
Received May 3, 2022, accepted May 11, 2022, date of publication May 16, 2022, date of current version May 20, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3175505

RuVa: A Runtime Software Variability Algorithm
ALEJANDRO VALDEZATE 1, RAFAEL CAPILLA 1, (Senior Member, IEEE),
JONATHAN CRESPO 1, AND RAMÓN BARBER 2, (Senior Member, IEEE)
1Department of Informatics, Rey Juan Carlos University, 28933 Madrid, Spain
2Department of Systems Engineering and Automation, Universidad Carlos III of Madrid, 28911 Madrid, Spain

Corresponding author: Rafael Capilla (rafael.capilla@urjc.es)

ABSTRACT Context-aware and smart systems that require runtime reconfiguration to cope with changes
in the environment increasingly demand variability management mechanisms that can address runtime
concerns. In recent years, we have witnessed new dynamic variability solutions using dynamic software
product line (DSPL) approaches. However, while few solutions proposed so far have addressed the need to
add, change and remove variants dynamically, none of them provide a way to check the constraints between
features at runtime. Because all SAT solvers perform variability constraint checking in off-line mode,
we suggest in this ongoing research paper the integration of RuVa, a runtime variability algorithm, with the
FaMa tool suite to check feature constraints dynamically before a new feature is added or an existing feature
is removed. This research suggests a novel approach to modifying the variability model of context-aware
systems dynamically and check the feature constraints on the fly.We integrate our solution with a SAT solver
that can be invoked at runtime by a cyber-physical system. We validate the effectiveness and performance of
the proposed algorithm using simulations. We also provide a proof-of-concept for updating the configuration
of a robot’s variability model based on contextual changes.

INDEX TERMS Software variability, runtime variability, dynamic software product lines, feature model,
context features, reconfiguration, robots.

I. INTRODUCTION
Nowadays, many systems demand runtime reconfiguration
to adapt their behavior to context changes. For more than
15 years, theMAPE-K (Monitoring, Analyzing, Planning and
Executing plus Knowledge) loop [1], [2] has been used for
reconfiguring systems (e.g. robots [3]). Autonomous robots
are a good example, as they are complex systems that need
to continuously adapt their behavior and adapt to their envi-
ronment in real-time [4]. For these systems it is important
to guarantee robustness in the face of changing operating
conditions [5]. Thus, robot navigation systems must adapt to
the different situations during their navigation by changing
the representation model of the environment. This leads to the
software adaptation of their control, modeling, and planning
algorithms including sensors and actuators [6].

However, many configurable options exhibited by sys-
tems with high variability demand additional solutions where
smart systems can, not only update their system features
but also add new features or remove existing ones with

The associate editor coordinating the review of this manuscript and

approving it for publication was Mahmoud Elish .

minimal or no human intervention. Typically, smart cities,
appliances, industrial robots, and smart vehicles are examples
of applications where some kind of smart reconfiguration or
software update with new features is required. These domains
often demand variability to configure their system options at
runtime.

Software variability techniques have been used for more
than three decades for representing and handling the vari-
ability of software systems [7], and use system features to
reconfigure systems faster or produce different system con-
figurations with less effort. Nevertheless, the majority of
current approaches using software variability solutions con-
figure their variants at pre-deployment time, typically used
by Software Product Lines. As a consequence, the notion
of Dynamic Software Product Lines (DSPLs) emerged in
2008 [8], [9] to address the runtime concerns of software
variability not handled by conventional software product lines
where variants are bound to their values at pre-deployment
time.

A DSPL offers support for post-deployment activities
when runtime reconfiguration is required. This autonomic
behavior [10] provides support for product evolution and

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 52525

https://orcid.org/0000-0001-8353-1031
https://orcid.org/0000-0002-6943-1285
https://orcid.org/0000-0003-1458-7167
https://orcid.org/0000-0003-2800-2457
https://orcid.org/0000-0002-2767-0501

A. Valdezate et al.: RuVa: Runtime Software Variability Algorithm

adaptation exploit in many cases context-aware knowledge to
realize the adaptation goals and re-bind variants at runtime.
Although DSPLs are not mature in the industry, they provide
an extended dual-life cycle for runtime needs of systems
using software variability [11].

One of the main differences between software product
lines (SPLs) and DSPLs is the use of context features [12],
[13] that represent that system features that could change
according to varying context conditions. These approaches
led to the notion of context-aware DSPLs as described in [14].
In addition, a dynamic or runtime variability mechanism [15]
is central for DSPLs in order to support adding, changing,
and removing variants dynamically and at post-deployment
time and hence, handling the diversity of runtime scenarios.
Another work [16] investigates the transition between differ-
ent binding times and suggests transitions between different
operational modes in a DSPL of a power plant control.

Nevertheless, there are still many open challenges not
solved properly by incipient DSPL approaches. One of these
challenges is how to check new feature constraints dynami-
cally when features are added or removed at runtime. Con-
sequently, in this ongoing research paper, we describe the
integration between a dynamic variability mechanism and the
feature constraint solver of the FaMa toolset in order to check
the constraints at runtime when the structural variability is
modified. Although we applied our solution in the robotics
area, other application domains that could benefit from our
approach are industrial systems using IoT devices (e.g. Indus-
try 4.0 solutions) or for instance, smart vehicles that need to
detect context-aware situations that demand a different kind
of responses.

The remainder of this paper is as follows. Section II intro-
duces the related work on runtime variability approaches and
evaluating feature constraints dynamically. In Section III we
outline our runtime variability algorithm and how it integrates
with the FaMa tool suite, while in Section IV we evaluate the
proposed efficiency and performance of the solution using
simulation scenarios, and we provide a case study using
a robot as proof of concept of its applicability in a real
case, where the entire process of adaptation of the software
to changes in its navigation models is detailed. We also
describe the research questions that we address in this work.
Section VI discusses the limitations of our approach and in
Section VII we draw conclusions and future works.

II. RELATED WORKS
This section discusses related works on runtime variability
approaches and how feature constraints can be checked at
runtime.

