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Abstract
Context: Prediction of adult height (AH) is important in clinical management of short children. The conventional methods of Bayley-Pinneau (BP) 
or Roche-Wainer-Thissen (RWT) have limitations.
Objective: We aimed to develop a set of algorithms for AH prediction in patients with idiopathic short stature (ISS) which are specific for com-
binations of predicting variables.
Methods: Demographic and auxologic data were collected in childhood (1980s) and at AH (1990s). Data were collected by Dutch and German 
referral centers for pediatric endocrinology. A total of 292 subjects with ISS (219 male, 73 female) were enrolled. The population was randomly 
split into modeling (n = 235) and validation (n = 57) cohorts. Linear multi-regression analysis was performed with predicted AH (PAH) as re-
sponse variable and combinations of chronological age (CA), baseline height, parental heights, relative bone age (BA/CA), birth weight, and sex 
as exploratory variables.
Results: Ten models including different exploratory variables were selected with adjusted R² ranging from 0.84 to 0.78 and prediction errors 
from 3.16 to 3.68 cm. Applied to the validation cohort, mean residuals (PAH minus observed AH) ranged from −0.29 to −0.82 cm, while the 
conventional methods showed some overprediction (BP: +0.53 cm; RWT: +1.33 cm; projected AH: +3.81 cm). There was no significant trend of 
residuals with PAH or any exploratory variables, in contrast to BP and projected AH.
Conclusion: This set of 10 multi-regression algorithms, developed specifically for children with ISS, provides a flexible tool for AH prediction 
with better accuracy than the conventional methods.
Key Words: growth, idiopathic short stature, bone age, adult height prediction
Abbreviations: AH, adult height; BA, bone age; BAGP, bone age by Greulich-Pyle method; BiWt, birth weight; BMI, body mass index; BP, Bayley-Pinneau; CA, 
chronological age; CDGP, constitutional delay of growth and puberty; FaH, father’s height; FSS, familial short stature; GH, growth hormone; GP, Greulich-Pyle; H0, 
height at baseline; ISS, idiopathic short stature; MoH, mother’s height; PAH, predicted adult height; ProjAH, projected adult height; rhGH, recombinant human 
growth hormone; RMSE, root mean square error; RWT, Roche-Wainer-Thissen; SDS, standard deviation score; TH, target height; TW, Tanner-Whitehouse.

Predicting adult height (AH) in growing children or ado-
lescents has been a scientific objective for many decades. 
Such predictions are useful in daily clinical practice, but 
are also required in clinical research, for instance, to es-
timate the gain in height due to a growth-promoting 
therapy. A priori, any method to predict AH should meet 
the following requirements: (i) it should include only 
variables that are available at the time of initial presen-
tation of the patient; (ii) the variables used for prediction 
should be easily accessible; (iii) the prediction should be 
sufficiently accurate to draw conclusions for individual 
patients; (iv) predictions should be free from systematic 
errors with respect to the predicting variables; and (v) pre-
diction methods should be applicable in different regions 
and different ethnicities.

To date, a number of methods are available, of which the 
tables of Bayley-Pinneau (BP) [1], Roche-Wainer-Thissen 
(RWT) [2], and Tanner-Whitehouse (TW) [3] are most com-
monly used. All 3 methods share the feature of having been 
developed several decades ago in populations of normally 
growing children. In clinical practice, however, the relevant 
question is usually whether a short child will finally attain 
a normal AH, and it is unclear whether the growth pattern 
of short children can adequately be modeled by the growth 
pattern of children with normal height. These commonly 
used methods result in systematic deviations of predicted AH 
(PAH) from actually observed AH when applied to short chil-
dren [4]. Although it is believed that the most widely used 
method of BP is the most robust in “pathological conditions” 
[4], it overestimates AH in males, in particular if bone age 

D
ow

nloaded from
 https://academ

ic.oup.com
/jes/article/6/7/bvac074/6581490 by U

niversiteit Leiden / LU
M

C
 user on 12 July 2023

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0001-6914-4457
https://orcid.org/0000-0002-1715-5020
mailto:wernblum@gmail.com?subject=


2 Journal of the Endocrine Society, 2022, Vol. 6, No. 7

(BA) is retarded [5, 6] and underestimates AH in females with 
idiopathic short stature (ISS) [7-12].

