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Abstract: Important illustration to the principle “partition functions in string theory
are τ -functions of integrable equations” is the fact that the (dual) partition functions of
4d N = 2 gauge theories solve Painlevé equations. In this paper we show a road to self-
consistent proof of the recently suggested generalization of this correspondence: partition
functions of topological string on local Calabi-Yau manifolds solve q-difference equations
of non-autonomous dynamics of the “cluster-algebraic”integrable systems.

We explain in details the “solutions” side of the proposal. In the simplest non-trivial
example we show how 3d box-counting of topological string partition function appears from
the counting of dimers on bipartite graph with the discrete gauge field of “flux” q. This is
a new form of topological string/spectral theory type correspondence, since the partition
function of dimers can be computed as determinant of the linear q-difference Kasteleyn
operator. Using WKB method in the “melting” q → 1 limit we get a closed integral formula
for Seiberg-Witten prepotential of the corresponding 5d gauge theory. The “equations” side
of the correspondence remains the intriguing topic for the further studies.
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1 Introduction

Proposal of the paper. We are going to briefly explain the structure of the puzzle we
are aiming to solve, as it is shown on figure 1, and our proposal how it could be solved.
Then we will get a little bit more into context and motivation of it.

Starting from Newton polygon, which is convex polygon with integral coordinates
of vertices, one can construct two seemingly unrelated objects. Either go down to toric
diagram, encoding some toric 3d Calabi-Yau manifold, partition function of topological
string on which can be computed using topological vertices, and which sometimes coincides
with the partition function of instantons of 5d N = 1 gauge theory. We will call “Fourier”
transorm of it to be dual partition function. Or go to the right of the figure, constructing
bipartite graph on torus, which encodes cluster integrable system, whose spectral curve
have the same Newton polygon. One can deautonomize this system in a canonical way,
loosing involutive and preserved hamiltonians, but getting bilinear q-difference equations
on A-cluster variables, for any element of cluster mapping class group of the quiver. It
was checked in some examples [8, 9, 12] (all of which were of field-theoretic type), that
the string-theoretic partition functions mentioned above are satisfy equations coming from
cluster algebras. And despite of the simplicity of formulation, there is no proof for the
general Newton polygon yet.

The proposal of this paper is to show how the partition functions of topological string
can be obtained in purely cluster algebraic setting, building the missing red arrow on fig-
ure 1. We claim that in order to deautonomize the cluster integrable system, one has to

– 1 –



J
H
E
P
1
0
(
2
0
2
2
)
1
9
8

Newton polygon

Toric diagram

Bipartite graph on torus

1 1

1 1

2

2

34 4

"Cluster" quiver
1 2

34

Discrete dynamics
of A-cluster variables
τ1τ1 = τ2

1 + Z1/2τ2
3

τ3τ3 = τ2
3 + Z1/2τ2

1

?Solution by
dual 5d Nekrasov functions

T (u, s; q|Z) = ∑
m∈Z

smZ(uq2m; q, q−1|Z)

τ1 = T (u, s; q|Z), τ3 = is
1
2 T (uq, s; q|Z)

Topological string theory
&

Seiberg-Witten theory

Figure 1. The long way between the q-difference equations and their solutions.

uplift the Kasteleyn operator from torus to the plane, covering the torus. The deautono-
mization parameter q plays a role of the transverse flux of discrete R>0-connection. The
partition function of dimers, which provided spectral curve in the autonomous case, be-
comes a partition function of dimers on the infinite plane. We claim, that being properly
regularized and with certain scaling of parameters, this partition function reproduces the
counting of topological vertices, which constitute topological string partition function.

This proposal is well agreed with the topological string/spectral theory correspondence
like in [12], since the partition function of dimers on a plane can be computed using the
determinant of Kasteleyn operator, which in this case is almost a quantization of spectral
curve. Cluster algebraic interpretation of partition functions opens a room for proving bilin-
ear relations among them as for A-cluster variables related by mutations of the cluster seed.

Equations and partition functions. Conjecture that the instanton partition functions
solve Painlevé equations was proposed for the first time in [31]. The motivation for the
solution came there from a relation between the theory of isomonodromic deformations and
the theory of holonomic fields [77–81]. The claim was that the τ -function of Painlevé VI
equation, which encodes isomonodromic deformations of rank two Fuchsian system with
four punctures on CP 1, is equal to the chiral correlating function of four generic primary
operators in c = 1 conformal field theory. Using AGT correspondence [3] this function
was written there as Fourier transformation of 4d N = 2 SU(2) gauge theory with Nf = 4
flavours. The correspondence was immediately generalized by the same authors to the
partition functions of theories with Nf = 0, 1, 2, 3 as solutions to Painlevé III and V equa-
tions in [32]. It was promoted to higher rank [26, 28, 30, 33], with Virasoro algebra being
replaced by WN algebra. In gauge theoretic terms it was shown that the partition function
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of SU(N) theory with the linear quiver of length n solves isomonodromic equations for the
Fuchsian system of rank N with 2 full and n−2 semi-degenerate punctures [28]. Important
observation was that all of the conformal field theories involved in the correspondence were
free-fermionic, so the τ -functions were shown to be free-fermionic then [28, 30, 48].

Natural deformation of the approach of [31] was to solve q-difference Painlevé equations
with the partition functions of 5d N = 1 supersymmetric theories. The first example of this
kind was the solution of q-Painlevé III equation with the partition functions of 5d SU(2)
gauge theory without matter in [6]. More general case of q-Painlevé VI and theories with
Nf = 4 flavours was considered in [49]. In [12] it was suggested that there should be similar
formulas for the solutions of all q-Painleve equations, which might be classified using the
Newton polygons1 with one internal point [8, 73]. Since not all of the Newton polygons
of this type might be brought into correspondence to some Lagrangian gauge theory with
the well-defined partition function of instantons, it was suggested there to use in this case
a grand canonical partition function of topological string instead.

The reason for this was that by any Newton polygon one can construct family of 3d
toric Calabi-Yau manifolds (see e.g. [5]), and compactification of M-theory on those (or
dual (p, q) branes web) defines 5d N = 1 gauge theory [4]. The striking check of the
correspondence between Calabi-Yau manifold and gauge theories was that in the cases
when the gauge theory posses Lagrangian description, so that the partition function of
instantons in Ω-background can be computed, it can be reproduced by the computation
of the partition function of topological string on corresponding manifold [17, 45, 46]. The
computation of the partition function exploited there was based on the “topological vertex”
technique [5]: the Calabi-Yau manifolds under consideration are toric, so they can be cutted
into C3 pieces, glued one with another by transition maps. The geometry can be read off
from the “toric diagram”, which is dual as a graph to the triangulated Newton polygon,
as on figure 1. Roughly speaking,2 to compute the partition function by this picture one
associates with each junction of three line segments the topological vertex function

Vµ,ν,λ(q) =
∑

πλ,µ,ν

q|π|, (1.1)

which counts 3d Young diagrams with 2d Young diagrams λ, µ, ν as asymptotics weighted
by the number of boxes in them, and summation over 2d Young diagrams weighted by Qi’s
to the power of the number of 2d boxes to each compact line segment. The parameters Qi
are called Kähler parameters, and can be treated as exponentiated lengths of the segment
on picture, so the parallel segments bounded by the same parallel lines should have equal
Kähler parameters. For the example on figure 1 following this rules one gets

Zboxes(q,QB, QF ) =
∑

λ,µ,ν,ρ

(QB)|λ|+|ν|(QF )|µ|+|ρ|Vµ,ν,∅(q)Vν,ρ,∅(q)Vρ,λ,∅(q)Vλ,µ,∅(q), (1.2)

where the empty diagrams are associated with non-compact line segments. Taking sum-
mations over µ and ρ, this becomes a partition function of SU(2) theory with no matter

1The Newton polygons are just convex polygons on integral plane Z2, which will play important role in
the following.

2Up to subtleties with the “framing” and choosing of Kähler parameters.
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multiplets. Being modified by simple “perturbative” factor and “Fourier” transformed,
as in definition of T on figure 1, bottom, it becomes a general solution of q-Painlevé III
equation shown on figure 1, right, where τ = τ(u, s; q|qZ), τ = τ(u, s; q|q−1Z).

