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Abstract: In this study, two closed-form solutions for determining the first two natural frequencies of
the flapwise bending vibration of a cracked Euler–Bernoulli beam at low rotational speed have been
developed. To solve the governing differential equations of motion, the Frobenius method of solution
in power series has been used. The crack has been modeled using two undamaged parts of the
beam connected by a rotational spring. From the previous results, two novel polynomial expressions
have been developed to obtain the first two natural frequencies as a function of angular velocity,
slenderness ratio, cube radius and crack characteristics (depth and location). These expressions have
been formulated using multiple regression techniques. To the knowledge of the authors, there is no
similar expressions in the literature, which calculate, in a simple way, the first two natural frequencies
based on beam features and crack parameters, without the need to know or solve the differential
equations of motion governing the beam. In summary, the derived natural frequency expressions
provide an extremely simple, practical, and accurate instrument for studying the dynamic behavior
of rotating cracked Euler–Bernoulli beams at low angular speed, especially useful, in the future, to
establish small-scale wind turbines’ maintenance planes.

Keywords: cracked Euler–Bernoulli rotating beam; natural frequencies; closed-form solution; slen-
derness; low angular velocity; Frobenius; series solution
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1. Introduction

The blades of different devices such as wind turbines, small-scale wind turbines,
helicopters, open rotors and drones are examples of mechanical components that may
present cracks that, due to operating conditions, grow to catastrophic failure. These
rotating blades work under bending and tensile stresses producing stress variations over
time. The combination of stresses with defects, extreme temperatures and aggressive
environmental conditions can lead to crack growth. These mechanical components are
common in many strategic industrial sectors of great economic and social interest, such as
renewable energies and aeronautics. Therefore, from a safety point of view, it is essential to
achieve acceptable levels of reliability during operation.

Due to its geometrical characteristics, a rotating blade is usually modeled as a beam
based on the theories of the Euler–Bernouilli, Rayleigh, or Timoshenko beams. The dif-
ference between them lies mainly in the geometrical conditions and in the mechanical
effects they are able to reproduce. In addition, it is necessary to take into account the range
of speeds at which these blades operate, which is variable depending on the use of the
machinery to which they belong. For instance, turbine blades may revolve at several thou-
sand revolutions per minute, although helicopter blades typically rotate at few hundred
revolutions per minute and wind turbines typically function at less than 20 revolutions
per minute. For the case of slender blades subjected to low rotational speeds, the Euler
Bernoulli beam is the most suitable model [1].
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Determining the modal characteristics of rotating beams is crucial for their design
and for the evaluation of their performance, so that numerous researchers, i.e., [1,2], have
studied this topic in the past. The mechanical behavior of the a rotating beam, both in
the plane of rotation (chordwise direction) and out of it (flapwise direction), depends on
the centrifugal force that emerges due to rotation and varies with distance from the center
of rotation.

Rotating blades are mechanical elements whose guidelines that can be straight or
warped. On the other hand, the geometry of their cross-sections can be modeled as
uniform [3,4] or variable (tapered) [5,6]. In relation to the boundary conditions, one end
of the rotating blade is always free and the other can be modeled, depending on the
applications, as a cantilevered end, as in the case of wind turbine blades, or with the end
simply supported, as in the case of helicopter blades. Finally, regarding the materials,
composite materials are mostly used for wind turbine blades [7], while metal alloys are
used for turbine blades [8]. However, recent studies on simple beam models found in the
literature, applicable to both cases, use either metals, aluminum alloys [9,10], or composite
materials [11,12].

Focusing on healthy rotating beams, in the literature, numerous studies of their
dynamic behavior can be found [4,13]. Regardless of the beam model used, Euler–Bernoulli,
Rayleigh or Timoshenko beams, the equation that arises is a complex resolution fourth
order differential equation with variable coefficients. Different methods used to address
the problem can be found in the literature such as the Rayleigh–Ritz method [14–16],
the finite element method [17,18], the differential transform method [19], the Frobenius
method [9,20,21] or the Galerkin method [22]. Of these, those that give rise to closed-
form solutions are particularly interesting when the inverse problem is to be addressed
a posteriori.