Therefore, we set out to develop AH prediction models 
based on subjects with ISS in order to improve height pre-
dictions in such patients. This is clinically relevant, because 
recombinant human growth hormone (rhGH) treatment for 
children with ISS is only indicated if AH is predicted to be low 
[13]. The newly developed models were compared with the 
conventional methods of BP [1], RWT [2], and the projected 
AH to judge whether they can improve AH prediction.

Methods
Subjects
Patients from 3 German centers (Giessen, Leipzig and 
Tübingen) and patients participating in a Dutch nation-
wide study coordinated in Leiden (The Netherlands) who 
had sought advice from a pediatric endocrinologist because 
of short stature (height below the tenth percentile) were in-
vited to return to the hospitals at adult age for a height meas-
urement. The study was conducted in accordance with the 
Declaration of Helsinki. Institutional review board approvals 
were obtained, and regulatory requirements as requested 
at the time were followed. Written consent for data collec-
tion and anonymized data processing was provided by the 
patients.

The diagnoses at initial presentation were ISS, familial 
short stature (FSS, 26%), constitutional delay of growth and 
puberty (CDGP), a combination of these or other synonym 
diagnoses (non-FSS, 73%). According to the consensus defin-
ition of ISS, all these diagnostic labels fall under the umbrella 
of ISS [14, 15]. The data from the Dutch cohort were previ-
ously used for reports on spontaneous growth in ISS [16-18] 
and for comparison with growth hormone (GH)-treated chil-
dren [5].

Subjects were included in the analysis, if the following vari-
ables were available: sex, birth year and month, chronological 
age (CA), bone age (BA) and height at baseline (H0), CA at 
AH measurement, and AH. The last measured height was ac-
cepted as AH, if CA was ≥ 18 years or if BA was ≥ 16 years 
in males or ≥ 14 years in females, alike the criteria of the BP 
and RWT methods [1, 2]. Subjects were excluded if any of 
the following criteria applied: born small for gestational age 
with birth weight < −2 SDs according to the tables of Usher 
and McLean [19], gestational age < 36 weeks, GH deficiency, 
skeletal dysplasia, defined clinical syndrome, or any other 
known cause or therapy that interferes with growth. The ini-
tial population consisted of 354 patients, of whom 62 were 
excluded because they did not comply with the inclusion cri-
teria. The final study population comprised 292 subjects (51 
from Giessen, 55 from Leipzig, 56 from the Netherlands, and 
130 from Tübingen).

Methods
Height was measured with precision stadiometers with 
an accuracy of 0.1  cm. For conversion of height (cm) to 
standard deviation scores (SDS), the reference data of the 
Zürich Longitudinal Study [20] were used, applying linear 
interpolation of data between chronological age boundaries. 
The parents’ heights were measured whenever possible, 
otherwise reported actual heights were used. Target height 
(TH; sex-corrected mid-parental height) was calculated 

using the method of Tanner [21]. Weight was measured with 
precision scales at an accuracy of 0.1 kg. Body mass index 
(BMI) was calculated by weight (kg)/height (m)² and ex-
pressed as SDS [22].

BA was assessed locally by the method of Greulich-Pyle 
(BAGP) [23]. In some patients, BA had been determined by 
the TW radio ulna and short bones (RUS) method (BARUS) 
[24]. These values were converted to Greulich-Pyle (GP) 
equivalent values using previously reported formulas [25]. 
BAGP values were converted to SDS [(BA − CA)/SD] using 
the reference values given in the Greulich-Pyle atlas [23]. BA 
delay was defined as BA minus CA, and relative bone age 
as BA/CA.

