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Autoreactive B cell responses targeting nuclear antigens in systemic 
sclerosis: Implications for disease pathogenesis 

Sophie I.E. Liem 1,*, Sam Neppelenbroek 1, Cynthia M. Fehres, Corrie Wortel, René E.M. Toes, 
Tom W.J. Huizinga, Hans U. Scherer, Jeska K. de Vries-Bouwstra 
Department of Rheumatology, Leiden University Medical Center, the Netherlands  

A B S T R A C T   

A hallmark of disease pathogenesis of systemic sclerosis (SSc) is the presence of autoreactive B cell responses targeting nuclear proteins. Almost all SSc-patients 
harbour circulating antinuclear autoantibodies of which anti-topoisomerase 1, anti-centromere protein, anti-RNA polymerase III and anti-fibrillarin autoanti
bodies (ATA, ACA, ARA and AFA, respectively) are the most common and specific for SSc. In clinical practice, autoantibodies serve as diagnostic biomarkers and can 
aid in the identification of clinical phenotypes of the disease. However, factors driving disease progression in SSc are still poorly understood, and it is difficult to 
predict disease trajectories in individual patients. Moreover, treatment decisions remain rather empirical, with variable response rates in clinical trials due to patient 
heterogeneity. Current evidence has indicated that certain patients may benefit from B cell targeting therapies. Hence, it is important to understand the contribution 
of the antinuclear autoantibodies and their underlying B cell response to the disease pathogenesis of SSc.   

Introduction 

Systemic Sclerosis (SSc) is a rheumatic autoimmune disease affecting 
the skin and internal organs. The pathophysiology of SSc is character
ized by a triad of vasculopathy, autoimmunity and fibrosis [1]. Although 
these three pathophysiological features are thought to be strongly con
nected, their interplay is not fully understood. 

Dysregulation of the immune system in SSc-patients is hallmarked by 
a break of B cell tolerance towards nuclear antigens [2]. Over 95% of 
SSc-patients have detectable antinuclear antibodies [3]. The break of B 
cell tolerance involves the escape of several central and peripheral im
mune checkpoints by autoreactive B cells (as reviewed in detail else
where: [4–6]). These immune checkpoints do, thereby, normally 
prevent the generation of autoreactive B cell responses. The break of B 
cell tolerance towards nuclear antigens is an early marker of immune 
dysregulation in SSc, since antinuclear autoantibodies can already be 
present years before disease onset [7]. At least 9 different nuclear an
tigens have been described for SSc [3,8]. The B cell responses targeting 

topoisomerase 1 (TOP1), centromere proteins (CENP) and RNA poly
merase III (Pol III) are most commonly observed in SSc-patients [9,10] 
(Table 1), and are part of the ACR/EULAR 2013 SSc-criteria [11] and 
VEDOSS criteria for suspected very early SSc [12]. 

Autoreactive B cell responses can contribute to the pathogenesis of 
autoimmune diseases in several ways, for example by their ability to 
produce autoantibodies. Autoantibodies can be directly pathogenic, as 
evidenced in idiopathic thrombocytopenic purpura [13] and myasthenia 
gravis [14]. In other conditions, they are thought to act as indirect 
contributors to disease pathogenesis through immune complex forma
tion, like RA [15], or, even as passive bystanders useful as biomarkers 
but without an otherwise defined function in the respective disease 
process, like celiac disease [16] and diabetes mellitus type 1 [17]. 

Besides the production of autoantibodies, B cells can also exert pro- 
inflammatory effects by their ability to produce cytokines, present an
tigens to and co-stimulate T cells [4]. In SSc, B cells are considered 
overactive and thought to play a pro-inflammatory role by upregulating 
T cell co-stimulatory molecules CD80 and CD86, producing 

