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Abstract: Consider the complete graph on n vertices. To each vertex assign an Ising
spin that can take the values−1 or +1. Each spin i ∈ [n] = {1, 2, . . . , n} interacts with a
magnetic field h ∈ [0,∞), while each pair of spins i, j ∈ [n] interact with each other at
coupling strength n−1 J (i)J ( j), where J = (J (i))i∈[n] are i.i.d. non-negative random
variables drawn from a probability distribution with finite support. Spins flip according
to a Metropolis dynamics at inverse temperature β ∈ (0,∞). We show that there are
critical thresholds βc and hc(β) such that, in the limit as n → ∞, the system exhibits
metastable behaviour if and only if β ∈ (βc,∞) and h ∈ [0, hc(β)). Our main result is
a sharp asymptotics, up to a multiplicative error 1 + on(1), of the average crossover time
from any metastable state to the set of states with lower free energy. We use standard
techniques of the potential-theoretic approach to metastability. The leading order term
in the asymptotics does not depend on the realisation of J , while the correction terms
do. The leading order of the correction term is

√
n times a centred Gaussian random

variable with a complicated variance depending on β, h, on the law of J and on the
metastable state. The critical thresholds βc and hc(β) depend on the law of J , and so
does the number of metastable states. We derive an explicit formula for βc and identify
some properties of β �→ hc(β). Interestingly, the latter is not necessarily monotone,
meaning that the metastable crossover may be re-entrant.

1. Introduction and Main Results

1.1. Background. Interacting particle systems evolving according to a Metropolis
dynamics associated with an energy functional called the Hamiltonian, may be trapped
for a long time near a state that is a local minimum of the free energy, but not a global
minimum. The deepest local minima are called metastable states, the global minimum
is called the stable state. The transition from a metastable state to the stable state marks
the relaxation of the system to equilibrium. To describe this relaxation, one needs to
identify the set of critical configurations the system must attain in order to achieve this
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transition and to compute the crossover time. These critical configurations correspond
to saddle points in the free energy landscape.

Metastability for interacting particle systems on lattices has been studied intensively
in the past. For a summary, we refer the reader to the monographs by Olivieri and Vares
[13], and Bovier and den Hollander [6]. Successful attempts towards understanding
metastable behaviour in random environments were made for the random field Curie–
Weiss model, by Mathieu and Picco [12], Bovier et al. [3] and Bianchi et al. [1,2].
Recently, there has been interest in metastability for interacting particle systems on
random graphs. This is challenging, because the crossover times typically depend on
the realisation of the graph. In den Hollander and Jovanovksi [11] and Bovier et al. [7],
Glauber dynamics on dense Erdős-Rényi random graphs was analysed. Earlier work on
metastability for Glauber dynamics on sparse random graphs can be found in Dommers
[8] (random regular graph) and Dommers et al. [10] (configuration model). The present
paper is a first step towards the study of metastability for Glauber dynamics on Chung-
Lu-like random graphs.

To the best of our knowledge, Tindemans and Capel [14] and Dommers et al. [9] are
the only references where the model with the interaction Hamiltonian in (1.2) below has
been studied in detail. Both focus on equilibrium properties only.

1.2. Glauber dynamics on the complete graph with coupling disorder. Let Kn be the
complete graph on n vertices. Each vertex carries an Ising spin that can take the values
−1 or +1. Let Sn = {−1,+1}[n] denote the set of spin configurations onKn , where [n] =
{1, 2, . . . , n}. Let (Ω,F ,P) be an abstract probability space, and let J = (J (i))i∈[n]
be a sequence of i.i.d. random variables on this probability space taking values in a
finite set {a1, . . . , ak} ⊂ [0,∞) of cardinality k ∈ N. The distribution of these random
variables is given by

P (J (i) = a�) = ω� ∈ (0, 1), i ∈ [n], � ∈ [k], (1.1)

with
∑

�∈[k] ω� = 1.
Let Hn : Sn → R be the interaction Hamiltonian defined by

Hn(σ ) ≡ −1

n

∑

i, j∈[n]
i< j

J (i)J ( j) σ (i)σ ( j) − h
∑

i∈[n]
σ(i), σ ∈ Sn, (1.2)

where h ∈ [0,∞) is the magnetic field. We consider Glauber dynamics on Sn , defined
as the continuous-time Markov process with transition rates

rn(σ, σ ′) =
{
e−β[Hn(σ

′)−Hn(σ )]+ , if σ ′ ∼ σ,

0, otherwise,
σ, σ ′ ∈ Sn, (1.3)

where β ∈ (0,∞) is the inverse temperature, σ ′ ∼ σ means that σ ′ differs from σ by a
single spin-flip and [·]+ is the positive part. This dynamics is reversible with respect to
the Gibbs measure

μn(σ ) ≡ 1

Zn
e−βHn(σ ), σ ∈ Sn, (1.4)
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where the normalising constant Zn is called the partition sum. Note that the reference
measure for (1.4) is the counting measure on Sn . We write

(σt )t≥0, σt ∈ Sn, (1.5)

to denote a path of the Glauber dynamics on Sn , and Pσ andEσ to denote probability and
expectation on path space given σ0 = σ (we suppress J, h, β and n from the notation).

For fixed n, if h = 0 the Hamiltonian in (1.2) has two global minima, at σ ≡ +1 and
σ ≡ −1, while if h > 0 it achieves a global minimum at σ ≡ +1 and a local minimum
at σ ≡ −1. The latter is the deepest local minimum not equal to the global minimum
(at least for h small enough). However, in the limit as n → ∞, these do not form a
metastable pair of configurations because entropy comes into play.

1.3. Metastability on the complete graph with coupling disorder. In this sectionwe state
our main results.

1.3.1. Empirical magnetisations The relevant quantity to monitor in order to charac-
terise the metastable behaviour is the disorder weighted magnetisation

Kn(σ ) = 1

n

∑

i∈[n]
J (i)σ (i), σ ∈ Sn . (1.6)

The following quantities will be essential for coarse-graining. Define the level sets

A�,n ≡ {i ∈ [n] : J (i) = a�}, � ∈ [k], (1.7)

and the level magnetisations

m�,n(σ ) ≡ 1
∣
∣A�,n

∣
∣

∑

i∈A�,n

σ(i), � ∈ [k], σ ∈ Sn . (1.8)

Put

mn(σ ) = (m�,n(σ )
)
�∈[k] ∈ [−1, 1]k, σ ∈ Sn, (1.9)

and note that Kn(σ ) = 1
n

∑
�∈[k] a�

∣
∣A�,n

∣
∣ m�,n(σ ) depends on σ only through mn(σ ).

Thus, with abuse of notation, we may define

Kn(m) ≡ 1

n

∑

�∈[k]
a�

∣
∣A�,n

∣
∣m�, m = (m�)�∈[k] ∈ [−1, 1]k, (1.10)

so that Kn(σ ) = Kn(mn(σ )).
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1.3.2. Thermodynamic limit As n → ∞, by the law of large numbers the random
function Kn converges uniformly in probability to a deterministic function K given by

K (m) =
∑

�∈[k]
a� ω� m�, m = (m�)�∈[k] ∈ [−1, 1]k . (1.11)

Similarly, the random free energy function Fn converges uniformly in probability to a
deterministic function Fβ,h (see (2.15) and (2.26) below for explicit formulas). In Sect. 3,
we show that the stationary points of Fβ,h are given by m = (m�)�∈[k], where

m� = tanh(β[a�K (m) + h]), � ∈ [k]. (1.12)

Note that, via (1.12), the k-dimensional vector m is fully determined by the real number
K (m). Therefore, finding the stationary points of Fβ,h reduces to finding the solutions
of the equation

K = Tβ,h(K ), Tβ,h(K ) =
∑

�∈[k]
a� ω� tanh(β[a�K + h]). (1.13)

1.3.3. Metastable regime It turns out that the critical inverse temperature βc is given by

βc =
⎡

⎣
∑

�∈[k]
a2�ω�

⎤

⎦

−1

. (1.14)

Namely, ifβ ∈ (0, βc], then the system is not in themetastable regime for anyh ∈ [0,∞),
while if β ∈ (βc,∞), then, for h ∈ [0,∞) small enough, it is in the metastable regime
(i.e., (1.13) has more than one solution at which Tβ,h is not tangent to the diagonal).
Given β ∈ (βc,∞), the critical magnetic field hc(β) is the minimal value of h for which
the system is not metastable. The metastable regime is thus

β ∈ (βc,∞), h ∈ [0, hc(β)). (1.15)

In Sect. 3, we show that β �→ hc(β) is continuous on (βc,∞), with

lim
β↓βc

hc(β) = 0, lim
β→∞ hc(β) = C ∈ (0,∞), (1.16)

where the explicit value of C is given in (3.12) below. Interestingly, β �→ hc(β) is not
necessarily monotone, i.e., the metastable crossover may be re-entrant.

It turns out that there exists an � ∈ [k] (depending on β, h and on the law of the
components of J ), such that Fβ,h has 2� + 1 stationary points.

1.3.4. Metastable crossover LetMn be the set of minima of Fn . Givenm ∈ Mn , define

Mn(m) ≡ {m ∈ Mn\m : Fn(m) ≤ Fn(m)}. (1.17)

Let G (A, B) be the gate between two disjoint subsets A and B of Mn . We refer to [6,
Section 10.1] for a precise definition of the gate.

Fix mn ∈ Mn as the initial magnetisation. Throughout the paper we assume that the
following hypotheses hold for mn .
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Hypothesis 1.

1. Mn(mn) is non-empty.
2. The Hessian of Fn has only non-zero eigenvalues at mn and at all the points in

G (mn,Mn(mn)).
3. There is a unique point tn in G (mn,Mn(mn)), which will often be called simply

saddle point.
4. The saddle point tn is such that r�

[ ∣
∣A�,n

∣
∣ (1 − t2�,n)

]−1
takes distinct values for

different � ∈ [k], where r� is defined in (4.9) below.

Hypothesis 1(2) and (3) are made to avoid complications. Hypothesis 1(4) is needed in
the proof of Lemma 4.1 below (as in [6, Lemma 14.9]). Neither is very restrictive: if for
some parameter choice they fail, then after an infinitesimal parameter change they hold.
Moreover, if Hypothesis 1(3) fails, it is sufficient to compute separately the contribution
to the crossover time of the various saddle points in the gate.

Let Sn[mn] and Sn[Mn(mn)] denote the sets of configurations in Sn for which the
level magnetisations are mn and are contained in Mn(mn), respectively. For A ⊂ Sn ,
write

τA = {t ≥ 0 : σt ∈ A, σt− /∈ A} (1.18)

to denote the first hitting time or return time of A.
We next state our main results for the crossover time. Theorem 1.1 provides a sharp

asymptotics for the average crossover time from any metastable state to the set of states
with lower free energy. Theorem 1.2 shows that asymptotically the crossover time is
exponential on the scale of its mean, a property that is standard for metastable behaviour.

Theorem 1.1 (Average crossover time with coupling disorder). Let An(·) be the k × k
Hessianmatrix defined in (4.2) below, and γn the unique negative solution of the equation
in (4.20) below. For every mn ∈ Mn satisfying Hypothesis 1 and within the metastable
regime (1.15), uniformly in σ ∈ Sn[mn], and withP-probability tending to 1,

Eσ

[
τSn [Mn(mn)]

] = [1 + on(1)]
√

[− det(An(tn))]
det(An(mn))

(
π

2β(−γn)

)

eβn[Fn(tn)−Fn(mn)].