Subjects were considered prepubertal, if the testicular 
volume on both sides was < 4 mL in boys or if breast stage 
according to Tanner was 1 in girls. Male subjects were 
considered pubertal, if the testicular volume on one side 
was ≥ 4  mL, or, if testicular volume was not available, the 
stage of pubic hair was ≥ 2 according to Tanner and BA at 
baseline was ≥ 12 years. Females were considered pubertal if 
breast stage was ≥ 2. If none of these criteria were reported 
or if available information was equivocal, no assignment re-
garding puberty was made. Subjects were considered to have 
FSS, if their H0 SDS minus TH SDS (Tanner) was greater than 
−1.28 [11].

For prediction of AH by conventional methods, the tables 
of BP [1], and the method of RWT [2] were applied. In add-
ition, projected AH (ProjAH) was calculated by converting 
the height SDS for BA (according to GP) at baseline to height 
(cm) at 18 years according to the Zürich reference values.

Statistics
The total study population (N = 292) was stratified by sex 
and age and randomly split into a modeling cohort (n = 235) 
and a validation cohort (n = 57). In order to identify vari-
ables suitable for developing linear multi-regression models 
with AH (cm) or AH SDS as response variables, factor struc-
ture analysis was performed with the modeling cohort. This 
method provides groups (“factors”) of closely correlated 
variables. Ideally, prediction models should include variables 
from different factors to take maximum advantage of the in-
formation provided by the dataset. Factor structure was op-
timized by rotating the variables space using the “Varimax” 
procedure (SAS). Exploratory variables selected on the basis 
of factor structure were included in multi-regression models 
applying the Cp selection procedure using least squares (LS). 
The preferred models were selected on the basis of following 
criteria: (i) low Mallow’s Cp value, (ii) high adjusted R², (iii) 
low root mean square error (RMSE), (iv) absence of a trend 
of residuals (PAH minus observed AH) vs PAH, (v) minimal 
skewness as suggested by visual inspection of QQ-normal 
plots, (vi) robustness of the LS method confirmed by the 
MM robust method, and (vii) availability of variables in 
clinical practice. The finally selected models were applied to 
the validation cohort to get an impression of their perform-
ance. Analyses were conducted using SAS software (SAS 
Institute Inc., Cary, NC). The values of descriptive statistics 
of continuous variables are presented as mean ± SD (range) 
unless otherwise specified. The significance of differences be-
tween subgroups was tested by the 2-sided Student’s t test. 
A 2-sided P value of less than 0.05 was considered statistic-
ally significant.
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Results
Clinical Data at Baseline and at Follow-Up
Figure 1 illustrates the distribution of baseline height (H0) 
vs CA in boys (n = 219) and girls (n = 73) of the total study 
population (N = 292) against the background of the reference 
ranges of the Zürich Longitudinal Study. Demographic and 
auxologic characteristics at initial presentation and at AH 
measurement are presented in Table 1. The mean CA at AH 
was 20.5 ± 2.3 years with 8 patients of less than 18 years, 2 
male and 6 female. All patients had retarded BA (BA − CA) 
with the great majority (93%) below −1 year. The modeling 
cohort (n = 235) and the validation cohort (n = 57) did not 
significantly differ in any of the variables (Table 1). Both co-
horts were further split by sex. The proportion of males was 
3 times greater in both cohorts than that of females (176 vs 
59 and 43 vs 14). As expected, a number of sex-dependent 
variables were different between sexes such as CA, BA, H0, 
and AH. Although some BA-related variables were slightly 
different between sexes, relative BA (BA/CA) was not.

Model Development
Table 2 shows the 10 models that were finally selected on the 
basis of statistical characteristics and practical aspects such as 
ready availability of clinical variables. It also exhibits the vari-
ables included in the various models starting with model 1 
with the greatest number of variables: CA, H0, TH requiring 
mother’s height and father’s height, BA/CA, birth weight 
(BiWt) and sex. Adjusted R2 was highest in this model (0.84) 
and the prediction error (RMSE) was smallest (3.16  cm). 
According to the QQ plots, the residuals of all models did not 
indicate skewness (not shown). Along with increasing num-
bers of missing variables, adjusted R² decreased from 0.84 
to 0.78 in model 9 and RMSE increased from 3.16  cm to 
3.68 cm. The R² of 0.79 obtained in model 10 with no infor-
mation on parental heights shows that even in such a situ-
ation, the accuracy is close to the other models. All models 
were highly significant (P < 0.0001). Figure 2 illustrates the 
correlation between observed AH and PAH in the modeling 

cohort for models 1 and 2 and of the corresponding residuals 
as examples.