From a safety point of view, it is particularly important to know the dynamic behavior
of damaged mechanical elements.The study of these kinds of elements has been carried
out for several decades, collected in various articles such as the exhaustive review of
Dimarogonas [23]. The presence of a defect, such as a crack, produces a local stiffness loss
that affects the transverse displacements, which increase, and the vibration frequencies,
which decrease. As a general rule, studies have focused on one-dimensional mechanical
elements such as beams and shafts [24–26] since these are a very good simplification of
common components in industry. On crack modeling, most authors model the cracked
beam as two beams connected by one or more springs, located in the section that contains
the crack, and whose stiffness represents the increase in local flexibility as a result of its
presence. In most of the works, the stiffness of the spring is obtained from the application
of Fracture Mechanics concepts such as the Stress Intensity Factor (SIF) or the integral J,
such as in [27,28]. When addressing the problem of studying the behavior of the blade with
a defect, the appearance of a crack implies the modification of the movement equations,
requiring the introduction of terms that take into account the effect of damage. According
to Fracture Mechanics, as already indicated, a crack can be considered as an additional
local flexibility due to the increase in strain energy that occurs in the vicinity of the crack
front (stress energy release rate method, SERR) [29,30]. The procedures used to solve the
equations of motion of the cracked beam do not differ from those previously mentioned for
intact beams.

Unlike what happens with intact rotating beams and with non-rotating cracked beams,
for which the number of papers is very large, to the authors’ knowledge, the number
of papers on the behavior of cracked rotating beams is small. The first studies that can
be found date from the late 1980s. In these early works, for example, Lien et al. [22]
and Chen et al. [31] used a finite element model to analyze the effect of the crack on the
vibratory behavior and stability of the rotating beam, taking into account the effects of
shear stress and rotational inertia; Datta et al. [32] quantitatively studied the influence
of the size and position of the defect on the natural frequency of a short blade with a
crack that is always open; Wauer [33] formulated the equation of motion of an Euler
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Bernoulli beam by substituting the effect of the crack for a torsion spring with flexibility
equal to that of the cracked section; and Krawczuk [34] studied the changes of the natural
frequencies assuming an Euler–Bernoulli beam with an always open crack using the finite
element method. More recently, Cheng et al. [35] have studied the influence of various
parameters on the vibratory characteristics of tapered cracked rotating beams using the
finite element method; Liu et al. [36,37] have formulated a 3D finite element model that
allows for studying different aspects of the behavior of cracked blades; Yashar et al. [38,39]
have compared the behavior of an intact and a cracked beam using two methods, Rayleigh–
Ritz and finite element, in different planes of motion, Lee et al. [9] have used the transfer
matrix and Frobenius methods to solve the equation of motion in rotating beams with
multiple cracks and Karimi et al. [40] have studied the stability of a non-uniform rotating
beam using the finite element method. Although, in cracked beams, the presence of cracks
affects both flapwise and chordwise vibrations, and the first case studies are in the majority
of the works, such as [9,41] because they are not coupled with others as is the case with
axial and chordwise directions [3].

In order to establish adequate maintenance plans, it is necessary to have a good
knowledge of the relationship between certain variables that characterize the dynamic
behavior of the beam (such as natural frequencies) and the properties of the crack (usually
depth and location). In cracked rotating beams, it is complex to achieve this because, on the
one hand, it is not easy to solve the governing differential equations of motion and, on the
other hand, there are two opposite effects. The first one is an increase of flexibility due to
the presence of the crack, and the other one is a decrease of flexibility due to the rotating
speed. The compensation of both effects can make damage detection more difficult [9].
In addition, the effect of angular velocity on stiffness is not linear, and it is much greater for
high speeds than for lower ones. Therefore, it is advisable that studies of both speed ranges
be performed separately.

In this work, the determination of the first two natural frequencies in the flapwise
bending direction of cracked slender beams, rotating at low speeds, has been proposed. It
should be said that the first two natural frequencies have been chosen because they are the
ones that are usually available for real beams. For this purpose, the equations of motion
have been solved by modeling the presence of the crack by means of a torsion spring, and
the resolution has been carried out using the Frobenius method. The results have been
compared with others in the literature and a great similarity has been found. The developed
expressions allow the calculation of the frequencies as a function of the main variables such
as the rotation speed, the slenderness coefficient, the hub radius and the crack characteristics
(depth and location). To the authors’ knowledge, there is no similar expressions in the
literature, which calculate, in a simple way, the first two natural frequencies based on beam
features and crack parameters, without the need to know or solve differential equations.
These closed-form solutions, obtained for low rotation speeds, will be especially useful in
the future to establish maintenance planes for small-scale wind turbines.

