
Non-linear optimization methods for learning
regular distributions
Chu, W.; Chen, S.; Bonsangue, M.M.; Riesco, A.; Zhang, M.

Citation
Chu, W., Chen, S., & Bonsangue, M. M. (2022). Non-linear
optimization methods for learning regular distributions. Formal
Methods And Software Engineering, 54-70.
doi:10.1007/978-3-031-17244-1_4

Version: Publisher's Version

License: Licensed under Article 25fa Copyright
Act/Law (Amendment Taverne)

Downloaded from: https://hdl.handle.net/1887/3590001

Note: To cite this publication please use the final published version
(if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3590001

Non-linear Optimization Methods
for Learning Regular Distributions

Wenjing Chu1(B), Shuo Chen2, and Marcello Bonsangue1

1 Leiden University, Leiden, The Netherlands
w.chu@liacs.leidenuniv.nl

2 University of Amsterdam, Amsterdam, The Netherlands

Abstract. Probabilistic finite automata (PFA) are recognizers of reg-
ular distributions over finite strings, a model that is widely applied in
speech recognition and biological systems, for example. While the under-
lying structure of a PFA is just that of a normal automaton, it is well
known that PFA with a non-deterministic underlying structure is more
powerful than deterministic one. In this paper, we concentrate on pas-
sive learning non-deterministic PFA from examples and counterexamples
using a two steps procedure: first we learn the underlying structure using
an algorithm for learning the underlying residual finite state automa-
ton, then we learn the probabilities of states and transitions using three
different optimization methods. We experimentally show with a set of
random probabilistic finite automata that the ones learned using RFSA
combined with genetic algorithm for optimizing the weight outperforms
other existing methods greatly improving the distance to the automaton
to be learned. We also apply our algorithm to model the behavior of an
agent in a maze. Also here RFSA algorithms have better performance
than existing automata learning methods and can model both positive
and negative samples well.

Keywords: Probabilistic finite automata · Residual finite state
automata · Learning automata · Passive learning · L2 distance between
discrete distributions

1 Introduction

Probabilistic Finite Automata (PFAs) [22] are non-deterministic automata where
every state is allocated an initial and a final probability, and every transition
is allocated a transition probability in addition to the alphabet symbol. PFAs
are similar to Hidden Markov Models (HMM): HMMs and PFA with no final
probabilities generate distributions over complete finite prefix-free sets. On the
other hand, HMMs with final probabilities and probabilistic automata generate
distributions over strings of finite length. In fact, a PFA can be converted into
an HMM and vice-versa [12,28]. PFA and HMM are all in the same class of
probabilistic models that are widely used for machine learning, such as in speech
recognition [1,17,18] and biological modeling [2,13].
c© Springer Nature Switzerland AG 2022
A. Riesco and M. Zhang (Eds.): ICFEM 2022, LNCS 13478, pp. 54–70, 2022.
https://doi.org/10.1007/978-3-031-17244-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17244-1_4&domain=pdf
https://doi.org/10.1007/978-3-031-17244-1_4

Non-linear Optimization Methods for Learning Regular Distributions 55

While nondeterministic finite automata (NFA) are equivalent to deterministic
finite automata (DFA) [15], we have that PFAs are strictly more powerful than
deterministic probabilistic finite automata (DPFAs) [12,16,28]. Consequently, a
lot of effort has been paid to learning DPFAs from examples. The most famous
algorithm is ALERGIA [6], based on merging and folding states guided only by
a finite set of positive samples. In ALERGIA, the automaton’s structure and
probabilities are learned simultaneously. Later on, Carrasco et al. [6] provided
a simpler version of ALERGIA, named RLIPS algorithm [7]. Ron et al. [24]
developed an algorithm for learning only acyclic automata. As for learning full
PFA, Baum et al. pioneered the Baum-Welch (BW) algorithm [3], which first
constructs a fully connected graph and then assigns zero weight to unnecessary
transitions. The approach is not practical as it has a vast number of parame-
ters [21]. The Expectation-Maximization (EM) algorithm could learn the distri-
bution of probabilistic automata [26]. However, how the resulting distribution
could be adapted to fit into the structure of the automaton we learn is not fully
clear. Another limitation of the EM algorithm is that each iteration can be slow
when there are many parameters, meaning that the method can be computa-
tionally expensive [14,27].

In [9] we proposed a strategy to build a PFA using residual languages then
assigning probabilities to the automaton by fairly distributing the values among
the transitions. The advantage of this method is that we can learn the structure
of a target automaton as an NFA. Unfortunately, the strategy used to assign
probabilities is often not very effective, as in general probabilities are not fairly
distributed in a PFA.

In this paper, we improve our previous work by using different strategies in
learning the weight of a PFA. We focus on passive learning PFAs from examples
and counterexamples and following two steps: first we learn the underlying struc-
ture of PFAs using residual languages, and then we use state of the art optimiza-
tion methods to learn the probabilities labelling the states and transitions of the
automaton. This boils down to defining a parametric PFA with unknown vari-
ables for probabilities that are then assigned to value by solving an appropriate
optimization problem dictated by the sample and the structure of the automa-
ton. We design two sets of experiments to compare our algorithm with flip-coin,
ALERGIA, and k-testable [8]. First, we use a set of randomly generated PFAs.
The results show that the numerical solution under constrained nonlinear opti-
mization problems together with learning by residual learns automata generating
a distribution very close to the target one, even in the case of non-deterministic
distribution. In fact, our method based on genetic algorithm achieves improve-
ments on existing learning algorithm up to 96%. Then we use all these algo-
rithms to model an agent’s behavior in a maze. Only the RFSA algorithm learns
both positive and negative samples well. Since the target automata of traces are
deterministic, RFSA with flip-coin, genetic algorithm, and sequential quadratic
programming all have good performance.