Calculation of Predicted Adult Height
The use of this system of equations (models) for calculating 
PAH may be illustrated by the following fictive example: 
A boy, 10.0 years of age (CA), height (H0) 123.0 cm, mother’s 
height 167.5 cm and father’s height 180.5 cm (→ target height 
[TH] 174.0  cm), BA 8.0 y (→ relative BA [BA/CA] 0.80). 
All variables are available except BiWt. Therefore, model 2 
(M2) should be applied: PAH = (intercept −2.9892*CA + 0
.7328*H0 + 0.3442*TH −12.6821*BA/CA −6.3021*Sex)  
cm = (62.1795  −2.9892*10.0 + 0.7328*123.0 + 0.3442* 
174.0  −12.6821*0.80 -6.3021*1) cm = 165.9  cm. If both 
BiWt and father’s height (FaH) are missing but mother’s height 
(MoH) is available, TH cannot be calculated and one should 
apply M5 yielding a PAH of 166.8 cm. If MoH is missing but 
FaH is available, one should apply model 8 yielding a PAH of 
168.6 cm. If neither MoH nor FaH are available, one should 
apply model 10, yielding a PAH of 165.2 cm.

Validation of the Models
The models developed with the modeling cohort were applied 
to the independent validation cohort to test whether PAHs by 
the various models are meaningful and consistent. The mean 
PAH by models M1 to M10 of cohorts including both sexes 
ranged from 166.1 to 166.8 cm. Residuals were within an ac-
ceptable range without a significant trend vs PAH. Figure 3a 
for M1 and Fig. 4 for M2 to M10 visualize the relationship 
between the residuals and PAHs for all 10 models. There was 
a slight negative, nonsignificant trend of the regression lines. 
Table 3 shows numerical data that underline these findings 
for M1 to M10.

We tested further whether there were significant trends be-
tween residuals and any of the exploratory variables included 
in the models or in clinical subgroups. Figure 5a visualizes the 
relationship between the residuals of M1 vs BA/CA with a min-
imal nonsignificant negative trend. Overall, correlations be-
tween the residuals of any model and the exploratory variables 
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did not reach statistical significance. The means of residuals 
by model were lower in males than in females with sex differ-
ences varying from −0.99 cm to +0.21 cm without statistical 
significance. The numbers of prepubertal and pubertal subjects 
in the validation cohort by model (M1 to M10) were similar, 
varying from 25 to 27 and from 25 to 30. The means of resid-
uals varied from −0.49 to −0.94 cm in the prepubertal group vs 
from −0.10 to −0.66 cm in the pubertal group without statistic-
ally significant differences. There was no significant correlation 
between residuals of models and H0 SDS minus TH SDS.

Comparison With Conventional AH 
Prediction Methods
We compared the models of this study with the “classic” 
methods of BP, RWT, and ProjAH applying those also to the 
validation cohort. Table 3 shows the means, SD and 95% CI 
of the residuals for each method. While the residuals of the 
new models were slightly negative (means between −0.82 
and −0.29  cm), the conventional methods overestimated 
AH (BP: +0.53 ± 5.81 cm; RWT: +1.33 ± 4.37 cm; ProjAH: 
+3.81 ± 6.21 cm). Moreover, the SD values of the new models 
(between 3.70 and 4.19  cm) were smaller than those of 
the conventional methods. The correlations between resid-
uals and PAH were not significant except for BP (r = 0.57, 
P < 0.001) and ProjAH (r = 0.41, P = 0.002). These findings 
are illustrated in Fig. 3. Similarly, correlations between resid-
uals of the new models and any of the exploratory variables 
in this study were not significant. In contrast, residuals by 
BP or ProjAH correlated significantly with BA/CA (r = −0.64, 
P < 0.001; r = −0.75, P < 0.001) (Fig. 5) and by ProjAH with 
H0 (r = −0.27, P = 0.045). When the conventional methods 