The paper is organized as follows: Section 2 is devoted to the formulation and solution
of the well-known differential equations of motion governing the beam, as well as to the
verification of the goodness of the results obtained. Sections 3–5 are completely novel.
In Section 3, the closed-form solutions of the first two natural frequencies are developed,
while in Section 4 they are validated. Finally, the results of the application of the calculated
closed-form solutions are presented in Section 5.

2. Mathematical Model and Formulation of the Problem
2.1. Model of the Cracked Euler–Bernoulli Rotating Beam

In this work, a cracked Euler–Bernoulli rotating beam with the characteristics described
below is considered. Let us consider a uniform beam of length L, whose rectangular cross-
section, with double symmetry, is a rectangle having a height H and a thickness b. The beam
rotates with constant angular velocity Ω around axis z

′
. The crack, whose depth is a, is

located at a distance xc from the junction between the hub and the beam, point O, which is
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the origin of the xyz reference frame. Figure 1 shows the scheme of the cracked beam, where
R is the radius of the hub attached to the beam. On the other hand, only the transverse
deflection along the coordinate z (flapwise) is considered, i.e., the displacement W(x, t)
shown in Figure 1.

Figure 1. Scheme of the cracked rotating beam.

The differential equation governing the motion of an intact rotating beam, Equation (1),
is a fourth order equation that can be obtained using Newton’s Second Law [9,21]:

ρA
∂2W(x, t)

∂t2 +
∂2

∂x2

(
EI

∂2W(x, t)
∂x2

)
− ∂

∂x

(
P(x)

∂W(x, t)
∂x

)
= 0 (1)

where t is the time, ρ is the density of the material, E is the Young’s modulus, A represents
the area of the cross section, and I is the moment of inertia of the rectangular section.
Finally, P(x) is the centrifugal force appearing in the axial direction as a consequence of the
rotation, which can be calculated by expression (2):

P(x) =
∫ L

x
ρAΩ2(x + R)dx (2)

Equation (1) can be solved by using the classical separation of variables method as:

W(x, t) = LW(x)eiωt (3)

where ω represents the natural frequency of vibration, and W(x) is the dimensionless
displacement.

Using the following non-dimensional variables,

ξ =
x
L

r =
R
L

α =
a
H

µ =

√
ρAL4

EI
ω M =

√
ρAL4

EI
Ω (4)

the expression (1) becomes (5)

d4W(ξ)

dξ4 −M2 d
dξ

((r(1− ξ) +
1
2
(1− ξ2))

dW(ξ)

dξ
)− µ2ω = 0 (5)

In the case of a cracked beam, the model is made with two intact beams connected by
a massless spring, see Figure 2, where K represents the stiffness (inverse of the flexibility)
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introduced by the crack that is equal to the spring stiffness, according to [29], given by
expression (6). In addition, the dimensionless position of the crack is assumed to be ξc,
as expressed in (7).

1
K

=
6π(1− ν2)Hφ(α)

EI
φ(α) = 0.6272α2 − 0.04533α3 + 4.5948α4 − 9.9736α5

+20.2948α6 − 33.031α7 + 47.1063α8 − 40.7556α9 + 19.6α10

(6)

with ν being the Poisson ratio of the beam material:

ξc =
xc

L
(7)

Figure 2. Scheme of the cracked beam model by joining two intact beams.

The equation of motion for an intact beam (1) becomes (8) for a cracked beam.

d4W1(ξ)

dξ4 −M2
d((r(1− ξ) + 1

2 (1− ξ2))dW1(ξ)
dξ )

dξ
− µ2W1 = 0 0 6 ξ 6 ξc

d4W2(ξ)

dξ4 −M2
d((r(1− ξ) + 1

2 (1− ξ2))dW2(ξ)
dξ )

dξ
− µ2W2 = 0 0 6 ξc 6 1

(8)

where W1 and W2 represent the Beam 1 and Beam 2 dimensionless displacements, respec-
tively, see Figure 2, along the z direction.