A. RUNTIME VARIABILITY APPROACHES
Early approaches supporting basic runtime variability mech-
anisms for supporting automation and reconfiguration tasks
of systems can be found in [17], [18]. In addition, variabil-
ity transformations and the activation/deactivation of fea-
tures during system execution are described for the case of

smart home systems and aimed at handling different product
reconfiguration [19]–[21]. Other experiences in the area of
Wireless Sensor Networks use the FamiWare approach [22]
to support runtime variability for reconfiguring variability
models dynamically. In a similar vein, an approach in the
same domain is discussed in [23], [24].

In the domain of mobile systems, a dynamic variabil-
ity solution [25] is proposed to reconfigure variability at
runtime and modeled using the Common Variability Lan-
guage (CVL). The proposed approach used the notion of
the MAPE-K loop from self-adaptive systems for adapting
the application at runtime using a variability model and to
optimize feature reconfiguration as well.

Nevertheless, none of the aforementioned works enable
changing the structural variability at runtime and inserting
new features in variability models. This facility is only sug-
gested but they don’t provide a real implementation because
modifying variants and variation points dynamically is still
challenging as it requires is most cases human intervention.
This turns more complex when we need to modify a variation
point as we need to redefine manually the logical formulas
connecting the variants (i.e. features).

Some initial attempts to change variants dynamically can
be found in [26], [27], while the authors in [28] use context-
oriented programming (COP) solution to dynamically adapt
the variations in the behavior of systems associated to spe-
cific contexts. In one recent work [29] the authors suggest
a dynamic variability solution in the robotics domain and
they suggest adding variants and values at runtime to the
variability model of a robot as well as estimate the expected
Quality-of-Service (QoS) properties of the robot during the
self-adaptation task in order to find a better configuration.
The approach adds variability constructs to behavior trees for
modeling robot reconfiguration. Nevertheless, the proposed
approach can’t handle the automatic modification of the log-
ical formulas connecting the variants nor suggest the best
location to place new variants.

B. RUNTIME CONSTRAINT CHECKING
The role of dependencies between contexts is highly impor-
tant as is quite similar to feature dependencies and feature
interactions that appear in variability models, especially at
runtime. Not many works discuss the verification of feature
constraints at runtime in the context of software product
lines. For instance, the work discussed in [30] highlights the
importance of reconfiguration activities in DSPLs and the
existence of different binding times for dynamically reconfig-
urable features. The configuration of a given DSPL according
to the binding time selected requires modeling the binding
time of the temporal constraints and the dependencies among
different binding times.

In [31] the authors suggest a technique to model and verify
the evolution and the dynamic behavior of a DSPL using
adaptation rules aimed to activate and deactivate context
features. Similarly, the proposal described in [32] explains
the use of temporal constraints to model the reconfiguration

52526 VOLUME 10, 2022

A. Valdezate et al.: RuVa: Runtime Software Variability Algorithm

of a DSPL for Cloud systems. These constraints extend the
traditional variability models to allow multiple reconfigura-
tion alternatives adding constraints to enable the inclusion
of temporal aspects and hence, control better the system’s
behavior. Nevertheless, the proposed solutions still don’t
solve those scenarios where features can be added or removed
dynamically as they need to validate the constraints at runtime
with the rest of the system’ feature dependencies.

Additionally, the authors in [33] describe an approach
for anytime diagnosis and reconfiguration capabilities. The
proposed approach evaluates an algorithm in terms of perfor-
mance and diagnosis quality of feature models and industrial
configuration knowledge base from the automotive domain.

Related to DSPLs and its ability to perform runtime recon-
figuration, the authors in [34] present an approach to model
real-time constraints for DSPLs and how to analyze automat-
ically constraint models. They apply their solution to a rail-
ways traffic scenario where several trains operate on the same
track and demand reliable communication channels. Hence,
the reconfiguration to solve such problems require checking
real-time constraints dynamically that are modeled using a
constraint language. Some recent works like the ProDSPL
approach [35] suggest a DSPL able to anticipate to future
variations and generate the best configuration proactively as
the variability model is transformed into linear constraints
that are optimized as part of the decision-making process.
The approach is evaluated usingmobile strategy games where
some features are configured at runtime.

Finally, the authors in [36] an approach to verify the
correctness and behavior of the system reconfiguration at
runtime supported by context variability models that are used
in dynamically adaptive systems. The approaches discussed
above don’t provide a way to add or remove feature con-
straints dynamically when new features are added on the fly.
Also, handling new constraints is not easy as most of the time
constraint solvers are executed in ‘‘off-line’’ mode separately
from the runtime variability mechanism.

III. RuVa: A RUNTIME VARIABILITY ALGORITHM
In order to solve the aforementioned challenges, we evolved
our runtime variability developed at Rey Juan Carlos Uni-
versity (URJC) ad documented for the first time in [37]
into a more matured version integrated with the FaMa tool
suite in 2021. The main idea is to support changes in the
structural variability at runtime when features can be added,
removed, or modified. As these operations are traditionally
done manually by the designer, we attempt to go a step
beyond previous works by automating the invocations to
feature constraints solvers. Our algorithm can add and remove
features dynamically based on a novel classification system
that uses the so-called ‘‘super-types’’ and aimed to classify
features in a variability model according to a set of pre-
defined types. Hence, we support adding new features in
different locations in an existing feature model by comparing
the super-types of the existing features and the super-types
of the new features. In case of having different possible

locations or a tie where a feature can be placed in two or
more locations, the algorithm makes a decision based on the
number of common super-types and the logical relationship
of the existing features and the new one is also compatible for
a particular branch. Finally, in the case of different locations,
theOptimizer selects the best place to include the new feature
We also foresee a connection to external systems that use
context-aware facilities (e.g. cyber-physical systems - CPS)
where context-aware features are requested to RuVa in order
to update the feature model.

Our solution foresees different scenarios to insert fea-
tures automatically according to their common super-types,
the possible locations of the new feature, and the combina-
tion of different logical relationships (i.e. AND, OR, XOR)
where a parent feature has one or several children (i.e. sub-
features). In our solution we suggest four main scenarios,
that is (i) No compatible super-type, (ii) one feature with
compatible super-types without children features, (iii) one
feature with compatible super-types with children features,
and (iv) different features with compatible super-types. In this
last scenario, it can be possible that a different location for the
new feature may contain the same number of super-types, and
in this case, RuVa will select the branch in the feature model
less overloaded in terms of children features. In addition,
the insertion will be performed accordingly to the logical
relationships of the existing children’s features and the logical
relationship required by the new feature. Figure 1 shows an
example of the fourth scenario where a new feature ‘‘Fx’’ is
inserted in a branch that contains several super-types.