Alternative way to compute the same partitions functions utilizes spectral curve [65],
which is zero locus of Laurent polynomial with the same Newton polygon as those which
were used to build the toric Calabi-Yau manifold, and defines its mirror-dual Calabi-Yau
manifold. Topological string/spectral theory correspondence states that the partition func-
tion of topological string is equal to Fredholm determinant of infinite-dimensional linear
operator, quantizing the spectral curve of the system [60].

Cluster algebras, dimer models and box-counting. The notion of cluster algebras
appeared from the solution [24, 75] of the total positivity problem of ”How to parametrize
all matrices whose minors are strictly positive?”. The main component of the solution was
the certain anzatses for the factorization of matrices, which might be usefully encoded into
planar bicoloured graphs with oriented paths on the graphs corresponding to the mono-
mials in parametrization. The weights in the anzatses served as prototypes for X -cluster
variables, the minors in the matrices gave birth to A-cluster variables, and transformations,
identifying equivalent anzatses, became mutations of cluster seeds. The formal definition of
cluster algebra was given first in [25]. It appeared soon, that the cluster algebras admit good
Poisson structures [35, 36] which are nicely quantizable [7, 20], and provide a convenient
language for parametrization of the spaces of local systems on surfaces [19], for theory of
stability conditions in algebraic geometry [57] and theory of integrable systems [23, 27, 37].

The important equivalence of counting of paths and counting of dimers on graphs was
observed in the context of cluster integrable systems in [23, 27]. Each configuration of
dimers is such set of edges on graph, that each vertex is adjacent to exactly one edge from
the set, and the difference of such configurations is always a set of closed paths then. The
statistical models of random dimers configurations are well-studied [51, 58], and are free
fermionic, and all correlators and partition function of the model might have been written
using the minors of Kasteleyn operator, which is basically just the weighted adjacency ma-
trix of the underlying graph. The spectral curve, which is generating function of Hamilto-
nians of the cluster integrable system was written in [27] in the form (3.19), where K1(λ, µ)
is the Kasteleyn operator of the graph on torus. It was also shown there, how to construct
cluster integrable system with the arbitrary Newton polygon of the spectral curve. The co-
ordinates on phase space of cluster integrable system are X -cluster coordinates xf , which
can be conveniently interpreted as monodromies of discrete R>0 connection around the
faces f of the graph. They are naturally constrained by the condition ∏f xf = 1 because
of the triviality of bundle. In [8] it was shown, that relaxation of the condition to q 6= 1
breaks classical integrability of the model, but “deautonomize” dynamics generated by the
elements of cluster mapping class group. It was also shown there, that A-cluster variables
provide bilinear form for this dynamics, and for the cases of Newton polygons with one in-
ternal point, the corresponding dynamical systems are all q-Painlevé equations except two.

Another appearance of parameter q was in the incarnation of dimer model as a model
of statistical physics. The dimer models have nice alternative interpretation as an en-
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sembles of stepped surfaces built from the “boxes” having shapes of the faces of graph,
which are stacked one on another. The statistical weights of boxes are equal to weights
of faces, and for large periodic graph with fixed boundary conditions the flux through the
fundamental domain q controls average volume under the surface. The explicit computa-
tions of correlating functions for general q were done in [69, 70] for hexagonal lattice using
the free-fermionic vertex operators, with various boundary conditions. In this case it was
just explicitly the problem of the counting of boxes, staying along the wall of the room of
complex shape. In the limit q = e−ε → 1 the “typical” surface acquires infinite volume
∼ ε−3. The “limit shape” problem of finding its shape were solved first using variational
methods in [14] for hexagonal lattice, and then in [56] for the general graph and boundary
conditions. From the point of view of counting of instantons, the ε → 0 corresponds to
Seiberg-Witten limit [67], where the partition function is dominated by single term, with
the free-energy density being equal to Seiberg-Witten prepotential of 5d gauge theory [65].

Extensive number of attempts were made to connect topological string theory, counting
of dimers and cluster algebras in the context of so-called “crystal melting” models, see
e.g. [1, 13, 15, 43, 44, 62, 63, 71, 74, 83, 84]. The dimer models on bipartite graphs
on torus also appeared in string theory in the context of “brane tiling” [21, 22, 38, 42]
constructions of 4d N = 1 theories. Closest to the exposition of this paper consideration
were presented in [39–41], where the determinant of tight binding Hamiltonian of particle
in magnetic field where attempted to be related to the partition function of topological
string at |q| = 1, and in [54] where both the ideas of “transverse magnetic flux” and of
tropicalization were used. Also similar 2d lattice operators in the context of the theory
of integrable systems were considered e.g. in [52, 82]. However, there is yet no consistent
proof of the conjecture on how the partition functions of topological string should appear
from the counting of dimers on the lattices, built by appropriate Newton polygon.

Structure of the paper. In the paper we illustrate all constructions using the single
example on figure 1.

In section 2 we introduce basic objects and recollect necessary facts on thermodynamic
of dimer statistical models. Then we explain how the “deautonomization” of ∏f xf = q 6= 1
can be achieved by replacing spectral parameters λ, µ in the Kasteleyn operator of dimers
on torus by the q-commuting operators of magnetic translations T̃x, T̃y. We also discuss
degeneracy of their action on the space of functions on Z2 due to their commutativity with
the dual magnetic translations.

In section 3 we discuss q → 1 limit. We show how the solution of “limit shape” problem
can be derived from the WKB approximation for Kasteleyn operator. We show then that
the free energy of the model, properly regularized in this limit, gives closed formula for the
Seiberg-Witten prepotential of corresponding 5d N = 1 gauge theory. This also provides
regularization for the formula of [72] on genus-0 contribution to the partition function of
topological string.

In section 4 we show how all the necessary box-counting degrees of freedom arise from
the counting of dimers, resulting in the main formula of equality of partition function of
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dimers (in the proper limit) to the dual partition function of topological string

Z(Q0 = q,QB,QF ,Q2) =
∑

n∈Z
(Q2)n−1(QBQF )n(n−1)q

2
3n(n−1)(2n−1)Zboxes(q,q2nQB, q

2nQF ).

(1.3)
Then, we discuss some issues of inconsistency of the requirements of “infinite distance”
between the walls of the room, and of “freezing out” of non-boxcounting degrees of freedom.

In section 5 we outline results of the paper, and propose some directions for the future
developments.

2 Kasteleyn operator of dimers in transverse flux

In this section we will show, how making edge weights linearly dependent on the position
of fundamental cell, one can relax condition ∏f∈F1 xf = q = 1, deautonomizing cluster
integrable system.

2.1 Zero flux

Definition of the model. The dimer models are usually defined on bipartite graphs,
such graphs Γ that the vertices V can be decomposed into black and white subsets V =
B tW , and edges connect only vertices of the opposite colours, see example of figure 2.
Throughout the paper we assume the graphs to be minimal in the sense of [27]. The edges
e ∈ E are weighted by the positive real statistical weights we ∈ R>0 for edges oriented from
black to white vertex (which is assumed to be canonical in the following), and by weights
w−e = w−1

e for the edges taken with opposite orientations. We also extend multiplicatively
w to any sets S of edges by wS = ∏

e∈S we. It is often instructive to consider edge weights
as discrete connections in R>0-bundle over Γ.

The possible microscopic states of the model are dimers configurations D ∈ D(Γ)
(also called perfect matchings) on Γ, which are such collections of edges of Γ, that each
vertex have exactly one adjacent edge from this collection and all edges are taken with the
canonical black-to-white orientation. The partition function can be defined, as usual, as a
sum of statistical weights over all configurations

Z(Γ, w) =
∑

D∈D(Γ)
wD. (2.1)

It changes by simple common factor Z(Γ, w) 7→ (∏
v∈B g

−1
v

)
(∏v∈W gv)Z(Γ, w) under R>0

gauge transformations of edge weights

we 7→ gt(e)weg
−1
s(e) (2.2)

where g is R>0-valued function on vertices, and s(e), t(e) are starting and terminal vertices
of edge e. So it is meaningful to consider the partition function normalized by the weight
of some fixed dimers configuration D0

Z(Γ, w;D0) = Z(Γ, w)
wD0

=
∑

D∈D(Γ)
wD−D0 . (2.3)
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which depends, for planar graphs, only on gauge invariant face weights xf = ∏
e∈∂f we,

since for any dimers configurations D,D0 holds ∂(D −D0) = 0 and any cycle in a disk is
contractible.