(1.19)

Theorem 1.2 (Exponential law with coupling disorder). For every mn ∈ Mn satisfying
Hypothesis 1 and within the metastable regime (1.15), uniformly in σ ∈ Sn[mn] and
withP-probability tending to 1,

Pσ

(
τSn [Mn(mn)] > t Eσ

[
τSn [Mn(mn)]

]) = [1 + on(1)] e−t , t ≥ 0. (1.20)

As the average crossover time estimated in Theorem 1.1 is a random variable, we
next provide more information on the randomness of the quantity in the right-hand side
of (1.19), which depends on the realisation of the random variable J . The prefactor in
(1.19) converges withP-probability tending to 1 to a deterministic limit, which depends
on the law of J but not on the realisation of J . However, the exponent does not converge
to a deterministic limit. In Theorem 1.3 we compute the exponent up to order O(1).
Recall that Fn → Fβ,h , mn → m and tn → t as n → ∞.
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Theorem 1.3 (Randomness of the exponent) For every mn ∈ Mn satisfying Hypothe-
sis 1 and within the metastable regime (1.15), in distribution,

n[Fn(tn) − Fn(mn)] = n[Fβ,h(t) − Fβ,h(m)] + Z
√
n + O(1), (1.21)

where Z is a normal random variable with mean zero and variance in (0,∞), defined
on (Ω,F ,P) and independent of J .

The variance of Z turns out to be a complicated function of β, h and the distribution
of J . We refer to Sect. 6.3 for further details. Computing the exponent up to order 1 is in
principle possible, but the formulas become rather complicated. Without this precision
the prefactor in (1.19) is asymptotically negligible. Still, knowing this prefactor allows
us to determine what the leading order behaviour of the randomness is.

1.4. Discussion on the continuous case. Bianchi et al. [1,2] study the Curie–Weiss
model with a random magnetic field whose distribution is continuous. Lumping tech-
niques work for discrete distributions but not for continuous distributions. The latter
require coarse-graining techniques to approximate the continuous distribution by a
sequence of discrete distributions. In the present paper we consider pair interaction
random variables with a discrete distribution only. It seems hard to obtain results with a
similar precision for continuous distributions. The techniques employed in [1,2] do not
carry over, because the error introduced by the coarse-graining turns out to be quadratic
rather than linear.

1.5. Techniques and outline. In order to prove Theorems 1.1–1.3 we use the potential-
theoretic approach tometastability developed in Bovier et al. [4,5].More specifically, we
first find a sharp approximation of the Dirichlet form associated with the coarse-grained
dynamics. We use these results, together with lumpability properties and well-known
variational principles, to obtain sharp capacity estimates that are key quantities in the
proof. For amore detailed overview of themethods, we refer the reader to themonograph
by Bovier and den Hollander [6].

The remainder of the paper is organised as follows. Section 2 provides quantities
and notations that are needed throughout the paper. Section 3 identifies the metastable
regime. Section 4 provides a sharp approximation of the Dirichlet form associated with
the Glauber dynamics in the presence of the disorder. Section 5 provides estimates on
capacity and on the metastable valley measure. Section 6 proves Theorems 1.1–1.3.
Appendix A contains a brief overview on known results for the standard CW model,
which corresponds to the setting without disorder. Appendix B gives numerical evidence
for the presence of multiple metastable states for suitable choices of β, h and of the law
of the components of J . Appendix C contains an example in which β �→ hc(β) is not
increasing, implying the possibility of a re-entrant metastable crossover. Appendix D
provides the limit as n → ∞ of the prefactor in (1.19).

2. Preparations

Section 2.1 introduces further notation and writes the Hamiltonian in terms of the level
magnetisations. Section 2.2 introduces the Dirichlet form associated with the Glauber
dynamics and rewrites this in terms of the level magnetisations. Section 2.3 computes
gradients and Hessians of the free energy as a function of the level magnetisations.
Section 2.4 closes with an approximation of the free energy that will be needed later on.
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2.1. Hamiltonian. Recall (1.7). Abbreviate

ω�,n =
∣
∣A�,n

∣
∣

n
. (2.1)

Since, by the law of large numbers, (ω�,n)�∈[k] → (ω�)�∈[k] ∈ (0,∞)k as n → ∞ with
P-probability tending to 1, we may and will assume that A�,n �= ∅ for all � ∈ [k] and
all n large enough. Recall (1.8)–(1.9). Note that m�,n(σ ) takes values in the set

Γ�,n =
{
−1,−1 + 2

|A�,n | , . . . , 1 − 2
|A�,n | , 1

}
. (2.2)

Hence mn(σ ) takes values in the set

Γn = ×
�∈[k]

Γ�,n . (2.3)

The configurations corresponding to M ⊆ Γn are denoted by

Sn[M] = {σ ∈ Sn : mn(σ ) ∈ M}. (2.4)

For singletons M = {m} we write Sn[m] instead of Sn[{m}].
Let

Hn(σ ) = − 1

2n

∑

i, j∈[n]
J (i)J ( j) σ (i)σ ( j) − h

∑

i∈[n]
σ(i), σ ∈ Sn, (2.5)

which is the Hamiltonian in (1.2), except for the diagonal term− 1
2n

∑
i∈[n] J 2(i), which

is a constant shift. Using the notation above, we can write the Hamiltonian in (2.5) as

Hn(σ ) = −n

⎡

⎢
⎣
1

2

⎛

⎝
∑

�∈[k]
a� ω�,n m�,n(σ )

⎞

⎠

2

+ h
∑

�∈[k]
ω�,n m�,n(σ )

⎤

⎥
⎦ = nEn(mn(σ )),

(2.6)
where we abbreviate

En(m) = −1

2

⎛

⎝
∑

�∈[k]
a� ω�,n m�

⎞

⎠

2

− h
∑

�∈[k]
ω�,n m�, m = (m�)�∈[k] ∈ Γn . (2.7)

2.2. Dirichlet form and mesoscopic dynamics. By (1.3)–(1.4), the Dirichlet form asso-
ciated with the Glauber dynamics equals

ESn (h, h) = 1

2

∑

σ,σ ′∈Sn
μn(σ )rn(σ, σ ′) [h(σ ) − h(σ ′)]2

= 1

2Zn

∑

σ∈Sn

∑

σ ′∈Sn ,
σ ′∼σ

e−β Hn(σ )e−β[Hn(σ
′)−Hn(σ )]+[h(σ ) − h(σ ′)]2,

(2.8)
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where h is a test function on Sn taking values in [0, 1]. Because of (2.6), for any h such
that h(σ ) = h̄(mn(σ )), with h̄ a test function on Γn , we have

ESn (h, h)

= 1

2Zn

∑

m∈Γn

∑

m′∈Γn

e−β nEn(m)e−β n[En(m′)−En(m)]+[h̄(m) − h̄(m′)
]2

×
∑

σ ∈ Sn,
mn(σ ) = m

∑

σ ′ ∈ Sn, σ ′ ∼ σ,

mn(σ
′) = m′

1,
(2.9)

where m = (m�)�∈[k]. If σ ′ ∼ σ , then σ ′ = σ i for some i ∈ [n], with σ i obtained from
σ by flipping the spin with label i . Let �′ ∈ [k] be such that i ∈ A�′,n . If σ(i) = ±1 =
−σ i (i), then

m�,n(σ
i ) =

{
m�′,n(σ ) ∓ 2∣

∣A�′,n
∣
∣ , � = �′,

m�,n(σ ), � �= �′.
(2.10)

For m,m′ ∈ Γn , we writem ∼ m′ when there exists an �′ ∈ [k] such that m′ = m�′,+

or m′ = m�′,−, where

m�′,±
� =

{
m�′ ± 2∣

∣A�′,n
∣
∣ , � = �′,

m�, � �= �′.
(2.11)

Moreover, for � ∈ [k] and σ ∈ Sn with mn(σ ) = m, the cardinality of the set {σ ′ ∈
Sn : σ ′ ∼ σ, mn(σ

′) = m�,±} equals 1∓m�

2 |A�,n|, namely, the number of (∓1)-spins in
σ with index in A�,n . Furthermore,

|{σ ∈ Sn : mn(σ ) = m}| =
∏

�∈[k]

( |A�,n|
1+m�

2 |A�,n|
)

, m ∈ Γn, (2.12)

as is seen by counting the number of (−1)-spins with label in A�,n of a configuration
with �-th level magnetisation m�. Using these observations, we can rewrite (2.9) as

ESn (h, h)

= 1

2Zn

∑

m∈Γn

e−β nEn(m)
∑

m′∈Γn

e−β n[En(m′)−En(m)]+[h̄(m) − h̄(m′)
]2

×
∏

�∈[k]

( |A�,n|
1+m�

2 |A�,n|
) ∑

�∈[k]
|A�,n|

[
1 − m�

2
1(m′ = m�,+) +

1 + m�

2
1(m′ = m�,−)

]

.

(2.13)
Next, abbreviate

In(m) = −1

n
log

⎡

⎣
∏

�∈[k]

( |A�,n|
1+m�

2 |A�,n|
)
⎤

⎦ , m ∈ Γn, (2.14)
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and put

Fn(m) = En(m) +
1

β
In(m) = −1

2

⎛

⎝
∑

�∈[k]
a� ω�,n m�

⎞

⎠

2

− h
∑

�∈[k]
ω�,n m� +

1

β
In(m), m ∈ Γn, (2.15)

where En(m) is defined in (2.7). Moreover, define

r̄n(m,m′) = e−βn[En(m′)−En (m)]+ ∑

�∈[k]
|A�,n |

[
1 − m�

2
1(m′ = m�,+) +

1 + m�

2
1(m′ = m�,−)

]

.

(2.16)
With this notation, we can write the mesoscopic measure Qn(·) = μn ◦ m−1

n (·) on Γn ,
with μn defined in (1.4), as

Qn(m) = μn(Sn[m]) = 1

Zn
e−βnFn(m), m ∈ Γn, (2.17)

and so the Dirichlet form in (2.13) becomes

ESn (h, h) = 1

2

∑

m∈Γn

Qn(m)
∑

m′∈Γn

r̄n(m,m′)
[
h̄(m) − h̄(m′)

]2
. (2.18)

2.3. Gradients and Hessians. Denote the Cramér entropy by

IC(x) = 1 − x

2
log

(
1 − x

2

)

+
1 + x

2
log

(
1 + x

2

)

. (2.19)

Define

Īn(m) =
∑

�∈[k]
ω�,n IC(m�). (2.20)

Since
∣
∣A�,n

∣
∣ = [1 + on(1)] ω�n, we can use Stirling’s formula N ! = [1 +

oN (1)] NN e−N
√
2πN to obtain

In(m) = Īn(m) +
∑

�∈[k]

1

2n
log

(
π(1 − m2

�)|A�,n|
2

)

+ o(n−1) = Īn(m) + O(n−1 log n),

(2.21)
where the error term is uniform in m ∈ Γn . For �, �̄ ∈ [k], we compute

∂ Īn(m)

∂m�

= ω�,n

2
log

(
1 + m�

1 − m�

)

(2.22)

and

∂2 Īn(m)

∂m�∂m �̄

= 0, � �= �̄,

∂2 Īn(m)

∂m�
2 = ω�,n

1 − m2
�

.

(2.23)
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Recalling (2.7), we compute

∂En(m)

∂m�

= −a� ω�,n

⎛

⎝
∑

�′∈[k]
a�′ω�′,n m�′

⎞

⎠ − ω�,nh. (2.24)

Define

F̄n(m) = En(m) +
1

β
Īn(m) = −1

2

⎛

⎝
∑

�∈[k]
a� ω�,n m�

⎞

⎠

2

− h
∑

�∈[k]
ω�,nm� +

1

β
Īn(m).

(2.25)

Remark 2.1. By (2.21), Fn(m) = F̄n(m)+O(n−1 log n), where Fn is defined in (2.15).♠
For m ∈ [−1, 1]k , define

Fβ,h(m) = −1

2

⎛

⎝
∑

�∈[k]
a� ω� m�

⎞

⎠

2

− h
∑

�∈[k]
ω� m� +

1

β

∑

�∈[k]
ω� IC(m�), (2.26)

which corresponds to the uniform limit in probability of Fn as n → ∞. Compute

∂ F̄n(m)

∂m�

= ω�,n

⎡

⎣ 1

2β
log

(
1 + m�

1 − m�

)

− a�

⎛

⎝
∑

�′∈[k]
a�′ ω�′,n m�′

⎞

⎠ − h

⎤

⎦ (2.27)

and

∂2 F̄n(m)

∂m� ∂m�′
= −a� ω�,n a�′ ω�′,n, � �= �′,

∂2 F̄n(m)

∂m�
2 = ω�,n

β

1

1 − m2
�

− a2� ω2
�,n .

