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ABSTRACT: Data set acquisition and curation are often the most difficult and
time-consuming parts of a machine learning endeavor. This is especially true for
proteomics-based liquid chromatography (LC) coupled to mass spectrometry
(MS) data sets, due to the high levels of data reduction that occur between raw
data and machine learning-ready data. Since predictive proteomics is an emerging
field, when predicting peptide behavior in LC-MS setups, each lab often uses
unique and complex data processing pipelines in order to maximize performance,
at the cost of accessibility and reproducibility. For this reason we introduce
ProteomicsML, an online resource for proteomics-based data sets and tutorials
across most of the currently explored physicochemical peptide properties. This
community-driven resource makes it simple to access data in easy-to-process formats, and contains easy-to-follow tutorials that allow
new users to interact with even the most advanced algorithms in the field. ProteomicsML provides data sets that are useful for
comparing state-of-the-art machine learning algorithms, as well as providing introductory material for teachers and newcomers to the
field alike. The platform is freely available at https://www.proteomicsml.org/, and we welcome the entire proteomics community to
contribute to the project at https://github.com/ProteomicsML/ProteomicsML.
KEYWORDS: machine learning, deep learning, proteomics, educational platform, community platform, bioinformatics

■ INTRODUCTION
Computational predictions of analyte behavior in the context of
mass spectrometry (MS) data have been explored for nearly five
decades, with early rudimentary predictions dating back to
1983.1 With the rise of technology and computational power,
machine learning (ML) approaches were introduced into the
field of proteomics in 19982 and ML-based models quickly
overtook human accuracy. Since then, dozens of articles have
described efforts to train models for a multitude of
physicochemical properties associated with the field of high-
throughput proteomics, as reviewed by Neely et al.3 Some of the
most-commonly studied properties are retention time and
fragmentation spectrum intensities, while a large range of lesser
explored properties exists as well. For an exhaustive review of the
current undertakings, see Wen et al. and Bouwmeester et al.4,5

While many of these efforts are still in the realm of basic
exploratory research, ML approaches are increasingly being
incorporated into mainstream tools and standalone predictive
resources.4,6−8

When training any ML model, it is crucial to obtain suitable
training and evaluation data sets. Likewise, in many fields of
research where ML is applied, it is common to have a range of
educational data sets, such as the MNIST (Modified National
Institute of Standards and Technology)9 or IRIS (https://
archive.ics.uci.edu/ml/datasets/iris) data sets, allowing new-
comers to the field to easily learn common ML methodologies.

Likewise, state-of-the-art models can use benchmark data sets
such as ImageNet (https://www.image-net.org) or those
available on the UCI Machine Learning Repository (https://
archive.ics.uci.edu) to compare their predictive capabilities.
Similar to the utility of benchmark data sets, such as the number
of survivors on the Titanic, which has been modeled more than
54 000 times (https://www.kaggle.com/competitions/titanic),
we seek to define proteomics data sets that can provide an entry
point for ML modeling.
Although there have been numerous efforts to explore the

predictive capabilities of models, there are barriers that limit
widespread adoption in the field of predictive proteomics. First,
there are considerable difficulties in accessing data sets in a
suitable form forML applications. A substantial effort is required
to prepare raw proteomics data sets into a format usable for ML,
as this demands extensive knowledge of the multitude of
proteomics file formats and postprocessing methods. MS data
also has a tendency to be fraught with missing metadata, making
it challenging to compare across data sets. Furthermore, most
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ML frameworks in proteomics implement dedicated post-
processing pipelines to prepare the files for ML algorithms.
Recently, tools such as ppx10 and MS2AI11 were created to
facilitate this process, but they are still limited to certain use
cases due to the complex nature of liquid chromatography
coupled to mass spectrometry (LC-MS) data.
Second, while some ML-ready data sets are available on

platforms such as Kaggle12 or in supplementary tables of
publications, they are often difficult to find and lack long-term
maintenance and support postpublication. While there is no
formal consensus in the field, there are certain data sets that are
often used for training such as ProteomeTools.13 Nevertheless,
there are no widely used data sets used to compare the
performance of tools developed by different researchers, making
it difficult for new algorithms to be evaluated and compared to
older tools. This issue is only further exacerbated by individual
groups relying on different pre- and postprocessing protocols,
such as differences in normalization of measurements or in the
implementation of model performance metrics.
As an outcome of the 2022 Lorentz Center Workshop on

