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Abstract: In this paper, the bounded variation property of fuzzy models with smooth compositions
have been studied, and they have been compared with the standard fuzzy composition (e.g., min–
max). Moreover, the contribution of the bounded variation of the smooth fuzzy model for the noise
removal and edge preservation of the digital images has been investigated. Different simulations
on the test images have been employed to verify the results. The performance index related to the
detected edges of the smooth fuzzy models in the presence of both Gaussian and Impulse (also
known as salt-and-pepper noise) noises of different densities has been found to be higher than the
standard well-known fuzzy models (e.g., min–max composition), which demonstrates the efficiency
of smooth compositions in comparison to the standard composition.

Keywords: fuzzy models; bounded variation function; smooth compositions; edge detection; noise
reduction
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1. Introduction

Edge detection is a useful step toward visual object detection and image segmentation.
An edge is normally extracted by the observation of the intensity changes inside the region
of interest of the entire image. Therefore, different gradient calculation measures have
been developed in the literature to find the abrupt changes of the pixel’s qualities. The
Robert edge detection algorithm, as a basic method of edge detection, calculates the discrete
differentiation between the diagonally adjacent pixels [1,2]. Similarly, Sobel edge detection
and Prewitt edge detection perform the same process of differentiation inside the horizontal
and vertical masks, respectively. Canny edge detection is considered as the standard edge
detection technique, where the process is performed in three stages. Firstly, the image
goes through the Gaussian filter to be smoothed. Secondly, the directional gradient is
calculated to estimate the edges. The third step is the post-processing, where it is attempted
to thin the edges [3]. The smoothing of the image is also used in the other well-established
algorithms of edge detection, such as Laplacian of Gaussian (LoG), where the sum of
the second derivative of the Gaussian function is used [4]. However, the variation of the
pixel values across the region of interest and the induced noises during the recording and
transformation can degenerate the image detection process. Readers interested in a survey
of the mentioned algorithms are referred to [1,5,6].
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The wider applications of the image processing algorithms in industry, robotics, mili-
tary, geography, and medical diagnosis detection have acted as a motor for the development
of the recent algorithms in the image segmentation [7–9], morphological operations [3],
and noise removal [10]. The basic edge detection algorithms have been highly extended in
recent years. For instance, for the better smoothing of images, the geometry of images has
been used upon the bandlet transformation to improve the performance of edge detection
algorithms in [11]. The Faber Shcauder wavelet transformation has been used with a
bilateral filtering method in [12]. Many research works also have been performed to tackle
the noise reduction problem in edge detection.

Normally, it is impossible to identify the kind or level of noise in an image; however, it
is believed that the impulse (type) noises are more related to the image acquisition process
(i.e., scanning and motion blurring) and the Gaussian (type) noises are related to the
transmission process. Hence, many researchers have focused on soft computing methods
and fuzzy models for the development of the robust algorithms of the edge detection of
the noisy images [5,13,14]. Soft computing methods and fuzzy models, in general, can
incorporate more parameters and different high-pass or low-pass filters into the edge
detection algorithm and therefore preserve the edges while simultaneously smoothing the
noises [1].

Several applications of the standard fuzzy logic-based edge detection have been
reported in the literature. In [1], the type-2 fuzzy model has been employed. The anisotropic
filtering has been developed in [15]. In [16], a modified region growing procedure is
introduced to evaluate the distance between a pixel and the region. However, the shortages
of the fuzzy models in general are as follows:

• Although it is proved that the fuzzy models can approximate any continuous function
in the compact set, their derivative is not continuous. In other words, the fuzzy models
are not smooth [17].

• The type-2 fuzzy logics improve the performance of the edge detection algorithms;
however, they demand higher computational power in parallel.

• The selection of the best shape of membership function (MF) is mostly a problematic
matter in the design step, and many developed methods are only applicable to a
special shape of MF.

Therefore, in the present manuscript, we intend to employ the smooth fuzzy composi-
tions (SFCs) for edge detection and noise removal purposes. The novelties and contributions
of the proposed method are as follows:

• The fuzzy models with smooth compositions are classified as type-1 fuzzy models.
Therefore, they do not call for notably higher computational power compared to the
standard fuzzy models of min–max and product–sum compositions.