A. INTEGRATION WITH FaMa TOOL SUITE
This section describes our approach where we combined
an existing runtime variability algorithm with FaMa feature
constraint solver, being both elements part of our previous
work and research. Consequently, we reused the FaMa solver
module in order to avoid duplicating effort in programming a
new solution and integrating existing ones, such as we explain
in the next subsections.

The FaMa tool suite enables Automated Analysis of Fea-
ture Models [38]. Internally, each of the constraints existing
in the model is translated to a logic paradigm which can
be SAT or CSP among others based of. However, currently,
FaMa only supports CSP-based solvers when coping with
complex cross-tree constraints. The CSP model used by
FaMa to prune the products that exceed the maximum budget:
CSP=<F,FC,A>, where:

• F is a set of variables, f_i ε F, representing the selection
state of each feature in the product line feature model.
If the ith feature is selected for a product test, then
$f_i=1, fi = 1 and, otherwise, fi = 0.

• FC is the set of constraints that define the different
relationships between different features (e.g. if the ith
feature is a mandatory child feature of the jth feature,
then ith ↔ jth) according to the mapping presented
in [39].

VOLUME 10, 2022 52527

A. Valdezate et al.: RuVa: Runtime Software Variability Algorithm

FIGURE 1. Inserting a feature which contains more than one super-type.

• A is the set of attributes describing the quality attributes
of the features within the model. Note that FaMa cur-
rently only supports attributes that can be represented in
the range of integers. This is, enumerations, integers, and
Booleans.

Using this translation FaMa can perform questions to such
models. For example, we can determine if a certain feature
selection is valid or propagate the decisions within a config-
uration process.

B. DYNAMIC VARIABILITY CONSTRAINT CHECKING
Our solution to combine the runtime variability algorithm
with FaMa’s constraint feature solver is as follows. First,
we adapted our runtime variability algorithm [31] to support
FaMa feature models. We defined abstract features to adapt
the feature models used by the runtime variability model to be
readable by FaMa. This abstract feature helped us to indicate
the cardinality of AND, OR, and XOR relationships.

The integration of the runtime variability algorithm and
FaMa works in the following way: (i) we first upload the
repository containing the list of features and the super-types,
(ii) we upload our adapted feature model as a ‘‘.FM’’ file
which can be read by FaMa (iii) we execute the runtime
variability algorithm which calls FaMa solver to check the
validity of the constraints list. FaMa reads the feature model
and the constraints list in its own format. Previously, the
runtime variability algorithm determines the best location
in case a new feature is added. If the feature is removed,
we only need to delete the feature and check the constraints
list, and (iv) after checking the constraint model FaMa returns
if the model is valid.

Figure 2 shows the calls between the runtime variability
algorithm and FaMa. As we can observe in the figure, the
feature model loader (FMLoader) uploads the target vari-
ability model for RuVa and can enact commands to add or

remove features dynamically. Once an operation is selected,
the Feature Finder locates different alternatives to add a new
feature according to the comparison of super-types. Among
several locations the Optimizer finds the most optimal loca-
tion to insert a new feature and the result is returned to
RuVa main control which invokes the FaMa Choco solver1

to check the validity of the new constraints belonging to
the new feature and the existing constraints in the feature
model. The Question Trader module is in charge of sending
the appropriate request to the solver to check the validity of
the constraint model. If there are no incompatibilities in the
new constraint model, the feature with their constraints can
be added in the location selected by RuVa.

IV. VALIDATION
In order to evaluate the utility of our runtime variability
solution combine with the FaMa tool suite, we came up with
the following research questions:
• RQ1. Which is the efficacy of the RuVa algorithm in
adding new features?

• RQ2. Which is the scalability and performance of the
RuVa algorithm?

• RQ3.How effective are runtime variability mechanisms
to be used in systems that require adaptation?

The rationale for RQ1 is to test to what extent the RuVa
algorithm can include more features dynamically in the right
place in a feature model, which reduces the human effort to
redesign a feature model manually. The rationale for RQ2
is to uncover the limits to adding features dynamically in
large feature models. As some systems are real-time, adding
features in a few seconds might be critical while in another
types of systems the time factor is not a stringent requirement.
Large feature models, typically found in complex software
product line approaches (e.g. the automotive domain) exist,

1https://choco-solver.org/

52528 VOLUME 10, 2022

A. Valdezate et al.: RuVa: Runtime Software Variability Algorithm

FIGURE 2. Integration and data exchange between RuVa and FaMa tool suite.

and adding new features could be a complex task to redesign
the feature model, Finally, the rationale for RQ3 is to test the
effectiveness adding features ‘‘on the fly’’ in a real system
and consuming fewer resources, which somehow validates
the utility of the proposal.

Consequently,We tested our solution in two different ways.
First, we run simulations to answer RQ1 and RQ2 and we
used test cases generated automatically, Second, we used a
robot to check if adding or updating a feature in the robot’s
feature model generated by a context change can automat-
ically update the feature model. We explain the validation
process in the following subsections.

A. DATASETS
In order to test the efficacy and scalability of the RuVa
algorithm as an answer to RQ1 and RQ2, we created dif-
ferent datasets and used sample feature models with a mix
of supertypes to test the validity of the proposed solutions.
First, we used a sample featuremodel of 50 features generated
randomly with BeTTy and we included five super-types in
different branches. Features and super-types are anonymized,
so they don’t belong to a real feature model but are valid
enough to test the efficacy of RuVa inserting features auto-
matically. The sample initial feature model is shown in Fig-
ure 3.

Figure 1 shows an example where a new feature ‘‘fx’’
could be added into an existing variability model comparing

TABLE 1. Two datasets containing 10 features each with different
super-types and logical relationships.

the different super-types. The algorithm shows three pos-
sible locations and finally is placed in location ‘‘2’’ under
feature ‘‘f2’’

As an example of the datasets used, we show in Fig-
ure 1 two different datasets (i.e. SET 10-1 and 10-2) con-
taining 10 features to be inserted each one and with a mix
of several super-types and logical relationships for each
feature. Both datasets were generated randomly. In each
sub-table, the field ‘‘FX’’ indicates a generic feature to
be inserted, the field ‘‘Logical’’ indicates the logical rela-
tionship the feature to be inserted requires, and the field
‘‘ST’’ shows the generic super-types for each feature in the
dataset.