To solve the above differential equations, the four following boundary conditions are
needed, two for each end of the beam:

W1(0) = 0
dW1(0)

dξ
= 0

d2W2(1)
dξ2 = 0

d3W2(1)
dξ3 = 0

(9)

In addition, the four compatibility conditions corresponding to the cracked section,
must be satisfied as well:

W1(ξc) = W2(ξc)

dW2(ξc)

dξ
− dW1(ξc)

dξ
=

1
kc

d2W2(ξc)

dξ2

d2W1(ξc)

dξ2 =
d2W2(ξc)

dξ2

d3W1(ξc)

dξ3 =
d3W2(ξc)

dξ3

(10)
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being:

kc =
K
EI

(11)

2.2. Solving the Equation of Motion

The solution of the equation of motion previously presented is approached using the
Frobenius method [9,21,42]. Following this method, the solution of the differential equation
is expressed in the form of power series (12):

f (ξ, j) =
∞

∑
n=0

an+1(j) · ξ j+n (12)

where an+1(j) are the series coefficients, and j is an indeterminate exponent.
The function f (ξ, j) represents both W1 and W2, since both expressions are identical

before applying the boundary conditions.
Substituting (12) in (8), the indicial Equation (13) and the recurrence relationship (14)

can be obtained [43]:
j(j− 1)(j− 2)(j− 3) = 0 (13)

an+5(j) =
M2( 1

2 + r)
(j + n + 3)(j + n + 4)

an+3(j)

− M2r(j + n + 1)
(j + n + 2)(j + n + 3)(j + n + 4)

an+2(j)

−
1
2 M2(j + n)(j + n + 1)− µ2

(j + n + 1)(j + n + 2)(j + n + 3)(j + n + 4)
an+1(j)

(14)

being:
a1(j) = 1

a2(j) = 0

a3(j) =
M2( 1

2 + r)
(j + 1)(j + 2)

a4(j) =
−M2rj

(j + 1)(j + 2)(j + 3)

(15)

The four roots of the indicial Equation (13) are j = 0, 1, 2, 3. Now, the four linearly
independent solutions can be obtained from these roots (16):

f (ξ, 0) = 1 +
M2( 1

2 + r)
2

ξ2 +
∞

∑
n=0

an+5(0)ξn+4

f (ξ, 1) = ξ +
M2( 1

2 + r)
6

ξ3 − M2r
24

ξ4 +
∞

∑
n=0

an+5(1)ξn+5

f (ξ, 2) = ξ2 +
M2( 1

2 + r)
12

ξ4 − M2r
30

ξ5 +
∞

∑
n=0

an+5(2)ξn+6

f (ξ, 3) = ξ3 +
M2( 1

2 + r)
20

ξ5 − M2r
40

ξ6 +
∞

∑
n=0

an+5(3)ξn+7

(16)

The solution of the differential equations of motion of Beam1 and Beam2, F1(ξ) and
F2(ξ), respectively, according to (17) can be written as a combination of the expressions (16),
taking into account that the function f (ξ, j) represents both W1 and W2.

F1(ξ) = C1W1(ξ, 0) + C2W1(ξ, 1) + C3W1(ξ, 2) + C4W1(ξ, 3) 0 6 ξ 6 ξc

F2(ξ) = C5W2(ξ, 0) + C6W2(ξ, 1) + C7W2(ξ, 2) + C8W2(ξ, 3) ξc 6 ξ 6 1
(17)
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Note that C1 to C8 are constants that can be calculated from the boundary and compat-
ibility conditions (9) and (10).

2.3. Verification of the Analytical Model

To demonstrate the accuracy of the present model, some results obtained from the
application of the model have been compared with others reported in literature. First,
a comparison with data from [9] has been carried out. Secondly, in order to study the hub
radius influence, a comparison with some results from Banerjee et al. [43] has been made.
The authors of this work have not found any studies dealing with beams rotating at low
speeds, so the comparisons explained above have been performed with the lowest possible
speeds found in the literature. Table 1 shows the comparison with the results obtained
by Lee et al. [9] for a beam with the following characteristics: L = 0.8 m, H = 0.01 m,
b = 0.03 m, r = 0, E = 200 GPa, ρ = 7850 kg

m3 and ν = 0.3. In addition, two rotation speeds
(Ω = 0 and Ω = 100 rad/s), a healthy beam and a cracked beam with different crack
positions (ξc = 0.2, 0.4, 0.6, 0.8) with α = 0.5 have been considered. Moreover, to check
non-zero r values, in Table 2, the comparison with [43] is presented, in dimensionless terms,
for r = 1 and M = 1. Furthermore, both Tables 1 and 2 show the convergence of the
power series in all cases; this allows for determining the optimal number of terms of the
power series.