were applied to the total study population, no significant 
correlations between residuals and the exploratory variables 
were found for the RWT method in contrast to the BP method 
(N = 281, CA: r = 0.27; H0: r = 0.23; TH: r = 0.20; BA/CA: 
r = −0.59 with P < 0.001 for all; MoH: −0.13, P = 0.031) 
and the ProjAH method (N = 288; H0: r = −0.13, P < 0.027; 
MoH: −0.15, P = 0.009; BA/CA: −0.76, P < 0.001).

Discussion
Pediatric research made efforts for more than 70  years to 
develop methods for predicting AH [1-3]. The basis of these 
methods was normally growing children; however, these 
methods are mostly applied to abnormally growing short or 
tall children. Therefore, we decided to develop AH predic-
tion models in subjects with ISS, who account for 60% to 
80% of short children [26, 27]. According to 2 subsequent 
consensus meetings [14, 15], confirmed by the International 
Classification of Pediatric Endocrine Diagnoses (www.icped.
org) [28], the diagnosis of ISS includes familial and non-
familial ISS, and CDGP. As expected, patients with FSS and 
non-FSS differed in variables related to parental heights, but 
in none of the other exploratory variables. Consequently, we 
neglected the category FSS as an independent variable because 
this was mirrored by TH. Moreover, because of the variability 
of pubertal stage assignment and high collinearity between 
pubertal stage and CA or BA/CA, pubertal stage was not in-
cluded as an exploratory variable. This decision was corrob-
orated by the studies of Thodberg et al [29]. Sex was included 
as an exploratory nominal variable aiming at development of 
regression models that can be applied independently of sex.
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The birth year of the patients was around 1975 and the 
time of baseline assessment was on average in the mid-1980s. 
AH was assessed on average in the 1990s (Table 1). One may 
wonder whether such a “historical” population would still be 
appropriate for AH prediction today and whether the secular 

trend of height and pubertal development would influence the 
prediction. While the secular trend has significantly slowed 
down in Western countries, it is still present in other regions 
[30-32]. Since most patients in this study were Caucasian of 
Western/Central European origin, the question may be raised 

Table 3. Applying models 1 to 10 (M1 to M10) and the conventional methods of Bayley-Pinneau, Roche-Wainer-Thissen, and the bone-age-based 
projected adult height to the validation cohort: means, SD, and 95% CI of residuals and correlations between residuals and predicted adult height