VOLUME 10, 2022 52529

A. Valdezate et al.: RuVa: Runtime Software Variability Algorithm

FIGURE 3. Initial feature model containing 50 features and some super-types.

TABLE 2. Time and valid insertions for different datasets.

B. EFFICACY AND SCALABILITY RESULTS
We simulated the efficacy and scalability of RuVa using
sample feature models and data sets generated randomly
with BeTTy and RuVa. We used a Dell Optiplex 7040 Intel
Core i7-6700T with a CPU of 2.8GHz and 16 Gigabytes of
RAM memory. Regarding the efficacy of the results (RQ1)
inserting datasets of 10 ten features in the sample feature
model, the results where the new features have been added
according to their super-types are shown in Figure 4.

With respect to the time employed by RuVa inserting
datasets of 1, 3, 5, and 10 features randomly, the results are
shown in Table 2.
After we simulated 100 times the insertion of 1, 3, 5, and

10 features and the results we got are shown in Table 3. In the
table, we can observe the typical ranges of time to insert
the different data sets according to the success rates and the
average time needed to insert 1, 3, 5, and 10 features in the
sample feature model. In general, the success rates are good
and we didn’t observe anomalies in finding a good location
for the new features, but these results may vary depending on:
(i) the topology of each feature model, (ii) the distribution of

TABLE 3. Time abd success rates inserting 1, 3, 5 and 10 features.

the super-types, and (iii) the super-types, logical relationships
and constraints of the features to be added. Also, please note
that the average time to insert a new feature is almost stable,
and only when we insert 10 features increased a bit.

Finally, the scalability results (RQ2) in feature models
ranging between 1.000 and 5.000 features are shown in Fig-
ure 5. As we can observe, there is a reasonable increment in
the time required to find a good location for the new features
but the results are doable for non-critical systems, as the
reconfiguration can be performed in the system in less time
than that needed to redesign the feature model. Also, this
time could vary if we add more super-types, the size of the
constraint model is huge, or if the topology of the feature
model is different.

C. A ROBOT CASE STUDY
In order to answer RQ3 we used a real robot that can be
configured at runtime to evaluate the capabilities of the run-
time variability algorithm. Variability in robotics has been
suggested in previousworks formodeling the context features
of a robot [40] and more recently in approaches manag-
ing the functional variability of robots implemented using a
domain-specific language (i.e. Robot Perception Specifica-
tion Language) [41] and cardinality-based feature modeling

52530 VOLUME 10, 2022

A. Valdezate et al.: RuVa: Runtime Software Variability Algorithm

FIGURE 4. Results of new features added by RuVa.

FIGURE 5. Scalability results inserting features in large feature models.

approaches [42]. Other works [43] model the variability of
robots to simulate quality properties at runtime. Other works
like [29] investigate the role of runtime variability mech-
anisms to design the variability of the robot behavior that
changes according to contextual information and monitor the
quality of service (QoS) of the robot performance. In our case,
we advance previous works as we reconfigure the variability
model of a robot at runtime after a context change. The
description of the robot and the feature model is as follows.

1) TurtleBot ROBOT AND FEATURE MODEL
We have used a TurtleBot 2 kobuki robot developed by the
Korean company Yujin Robotics in collaboration with Wil-
low Garage. This robot is made up of an Intel NUC computer
equipped with an Intel i5 processor with 8 GB of RAM and a
2D/3D Orbbec Astra distance sensor. The robot has Ubuntu
20.04 and the ROS Noetic version installed. The software
of the TurtleBot encompasses several functionalities. First,
the navigation of the robot can be implemented using motion

FIGURE 6. TurtleBot robot.

planning algorithms that attempt to find a path without obsta-
cles between two points on a map. Depending on the way
we represent the environment to create the map, we can use
different algorithms [44] such as Geometric based on spatial
coordinates which define collision-free areas, or Topological
which represents an area as a set of interconnected nodes.
The motion planning problem resides in the selection of the
most suitable graph search algorithm (e.f. AMCL based on
an adaptive version of the Monte Carlo localization algo-
rithm [45] which is used by the TurtleBot when it selects Geo-
metric navigation). The TurtleBot has an auto-localization
feature which can be also based on Geometry or Topological
in a similar vein to the motion planning feature.

Another important functionality consists in the obstacle
detection facility, as it uses an algorithm to follow the envi-
ronment and detect the surrounding objects, TurtleBot uses a
plethora of sensors such as surface detection, object detection,

VOLUME 10, 2022 52531

A. Valdezate et al.: RuVa: Runtime Software Variability Algorithm

FIGURE 7. Variability model of the Turtlebot.

computing the distance to objects, or movement sensors to
detect if there are other robots or objects moving in the
scene and in which direction. Therefore, the robot can react
to objects moving close to it. The robot poses a mapping
functionality to create themaps and the TurtleBot implements
a geometric map named GMapping and a Topology one.

Additionally, the exploration functionality has two differ-
ent modes: a wanderingmode where the robot builds the map
according to the data sensed, while the Contour following
behavior builds the map using the contour of the objects and
walls that finds during the movement. Figure 6 shows the
Turtlebot robot used in the case study.

The analysis of the TurtleBot features was performed by
the last two co-authors and the first two designed the feature
model based on the identification of the functional features
of the Turtlebot, their properties, and their variable options,
such as shown in Figure 7.
The list of cross-tree constraints (i.e. requires and excludes

between features) we identified are the following ones:

Wandering REQUIRES Obstacle Detection
Mapping REQUIRES Auto-Localization
Motion Planning REQUIRES Mapping
Mapping REQUIRES Sensors
Obstacle Detection REQUIRES Sensors
Geometry EXCLUDES Topology
Geometric mapping EXCLUDESTopological mapping
Wandering EXCLUDES Contour
GMapping EXCLUDES Topology

2) INTEGRATION BETWEEN TurtleBot ROBOT RuVa
In order to perform the reconfiguration of the feature model
at runtime adding new functionality, we had to integrate

the TurtleBot with Ruva and agreed on a common way
to exchange the data. To solve this challenge we used a
communication model using the HTTP protocol and GET
requests, so the robot can send the data to a PHP server that
sends the data of the new feature to RuVa. The format of the
GET requests is as follows:

http://domain/ruva.php?featureModel=<name-
model> &newFeature=<n-feature>&st=<supertype>

The featureModel parameter identifies the name of the
feature model used by RuVa, while newFeature indicates the
name of the new feature being added. The st variable indicates
the super-type of the feature to be added.