Abbreviations: ACA, anti-centromere protein autoantibodies; ACR, American College of Rheumatology; ANA, anti-nuclear autoantibodies; ATA, anti-topoisom
erase I autoantibodies; ARA, anti-RNA polymerase III autoantibodies; AFA, anti-fibrillarin autoantibodies; CCISS, Comprehensive Care in SSc (Leiden cohort); CENP, 
centromere protein; CTD, connective tissue disease; dcSSc, diffuse cutaneous SSc; EULAR, European Alliance of Associations for Rheumatology; Fib, fibrillarin; HLA, 
human leukocyte antigen; ICD, international classification of disease; IgA, immunoglobulin A; IgG, immunoglobulin G; IgM, immunoglobulin M; IVIG, intravenous 
immunoglobulin; lcSSc, limited cutaneous SSc; mRSS, modified Rodnan skin score; Pol III, RNA polymerase III; RA, rheumatoid arthritis; RP, Raynaud’s phenom
enon; RTX, rituximab; SLE, systematic lupus erythematosus; SSc, systemic sclerosis; TOP1, topoisomerase I; VEDOSS, very early diagnosis of systemic sclerosis. 
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proinflammatory cytokines (e.g. IL-6) and profibrotic cytokines (e.g. 
TGF-β). More specifically, autoreactive B cells that underly autoanti
body responses might play an important role in the pathogenesis of 
autoimmune diseases. In RA, autoreactive B cells that recognize cit
rullinated proteins are highly activated and have a proinflammatory 
phenotype [18]. The favourable effects of B cell targeting therapies in 
several autoimmune disease underline the importance of the 
pro-inflammatory effects of B cells. This is underlined by the notion that 
autoantibody levels are not necessarily affected by effective B cell tar
geting treatment [19]. 

Due to the heterogeneity of SSc and lack of knowledge about factors 
driving progression, it remains difficult to predict disease courses of 
individual patients. Despite recent therapeutic advances, which 
improved clinical outcomes and quality of life of SSc-patients, SSc still 
has the highest mortality and morbidity of all rheumatic diseases [20]. 
Elucidating the contribution of disease-specific autoantibodies and their 
underlying B cell response in the processes underlying SSc might help to 
understand whether these antibodies or B cell responses drive disease 
pathogenesis. Eventually, this will be crucial to understand disease 
progression, improve disease classification, and aid development of 
targeted therapeutic interventions. Therefore, in this review we sum
marize the current knowledge on the contribution of SSc-specific auto
antibody and B cell responses to SSc-pathogenesis. To structure this 
review, we divided the results into three parts: clinical studies, insights 
from animal models and in vitro studies. Thereby, we identify gaps in 
knowledge and formulate directions for future research. 

Study design 

Study design and search strategy 

This study is a scoping review. We searched on Pubmed for literature 
on: (1)Are B cell responses targeting nuclear antigens implicated in the 
pathogenesis of SSc?, and (2)What is the effect of therapies that target 
the adaptive immune system including autoreactive B cells?. We used a 
search strategy composed of a combination of the following search 
terms: “systemic sclerosis”, “autoantibodies”, “anti-topoisomerase I”, 
“anti-Scl-70”, “anti-centromere”, “anti-RNA polymerase III”, “anti- 
fibrillarin”, “anti-U3RNP”, and “autoreactive B cell response”. For the 
first question, no specific inclusion criteria were applied, and for the 
second, we selected studies that: (1)included ≥5 SSc-patients, (2)were 
written in English or Dutch, and (3)were (randomized) clinical trials, 
observational studies or case-series. Moreover, in included articles the 
snowball method was used to search for more relevant articles. 

Autoantibodies 

Autoantibodies included in this review were selected based on (1) 
presence in ≥5% of the SSc-population, and (2)a specificity of ≥90%. 

Results 

SSc-specific autoantibodies 

Based on our pre-formulated criteria, we focused on autoantibodies 
and B cell responses targeting topoisomerase I (TOP1), centromere 
proteins (CENPs), RNA polymerase III (Pol III) and fibrillarin (fib). These 
responses are present in ≥5% of SSc-patients and highly specific, as they 
are found in ˂ 10% in other autoimmune diseases (Table 1) [9,10]. Other 
autoantibodies in SSc are either not disease specific or ≤5% observed 
[21,22]. 