56 W. Chu et al.

2 Preliminaries

This section recalls some basic notions and facts of (probabilistic) automata and
fixes the notation we use.

An alphabet Σ is a finite set of symbols and a string x over Σ is a finite
sequence of alphabet symbols. We denote the empty string by λ and the set of
all strings over Σ by Σ∗. A language L over Σ is a subset of Σ∗. For any language
L and any string u ∈ Σ∗, the residual u−1L of a language L with respect to u
is the language u−1L = {v ∈ Σ∗|uv ∈ L} and we call u the characterizing word
of u−1L.

A non-deterministic finite automaton (NFA) over an alphabet Σ is a tuple
A = 〈Σ,Q, I, F, δ〉, where Q is a finite set of states, I : Q → {0, 1} maps to
1 all states that are initial, F : Q → {0, 1} maps to 1 all states that are final,
and δ : Q × Σ → {0, 1}Q is a transition function. The extension δ∗ of δ to
strings instead of alphabet symbols is defined as usual by δ∗(q, λ)(q) = 1 and
δ∗(q, ax)(q′′) = 1 iff there exists q′ such that δ(q, a)(q′) = 1 and δ∗(q′, x)(q′′) = 1.
Given an NFA A and a state q ∈ Q the language L(A, q) consist of all strings
such that there exists q′ such that δ(q, x)(q′) = 1, and F (q′) = 1. The language
L(A) accepted by an NFA A is the union of all L(A, q) for states q such that
I(q) = 1. A language L is regular if it can be accepted by an NFA. An NFA A is
said to be deterministic (DFA) if I(q) = 1 for at most one state, and for every
q and a, δp(q, a)(q′) = 1 for at most one state.

Residual finite state automaton (RFSA) A is a non-deterministic automaton
whose states correspond exactly to the residual languages of the language rec-
ognized by A, that is for each state q ∈ Q, there exists a string u ∈ Σ∗ such
that L(A, q) = u−1L(A) [10]. In this case, every string from an initial state to q
is a characteristic word for L(A, q). For example, every minimal (no two states
recognize the same language) and trimmed (every state is reachable from an
initial one) automata is a residual automata with a finite set of characteristic
strings.

A probabilistic language over Σ∗ is a function D : Σ∗ → [0, 1] that is also
a discrete distribution, that is:

∑
x∈Σ∗ D(x) = 1. An interesting class of prob-

abilistic languages can be described by a generalization of non-deterministic
automata with probabilities as weight on states and transitions. A probabilistic
finite automaton (PFA) over a finite alphabet Σ is a tuple A = 〈Σ,Q, Ip, Fp, δp〉,
where: Q is a finite set of states, Ip : Q → (Q ∩ [0, 1]) is the initial probability
such that

∑
q∈Q Ip(q) = 1, Fp : Q → (Q ∩ [0, 1]) determines the weight of the

final states, and δp : Q × Σ → (Q ∩ [0, 1])Q is the transition function such that
∀q ∈ Q,

Fp(q) +
∑

a∈Σ,q′∈Q

δp(q, a)(q′) = 1.

We define the support of a PFA A as the NFA where the initial map, the final
map and the transition function coincides with those of A when the value is 0
and otherwise maps everything else to 1. A PFA is said to be deterministic if its
support is a DFA.

Non-linear Optimization Methods for Learning Regular Distributions 57

Given a string x = a1 · · · an ∈ Σ∗ of length n, an accepting (or valid) path π
for x is a sequence of states q0 · · · qn such that: Ip(q0) > 0, δp(qi, ai+1)(qi+1) >
0 for all 0 ≤ i < n, and also Fp(qn) > 0. We set ip(π) = Ip(q0), ep(π) =
Fp(qn), and δp(π) = Πn−1

i=0 δp(qi, ai+1)(qi+1). Further, denote by Pathsp(x) the
set (necessarily finite) of all accepting paths for a string x. A PFA is said to be
consistent if all its states appear in at least one accepting path. The probability
of a path π ∈ Pathsp(x) is given by ip(π) · δp(π) · ep(π), while the distribution
of a string x ∈ Σ∗ is defined by:

D(A)(x) =
∑

π∈Pathsp(x)

ip(π) · δp(π) · ep(π). (1)

If a PFA A is consistent then it is easy to show [12] that D(A) is indeed a
distribution on Σ∗, that is

∑
x∈Σ∗ D(A)(x) = 1. We therefore call a distribution

D on Σ∗ regular if it is generated by a PFA A, that is D = D(A).
The language L(A) accepted by a probabilistic automaton A is the support

of its distribution and is given by mapping an x to 1 if and only if D(A)(x) a
strictly positive. In other words, L(A) is the language of the support of A. A
language is regular if and only if it is accepted by a (deterministic) probabilistic
finite automaton. However, differently, than for ordinary automata, the class of
distributions characterized by deterministic PFAs is a proper subclass of the
regular ones [12].

3 Learning a Regular Distribution from a Sample

Our strategy in learning a regular distribution on Σ∗ from a sample will be to
first learn the underlying non-deterministic RFSA automaton and then enrich its
states and transitions with weights such that the resulting probabilistic automa-
ton is consistent with the sample.