• Considering the structural properties, the smooth fuzzy models (SFMs) are bounded
variation functions, enabling them to dampen the noises in the image, even at low
signal-to-noise ratios (SNRs).

• The results for the bounded variation property are general for all MF selections.

The bounded variation property of the smooth compositions is the backbone of the
proposed approach in the manuscript, and we have compared the total variation denoising
of the smooth fuzzy compositions to the standard fuzzy compositions through quantitative
methods. Upon this characteristic, therefore, the smooth fuzzy models would preserve
the edges and important information of the images. This capacity has been demonstrated
through the comparison of Pratt’s figure of merit (PFOM) values of the different models.

Two cases of Gaussian noise and Impulse noise have been considered in the simu-
lations. Considering that the source and type of the noises usually are not determined,
and the proposed method is able to remove both types of noises, the results are highly
applicable to real applications.

Therefore, the structure of the manuscript is as follows. We begin with the prelimi-
naries of the functional analysis and then introduce the general fuzzy modeling and the
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smooth fuzzy modeling schemes. In the next section, we elaborate on the bounded varia-
tion property of the smooth fuzzy compositions and contrast the total variation denoising
of the smooth fuzzy compositions toward the standard fuzzy compositions. After that,
we employ the obtained results for the edge detection of the images and demonstrate the
higher performance of the smooth compositions over the standard fuzzy compositions for
the edge detection. Finally, the results are discussed, and the paper is concluded.

2. Preliminaries
2.1. Mathematical Background

In this section, for the convenience of the reader, we review some mathematical
backgrounds from [17].

Definition 1. A function ψ : [a, b]→ R is Lipschitz if there is a constant c ≥ 0 such that for all
u, v ∈ [a, b], | f (u)− f (v)| ≤ c|u− v|. The infimum of such c is called the Lipschitz constant.

Proposition 1. If ψ is differentiable on (a, b) and its derivative ψ′ is increasing, then ψ is convex.

Proposition 2. Let ψ be a convex function on (a, b). ψ is then Lipschitz, and thus absolutely
continuous, on each closed, bounded subinterval [c, d] of (a, b).

Lemma 1. Let the function ψ be absolutely continuous on the closed, bounded interval [a, b].
Then, f is the difference of increasing absolutely continuous functions and, in particular, is of
bounded variation.

Proof of Lemma 1. See [17].

2.2. General Structure of Fuzzy Systems

After reviewing the mathematical preliminaries from [17], we continue to the main
part of the manuscript.

We consider a system of multiple inputs and single output to facilitate the theory
development; however, it is clear to us that our results can be extended for multiple input–
multiple output systems since the multiple output part can be easily decomposed into
several single outputs of the system.

We consider a system where the state depends on the last n states of the system
as follows:

h : Rn → R, (1)

x(k + 1) = h
(
x(k), x(k− 1), . . . , x(k− n + 1)

)
. (2)

We call every i-th past state of the system state xi; hence, the system definition changes
to be as follows:

x(k + 1) = h(x1, x2, . . . , xn). (3)

For every state of the system, we consider an interval where each state has the highest
probability of existence in that interval. Hence, we partition the interval into 2N + 1 regions
and assign an MF for each region.

To complete the fuzzy system definition, we need to assign rules for the data in
each region of domain of the inputs and outputs. In mathematical terms, we consider
the following:

R(i): If x1 is Mi
1 and x2 is Mi

2 and . . . and xn is Mi
n, then g(x) is di under the possibility µi(x), i = 1, . . . , r, (4)

where the function x(k + 1) := g(x), x = [x1, . . . , xn], 0 ∈ x is about to approximate
the system dynamics h(x) in the corresponding interval. The fuzzy rules we have just
constructed are supposed to have two IF and THEN parts, which can be interpreted to
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make a mathematical inference based on the fuzzy values employing the compositions of
t-norms and s-norms.