Although the Frobenius method allows the calculation of infinite natural frequencies
as long as the number of terms of the series is adequate, in this work, only the first two
natural frequencies have been calculated because they are the most common and usually
available in real beams.

According to the comparisons shown in Tables 1 and 2, the model offers accurate
results and the convergence of the power series method is very good. In all cases, the value
of the calculated natural frequencies with 30 terms in the power series (marked in yellow)
coincide the reference ones (marked in blue).

Table 1. Comparison between the present model results and results from Lee et al. [9].
Reprinted/adapted with permission from [9]. 2016, Springer Nature.

Healthy Beam Ω = 0
Present model

N 10 20 30 40 Lee et al. [9]

ω1 (Hz) 12.741 12.740 12.740 12.740 12.740
ω2 (Hz) 74.564 79.841 79.842 79.842 79.482

Healthy Beam Ω = 100 rad/s
Present model

N 10 20 30 40 Lee et al. [9]

ω1 (Hz) 20.943 21.447 21.440 21.440 21.440
ω2 (Hz) 57.000 89.539 89.533 89.533 89.533

Cracked Beam ξc = 0.2 Ω = 0
Present model

N 10 20 30 40 Lee et al. [9]

ω1 (Hz) 12.242 12.241 12.241 12.241 12.241
ω2 (Hz) 74.819 79.813 79.814 79.814 79.813

Cracked Beam ξc = 0.2 Ω = 100 rad/s
Present model

N 10 20 30 40 Lee et al. [9]

ω1 (Hz) 21.364 21.190 21.182 21.182 21.182
ω2 (Hz) 84.214 89.256 89.519 89.519 89.519
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Table 1. Cont.

Cracked Beam ξc = 0.4 Ω = 0
Present model

N 10 20 30 40 Lee et al. [9]

ω1 (Hz) 12.531 12.531 12.531 12.531 12.531
ω2 (Hz) 70.322 77.789 77.792 77.792 77.792

Cracked Beam ξc = 0.4 Ω = 100 rad/s
Present model

N 10 20 30 40 Lee et al. [9]

ω1 (Hz) 21.958 21.375 21.367 21.367 21.367
ω2 (Hz) 77.421 87.785 87.793 87.793 87.793

Cracked Beam ξc = 0.6 Ω = 0
Present model

N 10 20 30 40 Lee et al. [9]

ω1 (Hz) 12.687 12.687 12.687 12.687 12.687
ω2 (Hz) 66.998 77.046 77.052 77.052 77.052

Cracked Beam ξc = 0.6 Ω = 100 rad/s
Present model

N 10 20 30 40 Lee et al. [9]

ω1 (Hz) 21.939 21.432 21.424 21.424 21.424
ω2 (Hz) 72.822 87.047 87.082 87.082 87.082

Cracked Beam ξc = 0.8 Ω = 0
Present model

N 10 20 30 40 Lee et al. [9]

ω1 (Hz) 12.736 12.736 12.736 12.736 12.736
ω2 (Hz) 69.830 79.261 79.270 79.270 79.270

Cracked Beam ξc = 0.8 Ω = 100 rad/s
Present model

N 10 20 30 40 Lee et al. [9]

ω1 (Hz) 23.205 21.446 21.439 21.439 21.439
ω2 (Hz) 79.929 88.918 88.978 88.978 88.978

Table 2. Comparison between the present model results and results from Banerjee [43].
Reprinted/adapted with permission from [43]. 2000, Elsevier.

Healthy Beam M = 1 r = 1
Present model

N 10 20 30 40 Banerjee [43]

µ1 3.8905 3.888 3.888 3.888 3.888
µ2 20.4430 22.3749 22.3750 22.3750 22.3750

3. Determination of the Closed-Form Solutions

In this section, two novel polynomial expressions for the first two natural frequencies
of a cracked Euler–Bernoulli rotating beam at low angular speed have been determined
in terms of the angular velocity, slenderness ratio, hub radius, crack location and crack
depth. To the best of the authors’ knowledge, no such expressions have been found in the
literature for the time being.