A sample (S, f) consists of a finite set of strings S ⊆ Σ∗ together with a
frequency function f : S → N assigning the number of occurrences of each string
in the sample. The frequency function f partitions the strings in S into positive
samples and negative ones. We denote by S+ = {x | f(x) > 0} the set of positive
samples and by S− = {x | f(x) = 0} the set of negative samples. Obviously, one
can convert a sample to a discrete distribution D : S → Q ∩ [0, 1] by mapping
each x in the sample to its frequency divided by the total number of observations
in the sample.

An NFA A is consistent with respect to a sample (S, f), if every positive
sample is accepted by A and every negative sample is not, i.e. S+ ⊆ L(A) and
S− ∩ L(A) = ∅. Learning a regular distribution D from a sample (S, f) of finite
strings independently drawn with a frequency f according to the distribution
D means building a probabilistic finite automaton A with a support consistent
with respect to (S, f), and generating a distribution D(A) that gets arbitrarily
closer to D when the size of the sample (S, f) increases.

58 W. Chu et al.

3.1 Learning the Structure

Assume given a regular distribution D and a sample (S, f) generated from D by
counting the occurrence of independent draws. We build a RFSA from a sam-
ple (S, f) using the algorithm presented in [9]. The algorithm is similar to that
presented in [11] but approximates the inclusion relation between residual lan-
guages by calculating on the fly the transitivity and right-invariant (with respect
to concatenation) closure ≺tr of the ≺ relation, defined for u, v ∈ Pref(S+) by:

– u ≺ v if for all string x, ux /∈ S+ or vx /∈ S−,

Two strings u and v are indistinguishable with respect to a sample (S, f), denoted
by u � v, if both u ≺ v and v ≺ u. This means that we can distinguish two strings
u and v if we can extend them with a string x such that one of the resulting
string belong to the positive sample and another to the negative sample.

We will use prefixes of strings in the positive samples as states of the learned
RFSA, but we want to equate indistinguishable states with respect to the sample.
Here u ≺tr v is an estimate for the inclusion between the residuals Lu ⊆ Lv. In
fact, under some conditions on the sample with respect to language underlying
the distribution D to be learned, this approximation will be exact [11].

Algorithm 1: Building a RFSA from a simple sample
Input: A simple sample (S, f)
Output: A RFSA 〈Σ, Q, I, F, δ〉
1: Pref := Pref(S+) ordered by length-lexicographic order
2: Q := I := F := δ := ∅
3: u := ε
4: loop
5: if ∃u′ ∈ Q such that u �tr u′ then
6: Pref := Pref \uΣ∗
7: else
8: Q := Q ∪ {u}
9: if u ≺tr ε then
10: I := I ∪ {u}
11: if u ∈ S+ then
12: F := F ∪ {u}
13: for u′ ∈ Q and a ∈ Σ do
14: if u′a ∈ Pref and u ≺tr u′a then
15: δ := δ ∪ {δ(u′, a) = u}
16: if ua ∈ Pref and u′ ≺tr ua then
17: δ := δ ∪ {δ(u, a) = u′)}
18: if u is the last string of Pref or 〈Σ, Q, I, F, δ〉 is consistent with S then
19: exit loop
20: else
21: u := next string in Pref
22: return 〈Σ, Q, I, F, δ〉

The algorithm is shown in 1. Basically, given a sample (S, f) the algorithm
starts with an empty set of states Q for the learned NFA. All prefixes of S+ are
explored, and only those which are distinguishable are added to the Q. States
below λ with respect to ≺ are set to be initial states, while states that belong

Non-linear Optimization Methods for Learning Regular Distributions 59

to S+ are final ones. Finally, a transition δ(u, a)(v) = 1 is added when v ≺ ua,
for u and v distinguishable prefixes of S+ and a ∈ Σ. The algorithm ends
either when all prefixes of S+ are explored or earlier if the learned automaton
is consistent with the sample. By construction the resulting automaton will be
a (non-deterministic) RFSA consistent with respect to the sample. In general,
the above schema will learn regular languages as NFA in the limit in polynomial
time and space.

Example 1. Given a sample (S, f) with f(λ) = 0.3, f(aa) = 0.03, f(ba) = 0.039,
f(bb) = 0.036, f(abb) = 0.0045, f(a) = f(b) = f(ab) = 0, so that S+ =
{λ, aa, ba, bb, abb} and S− = {a, b, ab}. Prefixes of strings in S+ missing from
S+ are a, b, ab. Because aa ∈ S+ and λa ∈ S− it follows that a ≺tr λ. Hence a
is distinguishable from λ, it is not an initial state and is also not final. State λ
instead is both initial and final. Finally, δ(λ, a)(a) = 1 and δ(a, a)(λ) = 1 since
a ≺tr a and λ ≺tr aa. Since the automata is not yet consistent with the sample,
we add a new prefix of S+ as state. String b is distinguishable from λ for similar
reason as a, and again it is neither final nor initial. It is also distinguishable
from a because b ≺tr a as they are both in S−. Six transitions are added:
δ(λ, b)(a) = 1, δ(λ, b)(b) = 1, δ(b, a)(λ) = 1, δ(b, b)(λ) = 1, δ(a, b)(b) = 1 and
δ(b, a)(b) = 1. Now the automaton is consistent with the sample, and thus the
algorithm terminates. See Fig. 1a.

3.2 Learning the Probabilities

Once we have learned the structure of the RFSA needed to represent the lan-
guage underling the sample (S, f), we need to label it with weights representing
the probabilities of a PFA. We will treat the probabilities for the initial states,
the final states and the transitions as parameters, that will be used as variables
in the solution of a non-linear optimization problem.