Different types of t-norms and s-norms have been introduced in the literature [18–20],
where the min–max composition and product–sum composition are the mostly used com-
positions and are shown as follows:

I:
{

T(a, b) = min(a, b), (5a)

S(a, b) = max(a, b), (5b)

II:
{

T(a, b) = a · b, (6a)

S(a, b) = a + b− a · b. (6b)

We consider that the output of a fuzzy model is determined upon the centroid defuzzi-
fication formula, given by

x(k + 1) := g(x) = ∑r
i=1 di · µi(x)
∑r

i=1 µi(x)
. (7)

2.3. Smooth Fuzzy Models

In [18,21–23], the smooth fuzzy models are generally constructed upon the utilization
of SFCs instead of the standard fuzzy compositions introduced above. The SFCs are smooth
t-norms and smooth s-norms, and are shown as follows:

I:


TA(a, b) = 1− cos

( 2
π

cos−1(1− a) cos−1(1− b)
)
, (8a)

SA(a, b) =
v ·v · β− logβ(v) logβ(v) − 1

β− 1
, (8b)

where β ∈ (1, ∞), (β− 1)a + 1, and v = (β− 1)b + 1;

II:


TB(a, b) =

4
π

tan−1 ( tan(
π

4
a) tan(

π

4
b)
)
, (9a)

SB(a, b) = 1− 4
π

tan−1
(

tan
(π

4
(1− a)

)
tan

(π

4
(1− b)

))
, (9b)

III:


TC(a, b) = 1− 2

π
cos−1 ( sin(

π

2
a) sin(

π

2
b)
)
, (10a)

SC(a, b) =
2
π

cos−1 ( cos(
π

2
a) cos(

π

2
b)
)
, (10b)

IV:


TD(a, b) = cos

(
cos−1(a) + cos−1(b)− 2

π
cos−1(a) cos−1(b)

)
, (11a)

SD(a, b) = cos
( 2

π
cos−1(a) cos−1(b)

)
. (11b)

To facilitate the explanation, we assume r = 2, corresponding to the MFs µa(x) and
µb(x), along with two state variables. Then, the fuzzy model can be written as follows:

g(x) =
d1 · µ1(x) + d2 · µ2(x)

µ1(x) + µ2(x)
, (12)

where µ1(x) and µ2(x) are the MFs from the system state vector x = [x1 x2]
T .

µi(xi) = S
(

T
(
µa(xi), µb(xi)

))
, i = 1, 2. (13)

For more details on such calculations, interested readers are referred to [23–32].

Lemma 2. The composition of smooth fuzzy operators class B is Lipschitz with respect to the MF.
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Proof of Lemma 2. To prove the lemma, we must check that the derivatives of the s–t
composition class B with respect to MF are increasing in the interval [0, 1]. Hence, based
upon Propositions 1 and 2, the proof is complete.

For two MFs µa(x) and µb(x), we define B as follows:

B = SB

(
TB
(
µa(·), µb(·)

))
. (14)

Therefore, the derivative using the chain rule will be as follows:

B′ = S′B
(

TB
(
µa(·), µb(·)

))
× T′B

(
µa(·), µb(·)

)

=

π
4

(
π
4 sec2 (π

4 µj(·)
))

1 +
(

tan
(

π
4 µa(·)

)
tan
(

π
4 µb(·)

))2 ×

−π
4

(
−π

4 sec2
(

π
4
(
1− µj(·)

)))
1 +

(
tan
(

π
4
(
1− µa(·)

))
tan
(

π
4
(
1− µb(·)

)))2 , (15)

and B′ ≥ 0, j = a, b.

Corollary 1. The s–t smooth composition class B is absolutely continuous.

Proof of Corollary 1. Corollary 1 can be deduced from Lemma 2, Propositions 1 and 2.

Theorem 1. The s–t smooth composition class B is a bounded variation function.

Proof of Theorem 1. Theorem 1 can be deduced from Corollary 1 and Lemma 1.

3. Comparison of Bounded Variation of Different Fuzzy Compositions

The functions of the bounded variations property have been studied widely in the
literature [17,33–38], and many researchers have worked on their applications for edge
preservation and noise reduction. In the previous section, we concluded that the smooth
compositions are bounded variation functions of MF. Hence, in this section, we demonstrate
what the bounded variation property means for the smooth fuzzy compositions and
quantify the noise removal capacity of different fuzzy compositions. We employ the PFOM
as the instrument for this purpose.