Proteomics and Machine Learning (Leiden, The Netherlands,
March 2022), we have created a web platform to facilitate the
application of ML approaches to the field of MS-based
proteomics. The resource is intended to provide a central
focal point for curating and disseminating data sets that are ready
to use for ML research, and to encourage new entrants into the
field through expert-driven tutorials.
Here we describe how ProteomicsML has been developed

using commonly available tools and designed for future ease of
maintenance. We provide a brief overview of the data sets that
are currently available at ProteomicsML and how it can be
expanded in the future with more data. We also describe the
initial set of tutorials that can be used as an introduction to the
field of ML in proteomics.

■ THE PROTEOMICSML PLATFORM
The primary entry point for the resource is the ProteomicsML
Web site (https://www.proteomicsml.org/). It contains general
introductory data sets that are already preprocessed and ready
for training or evaluation, and contains educational resources in
the form of tutorials for those new to ML in proteomics. The
code base for theWeb site is maintained via a GitHub repository
(https://github.com/ProteomicsML/ProteomicsML), and is
therefore easy to maintain and amenable to outside contribu-
tions from the community. On the GitHub repository,
researchers can open pull requests (proposals for adding or
changing information) for new data sets or tutorials. These pull
requests are then reviewed by the maintainers, currently the
authors of this paper, in line with the guidelines in the
contributing section of the ProteomicsML Web site. Data sets
and tutorials hosted as part of the GitHub repository fall under
the CC BY 4.0 license, as indicated on both the repository and
the Web site. The PRIDE database infrastructure14 is also used
to store larger data sets on an FTP server dedicated to
ProteomicsML.
A key goal of ProteomicsML is to advance with the field,

which is why we provide a platform with detailed documenta-
tion, including a contributing guide on how to upload data sets
and tutorials for specific ML workflows or algorithms. After
curation by the maintainers, the contributions have to pass a
build test in order to maintain integrity of the platform, and, if
passed, are automatically published on the Web site and are
freely accessible to other researchers.

For many LC-MS properties, such as retention time and
fragmentation intensity, well-performing ML models have
already been published. We aim to provide suitable data sets
and tutorials to easily reproduce these results in an educational
fashion. All data sets on the platform are organized by data type,
and should ideally be provided in a simple data format that is
suitable for direct import into ML toolkits. Each data type can
contain one or more data sets for different purposes, and each
data set should be sufficiently annotated with metadata (e.g., its
origin, how it was processed, and the relevant literature
citations).
Along with well-annotated data sets, the platform provides

users with in-depth tutorials on how to download, import,
handle, and train various ML models. Many of the LC-MS data
types require certain, sometimes complex, preprocessing steps in
order to be fully compatible with ML frameworks. For this
reason, we believe it is crucial to provide guidelines on these
processes to ultimately lower the entry barriers for new users to
the field. Tutorials on ProteomicsML can be attribute- or data
set-specific, allowing new tutorial submissions to focus on either
the direct interactions with specific ML models or method-
ologies, or on a certain aspect of data preprocessing.
Often when new modeling approaches are published, they are

accompanied by data sets with novel pre- and postprocessing
steps. Using ProteomicsML, the new data can be uploaded to
the site along with a unified metadata entry and an
accompanying tutorial that improves reproducibility of the
work and facilitates benchmarking by the community.