Given an NFA A, we first construct a system of equations depending on the
structure of the automaton and the probabilities induced by the sample for each
string in it. For each state q ∈ Q, we have variables iq and eq to denote the
unknown values of I(q) and F (q), respectively. We also use variables xa

q,q′ for
denoting the unknown probability of the transition δ(q, a)(q′). We add a few
structural equations which are dictated by the structure PFA definition:

∑

q
iq = 1, and for all q ∈ Q, fq +

∑

a,q′ xa
q,q′ = 1

Besides the above structural equations, we have equations depending on the
sample and the automaton. For each string u = a0 · · · an ∈ S we define E(u) to
be the polynomial equation:

∑

q0···qn+1∈Pathsp(u)

iq0 · xa0
q0,q1 · · · xan

qn,qn+1
· eqn+1(π) = p(u).

where p(u) is the probability of u induced by the frequency f in the sample.
In other words, equations like E(u) above represent the symbolic calculation of

60 W. Chu et al.

the probability of u in the automaton A with weights as parameters. In order to
guarantee linear independence between the equations, we consider prime strings
in S. A string u is said to be prime if there exists at least one path in Pathp(u)
without repeated loops, that is, without occurrence of the same part (at least
two states) twice. If we have more prime strings in S than variable, we consider
only prime strings u to build our equations E(u). Otherwise, we consider strings
from S+, prioritizing them in lexicographic order. If we have a small sample with
more variables than strings in S the result may be very poor, as expected.

We rewrite the system of equations as a function with some constraints. The
function is derived from the structural equations while the constraints are stem-
ming from the sample depending equations. We use three different methods to
result optimization problem with constraints. The first one is via the solvers
module in SymPy [19]. SymPy is a Python library for solving equations sym-
bolically, trying to find algebraic solutions. In our experiments below, in most
cases, SymPy is not able to find the exact algebraic solution, due to the fact that
the structure of learned automaton is not always equal to the target one. The
second method uses a genetic algorithm (GA). GAs are computational models
simulating ideal for searching optimal solutions by imitating the natural evolu-
tionary processes. GAs take individuals in a population and use randomization
techniques to guide an efficient search of an encoded parameter space [20]. The
third method is based on Sequential Quadratic Programming (SQP), one of the
most widely-used methods for solving nonlinear constrained optimization prob-
lems [4]. It is an iteration method with a sound mathematical foundation that
can be applied to large scale optimization problems.

The solutions from the GA and SQP methods are an approximation of the
results, and in general will need a light adaptation via normalization to satisfy
the structural rules of a PFA.

Example 2. Given the RFSA in Fig. 1a constructed from the sample (S, f) with
f(λ) = 0.3, f(aa) = 0.03, f(ba) = 0.039, f(bb) = 0.036, f(abb) = 0.0045,
f(a) = f(b) = f(ab) = 0, we obtain the PFA with variables as in Fig. 1b. From
that we derive the system of equations

⎧
⎪⎪⎨

⎪⎪⎩

iλ = 1
fλ + xa

λ,a + xb
λ,a + xb

λ,b = 1
xa

a,λ + xb
a,b = 1

xa
b,λ + xb

b,λ + xa
b,b = 1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

iλfλ = 0.3
iλxa

λ,axa
a,λfλ = 0.03

iλxb
λ,axa

a,λfλ + iλxb
λ,bx

a
b,λfλ = 0.039

iλxb
λ,bx

b
b,λfλ = 0.036

iλxa
λ,axb

a,bx
b
b,λfλ = 0.0045

The corresponding function to be optimized is

(iλ−1)2+(fλ+xa
λ,a+xb

λ,a+xb
λ,b−1)2+(xa

a,λ+xb
a,b−1)2+(xa

b,λ+xb
b,λ+xa

b,b−1)2 = 0

with as constraints all variables ranging between 0 and 1 and:

(iλfλ − 0.3)2 = 0 (iλxb
λ,bx

b
b,λfλ − 0.036)2 = 0

(iλxa
λ,axa

a,λfλ − 0.03)2 = 0 (iλxa
λ,axb

a,bx
b
b,λfλ − 0.0045)2 = 0

(iλxb
λ,axa

a,λfλ + iλxb
λ,bx

a
b,λfλ − 0.039)2 = 0.

Non-linear Optimization Methods for Learning Regular Distributions 61

Then we use the GA and SQP to approximate the solution, the results are shown
in Fig. 1c and Fig. 1d. The learned PFAs approximate to the given sample closely.

λ a

b

b

a, b

a

b

a

a, b

(a) A given NFA.

λ|fλ a

b

iλ

b xb
λ,b

a xa
λ,a

b xb
λ,a

a xa
a,λ

b xb
a,b

a xa
b,b

a xa
b,λ

b xb
b,λ

(b) A PFA with parameters.

λ|0.3021 a

b

1

b 0.3604

a 0.1560
b 0.1825

a 0.6550

b 0.3450

a 0.6142

a 0.0569
b 0.3289

(c) A learned PFA by GA.

λ|0.3027 a

b

1

b 0.4412

a 0.1546
b 0.1014

a 0.6450

b 0.3550

a 0.5811

a 0.1463
b 0.2726

(d) A learned PFA by SQP.

Fig. 1. The RFSA and PFA automata from Example 1.