A commonality between TOP1, CENP, Pol III and fib is their nuclear 
localization in cells in physiological conditions. ATA were originally 
termed anti-Scl-70 antibodies, as they were initially found to react with 
a 70kDa protein by immunoprecipitation of nuclear protein extracts 
with sera from SSc-patients [23]. Later, it was recognized that TOP1 is 
the antigen of ATA and that the 70kDa protein was a degradation 
product of the native 100kDa TOP1 protein [24,25]. TOP1 is a regulator 
of the topology and transcription of DNA. The major antigen of ACA is 
centromere protein B (CENP-B) [26,27]. CENP-B is a DNA-binding 
protein facilitating the formation of centromeres. ACA-positive sera 
can, to a lesser extent, also recognize other centromere proteins, like 
centromere protein A and C. The ARA-response targets Pol III which is 
an enzyme responsible for transcription of non-coding RNA [28,29]. The 
AFA response, also known as anti-U3-RNP, targets fibrillarin. Fibrillarin, 
which should not be wrongly confused with the extracellular matrix 
protein fibrilline, is 34-kDa protein component of a nucleolar ribonu
cleoprotein involved in pre-ribosomal RNA processing that is localized 
in the fibrillar region of the nucleus of cells [30,31]. 

Several studies have investigated the epitopes on the targeted anti
gens which are recognized by the antinuclear autoantibodies. These 
studies have tested the reactivity of circulating antibody towards frag
ments or peptides of the protein. For TOP1, epitopes bound by ATA are 
thought to be spread over the entire protein [32–37]. Some fragments of 
TOP1 are thought to contain immunodominant epitopes, for example 
the region of TOP1 between amino acids 484 and 560 and between 653 
and 704. ACA also reacts with multiple epitopes of CENP-B, although the 
C-terminal domain is thought to be more immunodominant and can be 
bound by most patient sera [38–41]. Interestingly, several papers have 
found immunodominant sequences on CENP-A which is bound by ACA. 
This sequence can also be found on CENP-B and, therefore, might 
indicate cross-reactivity of ACA towards multiple proteins [42–45]. 
Although studied in less detail, ARA and AFA are also thought to be able 
to bind multiple epitopes on pol III and fib, respectively [46–50]. A 
major caveat to the studies discussed above is that they do not consider 
the conformation of the protein, as the fragments or peptides might not 
have the same conformation as they would have in the context of the 
whole protein. Therefore, epitope mapping studies that do consider the 
conformation of the targeted antigens are of crucial importance to 
determine the epitopes bound by antinuclear autoantibodies. 

HLA-associations with B cell responses targeting nuclear proteins 

The establishment of long-lasting B cell memory is dependent on T 
helper cells. T helper cells become activated upon recognition of pro
cessed antigens presented by antigen-presenting cells on human leuko
cyte antigen (HLA) class II molecules. Genetic HLA-variations determine 
the binding affinity for specific antigens and the efficient presentation of 
these antigens to T cells. Several genetic variations in HLA class II loci 
have been identified that associate with SSc and, in particular, with 
specific autoreactive B cell responses in SSc, as reviewed in detail by 
Broen et al. [51]. HLA-DRB1*08:01 and HLA-DRB1*07:01, for example, 
were the classical alleles independently and exclusively associated with 
ACA presence, while HLA-DPA1*02:01 and HLA-DQB1*03:01 associate 
with ATA presence, HLA-DRB1*11:04 with ARA presence [52] and 
DQB1*06:04 with AFA presence [30]. HLA-associations with specific B 

Table 1 
Overview of SSc-specific autoantibodies.  

Autoantibody Autoantigens Prevalence Specificity 

Anti-centromere Centromere protein (e.g. 
A, B and C) 

20–57.8% 93% [10,159] 

Anti- 
topoisomerase I 

Topoisomerase I 14–71% 99.6% [66] 

Anti-RNA 
polymerase III 

RNA polymerase III 4–20% 97.5% [10] 

Anti-fibrillarin Fibrillarin 2–18% Exact number not 
reported  
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cell responses indicate that these responses develop in a T cell dependent 
context. It also indicates that these autoreactive B cell responses develop 
as separate responses that are favoured by distinct genetic backgrounds, 
each of which confers risk to develop a distinct clinical SSc-phenotype. 