Method Included variables N Residuals (cm) Residuals vs PAH

Mean SD 95% CI r (Pearson) P value 

M1 CA, H0, TH, sex, BA/CA, BiWt 50 -0.53 3.76 -1.50 to 0.43 -0.07 0.608

M2 CA, H0, TH, sex, BA/CA 57 -0.29 3.70 -1.25 to 0.67 -0.09 0.414

M3 CA, H0, TH, sex 57 -0.34 3.78 -1.30 to 0.62 -0.03 0.820

M4 CA, H0, MoH, sex, BA/CA, BiWt 51 -0.82 4.04 -1.78 to 0.14 -0.08 0.590

M5 CA, H0, MoH, sex, BA/CA 57 -0.57 4.00 -1.53 to 0.39 -0.11 0.420

M6 CA, H0, MoH, sex 57 -0.71 4.19 -1.67 to 0.25 -0.02 0.867

M7 CA, H0, FaH, sex, BA/CA, BiWt 51 -0.66 3.79 -1.63 to 0.30 -0.05 0.723

M8 CA, H0, FaH, sex, BA/CA 57 -0.33 3.78 -1.29 to 0.63 -0.06 0.634

M9 CA, H0, FaH, sex 57 -0.38 3.90 -1.34 to 0.58 +0.02 0.864

M10 CA, H0, sex, BA/CA 57 -0.52 4.04 -1.48 to 0.44 -0.07 0.614

BP H0, sex, BA, (CA) 42 +0.53 5.81 -1.23 to 2.29 +0.57  < 0.001

RWT H0, TH, sex, BA, Wt 35 +1.33 4.37 -0.12 to 2.78 +0.18 0.237

ProjAH H0, sex, BA 42 +3.81 6.21 +1.93 to 5.69 +0.41 0.002

Abbreviations: BA, bone age; BA/CA, relative BA; BiWt, birth weight (kg); BP, Bayley-Pinneau; CA, chronological age (y); FaH, father’s height (cm); H0, 
baseline height (cm); MoH, mother’s height (cm); PAH, predicted adult height; ProjAH, projected adult height; RWT, Roche-Wainer-Thissen; TH, target 
height (cm) according to Tanner; Wt, baseline weight (kg). For BP, CA was included in parentheses (CA), because this method uses retarded, normal, or 
accelerated BA referring to CA as a categorical variable.
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whether the models can also be applied in other ethnic popu-
lations. In the absence of such data, we hypothesize that this 
is possible, because growth patterns are similar in different 
ethnicities [33].

Linear multi-regression models of this study were devel-
oped with PAH (cm) or PAH SDS as the response variables 
and a multitude of combinations of exploratory variables 
including absolute values or values after conversion to SDS 
such as H0 SDS, TH SDS, MoH SDS and FaH SDS, and BMI 
SDS. Although the use of SDS is common practice in pedi-
atrics, we finally refrained from including SDS values in the 
models for the following reasons: First, the use of prediction 
models is more practical, if simply the directly measured 
data such as H0 (cm) are included. Second, using regional- 
and ethnic-specific SDS values would require local reference 
ranges, which often do not exist, and models based on local 
SDS values. This would limit the usability of this AH predic-
tion tool. Third, the use of SDS often neglects a fundamental 
problem which can become an additional source of error: The 
distribution of a variable outside the normal range is a specu-
lative extrapolation of the distribution of the normal range, 
because the number of subjects for establishing the empirical 
distribution there is very small. The authors of the CDC ref-
erence ranges explicitly pointed out this limitation [34]. In 
fact, the majority of subjects in this study had heights below 
the normal range. Fourth, SDS-based models were statistic-
ally not superior to models based on absolute values in our 
analysis (data not shown).

Most patients with ISS have retarded BA. However, BA re-
tardation of 1 year at the age of 5 years may impact further 
growth differently than at the age of 13 years. Therefore, we 
included BA/CA as an exploratory variable. Although other 
variables such as baseline weight, used in the RWT method 
[2], or BMI were also statistically significant predictors of 
AH, their contribution was minor and they worsened model 
quality criteria such as QQ plots. A weak inverse association 
between childhood BMI and AH was also observed by others 
[29, 35]. Therefore, we focused on the variables listed in 
Table 2. In certain situations, however, the height of one or 
both biological parents, such as in an adopted child, or BA 
may be unknown, while the parents insist on AH prediction. 
Therefore, we developed models specific for such situations.

Validation of the models was performed using the valid-
ation cohort. Because there were no differences of residuals 
between the subgroups FSS vs non-FSS, and prepubertal vs 
pubertal, we believe that neglecting these categories is a valid 
approach. Residuals of all models scattered symmetrically 
around the zero-line (Figs. 3 and 4). The means and 95% CI 
of residuals and correlations between residuals and PAH were 
not significantly different across models (Table 3) and regres-
sion lines were slightly, nonsignificantly descending along the 
zero-line except with M9. These findings indicate that all 10 
models show similar prediction characteristics, although the 
parameter estimates for the various algorithms are greatly 
different.

Substantive prediction errors around ± 10  cm were con-
sistently observed in the same few patients across all models. 
Scrutinized review of these patients did not reveal obvious 
reasons for such deviations. Since ISS is a diagnostic pool 
of short children with unknown etiology [15, 26, 27, 36], 
growth of patients with certain rare unrevealed etiologies 
may not follow the growth pattern of the majority of pa-
tients, and individual AH prediction errors may therefore be 

substantial. Identifying such etiologies, for example, by gen-
etic techniques, is possible nowadays in many cases.