4 Experimental Results

In this section, we summarize some experiments to compare the performance of
our new learning method with other existing algorithms using some distributions
generated from a random set of PFAs. In particular, we consider ALERGIA, the
most well-known probabilistic languages learning algorithm, k-testable algorithm
and RFSA algorithm with flip-coin distribution. ALERGIA and k-testable can
identify only deterministic distributions. We use 999 different parameters setup
for ALERGIA and 14 different values for k for the k-testable method. We avoid
too large values for k to not make the learning model overfitting. In both cases
we only consider the parameter achieving the best performance. For RFSA-GA
and RFSA-SQP, we choose 1000 different start points at random. Also here we
choose the start point with best result for each algorithm.

62 W. Chu et al.

4.1 Learning Randomly Generated Probabilistic Automata

Target automata are generated by a PFA generator according to the number
of states, symbols and transitions for each state. We generate three sets of 20
automata each with 3, 5 and 10 states. All automata are over a 2 symbols
alphabet and with at most 3 transitions for each state. The probabilities of
initial states, final states and of the transitions are chosen randomly. There are
both DPFAs and PFAs.

From each of these 60 automata, we generate a sample of 248 strings over
a two symbols alphabet uniformly and use the automaton to compute a proba-
bility for each string, including strings with probability 0. We generate samples
with frequencies by scaling up the probabilities. For each sample, we learn an
automaton with six different algorithms. We compute the L2 distance between
each learned automaton and the respective target PFA [9], considering the small-
est L2 distance for each algorithm. We repeat this experimental setup 20 times
for different target automata, give the average variance of results, and then cal-
culate the improvement between the best of our new methods and the best of
the others. The results are reported in the table below. There are no results of
RFSA with solver algorithm in this table since we cannot find the exact algebraic
solutions in 75% of the cases for the set of 3-states automata. More experimental
results are shown in Appendix.

For 3−states automata, our method combining RFSA learning with genetic
algorithms (RFSA-GA) has on average the smallest distance from the target
distribution and the smallest variance too, with an improvement on the learning
via k-testable algorithm of 90%. The combination of RFSA with SQP scores as
the second best on average. The average size of the automata learned by RFSA-
GA is 3.05 states on average, a significant improvement compared to 12.95 for
ALERGIA and 66.65 for k-testable. This means that RFSA learned automata
structure is much simpler and closer to the target model.

As for 5-states automata, the situation is similar, with RFSA-GA scoring as
the best, followed by RFSA-SQP and the k-testable algorithm. Our RFSA-GA
algorithm learns 4.6 states on average, compared with 13.15 states by ALERGIA
and 54.55 states by k-testable.

When the target automata have 10 states, the RFSA-GA still has the smallest
average and variance with an improvement of 86% when compared to ALERGIA.
The RFSA learns 8.1 states on average, while ALERGIA and k-testable get 20.1
and 59.4 states, respectively.

Only when the algebraic solver can find the solution, we have that the learned
automaton is closer to the target one than RFSA-GA. In some cases the distance
is even 0, meaning that the distribution learned is precisely the target one. In
a few other cases, the distance is almost 0 due to the approximate structure
given by the RFSA. In the table, we see the results of RFSA combined with a
flip-coin method, assigning probabilities by equally distributing them among the
transition. Clearly, this naive strategy has the largest distance on average from
the target automata, but is not extremely far from ALERGIA and k-testable,

Non-linear Optimization Methods for Learning Regular Distributions 63

underlying the importance of a simple and as close as the possible structure of
the learned automata with respect to the target ones (Table 1).

Table 1. Averages, variances and improvements of L2 distance between target 3-state,
5-state, 10-state automata and learned automata respectively.

Algorithms 3-states 5-states 10-states

Average Variance Average Variance Average Variance

ALERGIA 0.1874 0.0208 0.1462 0.0238 0.2121 0.0310

k-testable 0.1729 0.0202 0.1065 0.0095 0.2128 0.0317

Flip-coin 0.2229 0.02147 0.1593 0.0112 0.2807 0.0324

RFSA-SQP 0.0213 0.0013 0.0348 0.0034 0.0301 0.0031

RFSA-GA 0.0171 0.0006 0.0289 0.0017 0.0264 0.0007

Improvement 90%↓ 97%↓ 67%↓ 82%↓ 86%↓ 98%↓

4.2 Learning a Model of an Agent’s Traces in a Maze

Next we compare our optimization-based approaches using a model for which we
do not know a-priori the target regular distribution, but we only have a sample
with frequency, as often happens in a real-world situation.

The idea is to build a model for an intelligent agent in two dimensional space
with the goal of arriving to target end points. For simplicity, the space is repre-
sented as a matrix of possible positions, and the agent in any position can take
four actions representing a move up, down, left or right to the current position.
We model the agent as a PFA A = 〈Σ,Q, Ip, Fp, δp〉. Here Σ = {U,D,L,R}
is the set of the four actions that the agent can perform, and strings over Σ
represent possible consecutive actions taken by the agent. The set of states Q
contains all possible positions of the agent in the space. Ip is the set of proba-
bilities of being at a certain starting state, Fp is assigning 1 only to those states
that are the target end points, and δp is the set of probabilities of executing one
of the four actions in a state. We assume given a number of sequence of possible
consecutive that are obtained, for example, in a training phase, when the agent
uniformly select an action to try to find the target end point. Differently than
ordinary reinforcement learning methods, we assume not known a-priory the size
and shape of space, that, moreover, may have insurmountable obstacles.

Training an automaton from a sample is therefore to find the set of states Q,
and right structure where the agent determine the probabilities of each transition
δ(q, a)(q′), the initial probabilities Ip and the final one Fp in accordance to the
space structure.