For this purpose, firstly, let us consider a beam of length L = 700 mm, thickness
b = 10 mm, Young’s modulus E = 210 GPa, Poisson ratio ν = 0.33 and density ρ = 7850 kg

m3 .
The fist two dimensionless natural frequencies, µ1 and µ2, have been calculated for different
cases of the beam under consideration.The analyzed cases have been selected in accordance
with the following:

• Slenderness ratio: SL = 70, 120, 170 and 220, according to (18)
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SL =

√
AL2

I
(18)

• Dimensionless hub radius: r = 0, 0.1, 0.2 and 0.3;
• Dimensionless crack location: ξc = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9;
• Dimensionless crack depth: α = 0, 0.1, 0.2, 0.3, 0.4 and 0.5, where α = 0 corresponds to

a healthy beam.

In a previous step, the suitability of an independent low speed model, different
than a high speed one, will be verified. Figures 3 and 4 show the dimensionless natural
frequencies, µ1 and µ2, respectively, vs. the rotational speed Ω, from 0 to 300 rad/s.
The results correspond to a random case (r = 0.26, ξc = 0.35, α = 0.22 and SL = 85).
The behavior of other cases coincides with that presented here.

Figure 3. Dimensionless natural frequency, µ1, vs. rotational speed Ω for: r = 0.26, ξc = 0.35,
α = 0.22 and SL = 85.

Figure 4. Dimensionless natural frequency, µ2, vs. rotational speed Ω for: r = 0.26, ξc = 0.35,
α = 0.22 and SL = 85.

As can be seen in Figures 3 and 4, the effect of the rotational speed on natural frequen-
cies is not linear, it is much greater for high speeds than for lower ones. This can be seen
even better in Figure 5a,b, where the slope values of the previous curves are shown, for µ1
and µ2, respectively.
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Figure 5. Slope of the curve dimensionless natural frequencies µ vs. rotational speed Ω for: r = 0.26,
ξc = 0.35, α = 0.22 and SL = 85. (a) µ1 and (b) µ2.

According to the above mentioned considerations, the expressions are determined
only for low rotation speeds. Specifically, the considered values of angular velocity are
Ω = 0, 2, 4, 6, 8 and 10 rad/s. To determine both closed-form solutions, the corresponding
non-dimensional rotational speed values, M, have been used.

Therefore, the combination of all these parameters has produced 4416 cases, 96 for
healthy beams and 4320 for cracked ones that have been used to determine the two closed-
form solutions.

As an example, Figure 6a,b show the general shape of the dimensionless frequencies,
µ1 and µ2, respectively, as a function of different values of α and ξc. As before, these are
results for this random case: r = 0.2, SL = 120 and Ω = 6 rad/s. For the rest of the
slenderness, hub radius and rotational speed values, the figures have similar shape.

Figure 6. Dimensionless frequency for different values of α and ξc (r = 0.2, SL = 120 and
Ω = 6 rad/s). (a) µ1 and (b) µ2.

Figure 6a,b show curves of the same shape. In the case of µ1, (a), it is observed that
the frequency is lower as the crack is deeper and closer to the rotation axis.

Regarding µ2, (b), it decreases with crack depth, but, regarding the location, a mini-
mum is reached when the crack is in the middle section.

Although the mode shapes associated with the natural frequencies are not necessary to
calculate the closed-form solutions, as an example, Figures 7 and 8 show the first and second
modes, respectively, when r = 0.2, SL = 120, ξc = 3, Ω = 6 rad/s and for three different
crack depths (α = 0.1, 0.3 and 0.5). In both cases, figures within the detail rectangles show
that, in the vicinity of the crack, ξc = 0.3, there are differences in the modes related with
the size of the defect.
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Figure 7. First mode shape for the case r = 0.2, SL = 120, ξc = 3, Ω = 6 rad/s and for three different
crack depths (α = 0.1, 0.3 and 0.5).

Figure 8. Second mode shape for the case r = 0.2, SL = 120, ξc = 3, Ω = 6 rad/s and for three
different crack depths (α = 0.1, 0.3 and 0.5).

According to the shape of the curves shown in Figure 6a,b, for a given set of values of
M, SL, r and ξc, the plots representing the dimensionless crack depth α vs. µ1 or µ2, have
similar shape, regardless of the considered values of the other parameters. Taking advance
on this idea, Figure 9a,b show the schematics of the α vs. µ1 and α vs. µ2, respectively.
As can be seen, both schemes are similar, differing only in the value of µ.