Associations between B cell response targeting nuclear antigens and clinical 
characteristics of SSc 

Strong association between B cell responses targeting nuclear proteins and 
presence of SSc 

In SSc, B cell responses targeting nuclear proteins strongly associate 
with disease. Individual, SSc-specific autoantibodies show high disease 
specificity. ARA and AFA are rarely observed in other diseases, including 
systematic lupus erythematosus (SLE), primary biliary cirrhosis and 
Sjogren Syndrome [53,54]. ATA can also be seen in SLE [55]. A 
meta-analysis showed that ATA was detected in 4.1% of SLE patients 
[55]. One study found that 25% of their SLE patients were positive for 
ATA [56], but serum ATA titers in SLE patients were significantly lower 
compared to SSc patients [55,56]. Pulmonary hypertension has been 
observed to be more common among ATA positive than ATA negative 
SLE patients [55,56], which raises the question of overlapping features 
between these disease groups based on autoantibody expression. ACA 
also occur in SLE (2–4%) [57,58], Sjogren syndrome (4%) [59,60] and 
RA (3%) [58]. Nonetheless, most ACA-positive patients in these clinical 
disease groups do present with scleroderma features including Ray
naud’s phenomenon, sclerodactyly and puffy fingers [59–61]. 

To understand the role of antinuclear B cell responses in disease 
initiation of SSc, it is helpful to define stages before disease onset. In 
other autoimmune diseases, like SLE and RA [62,63], important insights 
have been gained from separating the disease course into different 
phases that are defined by clinical and immunological features. 
Although a clear separation of these phases might not be present and 
may oversimplify disease complexity, this can help to understand un
derlying disease processes. Recently, similar concepts were applied to 
SSc by separating very early SSc from more advanced stages, but these 
definitions are mainly based on clinical features, as immunological as
pects are still less-well defined. 

In the 1980s, the first classification criteria for SSc mainly focused on 
skin fibrosis [64,65]. Building upon previous criteria, the ACR/EULAR 
2013 criteria added emphasis to the vascular manifestations, which 
improved the classification of individuals with early, mild and the 
limited subtype of disease [66]. “Very early SSc” was identified as a 
condition characterized by RP, puffy fingers, disease-specific autoanti
bodies, and microvascular alterations detected by capillaroscopy [12]. 
In 2014, the very early systemic sclerosis criteria (VEDOSS) were 
formulated with a minimum of 2 and maximum of 3 of the items above 
[67]. 

Nonetheless, the basic immunological steps involved in disease 
development may be similar among autoimmune diseases. (1)In the first 
phase: autoimmunity develops in genetic-susceptible persons by a “first 
hit”, (2)a subclinical phase ending with the clinical onset of the disease 
leading to a (3)third phase characterized by clinical symptoms, the 
diagnosis and disease chronicity. 

Several studies have investigated the presence of antinuclear auto
antibodies before disease onset. Burbelo et al. performed a retrospective 
case-control study to assess presence of autoantibodies (ATA, anti- 
CENP-A, ARA) before SSc-diagnosis and/or development of renal crisis 
using sera collected from the U.S. Armed Forces [7]. By searching on 
codes of the international classification for diseases 9 (ICD-9) for SSc, 
which is a limitation of the study, records were reviewed to identify 16 
patients coded as SSc and renal crises with sera available. These were 
matched to 30 ICD-9 SSc-code identified patients without renal crisis 
[7]. Half of the patients had detectable autoantibodies before 
SSc-diagnosis. Intriguingly, specifically for ATA, a rise in titer could be 
observed towards time of initial diagnosis. As this study included a small 
number of mainly male black SSc patients, the extrapolation of the data 

to other populations is hampered. Similar, a study on ACA positive in
dividuals found the lowest ACA titers in patients without apparent 
connective tissue diseases [68]. A more recent study on ACA charac
teristics showed that very early SSc-patients had the lowest levels of 
ACA-IgG and ACA-IgM, while definite SSc-patients with organ involve
ment had the highest ACA- levels. Of 138 very early SSc-patients with 
follow-up, 42% progressed to definite SSc during a median follow-up 
period of 2 years (range:1-4), and ACA-IgG levels at baseline (=first 
visit in cohort entry) were significantly associated with progression to 
definite SSc [69]. This study suggests that higher ACA-levels are a risk 
for the ‘second phase’: progression to pathogenic autoimmunity. In line 
with these observations, studies in isolated RP or suspected SSc have 
shown that SSc-specific autoantibodies are strong predictors of pro
gression to definite SSc [70–73]. AFA was not evaluated in these studies, 
probably because AFA are not part of the ACR/EULAR 2013 criteria. 

