasing their value without ever becoming positive, this area is marked with the green letters

H-M. And finally, a small area at the top of the heat map reveals curves that start near zero,
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i.e., small or null influence over the patient’s health, but rapidly decrease meaning that these

patients soon begin to notice a positive influence of the physical activity on their health, this

region is marked with the blue letter T.

In summary, we may conclude that within this group of patients, performing physical activity

helps to reduce the annual rate of hospitalizations due to COPD. More specifically, it was shown

that patients that perform physical activity for at least 6 year will see a reduction in their annual

rate of hospitalizations.

6. Discussion

In this paper a fully functional approach for the variable domain functional generalized lineal

model is proposed. This approach is based on assuming the basis representation of both the

functional data and the functional coefficient. As a consequence, the functional model turns into

a multivariate model, which has been reparametrized to a mixed model to gain computational

efficiency. We refer to this new approach as fully functional variable domain functional regression

model (FF-VDFR). This methodology can be seen as the extension of the methodology proposed

in Aguilera-Morillo and others (2013) to the variable domain context.

The performance of the FF-VDFR model was tested via a simulation study and compared

with the usual scalar-on-function model and the VDFR model, showing that the FF-VDFR

model outperforms all the others in the evaluation criteria used.

The methodology presented was developed in order to analyse the influence of physical activity

on the annual rate of hospitalizations in COPD patients. The analysis showed that a steady

performance of physical activity for at least 6 months helps in the reduction of the annual rate

of hospitalizations due to COPD.

The proposed methodology solves some of the limitations existing in previous approaches

such as the optimality of the anisotropic penalties or the free choice of basis.

A future extension of the FF-VDFR model is the case of the function-on-function regression
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models for a situation in which the regressors and/or the response variable present variable

domain.
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