We generated 20 different 10 × 10 rectangle maps of the space, all of them
surrounded by obstacles (walls) that an agent cannot trespass. We differentiate
those spaces randomly generating obstacles inside. For simplicity, for each map

64 W. Chu et al.

we choose only one start state (say with coordinates (0, 0)) and only one target
end state that is randomly chosen among the allowed positions. Here we show
a simple example about the positive and negative samples under certain agent’s
moving memoryless strategy.

Example 3. Figure 2 is the illustration of a 3 × 3 maze, where 0 is available, 1 is
an obstacle. (0, 0) is the start point, (2, 2) is the end point. The agent’s moving
strategy is {U : 0.1,D : 0.4, L : 0.1, R : 0.4}. The traces from start point to end
point are positive samples. Otherwise, the traces hit the wall or the obstacle are
negative samples. The following are few instances of traces in a sample (S, f):
f(DDLL) = 0.0256, f(DUDDLL) = 0.001024, f(DDLRLL) = 0.001024,
f(DUDUDDLL) = 0.00004108, f(U) = 0, f(UUDD) = 0, f(DLRLU) = 0
and f(DRLDD) = 0.

Fig. 2. A 3×3 maze, where 0 means available, 1 is an obstacle. (0, 0) is the start point,
(2, 2) is the end point.

We simulate a training phase for the agent by using a uniform strategy,
that is, we generate a trace by uniformly selecting the next action among the
set of allowed one (thus avoiding obstacles). Note that this is a deterministic
strategy and can therefore be approximated by all other methods for learning
PFA we have considered in the previous section. The traces successfully reaching
the target end point are our positive samples, with associated frequency (or
probability) as calculated on the basis of the probability of each action taken.

In order to balance the data, we consider as negative samples all prefixes
of the positive one (we assume that the agent once arriving to a target end
state it stops) and concatenation of prefixes with suffixes that do not occurs
as positive samples. We use 90% of the resulting traces for training, and 10%
for evaluating the learned automaton and compare the performance with other
PFA learning methods. As we do not have the full distribution to be learned in
advance, to compare the different methods we use the F1 score and optimized
precision OP . Both methods are based on a probabilistic version of precision,
sensitivity, specificity and accuracy, where the number of true positive TP and
false negative FN is weighted by a the L1 distance between the finite sample
(S, fp) and the regular distribution D(A) of the automaton A learned using one
of the method we consider. In particular we consider

Precision = cTP
|TP |+cFP Sensitivity = cTP

|TP |+cFN

Accuracy = |TP |+|TN |
|TP |+|TN |+|FP |+|FN | Specificity = |TN |

|TN |+cFP

Non-linear Optimization Methods for Learning Regular Distributions 65

where |TP |, |TN |, |FP |, and |FN | are the number of true positive, true negative,
false positive and false negative of the automaton A with respect to the sample,
and cTP =

∑
x∈TP 1 − |f(x) − D(A)(x)|, cFN =

∑
x∈FN f(x), and cFP =∑

x∈FN D(A)(x) (see [9] for a more extensive discussion). The F1 score [25]
is used to measure the method accuracy. It is computed in terms of both the
precision and sensitivity, and basically is the harmonic average of them.

F1 = 2 · Precision · Sensitivity

Precision + Sensitivity
(2)

The optimized precision OP [5,23] is a hybrid threshold metric combining
accuracy, sensitivity and specificity, where the last two are used for stabilizing
and optimizing the accuracy when dealing with possibly imbalanced data.

OP = Accuracy − |Specificity − Sensitivity|
|Specificity + Sensitivity| (3)

When the distribution of the learned automaton coincides with that of the sam-
ple, precision, sensitivity and accuracy will all be 1, and thus both F1 and OP will
be equal to 1 too. However, the more the distribution of the learned automaton
is distant from that of the sample, the more precision, sensitivity and accuracy
will be closer to 0, setting both the scores F1 and OP closer to 0 too.

Table 2 shows the summary of the results taking the average and the variance
when learning with different methods the 20 mazes from the randomly generated
samples. As in the case of learning the randomy generated automata, the RFSA
method enhanced with an algebraic solver does not work in general because
of the too many variables involved. RFSA-SQP is the most stable method as
it has the lowest variance across the different mazes when compared using the
F1 score. In general, all algorithms perform well with respect to the F1 score.
However, when considering the OP score we see that RFSA-GA has the highest
OP score on average and also has the lowest variance. This means that RFSA-
GA has low probability of false positives and false negatives. When compared
with the second best given by learning using the k-testable algorithm, we see
that RFSA-GA has an improvement of 21% on the average OP score.