(2.28)

The same formulas apply for In, Fn , with an error term O(n−1).

2.4. Additional computation. We conclude with a computation that will be useful later
on. Recalling (2.11), we write

n
[
Īn(m

�,±) − Īn(m)
]

= n ω�,n

[
1 + m�

2
log

(

1 ± 2
∣
∣A�,n

∣
∣ (1 + m�)

)

+
1 − m�

2
log

(

1 ∓ 2
∣
∣A�,n

∣
∣ (1 − m�)

)

± 1
∣
∣A�,n

∣
∣
A±

�,n

]

= n ω�,n

[

± 1
∣
∣A�,n

∣
∣

∓ 1
∣
∣A�,n

∣
∣
+ O(n−2) ± 1

∣
∣A�,n

∣
∣
Δ±

�,n

]

= Δ±
�,n + O(n−1), (2.29)
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where

Δ±
�,n = log

⎛

⎝1 +
2m� ± 4|A�,n|

1 − m� ∓ 2|A�,n|

⎞

⎠ . (2.30)

The same formula applies for In with an error term of order O(n−1), and hence

n
[
In(m

�,±) − In(m)
] = Δ±

�,n + O(n−1). (2.31)

Note that Δ±
�,n = O(1). Therefore, using (2.15), we get

n
[
En(m

�,±) − En(m)
]

= n
[
Fn(m

�,±) − Fn(m)
]

− 1

β
n
[
In(m

�,±) − In(m)
]

= n
[
Fn(m

�,±) − Fn(m)
]

− 1

β
Δ±

�,n + O(n−1). (2.32)

3. Metastable Regime

Section 3.1 identifies the stationary points of F̄n . Section 3.2 identifies the metastable
regime. Section 3.3 provides details on the 1-dimensional metastable landscape.

3.1. Stationary points of F̄n and Fβ,h. By (2.27), the critical points m = (m�)�∈[k] of
F̄n solve the system of equations (with ω�,n �= 0)

0 = ∂ F̄n(m)

∂m�

= ω�,n

⎡

⎣ 1

2β
log

(
1 + m�

1 − m�

)

− a�

⎛

⎝
∑

�′∈[k]
a�′ ω�′,n m�′

⎞

⎠ − h

⎤

⎦ , � ∈ [k].
(3.1)

Hence

1

2
log

(
1 + m�

1 − m�

)

= β

⎡

⎣a�

⎛

⎝
∑

�′∈[k]
a�′ ω�′,n m�′

⎞

⎠ + h

⎤

⎦ . (3.2)

Since arctanh x = 1
2 log

1+x
1−x , x ∈ (−1,+1), (3.2) can be rewritten as

m� = tanh

⎛

⎝β

⎡

⎣a�

⎛

⎝
∑

�′∈[k]
a�′ ω�′,n m�′

⎞

⎠ + h

⎤

⎦

⎞

⎠ , � ∈ [k]. (3.3)

Similarly, the critical points m = (m�)�∈[k] of Fβ,h solve the deterministic equation

m� = tanh

⎛

⎝β

⎡

⎣a�

⎛

⎝
∑

�′∈[k]
a�′ ω�′ m�′

⎞

⎠ + h

⎤

⎦

⎞

⎠ , � ∈ [k]. (3.4)

Note that this can also be obtained directly from (3.3) after replacing ω�,n by its mean
value ω�.
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3.2. Metastable regime. We are interested in identifying the metastable regime, i.e., the
set of pairs (β, h) for which Fβ,h has more than one minimum. Put

K = K (m) =
∑

�∈[k]
a� ω� m�. (3.5)

From the characterisation of the critical points of Fβ,h in (3.4) it follows that

K = Tβ,h(K ), Tβ,h(K ) =
∑

�∈[k]
a� ω� tanh(β[a�K + h]). (3.6)

Note that any critical point m = (m�)�∈[k] ∈ [−1, 1]k of Fβ,h is uniquely determined
by K (m) ∈ R. Consequently, the problem of solving the k-dimensional system in (3.4)
can be reduced to solving the 1-dimensional Eq. (3.6). Recalling Hypothesis 1(2), the
system is in the metastable regime if and only if (3.6) has more than one solution that is
not tangent to the diagonal.

Compute

T ′
β,h(K ) = β

∑

�∈[k]
a2� ω�

(
1 − tanh2(β[a�K + h])),

T ′′
β,h(K ) = −2β2

∑

�∈[k]
a3� ω� tanh(β[a�K + h]) (1 − tanh2(β[a�K + h])). (3.7)

For h = 0, the system is metastable when

β >
1

∑
�∈[k] a2� ω�

, (3.8)

in which case Tβ,h has a unique inflection point at K = 0, implying that (3.6) has three
solutions K ∈ {−K ∗, 0,+K ∗} with K ∗ > 0. Otherwise (3.6) has only one solution
K = 0.

We proceed with the more interesting case h > 0.

3.2.1. Number of solutions

Lemma 3.1 (Number of solutions). For h > 0, the number of critical points of Fβ,h, i.e.,
solutions of (3.6), varies in {1, 3, . . . , 2� + 1}, where � ∈ [k] and 2� − 1 is the number
of inflection points of Tβ,h.

Proof. For h > 0 and K positive and large enough, T ′′
β,h(K ) < 0. Moreover, for h > 0

and K negative with |K | large enough, T ′′
β,h(K ) > 0. Therefore, Tβ,h has at least one

inflection point and the number of inflection points of Tβ,h cannot be even: it takes
values in {1, 3, . . . , 2k − 1} depending on β, h and on the law of the components of J .
Consequently, if 2� − 1 (� ∈ [k]) is the number of inflection points, then the cardinality
of the solutions of (3.6) takes values in {1, 3, . . . , 2� + 1} depending on β, h and on the
law of the components of J . ��

We conjecture that for any finite k there exist β, h and a law of the components of
J such that (3.6) has any number of solutions in the set {1, 3, . . . , 2k + 1}. We found
numerical evidence for this fact for k ∈ {2, 3, 4}. See Appendix B.
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Lemma 3.2 (Unique strictly positive solution). For every β > 0 and h > 0, (3.6) has
exactly one strictly positive solution.

Proof. Put W (K ) = Tβ,h(K ) − K . The solutions of (3.6) are the roots of W .
Clearly, W (0) > 0. Moreover, limK→∞ W (K ) = −∞ because limK→∞ Tβ,h(K ) =∑

�∈[k] a� ω� > 0 is finite. Therefore, by continuity, a root of W (K ) exists in (0,∞).

Let K̃ be the smallest positive root of W . Next we will prove that this root is unique.
Indeed, W (K )′′ < 0 when K ∈ [0,∞), meaning that K �→ W (K )′ is strictly decreas-
ing. By continuity, since W (K ) > 0 for all K ∈ [0, K̃ ), we have W (K̃ )′ ≤ 0 and
limK→∞ W (K )′ = −1. Therefore, W (K )′ < 0 for all K ∈ (K̃ ,∞), and so W is
strictly decreasing. Moreover, W (K ) < W (K̃ ) = 0 for all K ∈ (K̃ ,∞). Thus, K̃ is the
only positive root of W . ��

3.2.2. Metastable regime

Lemma 3.3 (Characterisation of the metastable regime). Equation (3.6) has at least
three solutions not tangent to the diagonal if and only if there exists K̄ < 0 such that
K̄ > Tβ,h(K̄ ), i.e.,

K̄ >
∑

�∈[k]
a� ω� tanh(β[a� K̄ + h]). (3.9)

Proof. Using Lemma 3.2, we see that (3.6) has at least three solutions if and only if it has
at least two strictly negative solutions. As above, we defineW (K ) = Tβ,h(K )− K . The
solutions of (3.6) are the roots of W . Now, assume that there exists a K̄ < 0 such that
K̄ > Tβ,h(K̄ ). Since W (K̄ ) < 0 and W (0) > 0, W (K ) has a root in (K̄ , 0), implying
that (3.6) has at least one solution in (K̄ , 0). Moreover, since limK→−∞ Tβ,h(K ) =
−∑

�∈[k] a� ω� is finite, we have limK→−∞ W (K ) = ∞. BecauseW (K̄ ) < 0, it follows
that W has at least one root in (−∞, K̄ ). With the same argument it can be shown that
the negative roots of W are always even. The opposite implication is trivial. ��
Remark 3.1. Applying the intermediate value theorem to the derivative of W (K ) =
Tβ,h(K ) − K , we get that if the condition in Lemma 3.3 is satisfied, then there exists a
K̄ < 0 such that T ′

β,h(K̄ ) = 1 and K̄ > Tβ,h(K̄ ). ♠
Theorem 3.1 (Metastable regime). Define, as in (1.14),

βc = 1
∑

�∈[k] a2� ω�

. (3.10)

The metastable regime is

β ∈ (βc,∞), h ∈ [
0, hc(β)

)
, (3.11)

with β �→ βhc(β) non-decreasing on [βc,∞). Furthermore, if the support of the law of
the components of J is put into increasing order, i.e., a1 < a2 < · · · < ak, then

lim
β→∞ hc(β) = min

�∈[k]∗

(
k∑

�′=�

a� a�′ ω�′ −
�−1∑

�′=1

a� a�′ ω�′

)

, (3.12)

where the minimum is over all � ∈ [k] such that the quantity between brackets is positive.
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Proof. Recalling Lemma 3.3, we look for conditions for the existence of a K < 0
satisfying (3.9). If such a K exists, then by Remark 3.1 there exists a K̄ < 0 satisfying
(3.9) such that T ′

β,h(K̄ ) = 1, which reads

∑

�∈[k]
a2� ω� tanh2(β[a� K̄ + h]) =

∑

�∈[k]
a2� ω� − 1

β
. (3.13)

Since the left-hand side of (3.13) is positive, it admits solutions only if

1

β
<

∑

�∈[k]
a2� ω� = 1

βc
. (3.14)

Therefore, (3.14) is a necessary condition for the metastable regime.
Now assume (3.14). Since tanh x ∼ x , x → 0, for |K | � β(max�∈[k] a�)

−1 and
h ↓ 0, we have

K = Tβ,h(K ) =
∑

�∈[k]
a� ω� tanh(β[a�K + h]) ∼

∑

�∈[k]
a� ω� β[a�K + h], (3.15)

which reads

K ∼ −
⎛

⎝
∑

�∈[k]
a� ω�

⎞

⎠
(

1

βc
− 1

β

)−1

h (3.16)

and proves the existence of a negative solution. A positive solution is guaranteed by
Lemma 3.2. The existence of a third (strictly negative) solution of (3.4), for every β > βc
and for h ↓ 0, follows as in the proof of Lemma 3.3. Therefore, the lower bound on βc
is sharp.

Since h �→ Tβ,h(K ) is strictly increasing for every fixed β > 0 and K ∈ R, there
exists a unique critical curve β �→ hc(β) such that the system is metastable for 0 ≤
h < hc(β) and not metastable for h ≥ hc(β). We know that hc(β) > 0 for β > βc. By
passing to the parametrisation g = hβ, we get that β �→ Tβ,g(K ) is strictly decreasing
for every g and for every K < 0, from which it follows that β �→ gc(β) = βhc(β) is
non-decreasing.