Kasteleyn operator. The dimer models are “free fermionic” for the arbitrary edges
weighting. It simply follows from the definition of determinant [51] that their partition
functions can be effectively computed as

Z(Γ, w) = ±det KΓ (2.4)

where Kasteleyn matrix KΓ : C|B| → C|W | is twisted by additional signs weighted adjacency
matrix of Γ

(KΓ)α,β =
∑

∂e=α−β
(−1)κewe, α ∈W, β ∈ B, (2.5)

and signs (−1)κe , called Kasteleyn orientation, for every face f are required to satisfy the
condition ∏

e∈∂f
(−1)κe = (−1)|∂f |/2+1. (2.6)

Also all the correlation functions of the model can be computed using minors of Kasteleyn
matrix. For planar graph all Kasteleyn orientations are equivalent up to Z/2Z gauge
transformations

(−1)κe 7→ (−1)σs(e)+σt(e) (−1)κe (2.7)

where (−1)σ is ±1-valued function on vertices. The overall sign ± in (2.4) is gauge-
dependent.

Fugacities of the translation invariant model on infinite lattice. The bipartite
graph is called periodic and planar if it can be embedded into plane R2 without intersections
of edges and in a way invariant under the action of a Z2 lattice generated by the pair of
discrete translations Tx,Ty. The fundamental domains of this action are cells of rectangular
grid, formed by infinite simple horizontal and vertical curves γh,j = (Ty)jγh,0 and γv,i =
(Tx)iγv,0 transversal to edges, cell (i, j) is bounded by the curves γv,i, γv,i+1 and γh,j , γh,j+1,
see figure 2, left. We decompose set of vertices as V = V1×Z2, where the first multiplier is
finite and counts vertices inside of the cell, and the second denotes position of fundamental
cell which a vertex belongs to. We assume that V1 contains equal number of black and
white vertices B1 and W1. Sets of edges and faces could be decomposed in a similar way
E = E1 × Z2, F = F1 × Z2, where we attribute an edge to the fundamental cell according
to the position of the black vertex adjacent to it, and a face intersecting few cells to one of
the fundamental cells which it intersects.

If the weighting on periodic graph is also periodic we = wTxe = wTye, then by factor-
ization of plane by Z2 action we obtain associated model on graph Γ1 embedded in torus
T2, with the sets of vertices, edges and faces V1, E1 and F1, and γh,i, γv,j projected to
cycles γh, γv generating H1(T2,Z). Since any closed cycle p on Γ1 can be decomposed as

p = nph +mpv +
∑

f∈F1

nf∂f (2.8)
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Figure 2. Example of bipartite graph, known to describe Toda integrable chain on two sites. Left:
labelling of vertices, faces, and edge weights. Since we consider only periodic weightings of faces,
we do not put labels of their fundamental domains on the plot. Right: edges weighting of finite
flux q = e−ε, according to (2.17) and face weights expressed in terms of edge weights.

where ph, pv are some cycles on Γ1 homotopic to γh and γv, the set of gauge-invariant
functions on the space of edge weights is generated by face weights xf and pair of “mon-
odromies” xh = ∏

e∈ph we, xv = ∏
e∈pv we. The face weights of dimer model on torus are

not independent, they always satisfy a “vanishing of total transverse flux” constraint

q =
∏

f∈F1

xf = 1 (2.9)

since ∑f∈F1 ∂f = 0. We will construct the weighting for the model with non-vanishing
flux q in the next paragraph. Also, there is no canonical choosing for cycles ph, pv, however
there is a “twist” of edge weights by eBx , eBy ∈ R>0

we 7→ e〈e,γv〉Bx+〈γh,e〉By we (2.10)

where 〈 , 〉 is a skew-symmetric intersection form with the orientation fixed by 〈γh, γv〉 = 1,
which do not change face weights, but shifts xh 7→ eBxxh, xv 7→ eByxv. We will be using
xf , f ∈ F1 and eBx , eBy as a full set of fugacities, determining model with the vanishing flux.

2.2 Non-vanishing flux

Below we will use the additive notations for gauge transformations, edge and face weights

gv = egv , we = ewe , xf = exf , (2.11)

where g, w and x are cochains from the discrete de Rham complex

0 C0(Γ,R) C1(Γ,R) C2(Γ,R) 0d0 d1 (2.12)

– 8 –



J
H
E
P
1
0
(
2
0
2
2
)
1
9
8

with the differentials

(d0g)(e) = gt(e) − gs(e), (d1w)(f) =
∑

e∈∂f
we. (2.13)

Using these differentials the gauge transformations and fluxes can be written as

w 7→ w + d0g and xf = (d1w)(f). (2.14)

We will also refer to elements of C2(Γ,R) which are not necessary exact as to face weight-
ings. The classification of discrete R>0-connections on V with arbitrary translation invari-
ant fluxes is provided by the following:

Lemma. Choose any face weighting x̃ on periodic graph, which is translation invariant
Tx,yx̃ = x̃. Denote total flux through the fundamental cell by −ε = ∑

f∈F1 x̃f and fix
decomposition

x̃f = xf −

χf +

∑

(i,j)∈Z2

δf,f×(i,j)


 ε (2.15)

where x, χ are translation invariant face weightings of zero flux through the fundamental
cell ∑

f∈F1

xf =
∑

f∈F1

χf = 0, (2.16)

face f×(i,j) is the face, which the crossing γh,j ∩ γv,i belongs to, and δf,f ′ = 1 if f = f ′, and
δf,f ′ = 0 otherwise. Then there is a unique up to gauge transformation discrete connection
w̃ such that d1w̃ = x̃, and its gauge equivalence class is presented by edge weighting

w̃e = we −

ωe + 1

2
∑

(i,j)∈Z2

i〈γ[i,i+1]
h,j , e〉+ j〈γ[j,j+1]

v,i , e〉

 ε (2.17)

where w and ω are translation invariant edge weightings with fluxes d1w = x, d1ω = χ,
γ

[i,i+1]
h,j and γ

[j,j+1]
v,i are intervals of γh,j and γv,i bounded by γv,i, γv,i+1 and γh,j , γh,j+1

respectively.

Remark. The illustrating example to this Lemma can be found in figure 2, right. Note,
that we separated part of face weighting of zero total flux into x and χ, in order to fix
fluxes in ε → 0 limit by x and to control ‘direction’ along which the total flux vanishes
by χ. We also put sign “−” at ε to have q < 1 for exponentiated flux q = e−ε at positive
values of ε.

Proof. To prove existence of w and ω, push translation invariant fluxes x and χ down
to Γ1. The conditions that x, χ ∈ Im d1 are equivalent there to x, χ ⊥ Ker δ2 where
codifferential δ2 : C2(Γ1,R)→ C1(Γ1,R) is defined by

(d1w,x)2 = (w, δ2x)1 with pairings (w′,w′′)1 =
∑

e∈E1

w′ew′′e , (x′,x′′)2 =
∑

f∈F1

x′fx′′f , (2.18)
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or explicitly by
(δ2x)(e) = xt(e∗) − xs(e∗), (2.19)

where e∗ is the edge of dual graph, obtained from e by counter-clockwise rotation by 90◦.
Space Ker δ2 is one-dimensional and generated by the constant function Ω : Ωf = 1 ∀ f ∈
F1, so orthogonalities (x,Ω)2 = 0 and (χ,Ω)2 = 0 are guaranteed by (2.16).

The i and j depending terms in (2.17) contribute to (2.15) with −ε · δf,f×(i,j)
, and

generate total flux −ε. This can be computed in any example, and then checked that upon
adding vertices to ∂f×(i,j) and moving them in a way, which keeps γh,j ∩ γv,i inside of f×(i,j)
and do not put other intersection points inside of it, flux remains the same. Intersections
of boundaries of other faces with γh,• and γv,• come in pairs, whose contributions from
these terms cancel each other.