Table 2. Average, variance and improvement of F1 and OP

Algorithms F1 OP

Average Variance Average Variance

ALERGIA 0.9933 0.0003 0.3431 0.0107

k-testable 0.9997 1.68e−08 0.7990 0.0050

Flip-coin 0.9998 1.28e−08 0.9679 0.0005

RFSA-SQP 0.9998 9.47e–09 0.9586 0.0012

RFSA-GA 0.9998 9.94e−09 0.9683 0.0004

Improvement 0.003%↑ 43%↑ 21%↑ 91%↑

66 W. Chu et al.

5 Conclusion

In this paper, we learn regular distributions by combining the learning of the
structure via RFSA with the learning of the probabilities using three different
optimization methods: an algebraic solver, a genetic algorithm and sequential
quadratic programming. We use some randomly generated PFAs and modeling
an agent’s traces in a maze for comparing these methods with existing ones.
While theoretically the algebraic solver method is the best, in practice it often
fails to provide a solution even for three states automata. The other two opti-
mization methods are iterative and always find an approximate solution. In
practice, we have seen that the solution is very close to the target distribu-
tion, order of magnitudes more than existing algorithms. Because the structure
learned via RFSA is a non-deterministic automaton, our method behaves well
even for regular distributions that are not deterministic, showing that one of the
disadvantage of learning regular languages by RFSA has been actually turned
into an advantage in the context of learning regular distribution. Besides, com-
pared with k-testable and ALERGIA algorithm, which could only learn positive
samples well, our method can model both positive and negative samples well.
Important in learning the structure is the presence of both examples and coun-
terexamples, i.e. strings with 0 frequency/probability, and to have a fair balance
between them. The scalability of our algorithm depends very much on the scal-
ability of the non-linearity optimization method used to solve the constrained
equations. Algebraic solver becomes impractical already with 5 states automata.
In contrast, GA and the SQP method seem to be more appropriate for larger
one. Many works investigate concurrency to improve the scalability of the GA
and SQP algorithms. Specifically, the evolutionary algorithm we used in our
experiments is capable of learning in reasonable time automata up to 62 states
and hundreds of transitions, resulting in a system with more than 110 variables.
Our algorithm could be used for speech recognition, and biological modeling
depending on how large the samples and target automata are. Next, we plan to
investigate how our algorithm performs in these practical situations.

Non-linear Optimization Methods for Learning Regular Distributions 67

A Appendix

(See Table 3).

Table 3. L2 distance between target 3-states automata and learned automata.

Nb RFSA-solver RFSA-SQP RFSA-GA ALERGIA k-testable

1 - 0.0023 0.0260 0.1962 0.1822

2 3.73e–09 0.0006 0.0033 0.1714 0.1314

3 - 2.33e−05 1.23e–06 0.2621 0.1847

4 1.29e–08 0.0054 2.91e−06 0.0593 0.0561

5 - 0.0002 0.0105 0.5255 0.5251

6 0 0.0045 3.39e−06 0.2798 0.1326

7 - 0.0001 0.0164 0.0365 0.0366

8 - 0.1021 0.1027 0.0064 0.0046

9 - 0.0006 0.0023 0.0491 0.0492

10 - 7.94e–05 0.0041 0.0152 0.0118

11 3.72e−05 0.0033 3.05e–05 0.0002 0.0002

12 - 0.0123 0.0131 0.1994 0.1989

13 - 0.0265 0.0279 0.1638 0.1634

14 - 0.0913 0.0141 0.5176 0.5172

15 - 0.0290 0.0296 0.2138 0.2101

16 - 0.0053 1.49e–08 0.3081 0.3080

17 - 0.1162 0.0570 0.2418 0.2417

18 - 0.0257 0.0248 0.1243 0.1928

19 - 8.01e–05 0.0101 0.1733 0.1732

20 0 1.22e−05 6.43e−05 0.2050 0.1388

From this table, we see that only 5 times the RFSA with algebraic solver
found a solution, either approximate or precise. For all other automata no solu-
tion could be found, even if there were only at most 15 variables in the system
of equations. Interestingly, the approximate solution resulted for automaton 11
with the algebraic solver is not better than the one found by a genetic algorithm.

B Appendix

From Table 4, we see that RFSA-GA outperforms other algorithms in 19 out of
20 experiments, proving the stability and generality of our RFSA-GA method.

68 W. Chu et al.

From the Table 5, we see that 15 times the RFSA with SQP algorithm out-
performs. We also see all RFSA and k-testable work well since F1 score only
considers how well to learn the positive samples.

Table 4. OP of all learned automata.

Nb RFSA-flip RFSA-GA RFSA-SQP k-testable ALERGIA

1 0.9684 0.9684 0.9684 0.8287 0.3732

2 0.9890 0.9890 0.9890 0.8287 0.3402

3 0.9802 0.9802 0.9802 0.9303 0.3672

4 0.9162 0.9211 0.9071 0.7261 0.2539

5 0.9589 0.9589 0.9589 0.7426 0.2119

6 0.9520 0.9521 0.9522 0.7471 0.1326

7 0.9909 0.9909 0.9909 0.7714 0.3403

8 0.9691 0.9691 0.9691 0.8445 0.3648

9 0.9725 0.9725 0.9725 0.7674 0.2765

10 0.9820 0.9820 0.9820 0.7604 0.3436

11 0.9381 0.9401 0.9381 0.7658 0.3646

12 0.9955 0.9955 0.9685 0.7299 0.4503

13 0.9877 0.9877 0.9877 0.8697 0.4878

14 0.9745 0.9745 0.9745 0.8124 0.5544

15 0.9342 0.9351 0.8741 0.8804 0.1451

16 0.9315 0.9325 0.9315 0.7880 0.5377

17 0.9651 0.9651 0.8755 0.7577 0.3898

18 0.9829 0.9829 0.9829 0.7810 0.2608

19 0.9850 0.9850 0.9850 0.6998 0.2499

20 0.9840 0.9840 0.9840 0.7890 0.2817

Table 5. F1 of all learned automata.