3.1. Instrumentation (Pratt’s Figure of Merit)

Pratt in [39,40] introduced a figure of merit as an index for errors in edge detection
as follows:

PFOM =
1

max(II , IA)

IA

∑
k=1

1
1 + αd2(k)

, (16)

where II is the number of ideal edge points, IA is the number of actual or detected edge
points, α is a scaling constant (typically equal to 1/9), and d is the separation distance of the
actual edge point normal to the line of ideal edge points. In the literature [5,41–44], various
approaches are provided to compute distance d. Some possible definitions of distance,
which compute the distance between the position of two pixels (v1, w1) and (v2, w2), are
as follows:

1. City block distance, based on four-connectivity, provides only horizontal and vertical
distances for movements:

dcit = |v1 − v2|+ |w1 − w2|. (17)

2. Chessboard distance, based on eight-connectivity, provides diagonal distances for
movements as well as horizontal and vertical distances for movements:
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dchess = max
(
|v1 − v2|, |w1 − w2|

)
. (18)

3. Euclidean distance measures the actual physical distance as

deuc =
√
(v1 − v2)2 + (w1 − w2)2. (19)

3.2. Illustrations

In this section, we consider the “Euclidean distance” between MFs and compare
the performance of the different t-norm operators. Two MFs of the Gaussian shapes are
considered as follows:{

MF1 = Gaussian(m1, std1) m1 = 5 and std1 = 5, (20a)

MF2 = Gaussian(m2, std2) m2 = 7 and std2 = 5. (20b)

The outputs of different t-norm operators have been studied with these MFs. The
t-norm operators in the study are (i) the smooth fuzzy t-norm type B and (ii) the standard
fuzzy t-norm min. As has been shown in Figure 1, the performance of the two t-norm
operators is the same under the normal condition. Now, we consider the noisy conditions.

0 2 4 6 8 10 12

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
MF1

MF2

(a)

0 2 4 6 8 10 12
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard T-norm (Min)

Smooth T-norm (B)

(b)

Figure 1. Performance of different t-norm operators under normal condition. (a) Membership
Functions. (b) Output of Fuzzy T-norms.

• Scenario 1: Both MFs are considered with additive noise as follows:

m̃1 = m1 + noise, (21)

m̃2 = m2 + noise. (22)

Therefore, the MFs can be considered as follows:

MF1 = Gaussian(m̃1, std1), (23)

MF2 = Gaussian(m̃2, std2). (24)

The impacts of the two t-norm operators are different, as illustrated in Figure 2.
• Scenario 2: Both MFs are considered with the additive noise as follows:

˜std1 = std1 + noise, (25)
˜std2 = std2 + noise. (26)

Therefore, the MFs can be considered as follows:
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MF1 = Gaussian(m1, ˜std1), (27)

MF2 = Gaussian(m2, ˜std2). (28)

The impacts of the two t-norm operators are different, as illustrated in Figure 2.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Impacts of different t-norm operators. (a) m + noise. (b) Zoomed in. (c) std + noise.
(d) Zoomed in. (e) m + noise. (f) Zoomed in. (g) std + noise. (h) Zoomed in.

It is evident from the comparison of the PFOM corresponding to the different t-norm
operators, summarized in Tables 1 and 2, that the smooth operator shows a higher level of
tolerance to the noises.

Table 1. PFOM-based comparison of the T-norm operators with additive noise to the mean of
the MFs.

α-Plane Min Operator Smooth T-Norm (B)

0.5 93.95% 95.65%
0.7 93.82% 94.93%

Table 2. PFOM-based comparison of the T-norm operators with additive noise to the standard
deviation of the MFs.

α-Plane Min Operator Smooth T-Norm (B)

0.5 92.21% 96.16%
0.7 94.37% 96.89%

4. Application to Edge Detection of Images

In this section, we verify how the employment of smooth fuzzy compositions removes
noises and preserves the edges of the images. In the previous section, it was demonstrated
that smooth fuzzy compositions outperformed the standard fuzzy compositions in damp-
ening the effect of the noises. Therefore, for the edge detection of images, the application
of the smooth compositions has been compared to the standard fuzzy compositions, and
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to make a fair comparison, the same structure of the fuzzy model has been considered for
both types of compositions.