The first step in determining the two closed-form solutions is to obtain polynomials
using multiple regression techniques. The objective is the calculation of µq

α0 , µq
α01 , µq

α02 ,
µq

α03 , µq
α04 and µq

α05 , as a function of M (dimensionless rotation speed), r (dimensionless
hub radius), SL (slenderness ratio) and ξc (dimensionless crack location), taking into account
all the calculated results from the present model, where q can be 1 or 2, representing the
first or second natural frequency, respectively. For a better understanding, α0 to α05 are
superscripts indicating which value of the dimensionless crack depth is being considered in
each case, while the superscript α represents a general case. In the second step, the general
equations of the curves shown in Figure 9a,b are derived from previous results. In addition,
finally, in the third step, the non-dimensional frequencies are calculated as a function of the
five mentioned parameters. To explain this procedure graphically, a schematic flowchart is
shown in Figure 10. The procedure is the same for both dimensionless natural frequencies.
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Figure 9. Schemes of the graphs α vs. µ1 (a) and α vs. µ2 (b).

Figure 10. Scheme of the whole procedure to calculate the two closed-form solutions of non-
dimensional natural frequencies.

The expressions calculated in Step 1 (see Figure 10) all have a similar format, according
to (19):

µq
α(M, r, SL, ξc) =

i∗

∑
i=0

j∗

∑
j=0

k∗

∑
k=0

l∗

∑
l=0

Cα
ijkl ·M

i · rj · Sk
L · ξ l

c (19)

where i, j, k and l are the degrees of the polynomials in M, r, SL and ξc, respectively. Cα
ijkl

are the coefficients of the fits, which can be found in the public repository [44], and, finally,
i∗, j∗, k∗ and l∗ are the values obtained for the best fit. The values for each case together
with the R2 coefficients and the mean square errors (MSE) are shown in Table 3 .
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Table 3. Grades of the best fits, R2 coefficients and MSE.

i∗ j∗ k∗ l∗ R2 MSE

µα0
1 2 1 1 - 0.9999 7.2× 10−10

µα01
1 2 1 3 3 0.9999 2.59× 10−9

µα02
1 2 1 2 3 0.9999 4.43× 10−7

µα03
1 2 1 3 3 0.9998 3.27× 10−7

µα04
1 2 2 2 3 0.9990 6.75× 10−6

µα05
1 1 2 3 2 0.9995 1.08× 10−5

µα0
2 2 3 1 - 0.9999 5.9× 10−10

µα01
2 2 2 2 4 0.9944 3.68× 10−6

µα02
2 1 2 2 5 0.9948 4.81× 10−5

µα03
2 1 2 2 5 0.9954 2.13× 10−4

µα04
2 1 2 3 4 0.9973 4.17× 10−4

µα05
2 2 3 2 4 0.9968 1.25× 10−3

The general expressions of curves α vs. µq are in the form of the Equation (20):

µq = Φq
1α5 + Φq

2α4 + Φq
3α3 + Φq

4α2 + Φq
5α + Φq

6 (20)

where Φq
1 to Φq

6 are twelve unknown coefficients, six for µ1 and six for µa that are calculated
according to (21) expressions:

Φ = Γ−1µq

Γ =



0 0 0 0 0 1
0.1 0.12 0.13 0.14 0.15 0.16

0.2 0.22 0.23 0.24 0.25 0.26

0.3 0.32 0.33 0.34 0.35 0.36

0.4 0.42 0.43 0.44 0.45 0.46

0.5 0.52 0.53 0.54 0.55 0.56

 Φ =



Φq
1

Φq
2

Φq
3

Φq
4

Φq
5

Φq
6


µq =



µq
α0

µq
α01

µq
α02

µq
α03

µq
α04

µq
α05


(21)

Finally, from previous equations, for any data set (M,r,SL, ξc,α), both µ1 and µ2 can
be estimated.

4. Reliability of the Closed-Form Solutions

To assess the reliability of the proposed model, the results have been compared with
those obtained from the original data. Figure 11a,b show, for all cases, the percentage error
calculated as (22) for µ1 and µ2, respectively, with respect to the original values.

εµq(%) =
(µreal

q − µest
q ) ∗ 100

µreal
q

(22)

with µreal
q and µest

q being the real and estimated values, respectively.
As can be seen in Figure 11, the estimation of the frequencies using the closed-form

solutions is considered to be very good, since the error always remains under 1.0% for
µ1 and 0.5% for µ2. In addition, the mean percentage error ( ¯εµq ) for each combination of
crack depth (α) and its location (ξc), including all rotation velocity (M), hub radius (r) and
slenderness ratio (SL), is shown in Figure 12a,b, for µ1 and µ2, respectively. In addition,
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finally, for both dimensionless natural frequencies, the mean percentage error for each
rotation velocity, including all the values of the rest parameters, is shown in Figure 13.