To show uniqueness of the gauge orbit, take difference of any pair of discrete connec-
tions w0 = w̃′ − w̃′′ both having flux x̃. It is closed d1w0 = 0 and exact

w0 = d0g, gv =
∑

e∈pv0,v

(w0)e, (2.20)

where pv0,v is any path connecting some fixed vertex v0 with v, and the sum is path in-
dependent as ∑e∈p(w0)e = 0 for any closed path p, so g is well defined. Thus, g provides
desired gauge transformation w̃′ = w̃′′ + d0g. �

The Kasteleyn operator K̃ : C|B1| ⊗ C|Z2| → C|W1| ⊗ C|Z2| constructed from weight-
ing (2.17) can be compactly written in terms of Γ1 as

K̃ = K̃1(T̃x, T̃y) =
∑

e∈E1

(−1)κeqωewe · Et(e),s(e) ⊗
←−T (e) (2.21)

where q = e−ε is exponentiated flux per fundamental cell, and the translation operator←−T (e) is ordered along the edge e product over its intersections with γh, γv, which are
images of γh,•, γv,• under projection from R2 to T2

←−T (e) =
←−∏

p∈e∩γh,v

(
T̃x

)〈e,γv〉p (T̃y

)〈γh,e〉p (2.22)

of the basic q-commuting “magnetic translations” T̃x,y : C|Z2| → C|Z2|

T̃x =
∑

(i,j)∈Z2

q−
1
2 j Ei+1,i ⊗ Ej,j , T̃y =

∑

(i,j)∈Z2

q
1
2 i Ei,i ⊗ Ej+1,j , T̃yT̃x = qT̃xT̃y. (2.23)

The notation K̃1(T̃x, T̃y) means that we can consider K̃ as a finite matrix K̃1 : CB1 → CW1 ,
with coefficients in the skew Laurent polynomials C[q, q−1, T̃x, T̃−1

x , T̃y, T̃
−1
y ]. For example,

this matrix presentation for Kasteleyn operator of the network drawn in figure 2 is

K̃1 =
(
w1 + w3T̃−1

y −w6 − w8T̃x

w4 + w2T̃−1
x w7 + w5T̃y

)
. (2.24)
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The space C|Z2| as a representation of the algebra of q-difference operators by T̃x and
T̃y is largely reducible. The degeneracy can be lifted utilizing the algebra of q−1-difference
operators, represented by “dual magnetic translations”

T̃∨x =
∑

(i,j)∈Z2

q−
1
2 j Ei−1,i⊗Ej,j , T̃∨y =

∑

(i,j)∈Z2

q
1
2 i Ei,i⊗Ej−1,j , T̃∨y T̃∨x = q−1T̃∨x T̃∨y . (2.25)

which commute with the former

[T̃s, T̃∨s′ ] = 0, s, s′ = x, y. (2.26)

Therefore any operator, which is a skew Lauren polynomial Q̃ = Q̃(T̃∨x , T̃∨y ) in T̃∨x , T̃∨y ,
commutes with K̃ in the sense that

(
Id C|W1| ⊗ Q̃

)
· K̃ = K̃ ·

(
Id C|B1| ⊗ Q̃

)
. (2.27)

The form (2.21) of Kasteleyn operator survives under gauge transformations constant inside
of fundamental cells, the universal condition determining operators of dual translations is

T̃∨x T̃x = q−ŷ , T̃∨y T̃y = qx̂ , qx̂ =
∑

(i,j)∈Z2

qi Ei,i⊗Ej,j , qŷ =
∑

(i,j)∈Z2

qj Ei,i⊗Ej,j . (2.28)

The operator Q̃ is hypostasis of eponymous Laurent polynomial from [56], which was
shown there to label possible limit shapes of dimer model. In the next section we will show
that the complex Burgers equation controlling limits shapes in [56] is simply the WKB
approximation in q → 1 limit to the spectral problem for the Kasteleyn operator (2.21).

3 Seiberg-Witten integrability in WKB approximation

In this section we look at the “melting” q → 1 limit of vanishing flux for dimer model.
The usual arguments of quantum mechanical quasi-classics are applicable to Kasteleyn
operator (2.24) in this limit. The main result of this section is that the free energy (3.24),
which is a regularized volume under the “limit shape” (3.18), satisfies Seiberg-Witten
equations (3.25). We will use only the example (2.24) throughout the section, but all
arguments of it can be generalized in a straightforward way.

3.1 Quasiclassics of vanishing flux at q → 1 and height function of limit shape

The main observable in dimer models is “height” function, which counts portions of dimers
oriented “horizontally” and “vertically” in average configuration. Its meaning becomes
more clear, once the configurations of dimer model are interpreted as stepped surfaces.

Let’s choose some reference configuration D0 as in (2.3). As for any D ∈ D(Γ) holds
∂D = W −B, the difference D −D0 is a collection of closed and non-intersecting (having
no common vertices) cycles on plane, which we interpret as boundaries of “steps”. The
orientation of cycle determines whether its step is upward or downward. Assuming each
step to be of heights 1, the difference of heights between the pair of faces f1, f2 of Γ is
〈p∗f2,f1

, D −D0〉, where p∗f2,f1
is any path on the dual graph Γ∗ connecting f1 and f2 and
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〈 , 〉 is an intersection pairing. Since ∂(D −D0) = 0, the heights difference is independent
on choosing of path p∗f2,f1

for planar Γ. The averaged height function h : F × F → R
computes the mean difference of heights over the ensemble of stepped surfaces

hf2,f1(Γ, w;D0) = hf2,f1 = 1
Z(Γ, w;D0)

∑

D∈D(Γ)
〈p∗f2,f1 , D −D0〉wD−D0 . (3.1)

It is clear from this definition, that the fugacity ε in q = e−ε controls the “volume” under the
stepped surface made out of these loops, since each loop l = ∂B contributes to the statistical
weight of configuration in partition function by ∼ e−ε·Area(B). The infinite volume limit
corresponds to ε → 0, and the problem of finding the height function and its fluctuations
in this limit is called the limit shape problem.

Due to free-fermionic nature of the model, all correlating functions of any local ob-
servables in it can be computed by bare knowledge of two-point Green function G, defined
by the equations3

K̃ ·G = Id , [Q̃,G] = 0. (3.2)

The problem (3.2) for generic q is fully solved only for hexagonal lattices with various
boundary conditions using free fermionic vertex operators in [69, 70]. The knowledge of
the solution of (3.2) in few leading orders in ε at ε→ 0 limit is enough for any purposes of
the limit shape problem, but this is still a cumbersome problem. However, the information
about height function itself can be heuristically extracted from the structure of Ker K̃ ∩
Ker Q̃, which is the solution of the simpler problem

K̃ψ = 0, Q̃ψ = 0. (3.3)

In coordinates x = εi, y = εj, considered as continuous coordinates on R2, these equations
become





∑
b∈B1(K̃1)v,b

(
e

1
2y−ε∂x , e−

1
2x−ε∂y

)
ψb(x, y) = 0

Q̃
(
e

1
2y+ε∂x , e−

1
2x+ε∂y

)
ψb(x, y) = 0

, b ∈ B1, v ∈W1. (3.4)

They can be solved order-by-order in ε using standard quasi-classical anzaets for wave-
function

ψb(x, y) = exp
( i
ε
S

(0)
b (x, y) + S

(1)
b + . . .