4.1. Non-Fuzzy Edge Detection

In the classical edge detection algorithm, the Sobel operators are employed as the
vertical and horizontal derivative approximations of the image. The algorithm employs
Sobel operators throughout the horizontal axis and vertical axis, as follows:

Hhoriz =

−1 0 +1
−2 0 +2
−1 0 +1

, Hvert =

+1 +2 +1
0 0 0
−1 −2 −1

,

which act as three-by-three convolution masks on the image. Therefore, the gradients along
both axes are determined as follows:{

hhoriz = Hhoriz ∗ IMG, (29a)

hvert = Hvert ∗ IMG. (29b)

where ∗ represents the convolution operator. It is attempted to detect the zero-crossings of
the first-order directional derivative in the gradient direction of the image by the minimiza-
tion of the following function:

h =
√

h2
horiz + h2

vert. (30)

4.2. Fuzzy Edge Detection

For the fuzzy edge detection algorithm, we consider four inputs to the fuzzy system.
The first two inputs are the vertical and horizontal derivative approximations of the image,
hhoriz and hvert, respectively. The third input to the fuzzy system is the output of the image
through a convolution mask of a low-pass filter, which is as follows:

LP = 1
25


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

,

lp = LP ∗ IMG. (31)

The fourth input to the fuzzy system is the output of a convolution mask of a high-pass
filter, which is as follows:

HP =

− 1
16 − 1

8 − 1
16

− 1
8 + 3

4 − 1
8

− 1
16 − 1

8 − 1
16

,

hp = HP ∗ IMG. (32)

Consequently, the fuzzy model g(x) can be constructed upon the suitable synchro-
nization of the rules on the inputs. The rule basis for this fuzzy system is shown in Table 3.
The MFs for all the inputs and the output are shown in Figure 3. The range on which the
MFs are defined is flexible for the inputs and can extend further than 255 or lower than 0.
However, the range of MF is fixed for the output, [0, 255].
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Table 3. The Rule Base for the Fuzzy System.

Rule Number Rule Definition

1 If hhoriz is Low and hvert is Low, then output is Low.
2 If hhoriz is Medium and hvert is Medium, then output is High.
3 If hhoriz is High and hvert is High, then output is High.
4 If lp is Low and hvert is Medium, then output is Low.
5 If lp is Low and hhoriz is Medium, then output is Low.
6 If hp is Low and hvert is Medium, then output is High.
7 If hp is Low and hhoriz is Medium, then output is High.

0 50 100 150 200 250

Input / Output

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Low

Medium

High

Figure 3. The MFs of all the inputs and the output.

The fuzzy model detects the edges of the image in the range from 0 to 255. It is known
that in the grayscale format, 255 corresponds to white and 0 means black, and therefore,
the closer a pixel is to 255, the greater the probability of the pixel being identified as an
edge pixel. Figure 4 illustrates the developed fuzzy inference system for this paper.

Fuzzifier

Inference

Smooth/Standard 

Compositions

Antecedents 

& 

Consequents

Rule Base

Defuzzifier

Edge-Detected 

Output

Original Image

(grayscale)

Sobel Operator 

(horizontal)

Sobel Operator 

(vertical)

Low-Pass Filter

High-Pass Filter

Figure 4. Fuzzy inference system.
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Therefore, very similar to (30), the zero-crossings detection of the image can be carried
out through the minimization of the first-order derivative of the fuzzy model as follows:

||g(x)|| =
r

∑
i=1

√
(g2

horiz)i + (g2
vert)i. (33)

The numerical solution of the minimization problem (33) is equal to the minimization
of the norm function ||g|| over the bounded variation search space of the image Ω, rewritten
as follows:

arg min ||g(x)||g(x)∈BV(Ω) =
r

∑
i=1

√
(g2

horiz)i + (g2
vert)i. (34)

4.3. Noise Removal Characteristics of the Smooth Fuzzy Model

We consider the noisy image f (x) as the output of the fuzzy model designed for the
edge detection, added to the independently and identically distributed zero-mean Gaussian
random variable η, as f (x) = g(x) + η. We amplify the minimization problem (34) to
estimate the denoised image g(x) as the solution of the following problem:

arg min
( ∫

Ω
||g(x)||g(x)∈BV(Ω) dx +

λ

2

∫
Ω

(
f (x)− g(x)

)2 dx
)

, (35)

where λ is a positive parameter. The first term in the minimization avoids the solution from
the oscillation behavior in the edge detection and smooths the images. The second term
runs the smooth fuzzy model to remove the noise and to be close to the edges.