■ DATA SETS AND TUTORIALS
The original raw data for proteomics data sets currently included
in ProteomicsML have already been made publicly available
through ProteomeXchange,15 mostly via the PRIDE database.14

Here, the data hosted at ProteomicsML are provided in an ML-
ready format, with links to original metadata and raw files for full
provenance. Even though the data sets at ProteomicsML do not
contain raw files, we do provide users with extensive tutorials on
how to process raw data into ML-ready formats. ProteomicsML
currently contains data sets and tutorials for fragmentation
intensity, ion mobility (IM), retention time, and protein
detectability. More data types can easily be added in the future,
as the platform evolves along with the field.

(1) Retention time. Due to retention time playing amajor role
in modern peptide identification workflows, it is one of
the most explored properties in predictive proteomics.4

While some data sets for predicting retention time already
exists, such as the publicly available data set from Kaggle
(https://www.kaggle.com/datasets/kirillpe/proteomics-
retention-time-prediction) and the DLOmix data sets
(https://github.com/wilhelm-lab/dlomix/), we have also
compiled new multitiered ML-ready data sets from the
ProteomeTools synthetic peptide library,13 in three
specific sizes: 100 000 data points (small), well suited
for new practitioners; (ii) 250 000 data points (medium),
and (iii) 1 million data points (large), well suited for
larger-scale ML training or benchmarking. As amino acid
modifications can complicate the application of ML in
proteomics, these three tiers do not contain any modified
peptides except for carbamidomethylation of cysteine.
Nevertheless, to train models for more real-life
applications, we have also included an additional data
set tier containing 200 000 oxidized peptides, as well as a
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mixed data set containing 200 000 oxidized and 200 000
unmodified peptides. These data sets require minimal
data preparation, although we still provide two distinct
tutorials on methods to incorporate these data sets into
deep learning (DL)-based models. In addition to
preprocessed data, we also provide a detailed tutorial
that combines and aligns retention times between runs
from MaxQuant evidence files.16 The output of this
tutorial is a fully ML-ready file for retention time
prediction.

(2) Fragmentation intensity. While it is easy to calculate the
m/z values of theoretical peptide spectra, fragment ion
peak intensities follow complex patterns that can be hard
to predict. Nevertheless, these intensities can play a key
role in accurate peptide identification.17 For this reason,
fragment ion intensity prediction is likely the second most
explored topic for prediction purposes, for which
comprehensive data sets and tutorials exist within
ProteomicsML. As there are many attributes of peptides
that affect their fragmentation patterns, the preprocessing
steps of fragmentation data are more complex, and can be
substantially different from lab to lab. For this reason, we
have composed two separate tutorials, one that mimics
the Prosit6 data processing approach on the Proteome-
Tools13 data sets, which consists of 745 000 annotated
spectra, and one that mimics the MS2PIP data process on
a consensus human spectral library from the National
Institute of Standards and Technology, which consists of
270 440 annotated spectra.18 For data sets in this category
it is difficult to provide a simple format with unified
columns, as the handling and preprocessing steps differ
significantly from model to model. Currently, there is one
tutorial available on ProteomicsML describing the data
processing pipeline from raw file to Prosit-style
annotation, and we believe that with future additions we
can provide users with tutorials for additional processing
approaches.

(3) Ion mobility. Ion mobility is a technique to separate
ionized analytes based on their size, shape, and
physicochemical properties.19 Techniques for ion mobi-
lity are generally based on propelling or trapping ions with
an electric field in an ion mobility cell. Peptides are then
separated by colliding them with an inert gas without
fragmentation. Indeed, peptides with a larger area to
collide will be more affected by the collisions, resulting in
a higher measured collisional cross section (CCS).
Historically, most methods predicting ion mobility were
based on molecular dynamics models that calculate the
CCS from first-principles in physics.20 Lately the field has
generated multiple ML and DL approaches for both
peptide and metabolite CCS prediction.21−23 The
tutorials made available in ProteomicsML use both
trapping (trapped ion mobility,24 TIMS) and propelling
ion mobility (traveling wave ion mobility,25 TWIMS)
data, where the large TIMS data set was sourced from
Meier et al.23 (718 917 data points) and the TWIMS data
was sourced from Puyvelde et al.26 (6268 data points).
The tutorial is a walkthrough for training various model
types, ranging from simple linear models to more complex
nonlinear models (e.g., DL-based networks) showing
advantages and disadvantages of various learning
algorithms for CCS prediction.