We next focus on the limit of hc(β) as β → ∞. By Lemma 3.3, we may focus
on the existence of K̄ satisfying (3.9). In the limit as β → ∞, tanh(β[a� K̄ + h]) →
2Θ−h/a�

(K̄ ) − 1, where Θx (·) is the Heaviside function centred in x . Thus, for all
� ∈ [k + 1],

lim
β→∞

∑

�′∈[k]
a�′ ω�′ tanh(β[a�′K+h]) = −

k∑

�′=�

a�′ ω�′+
�−1∑

�′=1

a�′ ω�′ , K ∈
(

− h

a�−1
,− h

a�

)

,

(3.17)
and, for all � ∈ [k],

lim
β→∞

∑

�′∈[k]
a�′ ω�′ tanh(β[a�′K + h]) = −

k∑

�′=�+1

a�′ ω�′ +
�−1∑

�′=1

a�′ ω�′ , K = − h

a�

,

(3.18)
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where we set − h
a0

= −∞ and − h
ak+1

= ∞. Thus, for K̄ ∈
(
− h

a�−1
,− h

a�

)
, (3.9) can be

written as

K̄ > −
k∑

�′=�

a�′ ω�′ +
�−1∑

�′=1

a�′ ω�′ . (3.19)

Therefore, (3.9) has a solution if and only if there exists an � ∈ [k] such that

−
k∑

�′=�

a�′ ω�′ +
�−1∑

�′=1

a�′ ω�′ < − h

a�

, (3.20)

in which case a solution K̄ of (3.9) exists in

(

−
k∑

�′=�

a�′ ω�′ +
�−1∑

�′=1

a�′ ω�′,− h

a�

)

. (3.21)

Note that the quantity between brackets in (3.12) is always positive for � = 1. Thus, the
minimum is always finite.

The proof is complete after we show why we may drop the case where K̄ = − h
a�

for

some � ∈ [k]. In this case the condition for K̄ to satisfy (3.9) is

−
k∑

�′=�+1

a�′ ω�′ +
�−1∑

�′=1

a�′ ω�′ < − h

a�

, (3.22)

which implies (3.20). Thus, if K̄ = −h
a�

satisfies (3.9), then also some other K in (3.21)
satisfies (3.9). Therefore, the condition in (3.20) is equivalent to having metastability. ��
Lemma 3.4 (Re-entrant crossover). The function β �→ hc(β) is not necessarily non-
decreasing.

Proof. In Appendix C we provide an example of β �→ hc(β) that is not increasing. ��

3.2.3. Bounds on the inflection points and on the critical curve

Lemma 3.5 (Bounds on inflection points). All solutions of T ′′
β,h(K ) = 0 are contained

in the interval
[

− h

min�∈[k] a�

,− h

max�∈[k] a�

]

. (3.23)

In particular, they are all strictly negative.

Proof. If K > − h
max�∈[k] a�

, then tanh(β[a�K + h]) > 0 for all � ∈ [k], which implies

T ′′
β,h(K ) < 0. If K < − h

min�∈[k] a�
, then tanh(β[a�K + h]) < 0 for all � ∈ [k], which

implies T ′′
β,h(K ) > 0. ��

Lemma 3.6 (Upper bound on hc). supβ∈(βc,∞) hc(β) <
(
max�∈[k] a�

)∑
�∈[k] a� ω�.
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Proof. Use Lemma 3.3 to characterise the metastable regime and Remark 3.1. We claim
that if a solution K̄ of (3.9) with T ′

β,h(K̄ ) = 1 exists, then it must be negative and strictly
less than an inflection point. Using this fact, together with Lemma 3.5 and the inequality
in (3.9), we obtain a necessary upper bound on h:

∑

�∈[k]
a� ω� tanh(β[a� K̄ + h]) < − h

max�∈[k] a�

. (3.24)

Using that tanh(β[a� K̄ + h]) > −1, we conclude the proof.
We are left to prove the claim. By Lemma 3.5, all inflection points are negative, and

T ′′
β,h(K ) < 0 for K ≥ 0. Assume, by contradiction, that T ′′

β,h(K ) < 0 for all K ∈
(K̄ ,∞). Then T ′

β,h is strictly decreasing. Therefore, T ′
β,h(K ) < 1 for all K ∈ (K̄ ,∞),

which implies Tβ,h(K ) − Tβ,h(0) < K . Since Tβ,h(0) > 0, there exists a K̃ ∈ (K̄ , 0)
such that Tβ,h(K̃ ) > 0 > K̃ . Thus, Tβ,h(K̃ ) − Tβ,h(0) > K̃ , which contradicts what
we have proved for all K ∈ (K̄ ,∞). ��

3.3. Quasi 1-dimensional landscape. Given K ∈ R, by standard saddle point approxi-
mation, the leading order of

− 1

βn
logμn

({σ : Kn(mn(σ )) = K }) (3.25)

turns out to be the function Gn : R → R defined by

Gn(K ) = inf
m : Kn(m)=K

F̄n(m). (3.26)

Recalling definitions (2.25) and (3.5), using Lagrange multipliers and integrating the
condition Kn(m) = K , we obtain

Gn(K ) = −1

2
K 2 − log 2

β
− inf

t∈R

⎛

⎝Kt +
∑

�∈[k]

ω�,n

β
log cosh [β(h − ta�)]

⎞

⎠ . (3.27)

Lemma 3.7 (Alternative characterisation for the critical points).

1. If m∗ is a (not maximal) critical point for Fn, then Kn(m∗) is a critical point for Gn.
2. If K is a critical point for Gn, then m∗ = (m∗

�)�∈[k] with m∗
� = tanh (β [a�K + h])

(recall (3.3)) is a critical point for Fn.
3. Fn(m∗) = Gn(Kn(m∗)) for any (not maximal) critical point m∗.

Proof. Similar to [3, Lemma 7.4]. ��
We have already seen that Kn(m) fully determines any critical value m of Fn , and is

useful to order them. Lemma 3.7 exhibits the one-dimensional structure underlying the
metastable landscape and provides a tool to describe the nature of the critical points of
Fn .

Remark 3.2. The above results extend to the limit n → ∞: replace Fn by Fβ,h and Gn
by Gβ,�, obtained after replacing ω�,n by ω� in (3.27), and Kn(·) by K (·). ♠
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4. Approximation of the Dirichlet form Near the Saddle Point

In this section we approximate the Dirichlet form associated with the coarse-grained
dynamics near the saddle point. This is a key step to obtain capacity estimates in the
following section. Further details and examples on the techniques we use here can be
found in [6, Chapters 9, 10 and 14].

Section 4.1 introduces some key quantities that are needed to express the mesoscopic
measure. Section 4.2 introduces an approximate mesoscopic measure that leads to an
approximate dynamics. Section 4.3 approximates the harmonic functions associatedwith
this dynamics. Section 4.4 computes an approximate Dirichlet form. Section 4.5 uses
the latter to approximate the full Dirichlet form.

4.1. Key quantities. Letmn = (m�,n)�∈[k] and tn = (t�,n)�∈[k] inΓn be a localminimum
of Fn and the correspondent saddle point, respectively, as defined in Sect. 1.3.4. Note
that both mn and tn satisfy (3.3). Consider the neighbourhood of tn defined by

Dn =
{
m ∈ Γn : d(m, tn) ≤ C ′n−1/2 log1/2 n

}
, (4.1)

where d is the Euclidean distance andC ′ ∈ (0,∞) is a constant. Abbreviate the Hessian
of Fn

An(m) = (∇2Fn)(m), m ∈ Γn, (4.2)

and put

An = An(tn). (4.3)

By (2.28),

(An(m))�,�′ = −a� ω�,n a�′ ω�′,n + O(n−1), � �= �′,

(An(m))�,� = ω�,n

β

1

1 − m2
�

− a2� ω2
�,n + O(n−1) = 1

β

∂2 Īn(m)

∂m�
2 − a2� ω2

�,n + O(n−1).

(4.4)

Note that An(m) is a diagonal matrix minus a rank one matrix. Compute

detAn(m) =
⎛

⎝1 −
∑

�∈[k]
β a2� ω�,n[1 − m2

�]
⎞

⎠
∏

�′∈[k]

1

β

ω�′,n
1 − m2

�′
[1 + O(n−1)]. (4.5)

4.2. Approximate dynamics and Dirichlet form. For any two vectors v, w ∈ R
k , let

〈v, w〉 denote their scalar product. For any k × k matrix M and any v ∈ R
k , let M · v

denote their matrix product, as v was in Rk × 1.
For m ∈ Dn , define

Q̃n(m) = 1

Zn
exp

[
−βn

2

〈[m − tn],An · [m − tn]
〉]
exp [−βnFn(tn)] , (4.6)
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and

r̃n
(
m,m′) =

⎧
⎪⎨

⎪⎩

r̄n
(
tn, t�,+n

)
, m′ = m�,+,

r̄n
(
t�,−n , tn

) Q̃n(m�,−)

Q̃n(m)
, m′ = m�,−,

0, else,

(4.7)

where r̄n is defined in (2.16). The transition rates r̃n define a random dynamics onDn that
is reversible with respect to the mesoscopic measure Q̃n . The corresponding Dirichlet
form is

ẼDn (u, u) =
∑

m∈Dn

Q̃n(m)
∑

�∈[k]
r̃n
(
m,m�,+)

[
u(m) − u(m�,+)

]2
, (4.8)

where u is a test function on Dn . Put

r� = r̃n
(
m,m�,+) = r̄n

(
tn, t�,+n

)
. (4.9)

Using (2.7) and (2.16), we get

r� = ∣
∣A�,n

∣
∣ 1 − t�,n

2
exp

⎡

⎣−2β

⎛

⎝−h − a�

⎛

⎝a�

n
+

∑

�′∈[k]
a�′ω�′,nt�′,n

⎞

⎠

⎞

⎠

+

⎤

⎦ .(4.10)

4.2.1. Approximation estimates Next we estimate how close the pairs (r̄n, r̃n) and
(Qn, Q̃n) are. By Taylor expansion around tn , we have

Fn(m) − Fn(tn) = 1
2

〈
[m − tn],An · [m − tn]

〉
+ O

(
d(m, tn)3

)
. (4.11)

In particular,

Fn(t�,±n ) − Fn(tn) = 1

2

4
∣
∣A�,n

∣
∣2

(An)�,� + O
( ∣
∣A�,n

∣
∣−3 )

= 2

n2ω2
�,n

[
ω�,n

β

1

1 − t2�,n
− a2� ω2

�,n + o
(
(n ω�,n)

−1
)
]

+ O
(
(n ω�,n)

−3)

= 2

n2

(
1

β ω�,n(1 − t2�,n)
− a2�

)

+ O
(
(n ω�,n)

−3),

(4.12)

where the second equality uses (4.4). Moreover, for m ∈ Dn (e� is the unitary vector in
R
k whose �-th component is non-zero),

Fn(m
�,±) − Fn(m)

=
〈[

± 2|A�,n| e�

]
,An · [m − tn]

〉
+
1

2

〈[
± 2|A�,n| e�

]
,An ·

[
± 2|A�,n| e�

]〉

+ O
(
d(m, tn)3

)
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= ± 2
∣
∣A�,n

∣
∣

∑

�′∈[k]
(An)�,�′(m�′ − t�′,n) +

2
∣
∣A�,n

∣
∣2

(An)�,� + O
(
d(m, tn)3

)

=
(

± 2

nω�,n
(m� − t�,n) +

2

n2ω2
�,n

)(
ω�,n

β

1

1 − t2�,n
− a2� ω2

�,n + o(n−1)

)

± 2

nω�,n

∑

�′∈[k], �′ �=�

(−a� ω�,n a�′ ω�′,n)(m�′ − t�′,n) + O
(
n−3/2 log3/2 n

)

= ∓2

n

∑

�′∈[k]
a� a�′ ω�′,n(m�′ − t�′,n) ± 2(m� − t�,n)

β n(1 − t2�,n)
+ O

(
n−3/2 log3/2 n

)
, (4.13)

where the third equality uses (4.4). Form ∈ Dn , we have d(m, tn)3 = O(n−3/2 log3/2 n).
Therefore, combining (2.17), (4.6) and (4.11), we have

∣
∣
∣
∣
Qn(m)

Q̃n(m)
− 1

∣
∣
∣
∣ ≤ C ′′n−1/2 log3/2 n, m ∈ Dn, (4.14)

for some C ′′ ∈ (0,∞) constant. Using (2.16) and (2.32), we can write

r̄n(m,m�,±) = exp

[

−β

[

n
[
Fn(m

�,±) − Fn(m)
]

− 1

β
Δ±

�,n + O
(
n−1

)]

+

]
1 ∓ m�

2
,

(4.15)
where Δ±

�,n is defined in (2.30).
Using (4.7), (4.12), (4.13) and (4.15), we find that, for all m ∈ Dn ,

∣
∣
∣
∣
∣
∣

r̄n
(
m,m�,+

)

r̃n
(
m,m�,+

) − 1

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

r̄n
(
m,m�,+

)

r̄n
(
tn, t�,+n

) − 1

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

(1 − m�) exp
{
−

[
I1 + O(n−1/2 log3/2 n) − Δ±

�,n + on(1)
]

+

}

(1 − t�,n) exp
{
−

[
I2 + O(n−2 ω−3

�,n) − Δ±
�,n + on(1)

]

+

} − 1

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

(1 − m�) exp
{
−

[
I1 − Δ±

�,n + on(1)
]

+

}

(1 − t�,n) exp
{
−

[
−Δ±

�,n + on(1)
]

+

} − 1

∣
∣
∣
∣
∣
∣
∣

≤ C ′′′n−1/2 log1/2 n, (4.16)

where C ′′′ ∈ (0,∞) is a constant and we abbreviate

I1 = −2β
∑

�′∈[k]
a� a�′ ω�′,n(m�′ − t�′,n) +

2(m� − t�,n)

1 − t2�,n
,

I2 = 2

n

(
1

ω�,n(1 − t2�,n)
− β a2�

)

.