Lemma 3. The solution of the minimization problem (35) exists and is unique and stable with
respect to the perturbations.

Proof of Lemma 3. See [45].

Proposition 3. The same conclusions of the noise-removing capacity of the smooth fuzzy models
can be deduced for the definition of the Laplace noise and the minimization problem shown below:

arg min
( ∫

Ω
||g(x)||g(x)∈BV(Ω) dx +

λ

2

∫
Ω
|| f (x)− g(x)||dx

)
. (36)

Proof of Proposition 3. See [46,47].

Proposition 4. The same conclusions of the noise-removing capacity of the smooth fuzzy models
can be deduced for the definition of the Poisson noise and the minimization problem shown below:

arg min
( ∫

Ω
||g(x)||g(x)∈BV(Ω) dx +

λ

2

∫
Ω

(
f (x) log(g(x))− g(x)

)2 dx
)

. (37)

Proof of Proposition 4. See [48].

4.4. The Proposed Procedure

The grayscale image is used as the input to the fuzzy model of the edge detector
system. Canny is used as the ideal edge detector for comparison using the PFOM value. A
threshold filter is applied to the output image of the fuzzy model (fuzzy inference system)
in such a way that the pixels with values higher than the threshold can be considered as
the edge pixels (with pixel value being equal to 255), and the rest are considered as the
non-edges (with a pixel value equal to 0). This process is called binarization.

In fact, in the binarization process, the threshold value for each image is selected
adaptively. The output of the fuzzy inference system is a denoised gray-scale image with
the edge pixels being more discernible than those of the input. Since the output pixels have
values between 0 and 255, the threshold value will be a value in this range that provides
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the maximum PFOM in comparison with the ideal edge-detected image. In other words, a
loop sweeps the interval of [0, 255] and selects the value that maximizes the PFOM. Finally,
the edge-detected image pixel values will be either 0 or 255, which is called binarization.
The employed procedure is illustrated in Algorithm 1 and Figure 5.

Input Image

(Original Image)

Is it grayscale?

Fuzzy Inference System Canny Edge Detectors

(Reference)

Threshold Filter

Is PFOM maximum?

MATLAB: rgb2gray

Grayscale Image as Input

No

Yes

Image after Binarization

The loop sweeps the 

interval of [0, 255] to find 

the best threshold value.

Noise

(Gaussian/Impulse)

Yes

No

Figure 5. Flowchart of the employed procedure for fuzzy edge detection.

4.5. Comparison Instrument

Before proceeding to the edge detection, we need to choose the most fitted measure
of distance, according to Section 3.1. The difference of the distance measures has been
illustrated by the numerical comparison of an example in Figure 6, in which the pixel “aa”
is located at (2, 1) and the pixel “bb” is located at (3, 3). The measures introduced above
are used for the calculation of distance between the pixels as follows:

dcit = |2− 3|+ |1− 3| = 3

dchess = max
(
|2− 3|, |1− 3|

)
= 2

deuc =
√
(2− 3)2 + (1− 3)2 =

√
5 = 2.236
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𝑎𝑎

𝑏𝑏

Figure 6. Example image for calculating the distance by various measures.

The “Euclidean distance” is based on the actual physical distance; however, the
“Chessboard distance” can demonstrate movement in eight directions, which are almost all
possible movements in an image. Secondly, with the employment of the “Chessboard dis-
tance,” the detected edges would have the same probability of belonging to the ideal edges.

5. Results and Discussions

For the purpose of simulation, we consider two sets of images: (1) three images from
MATLAB repository (Table 4) and (2) five X-ray images available online (Table 5).

Table 4. MATLAB Images.

Cameraman Lena Coins
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Table 5. X-ray Images.