Figure 11. Percent error for µ1 (a) and µ2 (b).

Figure 12. Mean percentage error considering each combination of α and ξc for µ1 (a) and µ2 (b).

Figure 13. Mean percentage error for each rotation velocity for µ1 and µ2.

As can be observed in Figure 12, the mean error is less than 0.05% for all depths,
except for α = 0.3 that, in the case of µ2, is as high as 0.1%. For large crack depths (α = 0.5),
the mean errors increase, but they never exceed 0.3%. On the other hand, according to
Figure 13, the mean errors increase with rotational speed, with this trend being stronger for
µ2. In any case, the comparison between the results obtained from the original data and
those from the closed-form solutions can be considered acceptable, as the errors obtained
are very small.
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5. Application of the Model, Discussion and Results

In this section, the developed two closed-form solutions have been applied to another
set of values that have been randomly chosen, different from those used to derive the
expressions. The new considered random cases are:

Set 1

• Ω = 9.3 rad/s
• r = 0.17
• SL = 121
• α = 0.08, 0.13, 0.22, 0.37 and 0.48
• ξc = 0.18, 0.35, 0.52 and 0.78

Set 2

• Ω = 3.2 rad/s
• r = 0.26
• SL = 85
• α = 0.06, 0.18, 0.25, 0.31 and 0.42
• ξc = 0.26, 0.43, 0.65 and 0.86

In Figure 14a–d, the percentage errors calculated according to (22) are plotted for both
µ1 and µ2, and for Set 1 and Set 2 values. As expected, the calculated errors are larger
than those obtained for the data used to develop the closed-form solutions. In general,
the calculated errors are larger for µ2 than for µ1. On the other hand, for both µ1 and µ2,
the percentage errors are maximum for the deepest cracks and at a location closest to the
hub, being about 8.5% in the worst case. However, the absolute mean percentage errors are
less than 2%, namely, 2%, 1.22%, 1.48% and 1.53% for Set1-µ1, Set1-µ2, Set2-µ1 and Set2-µ2,
respectively. Regarding the slenderness ratio and the hub radius, they do not influence
the value of errors. In summary, although the errors have logically increased with respect
to those shown in Figures 11–13, they can be considered acceptable values for a practical
application of the two developed closed-form solutions, especially in the case of incipient
cracks, around α ≤ 0.3, and situated at a dimensionless location (ξc) greater than 1/3.

Figure 14. Closed-form solutions application to random data, different from those used to develop
them. Percentage errors between real values and estimated ones. (a) Set 1. α vs. εµ1 ; (b) Set 1. α vs.
εµ2 ; (c) Set 2. α vs. εµ1 ; (d) Set 2. α vs. εµ2 .
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6. Conclusions

This work presents the calculation of the first two natural frequencies in bending
in the flapwise direction of cracked slender beams rotating at low rotational speeds as
a function of angular velocity, beam slenderness ratio, hub radius and crack depth and
location. To this end, the crack has been modeled by a rotational spring connecting
the two undamaged parts, and then the governing differential equations of motion of
the cracked beam have been solved using the Frobenius method of solution in power
series. The results have been validated by comparison with results from the literature.
From the solutions of the equations of motion, two expressions for the first two natural
frequencies have been formulated using multiple regression techniques. Subsequently,
on the one hand, the results obtained from the expressions have been compared with
the original data used for their formulation. The agreement is very satisfactory since the
errors are extremely small. In addition, on the other hand, the two closed-form solutions
developed have been applied to another set of values, chosen at random and different
from those used to develop the expressions. Although the obtained errors are larger
than before, they are acceptable for a practical application of the calculated expressions,
especially for incipient cracks around α ≤ 0.3, and situated at a dimensionless location
(ξc) greater than 1/3. To the authors’ knowledge, there is no similar expression in the
literature that calculates, in a simple way, the first two natural frequencies from the beam
characteristics and crack parameters, without the need to know or solve the differential
equations of motion governing the beam. In summary, the expressions for the derived
natural frequencies provide an extremely simple, practical and accurate tool to study
the dynamic behavior of cracked Euler–Bernoulli beams rotating at low angular velocity,
especially useful, in the future, to establish maintenance plans for small-scale wind turbines.
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