)
, b ∈ B1. (3.5)

In the leading orders e 1
ε

# and ε0 the consistency conditions for the equations (3.3) become




P (ez, ew) ≡ det K1(ez, ew) = 0
Q(ez∨ , ew∨) = 0
∑
b∈B1

(K1)v,b (ez, ew) eS
(1)
b = 0

, (3.6)

3The equation [Q̃, G] = 0 has not-clear-yet physical nature, but should be related to the control over
boundary conditions of the model, and the exact Green functions from [69, 70] satisfy it.
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where K1 = K̃1|ε=0, Q = Q̃|ε=0 and

z = 1
2y − i∂xS(0)(x, y), w = −1

2x− i∂yS(0)(x, y),

z∨ = 1
2y + i∂xS(0)(x, y), w∨ = −1

2x+ i∂yS(0)(x, y). (3.7)

Commutativity of K̃ and Q̃ implies in the quasiclassical limit that the differential

dS(0) = ∂xS
(0)dx+∂yS(0)dy = i

2(zdw−wdz)− i
2(z∨dw∨−w∨dz∨)+ i

2d(w∨z−z∨w) (3.8)

is closed, so the quasiclassical action S(0) = S(0)(x, y) can be defined by its integration.
In the simplest case when Q = P , the conditions (3.6) and (3.7) can be solved by z∨ =
z̄, w∨ = w̄ and one can simplify (3.8) to

S
(0)
Q=P (x, y) = Im

(∫ z(x,y)
(wdz − zdw) + z̄w

)
= −2 · Im

(∫ z(x,y)
zdw

)
+ 2 ·Re (z)Im (w),

(3.9)
which up to exact terms is (−2) times an imaginary part of integral of the meromorphic
differential zdw, called Seiberg-Witten differential, over the complex curve

CP = {P (ez, ew) = 0 ⊂ (C∗)2}. (3.10)

To compute the height function, let’s assume now that the local behaviour of model
with flux in ε→ 0 limit mimics those of the “homogeneous” model of zero flux on the torus.
For homogenous model the height function can be easily computed using an expression for
free energy density [58]

R(Bx, By) =
2π∫

0

2π∫

0

dθdφ

(2π)2 logP (eBx+iθ, eBy+iφ), (3.11)

since the average number of “horizontal” and “vertical” dimers are dual to the “twist”
parameters (Bx, By)

{
h(x+ ε, y)− h(x, y) ' −∂ByR = θ∗

π

h(x, y + ε)− h(x, y) ' ∂BxR = φ∗
π

, where P (eBx+iθ∗ , eBy+iφ∗) = 0. (3.12)

At the same time, the zero-mode of homogeneous model is

ψα,(a,b) = ei(aθ∗+bφ∗)ξα, α ∈ B1, (a, b) ∈ Z2, where (K1)(eBx+iθ∗ , eBy+iφ∗) · ξ = 0.
(3.13)

Applying in (3.13) coordinates a = x/ε, b = y/ε and comparing it with (3.5), one can
guess the height function of the model with flux in ε→ 0 limit to be

h(x, y) =
∫

(∂xh dx+ ∂yh dy) ' S(0)(x, y)
πε

. (3.14)

The WKB quantization condition coming from single-valuedness of wave-function becomes
also the natural condition for height difference between frozen regions of the model [56] to
be integral.
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In the case of Q = P comparing formulas (3.6), (3.7) with (3.12), one can deduce

hQ=P (x, y) = −2
ε
R
(
y

2 ,−
x

2

)
. (3.15)

In [56] similar results were obtained, but the logic (and notations) were different. Pair
of equations (3.6) appeared there as a solution of variational problem, optimizing the total
surface tension4 to be minimal. The Euler-Lagrange equation of this problem results to
equations

∂yz − ∂xw = 1, P (ez, ew) = 0, (3.16)

called complex Burgers equation. The function Q appears then as a free function,
parametrizing the space of solutions of this equation, and controlling the boundary condi-
tions for solutions. So the equation, which in our setup is a consistency condition supporting
Hamilton-Jacobi equation, appears also to be the stationary-action principle for 2d field
theory. Expression for height function similar to (3.14) was also derived in [56].

3.2 Free energy density is Seiberg-Witten prepotential

The WKB arguments can be also applied to computation of partition function in ε → 0
limit. The usual heuristics

Tr[A(Tx, Ty)] →
∫∫

dxdy

ε2

∫∫
dθdφ

(2π)2A(e
y
2 +iθ, e−

x
2 +iφ) as ε→ 0 (3.17)

gives the integral formula for the partition function of the model

Z = det K̃ = etr log K̃ ∝ exp
( 1
ε2

∫∫
dxdyR

(
y

2 ,−
x

2

))
= qVol(P,P ),

Vol(P, P ) = 1
2

∫∫
dxdy

ε2 hQ=P (x, y). (3.18)

The proportionality of the free energy of the model to the volume5 under the limit shape
is a natural thing: in the leading order, the partition function is dominated by single
configuration, and the free energy determined by it is proportional to the sum of areas of
all contours which this configuration contains (which is basically volume). It is diverging,
and proper regularization of determinant in (3.18) and extension of the formula to the case
Q 6= P requires careful consideration of the boundary conditions for the model and role of
Q. We will instead define some regularization of Vol guided by its properties and natural
equation satisfied by it. In order to this we need first to make a closer look to the properties
of spectral curve P (ez, ew) = 0 and function R.

For the lattice drawn on figure 2, the Laurent polynomial P computed using (2.24) is

P (λ, µ) = det K1(λ, µ) = w2w6
λ

+w4w8λ+w1w5µ+w3w7
µ

+(w3w5 + w2w8 + w1w7 + w4w6) .
(3.19)

4The surface tension density is a Legandre dual to the free energy density R. It computes the energy
of the region with the known slope (∂xh, ∂yh) in opposite to R, which computes energy of the region with
fugacities (Bx, By).

5Up to 1/2, whose appearance in the definition of Vol is unclear.
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γi = −∂Ωi

θ φ

γ0 0 0
γ1 0 −π
γ2 −π 0
γ3 0 π

γ4 π 0

A
B

x

y

Ω0 Ω1

Ω2

Ω3

Ω4

−R(x, y)

Figure 3. Left: amoeba A(P ) of the curve P (ex+iθ, ey+iφ) = 0. Red lines are for θ = const, blue
are for φ = const, their values are taken for one of two sheets of CP over A(P ). Boundaries γi of
ovals Ωi are oriented counter-clockwise along ∂A. The projections of A− and B− cycles are drawn
by dashed lines. Right: minus Ronkin function −R(x, y) for the same P .

For the purposes of this section the rescalings P (λ, µ) 7→ A ·P (Bλ,Cµ) are immaterial, so
we will be using here P in the equivalent form

P (λ, µ) = λ+ Z

λ
+ µ+ 1

µ
− U, (3.20)

Z = x1x3, − U = √x1x4 + 1√
x1x4

+
√
Z

(
√
x3x4 + 1√

x3x4

)
, (3.21)

where xi are face variables labelled following figure 2, left. Curves CP appearing in pla-
nar dimer models are Harnak [55], which means that the logarithmic projection (λ, µ) 7→
(log |λ|, log |µ|) of spectral curve CP to R2 is 2 to 1 mapping in the interior of amoeba6

A(P ) = {(x, y) ∈ R2 | ∃ (θ, φ) ∈ R2 : P (ex+iθ, ey+iφ) = 0}, (3.22)

and 1 to 1 at its boundary. The inverse is also true: any Harnak curve in C∗ × C∗ can
be obtained from some planar dimer model. For Laurent polynomial (3.19) the curve is
Harnak if Z ∈ R≥0, U ≥ U0 = 2(

√
Z + 1) which is satisfied because of xi ∈ R≥0, following

from positivity of edge weights. The corresponding amoeba is drawn on figure 3, left.
Complement of amoeba of Harnak curve consists of disjoint regions R2\A(P ) = ∪iΩi,

which are bounded and unbounded ovals. Their combinatorics of ovals is captured by
Newton polygon NP of polynomial P - the convex hull of such (i, j) ∈ Z2, that λiµj
is contained in P (λ, µ) with non-zero coefficient. Bounded ovals correspond to integral
internal points of NP , unbounded ovals to integral boundary points, so the amoeba can
be contracted to the graph, dual to some triangulation of Newton polygon. The function
R, called Ronkin function of P in mathematical literature, in case of Harnak P is concave
function on R2, linear of slope (i, j) on oval corresponding to point (i, j) of Newton polygon,
and interpolating slopes of ovals in the interior of amoeba, as shown on figure 3, right.