X-ray 1 X-ray 2 X-ray 3 X-ray 4 X-ray 5

In Table 6, we show the results for applying the proposed method on each of the
images and calculating the PFOM value under two types of noise: Gaussian and Impulse.
Note that in these tables, the Gaussian noise is denoted by “G” with three different variance
levels: 0.001, 0.002, and 0.003. Similarly, the Impulse noise is denoted by “I” with three
different density levels: 0.25%, 0.50%, and 1%.

Table 6. PFOM-based comparison of standard composition and smooth composition under different
types of noise.

Image Composition No Noise G(0.001) G(0.002) G(0.003) I(0.25%) I(0.5%) I(1%)

Cameraman Standard 0.9159 0.8987 0.8480 0.7881 0.8902 0.8796 0.8796
Smooth 0.9256 0.9192 0.8841 0.8293 0.9009 0.8862 0.8867

Lena Standard 0.9191 0.8905 0.8246 0.7951 0.8994 0.8715 0.8566
Smooth 0.9266 0.9006 0.8530 0.8174 0.9052 0.8767 0.8642

Coins Standard 0.9066 0.9025 0.8881 0.8448 0.9011 0.8943 0.8856
Smooth 0.9294 0.9231 0.9180 0.8910 0.9284 0.9239 0.9211

X-ray 1 Standard 0.9207 0.8657 0.8303 0.8281 0.9113 0.9075 0.9010
Smooth 0.9231 0.8758 0.8389 0.8338 0.9151 0.9109 0.9053

X-ray 2 Standard 0.8960 0.8653 0.8740 0.8304 0.9001 0.8967 0.8973
Smooth 0.9051 0.8925 0.8879 0.8830 0.9045 0.9024 0.8974

X-ray 3 Standard 0.8998 0.8848 0.8690 0.8594 0.8922 0.8886 0.8725
Smooth 0.9189 0.9084 0.8980 0.8891 0.9112 0.9052 0.8855

X-ray 4 Standard 0.8601 0.8556 0.8401 0.8537 0.8529 0.8635 0.8609
Smooth 0.8737 0.8667 0.8546 0.8627 0.8710 0.8803 0.8791

X-ray 5 Standard 0.8784 0.8311 0.7501 0.7201 0.8748 0.8776 0.8788
Smooth 0.8853 0.8397 0.7611 0.7309 0.8806 0.8842 0.8843

As shown in Table 6, the PFOM values related to the smooth composition are higher
than those of the standard composition in all cases. Tables 7–14 also provide a visual
demonstration supporting this conclusion. As is quite obvious from these tables, the
density of noise in the edge-detected images of smooth composition is always less than that
of the standard composition. Furthermore, the Canny edge detector is also highly prone to
noises and is unable to decrease the noise density.

Experimental Results

This subsection of the manuscript dives deeper into the details of the visual tables, i.e.,
Tables 7–14.

Table 7 shows that:

• In all cases, the Canny edge detector detects more edge pixels than both fuzzy compositions.
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• As the level of noise increases, all three methods become adversely affected by the
noise, and still more edges are detected by Canny.

• However, in all cases, the PFOM value for the smooth composition is always greater
than the PFOM value for the standard composition, according to Table 6.

Table 8 shows that:

• In all cases, the Canny edge detector detects more edge pixels than both fuzzy compositions.
• As the level of noise increases, Canny and standard composition become adversely

affected by the noise, and still more edges are detected by Canny; however, most
of the detected edges by Canny are misdetections due to the impact of noise. As is
obvious from this table, the smooth composition provides a better image with reduced
noise density.

• In all cases, the PFOM value for the smooth composition is always greater than the
PFOM value for the standard composition, according to Table 6.

Table 9 shows the following:

• In all cases, the Canny edge detector detects more edge pixels than both fuzzy compositions.
• As the level of noise increases, Canny and standard composition become adversely

affected by noise, and still more edges are detected by Canny; however, most of the
detected edges by Canny are misdetections due to the impact of noise. As is obvious
from this table, the standard and smooth compositions provide a better image with
reduced noise density.

• However, in all cases, the PFOM value for the smooth composition is always greater
than the PFOM value for the standard composition, according to Table 6.