(4.17)

Equations (4.14) and (4.16) are relevant for the following approximation.
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4.3. Approximate harmonic function. Let Bn be the k × k matrix defined by

(Bn)��′ =
√
r�r�′

n ω�,nω�′,n
(An)��′ , (4.18)

where An is defined in (4.3). Note that

detBn = (detAn)
∏

�∈[k]

r�
n ω2

�,n

. (4.19)

Let γ
(�)
n , � ∈ [k], be the eigenvalues of Bn , ordered in increasing order. Let γn = γ

(1)
n

denote the unique negative eigenvalue ofBn , and v̂ the correspondingunitary eigenvector.

Define v = (v�)�∈[k] by v� = v̂�
ω�,n

√
n√

r�
.

Remark 4.1. As in [6, Remark 10.4], it follows by Hypothesis 1 that An has all strictly
positive eigenvalues but one strictly negative. It can be seen that the same property holds
for the eigenvalues of Bn . ♠
Lemma 4.1 (Eigenvalue). The eigenvalue γn is the unique solution of the equation

1

n

∑

�∈[k]

a2�
1

nβ ω�,n(1−t2�,n)
− γn

r�

= 1 + O(n−1). (4.20)

Proof. We follow the line of proof of [6, Lemma 14.9], using the last point in Hypoth-
esis 1. In our case, [6, Eq. (14.7.12)] reads

−1

n
a�

√
r�

∑

�′∈[k]
a�′

√
r�′u�′ +

(

r�
1

nβω�,n(1 − t�,n)2
− γn

)

u� + O(n−1) = 0, � ∈ [k].
(4.21)

��
Remark 4.2. As in [6, Lemma 14.9], since the left-hand side of (4.20) is increasing in
γn for γn ≥ 0, a negative solution of (4.20) exists if and only if

β
∑

�∈[k]
a2� ω�,n(1 − t2�,n) > 1. (4.22)

Using (4.5), (4.22) holds if and only if detAn < 0. By Remark 4.1 the latter holds true.
♠

Define f : R → [0, 1] as

f (x) =
√

(−γn)βn

2π

∫ x

−∞
e− 1

2 (−γn)βnu2du (4.23)

and g : R
k → [0, 1] as

g(m) = f (〈v,m − tn〉). (4.24)

Recall the definition of Mn(mn) given in (1.17).
Let W0 be a strip in Γn of width Cn−1/2 log1/2 n such that tn ∈W0, Mn(mn) ∩ W0

is empty and Wc
0 consists in two non-neighbouring parts: W1 containing mn and
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W2 containing Mn(mn). Moreover, we require that, for some fixed constant c > 1,
W0 ∩ Dc

n ⊆ {m ∈ Γn : Fn(m) > Fn(tn) + cn−1 log n}. Define

g̃(m) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, m ∈ W1,

1, m ∈ W2,

g(x), m ∈ W0 ∩ Dn,

0, m ∈ W0 ∩ Dc
n .

(4.25)

By choosing W0 and Dn suitably we have, for m ∼ m′ (i.e., r̄n(m,m′) > 0) and
c ∈ (0,∞) large enough (coming from the definition of W0),

Qn(m) ≤ Qn(tn)n−cβ, m ∈ W0 ∩ Dc
n , (4.26)

(g̃(m) − g̃(m′))2 r̄n(m,m′)Qn(m) ≤ Qn(tn)n−cβ, m ∈ W0 ∩ Dn,m
′ ∈ Wc

0 . (4.27)

4.4. Computation of the approximate Dirichlet form. In this section we follow [6, Sec-
tions 10.2.2–10.2.3] to approximate ẼDn (g, g) defined in (4.8). As in [6, Eq. (10.2.24)],
for m ∈ Dn and � ∈ [k] such that m�,+ ∈ Dn , compute

g(m�,+) − g(m) = 2
∣
∣A�,n

∣
∣
v� f

′(〈v,m − tn〉)

+
2

∣
∣A�,n

∣
∣2

v2� f ′′(〈v,m − tn〉) + 4

3
∣
∣A�,n

∣
∣3

v3� f ′′′(〈v, m̃ − tn〉)

= v�

√
2(−γn)β

πn ω2
�,n

exp

(

−βn

2
(−γn) 〈v,m − tn〉2

)

×
(

1 − 1

ω�,n
v�(−γn)β 〈v,m − tn〉 + O(ω−2

�,n n
−1 log n)

)

. (4.28)

Recalling (4.8)–(4.9), we have

ẼDn (g, g) =
∑

m∈Dn

Q̃n(m)
∑

�∈[k]
r�

[
g(m�,+) − g(m)

]2

= 1

Zn

∑

m∈Dn

exp
[
−βn

2

〈[m − tn],An · [m − tn]
〉]
e−βnFn(tn)

×
∑

�∈[k]
r�v

2
�

2(−γn)β

πn ω2
�,n

exp
(
−βn(−γn) 〈v,m − tn〉2

)

×
(

1 − v�

ω�,n
(−γn)β 〈v,m − tn〉 + O(ω−2

�,n n
−1 log n)

)2

= 1

Zn

2(−γn)β

π

∑

m∈Dn

exp
[
−βn

2

〈[m − tn],An · [m − tn]
〉]
e−βnFn(tn)

× exp
(
−βn(−γn) 〈v,m − tn〉2

) [
1 + O

(
ω−1

�,n n
−1/2 log1/2 n

)]
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= 1

Zn

2(−γn)β

π

[
1 + O

(
ω−1

�,n n−1/2 log1/2 n
)]

e−βnFn(tn)

⎛

⎝
∏

�∈[k]

∣
∣A�,n

∣
∣

2

⎞

⎠

×
∫

Dn

dm exp
[
−βn

2

〈[m − tn],An · [m − tn])
〉]

× exp
(
−βn(−γn) 〈v,m − tn〉2

)

= 1

Zn
e−βnFn(tn) (−γn)n√[− detAn]

(
πn

2β

) k
2−1

⎛

⎝
∏

�∈[k]
ω�,n

⎞

⎠

×
[
1 + O

(
ω−1

�,n n
−1/2 log1/2 n

)]
, (4.29)

where we use [6, Eq. (10.2.33)] with ε = 1
βn and d = k. Here 1

2

∣
∣A�,n

∣
∣ is the inverse of

the step in the �-direction, while in [6, Eq. (10.2.33)] the step is ε.

Remark 4.3. Note that

ẼDn (g, g) = ẼDn (g̃, g̃) [1 + o(1)] (4.30)

because g̃(m) = g(m) [1 + o(1)] for all m ∈ Wc
0 ∩ Dn . The latter can be proved

by approximating the Gaussian integral by 0 or 1 when 〈v,m − tn〉 is proportional to
−n−1/2 log1/2 n or n−1/2 log1/2 n, respectively. ♠

4.5. Final Dirichlet form approximation. We are now ready to compare ESn with ẼDn .
Let h : Sn → [0, 1] be such that h(σ ) = g̃(mn(σ )), σ ∈ Sn . We split the sum in (2.18)
into four subsets of Γn × Γn : m ∈ W0 ∩ Dc

n , m
′ ∈ Γn ; m ∈ W0 ∩ Dn , m′ ∈ W1;

m ∈ W0 ∩ Dn , m′ ∈ W2; m ∈ W0 ∩ Dn , m′ ∈ W0 ∩ Dn . Then, using (4.25)–(4.27), we
obtain

ESn (h, h) = O(n−cβ) +
1

2

∑

m∈W0∩Dn

∑

m′∈W0∩Dn

Qn(m) r̄n
(
m,m′) [g̃(m) − g̃(m′)

]2
.

(4.31)
Using (4.14) and (4.16), we obtain

ESn (h, h) = O(n−cβ) +
1

2

∑

m∈W0∩Dn

[
1 + O

(
n−1/2 log3/2 n

)]
Q̃n(m)

×
∑

m′∈W0∩Dn

(
1 + O

(
n−1/2 log1/2 n

))
r̃n
(
m,m′) [g̃(m) − g̃(m′)

]2

=
[
1 + O

(
n−1/2 log1/2 n

)] 1

2

∑

m,m′∈W0∩Dn

Q̃n(m)r̃n
(
m,m′) [g̃(m) − g̃(m′)

]2

=
[
1 + O

(
n−1/2 log1/2 n

)] 1

2

∑

m,m′∈Dn

Q̃n(m)r̃n
(
m,m′) [g̃(m) − g̃(m′)

]2

= ẼDn (g̃, g̃)
[
1 + O

(
n−1/2 log1/2 n

)]
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= [1 + on(1)] 1

Zn
exp [−βnFn(tn)]

(−γn)n√[− detAn]
(

πn

2β

) k
2−1

⎛

⎝
∏

�∈[k]
ω�,n

⎞

⎠ ,

(4.32)

where the third equality follows from (4.25)–(4.27) together with (4.14), and the last
equality follows from (4.29)–(4.30).

5. Capacity and Valley Estimates

Section 5.1 provides sharp asymptotic upper bounds and lower bounds on the capacity of
themetastable pair betweenwhich the crossover is being considered. These estimates use
the results of the Sect. 4 together with the Dirichlet principle and the Berman–Konsowa
principle, which are variational representations of capacity. Section 5.2 provides a sharp
asymptotic estimate for the mesoscopic measure of the valleys of the minima of Fn ,
which leads to a sharp asymptotic estimate for Fn inside this valley.

5.1. Capacity estimates. Given a Markov process (xt )t≥0 with state space S, a key
quantity in the potential-theoretic approach to metastability is the capacity cap(A, B)

of two disjoint subsets A, B of S. This is defined by (see [6, Eq. (7.1.39)])

cap(A, B) =
∑

x∈A

μ(x)Px (τB < τA), (5.1)

where μ is the invariant measure and Px is the probability distribution of the Markov
process starting in x .

Recall that Mn is the set of local minima of Fn .