It is noteworthy that co-existence of the SSc-specific autoantibodies 
is extremely rare [74]. A meta-analysis study found that 0.52% of pa
tients with SSc or SSc-associated symptoms had expression of both ACA 
and ATA (ARA and AFA were not assessed) [75]. Likewise, a study from 
the EUSTAR-cohort found that 29/4687 (0.6%) SSc-patients were pos
itive for ACA and ATA. Data on coexistence with ARA was not reported, 
and AFA was not assessed. In 8 of 14 available sera, the presence of both 
autoantibodies was confirmed and ARA was undetectable [76]. In our 
cohort (Comprehensive Care in SSc [CCISS] at Leiden University Med
ical Center [77]), similar observations are made: of 708 SSc-patients 
fulfilling ACR/EULAR 2013 criteria, 3 patients (0.4%) are ATA- and 
ACA-positive, none are ATA- and ARA-positive nor ACA- and 
ARA-positive. A recent report by Clark et al. confirmed these observa
tions [78]. For AFA, specifically, three studies report no coexistence 
with other SSc-specific autoantibodies [79], but one study from 1992 of 
27 AFA-positive patients found that 19% also had ATA [30]. This 
discrepancy is perhaps caused by different assay techniques. 

Additionally, the SSc-specific autoantibodies strongly cluster with 
clinically distinct phenotypes: ATA strongly associates with the diffuse 
cutaneous (dcSSc) subset, whereas ACA is more frequently observed in 
limited SSc (lcSSc) [80–83]. 

Furthermore, ATA are associated with severe digital vasculopathy 
[84] and interstitial lung disease (ILD) [22,85]. In contrast, presence of 
ACA is associated with higher prevalence of calcinoses and 
gastro-intestinal involvement [3,86,87], and the lowest incidence of 
pulmonary fibrosis, scleroderma renal crisis (SRC) and cardiac 
involvement [85]. Presence of ACA generally carries a better prognosis 
than most other SSc-autoantibodies with respect to survival [85,86,88]. 
ARA is one of the strongest risk factors for SRC and gastric antral 
vascular ectasia [85,89]. AFA is associated with diffuse cutaneous SSc, 
pulmonary hypertension and renal disease [30,79,90,91] 

Taken together, the most reliable biomarker to predict the pattern of 
organ involvement in SSc is provided by the specificity of SSc-specific 
autoantibodies [22] which is supported by the specific associations for 
clinical phenotype. The autoantibody reactivity allows patients to be 
stratified early in the disease course which facilitates a tailored 
approach and management [66,85,92]. When discussing the prognostic 
significance of especially ATA, it is important to take into account the 
variability in ATA results due to differences in testing methods [93,94]. 
The strong association with SSc and the role as biomarkers might suggest 
a potential pathogenicity of these autoreactive B cell responses, similarly 
to what is reported for SLE [95], anti-phospholipid syndrome [96], and 
Sjogren’s syndrome [97]. 

Correlation of autoantibody levels and isotypes and autoreactive B cells with 
disease activity 

In case of a direct pathogenic effect of autoantibodies, autoantibody 
levels can be highly informative as they may correlate with disease ac
tivity. For example, measuring PR3- and MPO-ANCA-titers in ANCA- 
associated vasculitis is useful to predict relapses [98]. 

In the context of SSc, three studies evaluating antibody titers and 
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disease activity were conducted in the nineties (Table 2): the first 
evaluated ACA-titer in the disease course [99], the second ACA-isotypes 
[27], and the third fluctuation of ACA- and ATA-isotypes over time 
[100]. The results were inconclusive. These studies had limited sample 
sizes and used invalidated outcome measurements. In the early 2000s, 
multiple small studies in SSc have shown that the ATA-IgA and -IgG 
levels correlated with the severity of skin disease [101–104]. 

Recently, our research group has assessed ACA- and ATA-isotypes 
and levels [84,105]. We found that ATA-IgG positive SSc-patients with 
disease progression were significantly more often ATA-IgM positive than 
those without disease progression (91% vs. 57%; p<0.01) [105]. IgM 
antibodies are particularly produced during the early phase of a B cell 
response upon activation [106]. Upon this initial phase, the levels of IgM 
drop as a consequence of class switching by B cells and due to the short 
half-life of IgM antibodies [106,107]. (Therefore, IgM antibodies are 
indicative for recent B cell activation.) The presence of ATA-IgM in 
patients with progression might, thus, indicate a recent activation of the 
ATA B cell response in these patients. Additionally, ACA-IgG and 
ATA-IgM levels were associated with the severity of microangiopathy 
and ATA-positive with ILD, respectively [84]. 