3) CASE STUDY AND MAPS
For the case study with the Turtlebot we used the ground floor
of one of the buildings of Rey Juan Carlos University consist-
ing of two different areas separated by markers readable by
the robot. We used the FloorPlanner2 software to depict the
map, such as we show in Figure 8.
The Turtlebot generates the maps on the fly as long as it

moves along the corridor. We used RViz,3 a 3D visualization
tool for ROS (i.e. Robot Operating System) to show the maps
built by the robot. Figure 9 shows the robot moving along the
corridor in Zone 1 and the map generated by the Turtlebot.

After some time, the robot changes to Zone 2 and builds
the map of the new zone as shown in Figure 10.

2http://floorplanner.com
3http://wiki.ros.org/rviz

52532 VOLUME 10, 2022

A. Valdezate et al.: RuVa: Runtime Software Variability Algorithm

FIGURE 8. Floor map consisting in two different areas where the robot
can move.

FIGURE 9. Maps built by the Turtlebot and shown using Rviz.

4) RESULTS RECONFIGURING THE TurtleBot
Once the Turtlebot changes from Zone 1 to Zone 2 and recon-
figures itself building the map of the new zone, it establishes
a communication with the server to RuVa sending the data of
the new feature consisting in a new map. If RuVa processes
the request satisfactorily, the new feature is added to the
variability model according to the feature super-type. The
resultant variability model shown in Figure 11 includes the

FIGURE 10. Map from the Zone 2 generated by the robot after crossing
the markers.

new added feature Octomap which is displayed in orange.
We run the case study two times and we measured the
time spent by the robot to communicate the context changes
to RuVa. The average time required by the TurtleBot was
between 1 and 1.2 seconds, including the time to transmit
the request to RuVa and the time to reconfigure the feature
model. Consequently, in those cases where a new feature is
added, we communicate the change to the runtime variabil-
ity algorithm in order to reconfigure the variability model
dynamically and without human intervention.

V. FINDINGS
Our results and lessons learned to show the following find-
ings. First, the runtime variability algorithm behaves ade-
quately adding new features dynamically on behalf of the
super-types defined. A proper selection of super-types for
representative branches in real feature models facilitates
assessing software designers to place features in a suit-
able location. Additionally, the algorithm suggests the most
suitable branch according to the number of compatible
super-types and the number of children features avoiding
overload in excess of the same branch. Also, checking the
constraints on the fly using a solver like Choco helps to detect
incompatible configurations in feature models as this task
is typically performed in ‘‘off-line’’ mode and not during
runtime.

Second, the algorithm proved to be highly efficient in most
cases including in large feature models. The selection of
feature models generated randomly minimized the bias to
create ‘‘ad-hoc’’ feature models for the simulation.

Third, the use of large feature models in the performance
and scalability tests demonstrated that the time required to
insert different features keeps small. As redrawing the feature
model is not a critical task, the values can be considered more
than acceptable in all cases.

Fourth, the case study using a real system like a
robot proves the applicability of the proposed solution for
autonomous and context-aware systems that require some
kind of reconfiguration. In this research, we integrated suc-
cessfully our solution with a TurtleBot in order to redraw
a feature model at runtime based on the context changes
provided by the robot. As the feature model of the robot
is small, the time employed to redraw the model was only

VOLUME 10, 2022 52533

A. Valdezate et al.: RuVa: Runtime Software Variability Algorithm

FIGURE 11. Variability model reconfigured after the context change where the new feature Octomap is added.

around 1 second including the time (i,e. 300 milliseconds) to
send the data to RuVa.

Lastly, regarding the generalizability of the results to other
situations settings, and measures, we can argue that based
on the size of the feature models used and the time needed
to insert features, our algorithm can handle larger feature
models. Only for very critical domains, we should consider
smaller feature models but in general terms, the time required
to insert 1 feature is on average less than 1 second. This is not
a problem when a context-aware system reconfigures itself
and sends the data of the new feature to RuVa. However,
on the other way around we need to measure the time once
a new feature is inserted, and how much time a system
needs to reconfigure dynamically. We can argue the proposed
solution is valid for the majority of context-aware systems
and maybe, only very critical systems may require additional
estimations. As the proposed feature models can include
context and non-context features we can say that the majority
of today’s systems that include variability to customize their
system’s variants and demand runtime reconfiguration can
benefit from our solution.

VI. LIMITATIONS
Although the proposed solution was proven satisfactory, there
are some limitations to our work. One limitation refers to the
definition and location of the super-types. This is a human
task that may influence our results as a different number
and selection of these super-types may lead to different ways
to add a feature or to more unsuccessful results. In those
cases where a feature cannot be added automatically human
intervention is necessary. In the case some intervention is

needed, this doesn’t mean the result provided by a human
placing a new feature should be different from the automatic
solution. If a branch of the variability model doesn’t have a
proper super-type caused by a modeling mistake or because
the software designer forgot to include it, this could require
a human intervention to fix that issue, but it doesn’t neces-
sarily mean the results provided by the algorithm should be
different.

Another limitation is that in our case study we didn’t
perform the experiment the other way around, that is when
a designer adds a feature and the robot reconfigures itself
activating the new feature or deactivating an existing func-
tionality. In this case, the reconfiguration time is important
because a context-aware system must react in a short time.
This could be exacerbated in critical systems where responses
might be needed in terms of milliseconds.