6Starting from here and until the end of this section we use coordinates (x, y) differently compared to
the usage above.
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Since the ovals have to be invariant under the complex involution (λ, µ) 7→ (λ̄, µ̄),
functions θ(x, y) and φ(x, y) can take only πZ values there. The parametrization of CP
by (z, w) is uniquely determined by the condition, that the single-valued smooth functions
θ(x, y), φ(x, y) in the interior of A are such solution of

z = x+ iθ(x, y), w = y + iφ(x, y) : P (ez, ew) = 0, (3.23)

that θ = φ = 0 at γ0 and φ(x, y) is increasing along the short paths from γ0 to γ3. We
call part of CP parametrized by this (z, w) to be upper sheet, and those, which is complex
conjugated, to be lower. Both θ, φ considered as a functions on CP are single valued in the
interior of A and on γ0, however they can have jumps at other γi.

Now we can define the regularization of free energy in (3.18) by

F(U)= F̃(U)−F̃(U0), F̃(U)= i
π



∫∫

R2

R(x,y)dxdy−


∫

γ1

−
∫

γ3


x

2dy

8 −


∫

γ4

−
∫

γ2


 y

2dx

8


.

(3.24)
It is finite, since at large x, y graphs or Ronkin functions for P with the same values of Z but
different U are exponentially close. The overall normalization and presence of boundary
terms is justified by the following Claim, which is natural due to the reasons explained in
Introduction:

Claim. The prepotential F defined in (3.24) satisfies Seiberg-Witten equation

∂F
∂a

= aD, a =
∮

A
z
dw

2πi , aD =
∮

B
z
dw

2πi , (3.25)

where A and B = −γ0 are simple cycles on curve, which intersect with A∩B = 1, as shown
on figure 3, and orientation of A-cycle is such, that it is directed from γ0 to γ3 when goes
along the upper sheet of CP .

Proof. Firstly, note that a = a(U) is analytic function at a generic point, so (3.25) is
equivalent to

∂F
∂U

= aD
∂a

∂U
, (3.26)

and that since R(x, y;U)−R(x, y;U0) is exponentially small at infinity, we can interchange
integration and differentiation

∂

∂U

∫∫

R2

(R(x, y;U)−R(x, y;U0)) dx ∧ dy2πi =
∫∫

R2

∂R(x, y)
∂U

dx ∧ dy
2πi . (3.27)

Decompose R2 = Ω0 ∪ A ∪ Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4, and consider integrals over the regions
separately. For any of Ωi or A, their shapes depend on U , so change of the order of
differentiation and integration over any single of them would change integral by additional
contact term.
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Figure 4. Slice of the curve CP by y = const section, plotted in ez coordinate, shown by ovals.
The y is such that the y = const line crosses a hole of amoeba. Red dots are points with the same
φ. Dashed circle is dz integration contour in (3.28), which has to be contracted to zero.

• Let (x, y) ∈ Ω0, then

∂R(x, y)
∂U

=
2π∫

0

dφ

2π

∮

|z|=x

dz

2πi
∂UP (ez, ey+iφ)
P (ez, ey+iφ) =

2π∫

0

dφ

2π
∂UP (ez∗ , ey+iφ)
∂zP (ez∗ , ey+iφ)

= −
∮

A

∂z(w)
∂U

dw

2πi = −∂a(U)
∂U

(3.28)

where the contour of integration is deformed first from Re z = x to Re z = −∞,
keeping Rew = y, and picking pole at z∗, such that P (ez∗ , ey+iφ) = 0, see figure 4.
Then the remaining integration over dφ becomes integral of −idw over A-cycle, and
we use that 0 = dP/dU = ∂UP +∂zP∂Uz, assuming that z = z(U,w).7 As ∂UR(x, y)
does not depends on (x, y) ∈ Ω0, it remains to compute
∫∫

Ω0

dx ∧ dy
2πi =

∮

∂Ω0

xdy

2πi = 1
2πi

∮

−γ0

(zdw − i(θdy + xdφ) + θdφ) =
∮

B
z
dw

2πi = aD(U)

(3.29)
where we used that θ = φ = 0 at γ0.

• Regions Ω1,Ω2,Ω3,Ω4 do not contribute to integral, as we can deform integration
contour there to Re z → +∞, Rew → +∞, Re z → −∞, Rew → −∞ respectively,
where integrand is exponentially suppressed, without picking any poles.

• For any (x, y) ∈ A we can shift integration contour to x→ −∞, along any sequence
of straight segments of rational slope. The poles are picked as in (3.28), because of
SL(2,Z) invariance of integration measure

− ∂z(w)
∂U

dw

2πi = ∂UP

∂zP

dw

2πi = ∂UP

d∂z̃P − c∂w̃P

(
d+ c

∂z̃

∂w̃

)
dw̃

2πi = −∂z̃(w̃)
∂U

dw̃

2πi , (3.30)

where z = az̃ + bw̃, w = cz̃ + dw̃, with a, b, c, d ∈ Z, ad − bc = 1. As the integrand
is a holomorphic form, the integration contour might be deformed to any convenient

7These two steps are equivalent to deformation of 2d contour and picking Poincaré residue of dz∧dw
P

at
P = 0.
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smooth contour which goes from w = w(x, y) to γ3, and then to w̄, on another sheet.
Using that inside of A we can present area element dx ∧ dy as

dx ∧ dy = 1
4 (dz ∧ dw̄ + dz̄ ∧ dw) , (3.31)

we apply integration by parts, to get

−
∫∫

A

(∫ w̄

w

∂z(w)
∂U

dw

2πi

)
dz∧dw̄+dz̄∧dw

8πi =

=
∫

∂A

(∫ w̄

w

∂z(w)
∂U

dw

2πi

)
w̄dz+wdz̄

8πi +
∫∫

A

(
w̄
∂z̄(w̄)
∂U

dz∧dw̄
(4πi)2 −w

∂z(w)
∂U

dz̄∧dw
(4πi)2

)

=
∫

∂A

(∫ w̄

w

∂z(w)
∂U

dw

2πi

)
w̄dz+wdz̄

8πi +
∫

∂A

(
∂z̄(w̄)
∂U

zw̄dw̄

(4πi)2 −
∂z(w)
∂U

z̄wdw

(4πi)2

)
. (3.32)

Using that the contours in
∫ w̄
w (∂z/∂U)dw are now closed (since w = w̄ at ∂A), and

some of them can be contracted to points at infinity, where ∂z(w)/∂U is exponentially
suppressed, the first integral reduces to

4∑

i=0

∫

γi

(∫ w̄

w

∂z(w)
∂U

dw

2πi

)
w̄dz + wdz̄

8πi = ∂a

∂U

∫

γ0

ydx

4πi = aD
2
∂a

∂U
. (3.33)

Using also the values of θ, φ ∈ πZ on γi at upper sheet of CP , which are indicated on
figure 3, and SL(2,Z) invariance (3.30), we get for the remaining

4∑

i=0

∫

γi

(
∂z̄(w̄)
∂U

zw̄dw̄

(4πi)2 −
∂z(w)
∂U

z̄wdw

(4πi)2

)
=

4∑

i=0

∫

γi

∂z

∂U

(zw̄ − z̄w)dw
(4πi)2

=
∫

γ1−γ3

∂x

∂U

xdy

8πi +
∫

γ4−γ2

∂y

∂U

ydx

8πi . (3.34)

All contributions brought together give us identity (3.26). �

Another interesting limit can be taken now. It is called perturbative or tropical or
decompactification in different contexts. In it, the parameters scale as

U = eR5u, Z = eR5z, R5 → +∞. (3.35)

The amoeba shrinks then to its spine, which is a union of intervals as shown on figure 5, and
pre-image of projection CP → A becomes S1 over the internal points of intervals, and pairs
of triangles, connecting these circles, over the joints of intervals. The Ronkin function in
the leading in R5 order become piecewise linear function of x, y, and integrations in (3.24)
becomes trivial exercises in computations of polyhedron volumes. Taking U0 = 2(

√
Z + 1)

at which domain Ω0 shrinks to point, one gets

F → − R3
5

24πi (2u−z)2(4u+z), a =
∮

A
z
dw

2πi → R5·(z−u), aD =
∮

B
z
dw

2πi →
R2

5
2πi 2u(2u−z).