Table 10 shows the following:

• In all cases, the Canny edge detector detects more edge pixels than both fuzzy compositions.
• As the level of noise increases, Canny and standard composition become adversely

affected by the noise, and still more edges are detected by Canny; however, most
of the detected edges by Canny are misdetections due to the impact of noise. As is
obvious from this table, the smooth composition provides a better image with reduced
noise density.

• In all cases, the PFOM value for the smooth composition is always greater than the
PFOM value for the standard composition, according to Table 6.

For Tables 11–13, the same points of Table 10 can be made. Therefore, for the sake of
brevity, the points are not mentioned.

Table 14 shows the following:

• In all cases, the Canny edge detector detects more edge pixels than both fuzzy compositions.
• As the level of noise increases, all three methods become adversely affected by the

noise, and still more edges are detected by Canny; however, most of the detected
edges by Canny are misdetections due to the impact of noise. As is obvious from this
table, the standard composition as well as the smooth composition somehow show
equal performance in reducing noise density.

• However, in all cases, the PFOM value for the smooth composition is always greater
than the PFOM value for the standard composition, according to Table 6.
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Table 7. Edge-detected image of “Cameraman” after binarization for different noises.

Noise Canny Standard Smooth

No noise

G(0.001)

G(0.002)

G(0.003)

I(0.25%)

I(0.5%)

I(1%)
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Table 8. Edge-detected image of “Lena” after binarization for different noises.

Noise Canny Standard Smooth

No noise

G(0.001)

G(0.002)

G(0.003)

I(0.25%)

I(0.5%)

I(1%)
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Table 9. Edge-detected image of “Coins” after binarization for different noises.

Noise Canny Standard Smooth

No noise

G(0.001)

G(0.002)

G(0.003)

I(0.25%)

I(0.5%)

I(1%)
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Table 10. Edge-detected image of “X-ray 1” after binarization for different noises.

Noise Canny Standard Smooth

No noise

G(0.001)

G(0.002)

G(0.003)

I(0.25%)

I(0.5%)

I(1%)
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Table 11. Edge-detected image of “X-ray 2” after binarization for different noises.

Noise Canny Standard Smooth

No noise

G(0.001)

G(0.002)

G(0.003)

I(0.25%)

I(0.5%)

I(1%)
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Table 12. Edge-detected image of “X-ray 3” after binarization for different noises.

Noise Canny Standard Smooth

No noise

G(0.001)

G(0.002)

G(0.003)

I(0.25%)

I(0.5%)

I(1%)
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Table 13. Edge-detected image of “X-ray 4” after binarization for different noises.

Noise Canny Standard Smooth

No noise

G(0.001)

G(0.002)

G(0.003)

I(0.25%)

I(0.5%)

I(1%)
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Table 14. Edge-detected image of “X-ray 5” after binarization for different noises.

Noise Canny Standard Smooth

No noise

G(0.001)

G(0.002)

G(0.003)

I(0.25%)

I(0.5%)

I(1%)
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6. Conclusions

The contribution of the present manuscript is twofold. Firstly, it studies the bounded
variation of the smooth fuzzy models and quantifies the results for the application of
different fuzzy compositions for noise removal. On the other hand, it applies the smooth
fuzzy compositions for the edge detection of digital images. The results have been expressed
in terms of the widely used Pratt’s Figure of Merit (PFOM) as well as the visual observations
of the images in the presence of the different levels of noise. The presented experiments
could show the superiority of the smooth fuzzy filters over the standard fuzzy filters
through numerical comparisons of the error in performance and visual observation. In the
theoretical studies, the involved MF has not been supposed to have a special shape, and
therefore, we leave the designer free to select it based on the desire for the improvement of
the fuzzy edge detection algorithm by the involvement of the smooth compositions.

7. Future Works

Fuzzy edge detection methods are being widely used in the processing of medical
images. Hence, future work can be dedicated to the application of the proposed technique
in a wide range of investigations on the extension of the earlier works on the detection of
diabetic retinopathy [49], in the maculopathy of eye fundus images [50], or for brain tumor
detection and treatments [51–53]. In addition, other types of smooth compositions can be
used in the wider domain of datasets for comparison with the standard fuzzy compositions
for noise removal and edge recovery.
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