VII. CONCLUSION AND FUTURE RESEARCH
The conclusions of this research highlight the importance
of dynamic variability algorithms to reconfigure variability
models on the fly according to varying context changes.
As runtime variability solutions are central for Dynamic Soft-
ware Product Line approaches, our novel approach solves
the traditional gap between off-line solvers and runtime
mechanisms required by dynamic variability solutions and
can be used in the scope of dynamic software product line
approaches for reconfiguring systems. The new optimization
mechanism implemented in RuVa defines the most suitable
location for new features based on their super-types and also
balances the number of new features per branch.

52534 VOLUME 10, 2022

A. Valdezate et al.: RuVa: Runtime Software Variability Algorithm

Additionally, the adaptation of both data formats between
FaMa solver and the runtime variability algorithm as well
as the connection between the Robot and the algorithm was
key to providing an integrated solution that can modify the
structural variability at runtime. Our approach can help to
restructure large feature models and reduce the burden of the
human effort in redesigning variants.

The quantitative results from the simulations run exhibit
good time rates when inserting new features even for large
variability models. The main advantage is that we can reduce
the burden of the designer by avoiding a manual design
process in feature models for context-aware systems that
require periodical reconfiguration. Another advantage related
to context-aware systems is that systems don’t need to store
all the functionality in memory and can download new fea-
tures on-demand autonomously or assisted by an operator.
Although the main limitations have been discussed in the
previous section, we have to remark that one disadvantage
could come from the need to add features for which the
designer doesn’t have previous domain knowledge and this
may require the intervention of a software modeler. We can
support dynamically certain unpredictable features but not
those that cannot be classified in any of the initial super-types
defined for a given system.

As a recommendation for practical implementation of
the solution, we suggest connecting the robot to a cloud
robotics [46] system in order to download new functionality
on the fly when new features must be added or activated
dynamically. Therefore, those robots with memory limita-
tions don’t need to store all the functionality in the system
memory. Another recommendation in case we don’t want to
use the choco solver to ensure the validity of the constraint
model is to use a different solver that could be integrated with
RuVa, such as those mentioned in [47]. Finally, the commu-
nication between CPS systems and a server supporting RuVa
can be handled by standard TCP/IP and HTTP protocols but
we could implement RuVa as a service stored in the same
cloud robotics solutions to reduce some communication over-
head. In the case of updating features in different domains
(e.g. autonomous cars), we should stick to the protocols and
technologies belonging to that domain.

In addition, we plan to extend our approach to other
cyber-physical systems and context-aware systems (e.g.
Smart Cities, IoT, smart vehicles) that demand some kind of
runtime reconfiguration of their system options.

ACKNOWLEDGMENT
The authors would like to thank David Benavides and José
A. Galindo University of Seville, Spain, for their support
in integrating our solution with the FaMa tool suite and the
sample feature models generated with BeTTy.

REFERENCES
[1] Y. Brun, G. DiMarzo Serugendo, C. Gacek, H. Giese, H. Kienle,M. Litoiu,

H. Müller, M. Pezzè, and M. Shaw, ‘‘Engineering self-adaptive systems
through feedback loops,’’ in Software Engineering for Self-Adaptive Sys-
tems, vol. 5525. Berlin, Germany: Springer, 2009, pp. 48–70.

[2] P. Arcaini, E. Riccobene, and P. Scandurra, ‘‘Modeling and analyzing
MAPE-K feedback loops for self-adaptation, in Proc. 10th IEEE/ACM
Int. Symp. Softw. Eng. Adapt. Self-Manag. Syst. (SEAMS), May 2015,
pp. 13–23.

[3] D. Brugali, ‘‘Runtime reconfiguration of robot control systems: A ROS-
based case study,’’ in Proc. 4th IEEE Int. Conf. Robot. Comput. (IRC),
Nov. 2020, pp. 256–262.

[4] C. H. Corbato, D. Bozhinoski, M. G. Oviedo, G. van der Hoorn,
N. H. Garcia, H. Deshpande, J. Tjerngren, and A. Wasowski,
‘‘MROS: Runtime adaptation for robot control architectures,’’ 2020,
arXiv:2010.09145.

[5] A. Binch, G. P. Das, J. P. Fentanes, and M. Hanheide, ‘‘Context
dependant iterative parameter optimisation for robust robot naviga-
tion,’’ in Proc. IEEE Int. Conf. Robot. Automat. (ICRA), May 2020,
pp. 3937–3943.

[6] M. M. Ng, K. M. Ko, Y. N. Park, and Y. B. Leau, ‘‘Adaptive path finding
algorithm in dynamic environment for warehouse robot,’’ Neural Comput.
Appl., vol. 32, pp. 13155–13171, Sep. 2020.

[7] R. Capilla, J. Bosch, and K.-C. Kang, Systems and Software Variabil-
ity Management—Concepts, Tools and Experiences. Berlin, Germany:
Springer, 2013.

[8] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid, ‘‘Dynamic software
product lines,’’ Computer, vol. 41, no. 4, pp. 93–95, Apr. 2008.

[9] N. Bencomo, S. Hallsteinsen, and E. S. De Almeida, ‘‘A view of the
dynamic software product line landscape,’’ Computer, vol. 45, no. 10,
pp. 36–41, Oct. 2012.

[10] N. Abbas and J. Andersson, ‘‘Harnessing variability in product-lines of
self-adaptive software systems,’’ in Proc. 19th Int. Conf. Softw. Product
Line (SPLC), Jul. 2015, pp. 191–200.

[11] R. Capilla, J. Bosch, P. Trinidad, A. R. Cortés, and M. Hinchey,
‘‘An overview of dynamic software product line architectures and tech-
niques: Observations from research and industry,’’ J. Syst. Softw., vol. 91,
pp. 3–23, May 2014.

[12] H. Hartmann and T. Trew, ‘‘Using feature diagrams with context vari-
ability to model multiple product lines for software supply chains,’’
in Proc. 12th Int. Softw. Product Line Conf. (SPLC), Sep. 2008,
pp. 12–21.

[13] R. Capilla, O. Ortiz, and M. Hinchey, ‘‘Context variability for context-
aware systems,’’ Computer, vol. 47, no. 2, pp. 85–87, Feb. 2014.

[14] K. Saller, M. Lochau, and I. Reimund, ‘‘Context-aware DSPLs: Model-
based runtime adaptation for resource-constrained systems,’’ in Proc. 17th
Int. Softw. Product Line Conf. Co-Located Workshops (SPLC), 2013,
pp. 106–113.