Proposition 5.1 (Asymptotics of the capacity). Let mn = (m�,n)�∈[k] ∈ Mn and Mn ⊂
Mn\mn, such that the gate G (mn, Mn) consists of a unique point tn = (t�,n)�∈[k].
Suppose that β ∈ (βc,∞) and h ∈ [0, hc(β)). Then, as n → ∞,

cap(Sn[mn], Sn[Mn])

= [1 + on(1)] 1

Zn
e−βnFn(tn) (−γn) n√[− det(An(tn))]

(
πn

2β

) k
2−1

⎛

⎝
∏

�∈[k]
ω�,n

⎞

⎠ .
(5.2)

Remark 5.1. Proposition 5.1 holds for any subset Mn ⊆ Mn\mn , separated from mn by
tn , independently on the values of Fn on Mn . ♠

5.1.1. Upper bound: Dirichlet principle An important characterisation of the capacity
between two disjoint sets is given by the Dirichlet principle. For our quantity of interest
this states that

cap(Sn[mn], Sn[Mn]) = inf
u∈H̃

ESn (u, u), (5.3)

where H̃ is the set of functions from Sn to [0, 1] that are equal to 1 on Sn[mn] and 0 on
Sn[Mn].
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Given that, by assumption, G (mn, Mn) = {tn}, we use the Dirichlet principle in (5.3)
to obtain an upper bound on the capacity. We take as test function h ∈ H̃ defined in
Sect. 4.5 and, using (4.32), we obtain

cap(Sn[mn], Sn[Mn]) ≤ ESn (h, h)

= [1 + on(1)] 1

Zn
e−βnFn(tn) (−γn)n√[− det(An(tn))]

(
πn

2β

) k
2−1

⎛

⎝
∏

�∈[k]
ω�,n

⎞

⎠ .
(5.4)

5.1.2. Lower bound: Berman–Konsowa principle We first note that the process (σt )t≥0
is lumpable. Indeed, the process (mn(σt ))t≥0 is Markovian because the Hamiltonian
Hn(σ ) depends on mn(σ ) only (see (2.6)). Therefore, for A = Sn[A] and B = Sn[B]
with A and B disjoint subsets of Γn ,

cap(A, B) = capΓ (A, B), (5.5)

where capΓ denotes the capacity for the process (mn(σt ))t≥0, i.e., the projection of the

process (σt )t≥0 on the magnetisation space Γn . We write PΓ and E
Γ to denote the law

of (mn(σt ))t≥0 induced by the law P of (σt )t≥0, and its expectation, respectively. By the
lumpability, we can focus on the dynamics on Γn .

Following the line of argument in [6, Section 10.3] (with ε = 2
n and d = k), we

obtain the lower bound

cap(Sn[mn], Sn[Mn]) = capΓ (mn, Mn) ≥ ẼDn (g̃, g̃)
[
1 + O( n−1/2 log1/2 n)

]

= 1

Zn
e−βnFn(tn) (−γn)n√[− det(An(tn))]

(
πn

2β

) k
2−1

⎛

⎝
∏

�∈[k]
ω�,n

⎞

⎠ [1 + on(1)] ,
(5.6)

where we use (4.29) and (4.30).
We sketch the proof. The main idea is to use the Berman–Konsowa principle for a

suitable defective flow. More precisely, given disjoint subsets A, B of the state space,
for any defective loop-free unit flow fA,B from A to B with defect function δ (as defined
in [6, Definition 9.2]), we can estimate (see [6, Lemma 9.4], and notation therein)

cap(A, B) ≥
M∏

i=1

(

1 +

[

max
y∈Ai

δ(y)

F (y)

]

+

)−1 ∑

γ

P
f A,B (γ )

⎡

⎢
⎣

⎛

⎝
∑

(x,y)∈γ

f A,B((x, y))

μ(x)p(x, y)

⎞

⎠

−1
⎤

⎥
⎦ ,

(5.7)
where [·]+ denotes the positive part and γ is a self-avoiding path from A to B. It turns
out that, with a suitable choice of the flow f , the product in the right-hand side of (5.7)
is bounded from below by 1 + O( n−1/2 log1/2 n), and the sum over γ from below by
ẼDn (g̃, g̃)[1 + on(1)]. This proves (5.6).

Wegive a sketch of the test flowdefinition in our setting.Here A = {mn} and B = Mn .
Let v∗ be the eigenvector corresponding to the unique negative eigenvalue of the Hessian
of Fn at the saddle point tn (unique gate point in G ({mn}, Mn)). Let Gn be the cylinder
in R

k intersected with Γn , centred at tn , with axis v∗, radius ρ = C n−1/2 log1/2 n and
length ρ′ = C ′ n−1/2 log1/2 n. We will denote by ∂BGn the base facing B and by ∂AGn
the central part of radius C ′′ n−1/2 log1/2 n of the base facing A, with C ′′ < C . Choose
the constants so that Gn is contained in Dn defined in (4.1).
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We define a defective flow f A,B from A to B consisting of three parts: f A, a unitary
flow from A to ∂AGn ; f , a defective loop-free unit flow from ∂AGn to ∂BGn inside Gn ;
fB , a unitary flow from ∂BGn to B. This choice implies that the sum over γ in (5.7) is
relevant only on the paths entering Gn in ∂AGn , exiting Gn in ∂BGn , and afterwards
reaching B without going back to Gn . For this purpose we choose f A and fB such that
f A((x, y)) and fB((x, y)) are proportional to Qn(x). For m ∈ Gn such that m�,+ ∈ Gn ,
define

f ((m,m�,+)) = Q̃n(m)r�
[
g(m�,+) − g(m)

]
+

N (g)
, (5.8)

where g is defined in (4.24), Q̃n in (4.6), r� in (4.9) and

N (g) =
∑

m∈∂AGn

∑

�∈[k]:
m�,+∈Gn

Q̃n(m)r�
[
g(m�,+) − g(m)

]

+
. (5.9)

The contribution to the sum in brackets in (5.7) turns out to be negligible outside Gn .
Therefore, no further conditions on the flows f A and fB are necessary, provided the total
flow out of A is 1 and the total flow f A,B is defective and loop-free.

5.2. Measure of the valley. In order to prove Theorem 1.1, we need the following esti-
mate on the measure of the valley of the minima of Fn . For mn ∈ Mn , let A(mn) ⊂ Γn
be the valley of mn as defined in [6, Eq. (8.2.10)].

Lemma 5.1 (Gibbs weight of the valley). Given mn ∈ Mn,

Qn(A(mn)) = 1

Zn

exp (−βnFn(mn))√
det(An(mn))

(
nπ

2β

) k
2

⎛

⎝
∏

�∈[k]
ω�,n

⎞

⎠
[
1 + O( n−1/2 log3/2 n)

]
,

(5.10)
where Qn is the mesoscopic measure defined in (2.17), andAn(mn) is the k× k Hessian
matrix defined in (4.2).

Proof. The proof follows that of [6, Lemma 10.12 and (10.2.33)]. The relevant contribu-
tion to Qn(A(mn)) is given by the measure of a ball Bρ of radius ρ = C n−1/2 log1/2 n
centred in mn , with C constant, contained in A(mn). Indeed, if y ∈ A(mn) and
d(mn, y) > ρ, then by Taylor expansion of Fn around mn we have

Qn(y) = 1

Zn
exp[−βnFn(y)] = 1

Zn
exp

[
−βn[Fn(mn) + c d(mn, y)

2]
]

≤ 1

Zn
exp

[
−βn[Fn(mn) + cρ2]

]
= n−βcC2

Zn
exp [−βnFn(mn)] ,

(5.11)

where c is a constant. The condition y ∈ A(mn) is needed to ensure that Fn(y) >

Fn(mn), implying that c is positive. Therefore, we obtain the rough estimate

Qn(A(mn)\Bρ) ≤ nk
n−βcC2

Zn
exp [−βnFn(mn)] , (5.12)



332 A. Bovier, F. den Hollander and S. Marello

where we use that |Γn| ≤ nk . The bound in (5.12) is sufficient to show that
Qn(A(mn)\Bρ) is negligible in Qn(A(mn)).

Compute

ZnQn(A(mn) ∩ Bρ)

= ZnQn(Bρ) = Zn

∑

y∈Bρ

Qn(y) =
∑

y∈Bρ

e−βnFn(y)

= e−βnFn(mn)
∑

y∈Bρ

exp

[

−βn

2
〈y − mn, (An(mn)) · (y − mn)〉 + O(nρ3)

]

= e−βnFn(mn)[1 + O(nρ3)]
∑

y∈Bρ

exp

[

−βn

2
〈y − mn, (An(mn)) · (y − mn)〉

]

= e−βnFn(mn)

⎛

⎝
∏

�∈[k]

∣
∣A�,n

∣
∣

2

⎞

⎠ [1 + O(nρ3)]

×
∫

Bρ

dy exp

[

−βn

2
〈y − mn, (An(mn)) · (y − mn)〉

]

= e−βnFn(mn)
(n

2

)k
⎛

⎝
∏

�∈[k]
ω�,n

⎞

⎠ [1 + O(nρ3)]
(
2π

nβ

) k
2

√
1

det(An(mn))

= e−βnFn(mn)

√
det(An(mn))

(
nπ

2β

) k
2

⎛

⎝
∏

�∈[k]
ω�,n

⎞

⎠ [1 + O(nρ3)], (5.13)

where we use the Taylor expansion

Fn(y) = Fn(mn) +
1

2

〈
y − mn, (∇2Fn) · (mn)(y − mn)

〉
+ O(ρ3), y ∈ Bρ,

(5.14)

and the approximation of the sum by an integral is correct up to an error 1 + O(ρ).
In the last lines we approximated the Gaussian integral on intervals [−ρ, ρ] by the
Gaussian integral onR, with an error 1 +O(n−c). We conclude by looking at (5.12) and
(5.13), and noting that for C large enough Qn(A(mn)\Bρ) is negligible compared to
Qn(A(mn) ∩ Bρ). ��

6. Proof of the Theorems

In this section we prove Theorems 1.1–1.3. Section 6.1 uses the asymptotics for the
capacity of the metastable pair from Sect. 5.1 and the asymptotics for the meso-
scopic measure from Sect. 5.2 to prove Theorem 1.1. Section 6.2 proves Theorem 1.2.
Section 6.3 proves Theorem 1.3.
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6.1. Average crossover time. Let us return to the notation of Theorem 1.1, where mn ∈
Mn andMn(mn) = {m ∈ Mn\mn : Fn(m) ≤ Fn(mn)}. To prove Theorem 1.1 we use
the relation

E
Γ
mn

(τMn(mn)) = [1 + on(1)] μ(A(mn))

capΓ (mn,Mn(mn))
, (6.1)

Recall notation introduced in Sect. 5.1.2. Because Fn(m) ≤ Fn(mn) for all m ∈
Mn(mn), (6.1) follows from [6, Theorem 8.15] after proving that Mn is a set of
metastable points in the sense of [6, Definition 8.2]. The latter follows along the lines of
the proof of [6, Theorem 10.6], where similar values of capacities and invariant measures
occur.

Using (6.1) in combination with Proposition 5.1 and Lemma 5.1, we obtain that, for
all σ ∈ Sn[mn],

Eσ (τSn [Mn(mn)])

= E
Γ
mn

(τMn(mn)) = [1 + on(1)] Qn(A(mn))

capΓ (mn,Mn(mn))

= [1 + on(1)] Qn(A(mn))

cap(Sn[mn], Sn[Mn(mn)])

= [1 + on(1)]
1
Zn

exp(−βnFn(mn))√
det(An(mn))

(
nπ
2β

) k
2 (∏

�∈[k] ω�,n
)

1
Zn

exp [−βnFn(tn)]
(−γn)n√[− det(An(tn))]

(
πn
2β

) k
2−1 (∏

�∈[k] ω�,n
)

= [1 + on(1)]
√

[− det(An(tn))]
det(An(mn))

(
π

2β(−γn)

)

exp [βn(Fn(tn) − Fn(mn))] ,

(6.2)

where we use that the dynamics depends on the starting configuration σ ∈ Sn[mn] only,
through its level magnetisations mn(σ ) = mn (see (2.6)), and also use the lumpability.

6.2. Exponential law. In this sectionweproveTheorem1.2. Since the dynamics depends
on the starting configuration σ ∈ Sn[mn] through its level magnetisation mn(σ ) = mn
only (see (2.6)), we have

lim
n→∞Pσ

(
τSn [Mn(mn)] > t Eσ

[
τSn [Mn(mn)]

])

= lim
n→∞P

Γ
mn

(
τ̄Mn(mn) > t EΓ

mn

[
τ̄Mn(mn)

])
,

(6.3)

where τ̄ is the hitting time of the process projected on Γn . Given the non-degeneracy
hypothesis (Hypothesis 1 in Sect. 1.3.4) and the one-dimensional landscape analysis (in
Sect. 3.3), we can apply [6, Theorem 8.45] to the right-hand side of (6.3) and conclude
the proof.
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6.3. Randomness of the exponent. In this section we prove Theorem 1.3. In particular,
we compute Fn(tn) − Fn(mn) − [Fβ,h(t) − Fβ,h(m)] to leading order.