(4) Protein detectability. Modern proteomics methods and
instrumentation are now routinely detecting and
quantifying the majority of proteins thought to be
encoded by the genome of a given species.27 Yet even
after gathering enormous amounts of data, there is always
a subset of proteins that remains refractory to detection.
For example, even though tremendous effort has been
focused on the human proteome, the fraction of
unobserved proteins has been pushed just below
10%.28,29 It remains unclear why certain proteins remain
undetected, although ML has been applied to explore
which properties most strongly influence detectability (as
reviewed within).30 One can compute a set of properties
for a proteome and then train a model using those
properties based on real world observations of the
proteins that are detected and the proteins that are not
detected. The model can be trained to learn which
properties separate the detected from the undetected.
Such a model has further utility to highlight proteins with
properties that should sort them into the detected group,
yet are not, as well as proteins that should belong to the
undetected group, and yet they are detected. To facilitate
this we have included the Arabidopsis PeptideAtlas data
set (http://www.peptideatlas.org/builds/arabidopsis/),
which is based on an extensive study of a single
proteome.31 This data set is based on the 2021 build,
which has 52 data sets reprocessed to yield 40 million
peptide-spectrum matches and a good overall coverage of
the Arabidopsis thaliana proteome. Proteins in the data set
are categorized as either “canonical”, having the strongest
evidence of detection, or “not observed”, for which no
peptides are identified. Along with these class labels, the
data set contains various protein properties such as
molecular weight, hydrophobicity, and isoelectric point,
which could be crucial for classification purposes. The
data set has an accompanying tutorial that illustrates how
to analyze the data with a classification model for the
observability of peptides.

Overall, these initial data set submissions and tutorials leave
room for future expansion, until the community resource
contains data sets for all properties previously and currently
being explored in the field of proteomics. It is also open for user
submissions, allowing researchers to upload their data in a
standardized fashion, along with in-depth tutorials on their data
handling andMLmethodologies, resulting inmore reproducible
science. Our expectation is that this will shape the future of
predictive proteomics, in favor of being more accessible,
standardized, and reproducible.
Additionally, we have compiled a list of proteomics

publications that utilize ML, along with a list of ProteomeX-
change data sets used by each of the publications (Supple-
mentary Table 1). Each of these ProteomeXchange data sets
have been given a set of tags to indicate the nature of the usage in
the publications (e.g., benchmarking, retention time, deep
learning, etc.) as shown in Supplementary Table 2 (https://
github.com/PRIDE-Utilities/pride-ontology/blob/master/
pride-annotations/projects-proteomicsML.csv). Furthermore,
these tags have also been added to the respective PRIDE data
sets, which allows the tags to be easily searched, and for users to
compile their ideal data set, if ProteomicsML does not already
contain one.
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■ CONCLUSION
We have presented ProteomicsML, a comprehensive resource of
data sets and tutorials for every ML practitioner in the field of
MS-based proteomics. ProteomicsML contains multiple data
sets on a range of LC-MS peptide properties, allowing
computational proteomics researchers to compare new
algorithms to state-of-the-art models, as well as providing
newcomers to the field with an accessible starting point, without
requiring immediate in-depth knowledge of the entire
proteomics analysis pipeline. We believe that this resource will
aid the next generation of ML practitioners, and provide a
stepping stone for more open and more reproducible science in
the field.
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