[15] R. Capilla and J. Bosch, ‘‘The promise and challenge of runtime variabil-
ity,’’ Computer, vol. 44, no. 12, pp. 93–95, Dec. 2011.

[16] R. Capilla and J. Bosch, ‘‘Dynamic variability management supporting
operational modes of a power plant product line,’’ in Proc. 10th Int. Work-
shop Variability Modelling Softw.-Intensive Syst., P. I. Schaefer, V. Alves,
and E. S. de Almeida, Eds., 2016, pp. 49–56.

[17] A. Helleboogh, D. Weyns, K. Schmid, T. Holvoet, K. Schelfthout,
and W. Van Betsbrugge, ‘‘Adding variants on-the-fly: Modeling meta-
variability in dynamic software product lines,’’ in Proc. 3rd Int. Workshop
Dyn. Softw. Product Lines (DSPL), 2009, pp. 18–27.

[18] R. Froschauer, A. Zoitl, and P. Grunbacher, ‘‘Development and adap-
tation of IEC 61499 automation and control applications with runtime
variability models,’’ in Proc. 7th IEEE Int. Conf. Ind. Informat., Jun. 2009,
pp. 905–910.

[19] C. Cetina, O. Haugen, X. Zhang, F. Fleurey, and V. Pelechano, ‘‘Strategies
for variability transformation at run-time,’’ in Proc. 13th Int. Conf. (SPLC),
vol. 446, 2009, pp. 61–70.

[20] C. Cetina, P. Giner, J. Fons, and V. Pelechano, ‘‘Prototyping dynamic
software product lines to evaluate run-time reconfigurations,’’ Sci. Comput.
Program., vol. 78, no. 12, pp. 2399–2413, Dec. 2013.

[21] L. Arcega, J. Font, O. Haugen, and C. Cetina, ‘‘Achieving knowledge
evolution in dynamic software product lines,’’ inProc. IEEE 23rd Int. Conf.
Softw. Anal., Evol., Reeng. (SANER), Mar. 2016, pp. 505–516.

[22] N. Gámez and L. Fuentes, ‘‘Architectural evolution of FamiWare using
cardinality-based feature models,’’ Inf. Softw. Technol., vol. 55, no. 3,
pp. 563–580, Mar. 2013.

[23] O. Ortiz, A. B. García, R. Capilla, J. Bosch, and M. Hinchey, ‘‘Run-
time variability for dynamic reconfiguration in wireless sensor network
product lines,’’ in Proc. 16th Int. Softw. Product Line Conf. (SPLC),
E. S. de Almeida, C. Schwanninger, and D. Benavides, Eds., 2012,
pp. 143–150.

VOLUME 10, 2022 52535

A. Valdezate et al.: RuVa: Runtime Software Variability Algorithm

[24] M. L. Mouronte, O. Ortiz, A. B. García, and R. Capilla, ‘‘Using dynamic
software variability to manage wireless sensor and actuator networks,’’
in Proc. IFIP/IEEE Int. Symp. Integr. Netw. Manage. (IM), May 2013,
pp. 1171–1174.

[25] N. Gámez, L. Fuentes, and J. M. Troya, ‘‘Creating self-adapting mobile
systems with dynamic software product lines,’’ IEEE Softw., vol. 32, no. 2,
pp. 105–112, Mar. 2015.

[26] L. Baresi and C. Quinton, ‘‘Dynamically evolving the structural variability
of dynamic software product lines,’’ in Proc. IEEE/ACM 10th Int. Symp.
Softw. Eng. Adapt. Self-Manage. Syst. (SEAMS), May 2015, pp. 57–63.

[27] N. Taing, T. Springer, N. Cardozo, and A. Schill, ‘‘A dynamic instance
binding mechanism supporting run-time variability of role-based soft-
ware systems,’’ in Proc. Companion Proc. 15th Int. Conf. Modularity,
Mar. 2016, pp. 137–142.

[28] N. Cardozo, W. De Meuter, K. Mens, S. González, and P. Y. Orban,
‘‘Features on demand,’’ in Proc. 8th Int. Workshop Variability Modelling
Softw. Intensive Syst. (VaMoS), 2014, pp. 18:1–18:8.

[29] A. Romero-Garcés, R. S. De Freitas, R. Marfil, C. Vicente-Chicote,
J. Martínez, J. F. Inglés-Romero, and A. Bandera, ‘‘QoS metrics-in-the-
loop for endowing runtime self-adaptation to robotic software architec-
tures,’’Multimedia Tools Appl., vol. 81, no. 3, pp. 3603–3628, Jan. 2022.

[30] J. Bürdek, S. Lity, M. Lochau,M. Berens, U. Goltz, and A. Schürr, ‘‘Staged
configuration of dynamic software product lines with complex binding
time constraints,’’ in Proc. 8th Int. Workshop Variability Modelling Softw.
Intensive Syst. (VaMoS), 2014, pp. 16:1–16:8.

[31] I. S. Santos, L. S. Rocha, P. A. S. Neto, and R. M. C. Andrade, ‘‘Model
verification of dynamic software product lines,’’ in Proc. 30th Brazilian
Symp. Softw. Eng. (SBES), 2016, pp. 113–122.

[32] G. Sousa, W. Rudametkin, and L. Duchien, ‘‘Extending dynamic software
product lines with temporal constraints,’’ in Proc. IEEE/ACM 12th Int.
Symp. Softw. Eng. Adapt. Self-Manage. Syst. (SEAMS@ICSE), May 2017,
pp. 129–139.

[33] A. Felfernig, R.Walter, J. A. Galindo, D. Benavides, S. P. Erdeniz,M. Atas,
and S. Reiterer, ‘‘Anytime diagnosis for reconfiguration,’’ J. Intell. Inf.
Syst., vol. 51, no. 1, pp. 161–182, Aug. 2018.

[34] H. Göttmann, L. Luthmann, M. Lochau, and A. Schürr, ‘‘Real-time-aware
reconfiguration decisions for dynamic software product lines,’’ in Proc.
24th ACM Int. Syst. Softw. Product Line Conf., 2020, pp. 13:1–13:11.