Recalling definitions (2.26) and (3.5), we have

Fβ,h(m) = −1

2
K (m)2 − h

∑

�∈[k]
ω� m� +

1

β

∑

�∈[k]
ω� IC(m�). (6.4)

Let m = (m�)�∈[k], t = (t�)�∈[k] ∈ [−1, 1]k be the critical points of Fβ,h closest
to mn, tn (i.e., the critical points of Fn defined above), respectively. Note that m and t
satisfy (3.4), while mn and tn satisfy (3.3). Using (2.21), we get

Fn(tn) − Fβ,h(tn) = −1

2
[Kn(tn)2 − K (tn)2]

− h
∑

�∈[k]
[ω�,n − ω�] t�,n

+
1

β

⎡

⎣
∑

�∈[k]
[ω�,n − ω�]IC(t�,n) +

∑

�∈[k]

1

2n
log

(
π(1 − t2�,n)

2

)

ω�,n

− k

2n
+ o

(
n−1

) ]

(6.5)

and

Fβ,h(tn) − Fβ,h(t) = −1

2
[K (tn)2 − K (t)2] + 1

β

∑

�∈[k]
ω�[IC(t�,n) − IC(t�)]. (6.6)

By (3.2), we have

1

2
log

(
1 + t�,n
1 − t�,n

)

= β [a�Kn(tn) + h] ,

1

2
log

(
1 + t�
1 − t�

)

= β [a�K (t) + h] . (6.7)

Thus,

IC(t�,n) − IC(t�) = (t�,n − t�)I ′
C(t�) + O((t�,n − t�)2)

= (t�,n − t�)
1

2
log

(
1 + t�
1 − t�

)

+ O((t�,n − t�)2)

= (t�,n − t�)β [a�K (t) + h] + O((t�,n − t�)2). (6.8)

Moreover,

K (tn)2 − K (t)2 =
∑

�,�′∈[k]
a� a�′ ω� ω�′ [t�,nt�′,n − t�t�′ ]

=
∑

�,�′∈[k]
a� a�′ ω� ω�′

(
t�[t�′,n − t�′ ] + t�′ [t�,n − t�]

+ [t�,n − t�][t�′,n − t�′ ]) (6.9)
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and

Kn(tn)2 − K (tn)2 =
∑

�,�′∈[k]
a� a�′ [ω�,n ω�′,n − ω� ω�′ ]t�,nt�′,n

=
∑

�,�′∈[k]
a� a�′ t�,nt�′,n

(
ω�[ω�′,n − ω�′ ] + ω�′ [ω�,n − ω�]

+ [ω�,n − ω�][ω�′,n − ω�′ ]) . (6.10)

Similar equalities hold after we replace t by m and tn by mn . Using the previous
computations, we obtain

Fn(tn) − Fn(mn) − [Fβ,h(t) − Fβ,h(m)]
= Fn(tn) − Fβ,h(tn) + Fβ,h(tn) − Fβ,h(t)

− [Fn(mn) − Fβ,h(mn) + Fβ,h(mn) − Fβ,h(m)]
= −1

2

∑

�,�′∈[k]
a� a�′

[
t�,nt�′,n − m�,nm�′,n

] (
ω�[ω�′,n − ω�′ ] + ω�′ [ω�,n − ω�]

+ [ω�,n − ω�][ω�′,n − ω�′ ])

− 1

2

∑

�,�′∈[k]
a� a�′ ω� ω�′

[
t�,nt�′,n − t�t�′ + m�m�′ − m�,nm�′,n

]

− h
∑

�∈[k]
[ω�,n − ω�]

[
t�,n − m�,n

]

+
1

β

∑

�∈[k]
[ω�,n − ω�]

[
IC(t�,n) − IC(m�,n)

]
+
1

β

∑

�∈[k]

1

2n
log

(
1 − t2�,n
1 − m2

�,n

)

+
1

β

∑

�∈[k]
ω�

[
IC(t�,n) − IC(t�) + IC(m�) − IC(m�,n)

]
+ o

(
n−1

)
.

(6.11)

Using (6.8), we find

[Fn(tn) − Fn(mn)] − [Fβ,h(t) − Fβ,h(m)]
= −1

2

∑

�,�′∈[k]
a� a�′

[
t�,nt�′,n − m�,nm�′,n

] (
ω�[ω�′,n − ω�′ ] + ω�′ [ω�,n − ω�]

+ [ω�,n − ω�][ω�′,n − ω�′ ])

−1

2

∑

�,�′∈[k]
a� a�′ ω� ω�′

[
t�,nt�′,n − t�t�′ + m�m�′ − m�,nm�′,n

]

−h
∑

�∈[k]
[ω�,n − ω�]

[
t�,n − m�,n

]

+
1

β

∑

�∈[k]
[ω�,n − ω�]

[
IC(t�,n) − IC(m�,n)

]
+
1

β

∑

�∈[k]

1

2n
log

(
1 − t2�,n
1 − m2

�,n

)

+
1

β

∑

�∈[k]
ω�

[
(t�,n − t�)β [a�K (t) + h] + O((t�,n − t�)2)
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−(m�,n − m�)β
[
a�K (m) + h

]
+ O((m�,n − m�)

2)
]

+o
(
n−1

)
. (6.12)

Since

t�,nt�′,n − t�t�′ = (
t�[t�′,n − t�′ ] + t�′ [t�,n − t�] + [t�,n − t�][t�′,n − t�′ ]) , (6.13)

we focus on estimating t�,n − t�.
From Taylor expansion, we get

t�,n − t� = tanh

⎛

⎝β

⎡

⎣a�

∑

�′∈[k]
a�′ ω�′,n t�′,n + h

⎤

⎦

⎞

⎠ − tanh

⎛

⎝β

⎡

⎣a�

∑

�′∈[k]
a�′ ω�′ t�′ + h

⎤

⎦

⎞

⎠

= β a�

∑

�′∈[k]
a�′ [ω�′,n t�′,n − ω�′ t�′ ]

⎡

⎢
⎣1 − tanh

⎛

⎝β

⎡

⎣a�

∑

�′∈[k]
a�′ ω�′ t�′ + h

⎤

⎦

⎞

⎠

2
⎤

⎥
⎦

− β2 a2�

⎛

⎝
∑

�′∈[k]
a�′ [ω�′,n t�′,n − ω�′ t�′ ]

⎞

⎠

2

× tanh

⎛

⎝β

⎡

⎣a�

∑

�′∈[k]
a�′ ω�′ t�′ + h

⎤

⎦

⎞

⎠

×
⎡

⎢
⎣1 − tanh

⎛

⎝β

⎡

⎣a�

∑

�′∈[k]
a�′ ω�′ t�′ + h

⎤

⎦

⎞

⎠

2
⎤

⎥
⎦

+ O

⎛

⎜
⎝a3�

⎛

⎝
∑

�′∈[k]
a�′ [ω�′,n t�′,n − ω�′ t�′ ]

⎞

⎠

3
⎞

⎟
⎠ .

(6.14)

Since

ω�′,n t�′,n − ω�′ t�′ = (ω�′,n − ω�′) t�′ + ω�′,n(t�′,n − t�′), (6.15)

we have

t�,n − t� = β a�

[
1 − t2�

] ∑

�′∈[k]
a�′ [(ω�′,n − ω�′) t�′ + ω�′,n(t�′,n − t�′)]

− β2 a2� t�
[
1 − t2�

]
⎛

⎝
∑

�′∈[k]
a�′ [(ω�′,n − ω�′) t�′ + ω�′,n(t�′,n − t�′)]

⎞

⎠

2

+ O

⎛

⎜
⎝a3�

⎛

⎝
∑

�′∈[k]
a�′ [(ω�′,n − ω�′) t�′ + ω�′,n(t�′,n − t�′)]

⎞

⎠

3
⎞

⎟
⎠ . (6.16)
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Suppose that t�,n − t� ∼ Y t
�√
n
. By the Central Limit Theorem, ω�,n − ω� ∼ Z�√

n
, where

Z� is the normal random variable N (0, ω�(1 − ω�)). Hence

Y t
�√
n

= β a�

[
1 − t2�

] ∑

�′∈[k]
a�′

[
Z�′√
n

t�′ +

(
Z�′√
n
+ ω�′

)
Y t

�′√
n

]

− β2 a2� t�
[
1 − t2�

]
⎛

⎝
∑

�′∈[k]
a�′

[
Z�′√
n

t�′ +

(
Z�′√
n
+ ω�′

)
Y t

�′√
n

]⎞

⎠

2

+ O

⎛

⎜
⎝a3�

⎛

⎝
∑

�′∈[k]
a�′

[
Z�′√
n

t�′ +

(
Z�′√
n
+ ω�′

)
Y t

�′√
n

]⎞

⎠

3
⎞

⎟
⎠

= 1√
n
β a�

[
1 − t2�

] ∑

�′∈[k]
a�′

(
t�′ Z�′ + ω�′Y t

�′
)

+
1

n
β a�

[
1 − t2�

] ∑

�′∈[k]
a�′ Z�′

⎛

⎝Y t
�′ − β a�t�t�′

∑

�′′∈[k]
a�′′ω�′′Y t

�′′

⎞

⎠ + o(n−1)

(6.17)

and so

Y t
� = β a�

[
1 − t2�

] ∑
�′∈[k] a�′ t�′ Z�′

1 − β
∑

�′∈[k] a2�′ω�′
[
1 − t2

�′
] + O(n− 1

2 ), (6.18)

where the denominator does not vanish because of Remark 4.2. Thus, up to a factor

O(n− 1
2 ), Y t

� is a normal random variable with mean 0 and variance

β2 a2�

[
1 − t2�

]2
∑

�′∈[k] a2�′ t2�′ω�′(1 − ω�′)
(
1 − β

∑
�′∈[k] a2�′ω�′

[
1 − t2

�′
])2 . (6.19)

Similar results hold after we replace t by m.

Going back to (6.12), using (6.13) and (6.18), and inserting t�,n − t� ∼ Y t
�√
n
and

m�,n − m� ∼ Ym
�√
n
and ω�,n − ω� ∼ Z�√

n
, we obtain

[Fn(tn) − Fn(mn)] − [Fβ,h(t) − Fβ,h(m)]

∼ −1

2

∑

�,�′∈[k]
a� a�′

[(

t� +
Y t

�√
n

)(

t�′ +
Y t

�′√
n

)

−
(

m� +
Ym

�√
n

)(

m�′ +
Ym

�′√
n

)]

×
(

ω�

Z�′√
n
+ ω�′

Z�√
n
+
Z�Z�′

n

)

− 1

2

∑

�,�′∈[k]
a� a�′ ω� ω�′

(

t�
Y t

�′√
n
+ t�′

Y t
�√
n
+
Y t

�Y
t
�′

n
− m�

Ym
�′√
n

− m�′
Ym

�√
n

− Ym
� Ym

�′
n

)

− h
∑

�∈[k]

Z�√
n

(

t� +
Y t

�√
n

− m� − Ym
�√
n

)
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+
1

β

∑

�∈[k]

Z�√
n

[

IC

(

t� +
Y t

�√
n

)

− IC

(

m� +
Ym

�√
n

)]

+
1

β

∑

�∈[k]

1

2n
log

⎛

⎜
⎜
⎜
⎝

1 −
(

t� +
Y t

�√
n

)2

1 −
(

m� +
Ym

�√
n

)2

⎞

⎟
⎟
⎟
⎠

+
1

β

∑

�∈[k]
ω�

[
Y t

�√
n
β [a�K (t) + h] + O

(
(Y t

� )
2

n

)

− Ym
�√
n
[a�K (m) + h]

+O

(
(Ym

� )2

n

)]

+ o
(
n−1

)
. (6.20)

Thus,

[Fn(tn) − Fn(mn)] − [Fβ,h(t) − Fβ,h(m)]
= −1

2

∑

�,�′∈[k]
a� a�′ [t�t�′ − m�m�′ ]

(

ω�

Z�′√
n
+ ω�′

Z�√
n

)

− 1

2

∑

�,�′∈[k]
a� a�′ ω� ω�′

(

t�
Y t

�′√
n
+ t�′

Y t
�√
n

− m�

Ym
�′√
n

− m�′
Ym

�√
n

)

− h
∑

�∈[k]
[t� − m�]

Z�√
n
+
1

β

∑

�∈[k]

Z�√
n

[

IC

(

t� +
Y t

�√
n

)

− IC

(

m� +
Ym

�√
n

)]

+
∑

�∈[k]
ω�

[
Y t

�√
n
[a�K (t) + h] − Ym

�√
n
[a�K (m) + h]

]

+ O
(
n−1

)
.