Nb RFSA-flip RFSA-GA RFSA-SQP k-testable ALERGIA

1 0.999432 0.999498 0.999497 0.999362 0.987498

2 0.999752 0.999751 0.999775 0.999706 0.923148

3 0.999783 0.999790 0.999813 0.999731 0.999541

4 0.999832 0.999846 0.999848 0.999826 0.999819

5 0.999801 0.999806 0.999811 0.999772 0.998079

6 0.999809 0.999807 0.999816 0.999785 0.998923

7 0.999823 0.999819 0.999825 0.999806 0.999560

8 0.999824 0.999809 0.999821 0.999807 0.999603

9 0.999795 0.999754 0.999769 0.999766 0.999331

10 0.999819 0.999814 0.999831 0.999866 0.966374

11 0.999817 0.999811 0.999819 0.999809 0.999786

12 0.999888 0.999896 0.999898 0.999857 0.999648

13 0.999882 0.999889 0.999892 0.999862 0.999849

14 0.999898 0.999899 0.999902 0.999877 0.999587

15 0.999721 0.999733 0.999732 0.999733 0.999033

16 0.999719 0.999723 0.999733 0.999738 0.999787

17 0.999700 0.999704 0.999707 0.999698 0.998969

18 0.999823 0.999824 0.999849 0.999749 0.999636

19 0.999518 0.999595 0.999595 0.999502 0.998340

20 0.999700 0.999701 0.999700 0.999499 0.998910

Non-linear Optimization Methods for Learning Regular Distributions 69

References

1. Bahl, L.R., Brown, P.F., de Souza, P.V., Mercer, R.L.: Estimating hidden Markov
model parameters so as to maximize speech recognition accuracy. IEEE Trans.
Speech Audio Process. 1(1), 77–83 (1993)

2. Baldi, P., Brunak, S.: Bioinformatics: The Machine Learning Approach. MIT Press,
Cambridge (2001)

3. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring
in the statistical analysis of probabilistic functions of Markov chains. Ann. Math.
Stat. 41(1), 164–171 (1970)

4. Bonnans, J.F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C.A.: Numerical Opti-
mization: Theoretical and Practical Aspects. Springer, Heidelberg (2006). https://
doi.org/10.1007/978-3-540-35447-5

5. Branco, P., Torgo, L., Ribeiro, R.P.: A survey of predictive modeling on imbalanced
domains. ACM Comput. Surv. (CSUR) 49(2), 1–50 (2016)

6. Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a
state merging method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS,
vol. 862, pp. 139–152. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58473-0 144

7. Carrasco, R.C., Oncina, J.: Learning deterministic regular grammars from stochas-
tic samples in polynomial time. RAIRO-Theor. Inform. Appl. 33(1), 1–19 (1999)

8. Chu, W., Bonsangue, M.: Learning probabilistic languages by k-testable machines.
In: 2020 International Symposium on Theoretical Aspects of Software Engineering
(TASE), pp. 129–136. IEEE (2020)

9. Chu, W., Chen, S., Bonsangue, M.: Learning probabilistic automata using resid-
uals. In: Cerone, A., Ölveczky, P.C. (eds.) ICTAC 2021. LNCS, vol. 12819, pp.
295–313. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85315-0 17

10. De La Higuera, C.: Characteristic sets for polynomial grammatical inference. Mach.
Learn. 27(2), 125–138 (1997)

11. Denis, F., Lemay, A., Terlutte, A.: Learning regular languages using RFSAs. Theor.
Comput. Sci. 313(2), 267–294 (2004)

12. Dupont, P., Denis, F., Esposito, Y.: Links between probabilistic automata and
hidden Markov models: probability distributions, learning models and induction
algorithms. Pattern Recogn. 38(9), 1349–1371 (2005)

13. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,
Cambridge (1998)

14. Feldmann, A., Whitt, W.: Fitting mixtures of exponentials to long-tail distributions
to analyze network performance models. Perform. Eval. 31(3–4), 245–279 (1998)

15. De la Higuera, C.: Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, Cambridge (2010)

16. de la Higuera, C., Thollard, F., Vidal, E., Casacuberta, F., Carrasco, R.C.: Proba-
bilistic finite state automata-part ii. Rapport technique RR-0403, EURISE (2004)

17. Jelinek, F.: Statistical Methods for Speech Recognition. MIT Press, Cambridge
(1998)

18. Lee, K.F.: On large-vocabulary speaker-independent continuous speech recogni-
tion. Speech Commun. 7(4), 375–379 (1988)

19. Meurer, A., et al.: SymPy: symbolic computing in python. PeerJ Comput. Sci. 3,
e103 (2017)

https://doi.org/10.1007/978-3-540-35447-5
https://doi.org/10.1007/978-3-540-35447-5
https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/978-3-030-85315-0_17

70 W. Chu et al.

20. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge
(1998)

21. Murphy, K.P., et al.: Passively Learning Finite Automata. Citeseer (1995)
22. Paz, A.: Introduction to Probabilistic Automata. Academic Press, Cambridge

(2014)
23. Ranawana, R., Palade, V.: Optimized precision-a new measure for classifier perfor-

mance evaluation. In: 2006 IEEE International Conference on Evolutionary Com-
putation, pp. 2254–2261. IEEE (2006)

24. Ron, D., Singer, Y., Tishby, N.: On the learnability and usage of acyclic proba-
bilistic finite automata. J. Comput. Syst. Sci. 56(2), 133–152 (1998)

25. Sammut, C., Webb, G.I.: Encyclopedia of Machine Learning. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-0-387-30164-8

26. Turin, W.: Fitting probabilistic automata via the EM algorithm. Stoch. Model.
12(3), 405–424 (1996)

27. Turin, W., Van Nobelen, R.: Hidden Markov modeling of flat fading channels.
IEEE J. Sel. Areas Commun. 16(9), 1809–1817 (1998)

28. Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., Carrasco, R.: Proba-
bilistic finite state automata-part I. Pattern Anal. Mach. Intell. 27(7), 1013–1025
(2005)

https://doi.org/10.1007/978-0-387-30164-8