To further evaluate the performance of the new AH predic-
tion algorithms, they were compared with the methods of BP, 
RWT, and ProjAH, applying those also to the validation co-
hort. These 3 methods were chosen because they are the most 
frequently used methods and because they also use manually 
rated BA by the GP method [23], which has not only been 
appraised to be more convenient in daily practice [37], but 
also to yield acceptable AH prediction results [7, 37-40]. 
While the new models use CA, H0, sex, and flexibly parental 
heights, BA/CA and BiWt, the number of predicting variables 
with the conventional methods is smaller (Table 3). The BP 
method uses H0, sex, BA, and implicitly CA by differentiating 
between retarded, normal, and accelerated BA. It is limited to 
patients with BA greater than 6 years if BA is retarded, as in 
the vast majority of patients with ISS, or greater than 7 years 
in boys with normal BA [1]. The RWT method uses H0, sex, 
TH, BA, and in addition, body weight [2]. BA-based ProjAH, 
also called “index of potential height”, uses H0, sex, and BA 
[38, 41].

While all new models slightly underestimated AH on 
average by −0.5 cm, the conventional methods overestimated 
AH by +0.5  cm (BP) up to +3.8  cm (ProjAH). All residual 
SD values and 95% CI of the new models were smaller than 
those of the conventional methods (Table 3), suggesting that 
the new models predict AH more accurately in patients with 
ISS. Reports on AH prediction by BP in comparable cohorts 
with ISS corroborate these findings (Table 4) [7-12, 20, 42, 
43]. While residuals of the new models and of the RWT 
method did not significantly correlate with PAH in the val-
idation cohort, residuals of the BP and ProjAH methods did 
(Table 3). They showed a significant positive trend meaning 
that greater PAHs are associated with a greater prediction 
error. Moreover, there were also no significant correlations 
between the residuals of the new models or the RWT method 
with any of the exploratory variables listed in Table 2. In con-
trast, the BP method showed a significant positive trend with 
CA, H0, and TH and a negative trend with MoH and BA/
CA. This means that the BP method tends to overestimate 
AH in children with ISS who are at baseline older, taller, have 
greater TH, and more retarded BA. The latter has also been 
observed in other studies [5, 6, 44]. Marginally significant 
negative trends were obtained between ProjAH residuals and 
H0 or MoH, whereas the negative association with BA/CA 
was even greater than with the BP method. While the valid-
ation cohort was the only independent basis for testing the 
new models, the total study population could be used as an 
independent cohort for the BP, RWT, and ProjAH methods. 
Applying them to this large population confirmed the find-
ings with the validation cohort. Overall, the new models were 
somewhat more accurate than the RWT method while the BP 
method was clearly inferior. Comparisons between the RWT 
and BP methods in other studies support these findings [7, 
38, 39, 45, 46], although not in all [37]. Comparisons be-
tween the RWT and TW methods yielded inconclusive results  
[7, 38, 45]. ProjAH was clearly less accurate than the new 
models and the BP or RWT methods [38] and should there-
fore be used at best for getting a quick impression of potential 
AH by simple inspection of growth charts.

Although in daily practice, the tables of BP [1, 47] and the 
algorithms of RWT [2] are the most frequently used tools for 
predicting AH, their reliability is limited. Therefore, attempts 
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were made to improve their quality by first better statistical 
models and second better methods for assessment of the key 
variable BA. For instance, the RWT method was improved 
through mathematical refinement [39, 46]. Improvement of 
AH predictions by BP in short normal boys and by TWII in 
girls using “correction factors” was suggested by Maes et al 
[37]. A recent report by Reinehr et al proposed modified BP 
tables for improvement of AH prediction in boys with CDGP 
[6]. Regarding BA, accurate assessment is important. In prac-
tice, manually rated BA by the GP method is most widely 
used because of convenience. However, manual BAGP rating 
depends much on the experience of the assessor [48] and is 
quite subjective. Significant progress has been achieved by 
automated BA reading (BoneXpert) eliminating subjective 
bias and improving AH prediction [40, 49-51]. Most recent 
approaches for improvement of AH prediction utilize modern 
machine learning [52].