(6.21)

Since the random variables Y t
� , Y

m
� , Z� are centred normal, this concludes the proof of

Theorem 1.3.
From (6.21) it is possible to compute explicitly the variance of Z defined in Theo-

rem 1.3, because the variances of all the random variables involved are known (at least
to leading order).
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A. Metastability on the Complete Graph Without Disorder

We give a brief overview of well-known results for the standard Curie–Weiss model. We
refer to [6, Chapter 13] for more details.

The Glauber dynamics is defined as in Sect. 1.2, but with J ≡ 1. For convenience
we write the Curie–Weiss Hamiltonian as

Hn(σ ) = − 1

2n

∑

i, j∈[n]
σ(i)σ ( j) − h

∑

i∈[n]
σ(i), σ ∈ Sn, (A.1)

which is as (2.5) when J ≡ 1. What makes this case easier than the one with disorder is
that the interaction is mean-field. Indeed, we may write

Hn(σ ) = n
[ − 1

2mn(σ )2 − hmn(σ )
]
, (A.2)

with

mn(σ ) = 1

n

∑

i∈[n]
σ(i) ∈ [−1, 1] (A.3)

the magnetisation. In this case the magnetisation process (mn(t))t≥0, defined by

mn(t) = mn(σt ), (A.4)

is Markovian. More specifically, it is a nearest-neighbour random walk on the grid

Γn = {−1,−1 + 2
n , . . . ,+1 − 2

n ,+1
}
. (A.5)

In the limit as n → ∞, (A.4) converges to a Brownian motion on [−1,+1] in the
potential Fβ,h given by

Fβ,h(m) = −1

2
m2 − hm +

1

β
I (m), (A.6)

with

I (m) = 1 − m

2
log

(
1 − m

2

)

+
1 + m

2
log

(
1 + m

2

)

(A.7)

the relative entropy of the Bernoulli measure on {−1,+1}with parameterm with respect
to the counting measure on {−1,+1}. Fβ,h(m) is the free energy at magnetisation m,
consisting of an energy term − 1

2m
2 − hm and an entropy term 1

β
I (m). See [6, Chapter

13] for more details.
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Fig. 1. Plot of β �→ h̄c(β)

Since

F ′
β,h(m) = −m − h +

1

2β
log

(
1 + m

1 − m

)

, F ′′
β,h(m) = −1 − 1

β

m

1 − m2 , (A.8)

the stationary points of Fβ,h are the solutions to the equation

m = Tβ,h(m), Tβ,h(m) = tanh[β(m + h)]. (A.9)

Since

T ′
β,h(m) = β

[
1 − T 2

β,h(m)
]
, (A.10)

Tβ,h is strictly increasing and has a unique inflection point at m = −h. Consequently,
(A.9) has either one or three solutions. The latter occurs if and only if

β ∈ (β̄c,∞) and h ∈ (0, hc(β)), (A.11)

where β̄c = 1 is the critical inverse temperature and h̄c(β) is the critical magnetic field,
i.e., the unique value of h for which Tβ,h touches the diagonal at a unique value of the
magnetisation, say −m(β). Clearly, 1 = β(1 − m2(β)), i.e.

m(β) =
√

1 − β−1, (A.12)

and so h̄c(β) solves the equation Tβ,h̄c(β)(−m(β)) = −m(β). Hence (see Fig. 1)

h̄c(β) = m(β) − 1

2β
log

(
1 + m(β)

1 − m(β)

)

, β ≥ 1. (A.13)

The range of parameters in (A.11) represents the metastable regime in which Fβ,h
has a double-well shape and, in the limit as n → ∞, the Gibbs measure μn in (1.4) has
two phases given by the two minima of Fβ,h : the metastable phase with magnetisation
m < 0 and the stable phase with magnetisation s > 0. The unique saddle point in the
gate G (m, s) has magnetisation t < 0 (see Fig. 2).

Theorems A.1–A.2 can be found in Bovier and den Hollander [6, Chapter 13]. Here
the notation is the same as the one in Sect. 1. Let Sn[m], Sn[s] denote the sets of
configurations in Sn for which the magnetisation is closest to m, s, respectively.
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Fig. 2. Plot of m �→ Fβ,h(m) for β, h in the metastable regime

Theorem A.1 (Average crossover time). Subject to (A.11), uniformly in σ ∈ Sn[m],

Eσ

[
τSn [s]

] = [1 + on(1)] π

1 − t

√
1 − t2

1 − m2

1

β
√
F ′′

β,h(m)[−F ′′
β,h(t)]

eβn[Fβ,h(t)−Fβ,h(m)].

(A.14)

Theorem A.2 (Exponential law). Subject to (A.11), uniformly in σ ∈ Sn[m],
Pσ

(
τSn [s] > t Eσ

[
τSn [s]

]) = [1 + on(1)] e−t , t ≥ 0. (A.15)

Figure 2 illustrates the setting: the average crossover time from Sn[m] to Sn[s]
depends on the energy barrier Fβ,h(t) − Fβ,h(m) and on the curvature of Fβ,h at m
and t. The crossover time is exponential on the scale of its average.

B. Examples with Multiple Metastable States

We provide examples of distributions and parameter choices (in the metastable regime)
for which the model with disorder has multiple critical points. More specifically, we
provide numerical evidence that, for k ∈ {2, 3, 4}, (3.6) can have any number of solutions
in the set {3, 5 . . . , 2k+1}. The cases with strictly more than 3 solutions present multiple
minimal critical points, i.e. multiple metastable states.

B.1. Case k = 2.

– Figure 3a: 3 critical points, parameters a1 = 77, a2 = 45, ω1 = 0.688, h = 1740,
β = 113βc.

– Figure 3b: 5 critical points, parameters a1 = 774, a2 = 36.84, ω1 = 0.59, h =
1740, β = 131βc.

B.2. Case k = 3.

– Figure 4a: 3 critical points, parameters a1 = 77, a2 = 45, a3 = 33.5, ω1 = 0.688,
ω2 = 0.15, h = 1740, β = 113βc.

– Figure 4b: 5 critical points, parameters a1 = 77, a2 = 45, a3 = 27, ω1 = 0.59,
ω2 = 0.15, h = 1740, β = 113βc.

– Figure 4c: 7 critical points, parameters a1 = 77, a2 = 45, a3 = 33.5, ω1 = 0.59,
ω2 = 0.15, h = 1740, β = 113βc.
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Fig. 3. Tβ,h , k = 2

Fig. 4. Tβ,h , k = 3

B.3. Case k = 4.

– Figure 5a: 3 critical points, parameters a1 = 12, a2 = 16, a3 = 139.5, a4 = 24.5,
ω1 = 0.474, ω2 = 0.22, ω3 = 0.111, h = 178, β = 3.8βc.

– Figure 5b: 5 critical points, parameters a1 = 14, a2 = 27, a3 = 57, a4 = 24.5,
ω1 = 0.366, ω2 = 0.1, ω3 = 0.13, h = 262, β = 38.4 βc.

– Figure 5c: 7 critical points, parameters a1 = 2.32, a2 = 4.92, a3 = 5, a4 = 11.32,
ω1 = 0.6, ω2 = 0.096, ω3 = 0.033, h = 7.6, β = 95.2 βc.

– Figure 5d: 9 critical points, parameters a1 = 12, a2 = 16, a3 = 50.5, a4 = 24.5,
ω1 = 0.474, ω2 = 0.22, ω3 = 0.111, h = 178, β = 63.2 βc.
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Fig. 5. Tβ,h , k = 4

C. Example of hc(β) Not Increasing

We provide here an example of choice of the law of J for which the critical threshold
β �→ hc(β) is not monotone increasing. This implies the possibility of a re-entrant
metastable crossover.

For k = 4, pick a1 = 12, a2 = 16, a3 = 50.5, a4 = 24.5 and ω1 = 0.474,
ω2 = 0.22, ω3 = 0.111. Take h = 100, and plot the function K �→ Tβ,h(K ) varying β.
For β1 = 4βc = 0.00762336 the system is metastable: Tβ,h intersects the diagonal three
times (see Fig. 6a), which implies that h < hc(β1). For β2 = 21βc = 0.04002264 > β1
the system is not metastable: Tβ,h intersects the diagonal only once (see Fig. 6b), which
implies that h > hc(β2). This shows that hc(β) is not necessarily an increasing function
of β.

D. Limit of the Prefactor

Below Theorem 1.2 we stated that the prefactor in (1.19) converges. For completeness,
in this Appendix we compute its limit, although, as we mentioned after Theorem 1.3, it
is negligible because of the order of approximation of the exponent.

We focus first on γn . Recall notation in (1.10), (1.11) and (2.1). Then (4.20) can be
written as

1 + O(n−1)

=
∑

�∈[k]

a2�ω�,n(1 − t�,n) exp
[−2β

(−a�

( a�

n + Kn(tn)
) − h

)
+

]

exp
[
−2β

(
−a�

(
a�
n +Kn(tn)

)
−h

)

+

]

β(1+t�,n)
− 2γn
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Fig. 6. Tβ,h , fixed h and law of the components of J , varying β

=
∑

�∈[k]

a2�ω�,n (1 − tanh (β [a� Kn(tn) + h])) exp
[−2β

(−a�

( a�

n + Kn(tn)
) − h

)
+

]

exp
[
−2β

(
−a�

(
a�
n +Kn(tn)

)
−h

)

+

]

β(1+tanh(β[a�Kn(tn)+h]))
− 2γn

.

(D.1)

In the first equality we use (3.3) for tn , i.e., the approximation of the stationary points
of Fn by the stationary points of F̄n . This makes t�,n independent of �, so that we can
use the law of large numbers in the limit as n → ∞. Thus, we obtain that γn converges
to γ , the solution of the equation

E

(
J (1)2(1 + tanhU ) e−2U+

1
β(1−tanhU )

e−2U+ − 2γ

)

= 1, (D.2)

where E denotes expectation with respect to P and U = −β[J (1) K (t) + h], with t
solving (3.4). Note that (D.2) is similar to [6, Eq. (14.4.14)].

We are left to find the limit of the determinants ratio. By (4.5),

detAn(m) =
⎛

⎝1 −
∑

�∈[k]
β a2� ω�,n[1 − (m�)

2]
⎞

⎠
∏

�′∈[k]

1

β

ω�′,n
1 − (m�′)2

[
1 + O(n−1)

]
.

(D.3)
Using (3.3) for m ∈ {tn, mn}, we have

∑

�∈[k]
β a2� ω�,n[1 − (m�,n)

2]

=
∑

�∈[k]
β a2� ω�,n

⎡

⎣1 − tanh2

⎛

⎝β

⎡

⎣a�

∑

�′∈[k]
a�′ ω�′,n m�′,n + h

⎤

⎦

⎞

⎠

⎤

⎦ .

(D.4)

Using the law of large numbers as above and with the same notation, we find

lim
n→∞

[− det(An(tn))]
det(An(mn))

= −1 + E
(
β J (1)2

[
1 − tanh2 [U (t)]

])

1 − E
(
β J (1)2

[
1 − tanh2 [U (m)]

])
∏

�′∈[k]

1 − (m�′)2

1 − (t�′)2
,

(D.5)
where U (x) = −β(J (1)K (x) + h).
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