(3.36)
This completely “frozen” by extreme values of parameters configuration will be the starting
point in the next section. However we will “unfroze” it in a different way, keeping finite q
under extreme values of xi.
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x

y y = −u

y = x − z y = −x

y = u

y = z − x y = x

x = ux = z − u

Figure 5. Amoeba of the curve CP in tropical limit. Coordinates here are normalized by R5.

4 Boxcounting in tropical limit

In this section we will show, how the Fourier-transformed topological string amplitude (1.3)
comes combinatorially from the counting of dimers in the running example as on figure 2:
we identify degrees of freedom corresponding to 0d boxes constituting 3d Young diagrams,
1d boxes constituting 2d Young diagrams and 2d boxes constituting 1d Young diagrams. We
also suggest how the properly taken tropical limit for face weights xi = eR5ξi+xi , R5 →∞
might suppress all the other degrees of freedom, but it appears to be inconsistent with the
thermodynamic limit.

4.1 Combinatorics of boxcounting

The starting point for the box counting combinatorics is the “empty room” dimers config-
uration, which is drawn on all four panels of figure 6 by coloured dimers. The structure
of configuration is similar to the structure of amoeba drawn on figure 3: there are four
unbounded domains corresponding to Ω1,Ω2,Ω3,Ω4, and one internal domain Ω0. Dimers
configurations in unbounded domains are just the tilings by configurations corresponding
to four “external” monomials at λ, λ−1, µ, µ−1 in (3.19), and configuration in Ω0 is one of
those at λ0µ0. Two parameters defining this configuration are width N and height M of
central domain. For the configuration on figure 6 we have N = 4, M = 5 by the number
of fundamental domains filled by purple dimers plus 1.

The “rotation in the set of faces” is a transition from one dimers configuration to an-
other by choosing such a set of faces that exactly half of edges on their common boundary
(each second edge) is contained in dimers configuration, and exchanging sets of occu-
pied and non-occupied edges on this boundary. This changes the weight of the dimers
configuration by the product of the corresponding face weights. There are four classes of
transformations of the “empty room” configuration (and configurations obtained from it by
these transformations), which correspond to adding of different types of boxes to the room:

• Four rotation in the sets of faces as on figure 6, left, top. Each rotation of this type
is weighted by q = Q0 = x1x2x3x4, and corresponds to the addition of 0d box to
one of four 3d Young diagrams located in the corners of the room. First rotation of
this type opens possibility for three more similar rotations in the adjacent locations,
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Figure 6. Toda bipartite lattices with “empty room” configuration D0 drawn. Faces involved in
the rotations corresponding to addition of boxes weighted by Q0, Q1,B , Q1,F , Q2 are highlighted by
lime colour.
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which is in agreement with the fact that there are three 3d Young diagrams containing
two boxes. Similar matching works further, until the diagram growing in one corner
touches diagram from another corner. This can be easily seen considering e.g. left top
corner of the “room” and erasing edges between the faces 2 and 3, 3 and 4, 4 and 1,
which are not covered by any dimers there and are not involved into transformations
then. Making reduction of pairs of adjacent 2-valent vertices of bipartite graph after
erasing, we get hexagonal lattices, which provides 3d box counting [74].

• Two rotations weighted by Q1,B as shown on a top right panel, and two ones weighted
by Q1,F from a bottom left panel are corresponding to addition of 1d boxes consti-
tuting four 2d Young diagrams. These 2d Young diagrams can be considered as a
so long lines of boxes added to the corners, that they meet each other. However,
since the shapes corresponding to addition of boxes to different corners are different,
there is a mismatch, because of which Q1,B and Q1,F are not simply degrees of q, but
contain also other combinations of the weight of faces. So the 2d Young diagrams
determine the initial shape, on the top of which 3d Young diagrams are built.

• Rotation shown on a bottom right panel is weighted by Q2 and results in the change
(N,M) 7→ (N + 2,M + 2). In terms of the boxes, this can be viewed as change of
the level of “floor” in the room. Since you can repeatedly apply this transformations,
they are enumerated by N or 1d Young diagrams.

• There are also two types of transformations of infinite weights, shown on figure 7,
left. They change (N,M) 7→ (N + 1,M) and (N,M) 7→ (N,M + 1), and do not
contribute to the partition, since we assume boundary conditions at infinity to be
fixed. However, we will be back to them in the Discussion section, we expect them
to play an important role in the context of solutions of q-difference equations with
the partition functions of dimers. From the point of view of box counting, these
transformations are corresponding to shifts of the “walls” of the room.

Summation of 3d and 2d boxes is given by Zboxes(q,QB, QF ) in (1.3), Q2, QB and
QF in the formula are taken at some large fixed values of (N,M). The weight in
front of Zboxes(q,QB, QF ) originates from multiplication by Q2 factors for (N,M),
(N + 2,M + 2),. . . ,(N + 2n − 2,M + 2n − 2). The growth rate 4

3εn
3 in the exponent is

related to the volume of pyramid. It matches nicely with the leading in u term

F ∼ −4
3

(R5u)3

2πi (4.1)

in (3.36), where 2πi comes from the different normalization of prepotential compared to
the volume. The external summation over n is for the summation over the “heights” of
the floor, or divergences of size of central domain from (N,M). It has to go in the limits
−min(N,M) ≤ n ≤ +∞, but we can take it to be two-sided infinite, since we are working
in approximation N,M → +∞, which is also important for 3d Young diagrams to not to
touch each other.
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Figure 7. Left: “Unbounded” rotations, changing (N,M) 7→ (N + 1,M + 1) and (N,M) 7→
(N,M + 1). Right: different types of rotation possible in the central region, which are
freezing out in tropical limit. The weights of rotations shown on picture by lime color are
x1, (x1)2x4, (x2)−1, (x2)−2(x3)−1, (x1)4x3(x4)2, (x1)6(x3)2(x4)3, (x2)−5(x3)−3(x4)−1, . . .

4.2 Inconsistency of “freezing out” and thermodynamic limit

We are going to suggest now how to freeze all non-boxcounting “rotations” at once by the
proper tuning of weights of faces, and show then why thermodynamically this is incompat-
ible with N,M → +∞ limit.

First of all, there are no possible local rotations of size � N,M in non-bounded
domains Ω1,Ω2,Ω3,Ω4, since the dimers configurations which tile them are “extremal”: the
difference with any other configuration will be a collection of paths which go in one direction
and can’t go back. There are many possible local rotations in the central domain, as it is
shown on figure 7, right. We are looking for such limit of faces’ weights to zeroes or infinities
(tropical limit), that weights of all rotations in this domain are suppressed. We also want to
keep finite q, so we will assume now x1x2x3x4 = 1 in compare with the weights of individual
faces. Then, the partition function of local rotations can be estimated, by selecting the term
at λ0µ0 in the partition function on large torus of size L×L [58], which can be estimated as

ZT2,L×L(Γ,w;D0)|λ0µ0≤(w3w5)−L2
L∏

a=1

L∏

b=1
detK1(λe

2πia
L ,µe

2πib
L )|λ0µ0≤

(detK1(λ,µ)
w3w5

)L2

|λ0µ0

=
∑

2a+2b+c=L2

(
x1
x2

)a
(x1x4)b(1+x1+x1x4+x1x3x4)c (4.2)

Using additive variables ξi in xi = eR5ξi+xi at R5 → +∞, all terms except 1 are vanishing if

ξ1 < 0, ξ1 + ξ4 < 0, ξ1 + ξ3 + ξ4 < 0, ξ1 + ξ2 + ξ3 + ξ4 = 0. (4.3)
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As a check, one can see that all of the rotations shown on figure 7, right, are suppressed in
this limit. It also has to be shown that these bounds are enough to suppress all the local
rotations in between of domain Ω0 and other domains Ωi. We do not know how to show
this systematically though.