[35] I. Ayala, A. V. Papadopoulos, M. Amor, and L. Fuentes, ‘‘ProDSPL: Proac-
tive self-adaptation based on dynamic software product lines,’’ J. Syst.
Softw., vol. 175, May 2021, Art. no. 110909.

[36] E. B. D. Santos, R. M. C. Andrade, and I. D. S. Santos, ‘‘Runtime testing
of context-aware variability in adaptive systems,’’ Inf. Softw. Technol.,
vol. 131, Mar. 2021, Art. no. 106482.

[37] R. Capilla, A. Valdezate, and F. J. Díaz, ‘‘A runtime variability mechanism
based on supertypes,’’ in Proc. IEEE 1st Int. Workshops Found. Appl. Self
Syst. (FAS∗W), Sep. 2016, pp. 6–11.

[38] J. A. Galindo, D. Benavides, P. Trinidad, and A.-M. Gutiérrez-Fernández,
and A. Ruiz-Cortés, ‘‘Automated analysis of feature models: Quo vadis?’’
Computing, vol. 101, no. 5, pp. 387–433, 2019.

[39] D. Benavides, S. Segura, and A. Ruiz-Cortés, ‘‘Automated analysis of
feature models 20 years later: A literature review,’’ Inf. Syst., vol. 35, no. 6,
pp. 615–636, Sep. 2010.

[40] D. Brugali, R. Capilla, and M. Hinchey, ‘‘Dynamic variability meets
robotics,’’ Computer, vol. 48, no. 12, pp. 94–97, Dec. 2015.

[41] D. Brugali and N. Hochgeschwender, ‘‘Managing the functional variability
of robotic perception systems,’’ in Proc. 1st IEEE Int. Conf. Robot. Com-
put. (IRC), Apr. 2017, pp. 277–283.

[42] S. García, D. Strüber, D. Brugali, A. Di Fava, P. Schillinger, P. Pelliccione,
and T. Berger, ‘‘Variability modeling of service robots: Experiences
and challenges,’’ in Proc. 13th Int. Workshop Variability Modelling
Softw.-Intensive Syst. (VAMOS), D. Weyns and G. Perrouin, Eds., 2019,
pp. 8:1–8:6.

[43] D. Brugali, R. Capilla, R. Mirandola, and C. Trubiani, ‘‘Model-based
development of QoS-aware reconfigurable autonomous robotic sys-
tems,’’ in Proc. 2nd IEEE Int. Conf. Robot. Comput. (IRC), Jan. 2018,
pp. 129–136.

[44] R. Barber, J. Crespo, C. Gómez, A. C. Hernámdez, and M. Galli,
‘‘Mobile robot navigation in indoor environments: Geometric, topological,
and semantic navigation,’’ in Applications of Mobile Robots. London,
U.K.: IntechOpen, 2018. [Online]. Available: https://www.intechopen.
com/chapters/63790, doi: 10.5772/intechopen.79842.

[45] W. P. N. D. Reis, G. J. D. Silva, O. M. Junior, and K. C. T. Vivaldini,
‘‘An extended analysis on tuning the parameters of adaptive Monte Carlo
localization ROS package in an automated guided vehicle,’’ Int. J. Adv.
Manuf. Technol., vol. 117, nos. 5–6, pp. 1975–1995, Nov. 2021.

[46] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, ‘‘A survey of research on
cloud robotics and automation,’’ IEEE Trans. Autom. Sci. Eng., vol. 12,
no. 2, pp. 398–409, Jan. 2015.

[47] C. Sundermann, T. Thüm, and I. Schaefer, ‘‘Evaluating #sat solvers on
industrial feature models,’’ in Proc. 14th Int. Work. Conf. Variability Mod-
elling Softw.-Intensive Syst., 2020, pp. 3:1–3:9.

ALEJANDRO VALDEZATE received the bache-
lor’s degree in computer science and the M.Sc.
degree from Rey Juan Carlos University, where
he is currently pursuing the Ph.D. degree (indus-
trial). He has a professional experience of more
than 20 years in several Spanish software compa-
nies in the areas of DevOps, software testing/QA,
and cloud services. His research interests include
product line engineering and dynamic variability
solutions.

RAFAEL CAPILLA (Senior Member, IEEE)
received the B.Sc. degree in computer science
from the Universidad de Sevilla and the Ph.D.
degree in computer science from the Universidad
Rey Juan Carlos of Madrid, Spain, in 2004. He is
currently an Associate Professor of software engi-
neering at Universidad Rey Juan Carlos. He is a
coauthor of more than 100 peer-reviewed confer-
ence and journal papers. He is a Co-Editor of the
book Systems and Software Variability Methods,

Concepts and Tools (Springer, 2013). His research interests include software
architecture and architectural knowledge, software sustainability, technical
debt, software product line engineering, and industry 4.0. He is a Regular
Reviewer of several well-known journals, such as Journal of Systems and
Software, Information and Software Technology, IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, and IEEE SOFTWARE. He is a guest co-editor of more
than ten special issues.

JONATHAN CRESPO received the B.S. degree
in computer engineering from the Universidad
Autónoma de Madrid, in 2007, and the mas-
ter’s degree in robotics and automation and the
Ph.D. degree in electrical engineering, electron-
ics and automation from the University Carlos III
de Madrid, in 2012 and 2017, respectively. He is
currently a Ph.D. Assistant Professor at University
Rey Juan Carlos, Madrid. His research interests
include cognitive robots, machine learning, plan-

ners, and navigation systems on mobile robots.

RAMÓN BARBER (Senior Member, IEEE)
received the B.Sc. degree in industrial engineer-
ing from the Polytechnic University of Madrid,
in 1995, and the Ph.D. degree in industrial tech-
nologies from University Carlos III, in 2000. He is
currently an Associate Professor with the System
Engineering and Automation Department, Univer-
sity Carlos III ofMadrid, Spain. His research inter-
ests include mobile robotics, including perception
of the environment, environment modeling, plan-

ning, localization and navigation tasks, considering geometrical, and topo-
logical and semantic representations. He is a member of the International
Federation of Automatic Control (IFAC).

52536 VOLUME 10, 2022

http://dx.doi.org/10.5772/intechopen.79842