ISS is a diagnosis by exclusion made at the end of a series of 
diagnostic procedures [15, 26, 27]. Therefore, AH should be 
predicted at this final stage rather than at the beginning. The 
purpose of AH prediction is 2-fold. First, in general, patients 
and parents wish to know which height they can expect. In 
this context, height can be a limiting criterion for many oc-
cupations and therefore, AH prediction may influence future 
career aspirations. Although the AH prediction algorithms 
provide numbers which appear to be precise, it needs to be 
communicated that there is an inherent error in the order 
of about ± 4  cm. Second, recombinant human GH (rhGH) 
treatment of patients with ISS to increase AH has been ap-
proved in various countries including the USA. According to 
the regulations there, expected AH should be subnormal [13]. 
Therefore, AH prediction, preferably with the most accurate 
methods, is required to qualify for rhGH therapy. The model 
with the greatest number of available variables should be 
used, because this promises to yield the most accurate result. 
Due to the simplicity of the linear multi-regression models, 
calculation of PAH can be done with a calculator; however, 
computer programs may be developed for daily practice.

The authors are aware of weaknesses of the study. Data on 
ethnicity were not collected at the time, but we believe that 
the vast majority of the study population was Caucasian of 
Western/Central European origin mirroring the ethnic com-
position of the populations in Germany and The Netherlands 
in the 1980s. Therefore, validation of the algorithms in 
modern societies with greater diversity and in different ethnic 
groups is required. Further, the subjects of the study popula-
tion were born about 40 to 50 years before the patients for 
whom we propose to apply the algorithms today. Depending 
on the regional secular trend, this aspect may be important 
in some countries [30, 53]. In addition, BA was not assessed 
centrally, although BA assessment may differ between asses-
sors. However, this reflects the real-world situation, which 
we believe is a strength. Finally, in the last 15  years, DNA 
sequencing has made significant progress and it is likely that 
several patients included in the study population would no 
longer be diagnosed with ISS today, if up-to-date genetic diag-
nosis was performed, for example using targeted genome-
based gene panels [36, 54, 55].

On the other hand, there are also strengths: 1)  The al-
gorithms were developed in the targeted population of pa-
tients with ISS. 2) The algorithms are simple linear equations 
including sex, but not pubertal development and FSS. 3) Only 
variables which are readily available at first visit were chosen Ta
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for modeling. 4) BA and CA were used as continuous inde-
pendent variables in contrast to BP and other BP-derived 
methods which use these as categorical variables. 5) Specific 
algorithms were developed accounting for situations in which 
parents’ heights or BA are missing, making this AH predic-
tion tool flexible. We wish to emphasize that the algorithms 
should not be applied to normally growing or tall children 
unless their performance has been studied in such individuals 
in the future.

In conclusion, this study collected demographic and 
auxologic data of patients with ISS in childhood and adult-
hood. In retrospective studies and in clinical practice, vari-
ables required for AH prediction with a given method are 
often missing, for example, BA or either parent’s height. 
Therefore, a series of algorithms was developed by linear 
multi-regression analysis. Finally, 10 models were selected on 
the basis of their statistical characteristics and availability 
of variables in clinical practice: sex, chronological age (CA), 
baseline height (H0; cm), target height (TH; cm), mother’s 
height (MoH; cm), father’s height (FaH; cm), relative bone 
age (BA/CA), and birth weight (BiWt; kg). AH prediction 
in an independent validation cohort yielded similar results 
across all 10 models. There were no significant trends of 
prediction error vs PAH or any other applied independent 
variables. Comparison of the new models with conventional 
methods such as Bayley-Pinneau, Roche-Wainer-Thissen, 
and projected AH showed a better performance of the new 
models. On these grounds, the authors believe that this new 
tool for AH prediction in patients with ISS provides im-
proved accuracy and flexibility, and they recommend using 
these new models to see whether this approach will stand the 
test of time.
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