Unfortunately, constraints (4.3) are inconsistent with the thermodynamic limit
N,M → +∞. We require that in thermodynamic limit all the weights Q0, Q1,B, Q1,F , Q2
should be finite, not becoming 0 or ∞. Inverting formulas for their weights on figure 6,
one gets

x1 = XN+1,M , x2 = XN,M , x3 = 1
XN,M+1

, x4 = 1
XN+1,M−1

,

where XN,M = Q2 · (Q0)NM
(Q1,B)M · (Q1,F )N . (4.4)

The leading terms are determined here by Q0 = q = e−ε since NM � N,M � 0, so taking
R5 = NM , one gets

ξ1 = −ε, ξ2 = −ε, ξ3 = ε, ξ4 = ε ⇒ ξ1 + ξ3 + ξ4 = ε > 0, (4.5)

which is inconsistent with (4.3).
Another issue with thermodynamic limit is the instability due to the multiplier ∼ q 4

3n
3

in (1.3). Even if all Q are finite and non-boxcounting degrees of freedom are suppressed,
the cubic term at n→ −∞ dominates all the other contributions at fixed n, making small
n preferable and breaking N,M � n� 1 assumptions.

5 Discussion

In the paper we made several steps towards understanding the role of cluster algebras in
the theory of topological string. We have shown how starting from the “deautonomiza-
tion” of cluster integrable system one naturally gets objects related to topological string:
either Seiberg-Witten prepotential in the “melting” limit, or boxcounting of topological
vertices in the “tropical” limit. Despite of inconsistencies, outlined in the section 4.2, this
consideration seems to provide proper framework for the construction of the arrow shown
on figure 1 in the Introduction.

We want to sketch now how the missing arrow from figure 1 can be constructed, after
resolving of inconsistencies of section 4.2. First, it has to be understood how the transforma-
tions of the weighted bipartite graph on torus, corresponding to the mutations in X -cluster
algebra, should be properly uplifted to the transformation of quasi-periodically bipartite
graph on a plane. Then, in the theory of total positivity, many of A-cluster variables are
come as minors of the transfer matrices of paths on the bipartite graphs [11, 24, 75], or
equivalently to the different minors of the Kasteleyn operator of this graph. We can relate
then the different minors of infinite-dimensional q-difference Kasteleyn operator to the dif-
ferent A-cluster variables in deautonomized case. These minors also correspond to the par-
tition functions of dimers with the different boundary conditions. Those, which are related
by the unbounded “rotations” from figure 7, left, in the boxcounting limit present the same
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partition functions, but with the slightly shifted parameters. In our example, one can pro-
duce four different partition functions in this way, corresponding to (QB, QF ) and its shifts

(Q1,B,Q1,F ) 7→(qQ1,B,Q1,F ), (Q1,B,Q1,F ) 7→(Q1,B,qQ1,F ), (Q1,B,Q1,F ) 7→(qQ1,B,qQ1,F ),
(5.1)

which reproduces shifts of parameters in four τ -functions in [8]. Then, the q-difference
equations, satisfied by the dual topological string amplitudes become a Plucker relations
between the regularized infinite dimensional minors of Kasteleyn operator, or exchange
relations in the corresponding A-cluster algebra. The evidences of proper combinatorics,
underlying this problem, might be contained in [18, 34, 76].

There is also a number of other intriguing directions, in which the developments of
this paper might be continued:

• It is conjectured that all the fluctuations of the height function above the limit shape
at “infinite volume” q → 1 limit can be described using the Gaussian free field in
the properly chosen complex structure, see e.g. [53]. In section 3.1 using the quasi-
classical computation for the zero-mode of Kasteleyn operator we provided a heuristic
derivation for the height function of the limit shape. Similar quasi-classical computa-
tion for the Green function (3.2) would provide a solution for a problem of uniformiza-
tion of fluctuations in spirit of [56]: for any bipartite lattice and boundary conditions.

• The distinguishing property of prepotential F(U,Z) is that it satisfies the Seiberg-
Witten equation (3.25). However, this equation does not fix Z-dependence
completely. There are also the so-called residue formulas and WDVV equations,
which are differential equations on prepotential, involving ∂/∂Z derivatives [29, 59].
These formulas would be important approbations for prepotential (3.24) as for the
physical prepotential related to gauge theory.
The formula (3.24) has to be extended also beyond the Harnak locus, since it
essentially uses the property that the complex curve P (ez, ew) = 0 projects 2 to
1 inside its amoeba. Another promising direction of studies is their extension to
the case P 6= Q. This is a completely novel direction with no known analogue of
Seiberg-Witten equation.

• In [8] the quantization of cluster algebras [7, 20] was also applied, and the non-
commutative q-difference bilinear equation on quantum τ -functions where derived
there as a result of application of several mutations. The solutions of these equations
were provided there in terms of 5d Nekrasov functions with the generic Ω-background,
which generalizes the self-dual background of the commutative case. Our approach
can be also generalized to this case in a straightforward way, promoting the face vari-
ables to be t-commutative, and performing the proper normal ordering. In this case,
we expect the boxcounting formulas to be upgraded to the (q, t) counting of “refined
topological vertices” [47]. Similar ideas were proposed in [66]. Also the property of
refined topological amplitude to intertwine the action of quantum toroidal algebra [2]
might find its “cluster” interpretation using two-parametric quantization of classical
r-matrix of [36]. It would be also interesting to “refine” results of [16] in this setting.
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• The dimer models are similar to the Hermitian matrix models, since both can be
described as specifications of Schur processes [61, 69]. One of the most fundamental
properties of matrix models is the genus expansion, when the diagrams of perturba-
tion theory are interpreted as ribbon graphs, and the entire series is interpreted as a
summation over all topologies. Similar expansion in q-case is more tricky and there
is no final answer what to count as “expansion over genuses” in that case yet [64].
However, the dimer models might shed some light on this.

By bipartite graph on surface one can construct bipartite graph on dual surface
by twisting all of its ribbons [27]. This can be also done with the graph Γ on the
plane R2, getting the graph Γ̃ on the infinite genus, but “regular”, dual surface S̃.
Uplifting the paths, which are contributions to the normalized partition function of
dimers, to the dual surface, one gets the set of cycles of non-trivial topology on S̃.
Shrinking all the cycles on S̃, which are not winded by these paths, one gets finite
genus curve, so the entire partition function becomes a summation over the surfaces
of different topologies.

Once the expansion is properly formulated, one can find the observables for q-
deformed resolvent, cut and joint, and check operators to obtain the loop equations
and formulate q-topological recursion. This topological recursion might be also
useful for the enumerative problems of [50] and [16].

• The phase space of cluster integrable system, as X -cluster variety, is equipped with
the logarithmically quadratic Poisson bracket for the face variables. For our main
example from figure 2 the quiver encoding this bracket is drawn on figure 2 from [8]
under the name A(1)′

7 . The same quiver can be obtained8 by computing the Euler
form of sheaves from the exceptional collection

C = (O(0),O(1, 0),O(1, 1),O(2, 1)) (5.2)

of coherent sheaves on Hirzebruch surface F0 = P1 × P1 [10]. More striking coinci-
dence is that the formula (4.22) from [10] for the Chern classes [N ; (c1,1, c1,2); c2] of
the dual objects

γ1 = [1;(0,0);0], γ2 = [−1;(1,0);0], γ3 = [−1;(−1,1);1], γ4 = [1;(0,−1);0] (5.3)

can be reproduced taking the “finite”, not depending on N and M parts of degrees
of Qi variables in (4.4), and under identifications

γ1 ↔ x2, γ2 ↔ x3, γ3 ↔ x4, γ4 ↔ x1, (5.4)
N ↔ degQ2, c1,1 ↔ degQ1,B, c1,2 ↔ degQ1,F , c2 ↔ degQ0. (5.5)

The correspondences above are precise to be just coincidence, so the dimer statistical
model should have the deeper meaning in the counting of geometric objects, and
there is a point to start. The local 3d Calabi-Yau, a mirror dual to the one defined

8We are grateful to Fabrizio Del Monte for bringing our attention to this correspondence.
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by uw = P (λ, µ) with P from (3.20), is the total space of the canonical bundle over
F0 [4], and D-branes on this total space are in correspondence with the exceptional
collection of sheaves on the base [10]. And there is a straightforward way to produce
more examples of this kind for check, since the both sides (either local 3d CY and
cluster integrable system with the spectral curve P ) can be conveniently constructed
starting from the Newton polygon.
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