In a study with 90 ARA-positive SSc-patients, 97% of the patients 
with high ARA-levels (>=15.2 units) had dcSSc, versus 81% of patients 
with low ARA-levels (<15.2 units). The maximum total skin score and 
frequency of tendon friction rubs were significantly increased in the high 
ARA-level group compared to the low level group. A longitudinal 
analysis of ARA-levels in 10 patients showed that ARA-levels increased 
early in the disease course and then decreased, correlating closely with 
the total skin score [108]. Another study showed that ARA-levels at 

Table 2 
Isotypes and titers of SSc-specific autoantibodies.  

Year Author Patients Results 

1984 Tramposh  
[99] 

15 ACA + 15 ACA + patients of whom seven 
classified as progressive SSc. ACA 
were IgG only, with no IgM positive 
sera at any time during the follow up 
time. No consistent change in titer 
over time was found. 

1990 Hildebrandt 
[29] 

20 ACA + and 
17 ATA + SSc 
pt 

Isotype determination by ELISA and 
immunoblotting showed a high 
prevalence of ACA-IgG, IgA-ACA, 
whereas IgM-ACA seemed to be rare. 
The same was found for ATA with a 
high frequency of IgG-ATA, IgA-ATA, 
and lower frequency of IgM-ATA. The 
three isotypes of ACA and ATA could 
not be detected in health age and sex 
matched subjects thus indicating the 
high specificity of all three isotypes. 

1995 Vazquez-Abad 
[100] 

13 ACA + and 
6 ATA+

All ACA had IgG, and 3 had IgA and/ 
or IgM. Three patients developed ACA 
IgG during the study. Of the 6 ATA +, 
3 had IgG and IgA and 3 had IgG, IgA 
and IgM. One patient developed ATA 
IgA during the study. Fluctuating 
levels occurred over time, but there 
was no association between clinical 
features and change in autoantibody 
isotype. 

2000 Kuwana [101] 28 ATA + In 20% of ATA + patients ATA became 
undetectable during disease course; 
these patients presented with less 
extensive skin and lung involvement 
and better survival rates than patients 
with persistently elevated ATA. 

2003 Hu [102] 59 ATA + The titers of IgG-ATA and IgA-ATA 
were positively correlated with the 
total skin score. Changes in the levels 
of both IgG and IgA paralleled 
changes in the total skin score. In 
three patients, an increasing IgG ATA 
levels preceded an increase in the 
total skin score. Patients with very 
active disease had a higher mean IgG 
and IgA titers than those with inactive 
disease. 

2005 Kuwana [108] 90 ARA+ 32 had a high level of ARA (>=15.2 
units) and 58 with a low level 
(<15.2). All but 1 patient with a high 
level of ARA had dcSSc which was 
significantly higher than in the low 
level group. The maximum total skin 
score and frequency of tendon friction 
rubs were significantly increased in 
the high level antibody group 
compared to the low level group. In 6 
patients levels were serially evaluated 
and in 4 patients, the levels increased 
early in the disease course and then 
decreased, correlating closely with 
the total skin score. 

2007 Perera [103] 212 ATA+ Positive correlation between the IgG 
ATA levels and the modified Rodnan 
skin thickness score. The median IgG 
ATA levels were significantly higher 
in the diffuse cutaneous patients 
compared with patients in limited 
cutaneous subgroups. 

2009 Nihtyanova  
[109] 

64 ARA + There was considerable inter- and 
intra-patient variability in ARA levels 
(11-210 U/ml). there was no 
correlation between absolute ARA 
levels (at baseline or throughout the 
disease course) and outcome. Change 
in ARA levels correlated with change 
in skin score.  

Table 2 (continued ) 

Year Author Patients Results 

2013 Hasegawa  
[33] 

53 ATA + Significantly positive correlations 
between ATA antibody levels and 
mRSS and skin thickness progression 
rate, and a significantly negative 
correlation with disease duration. 

2020 Boonstra  
[105] 

103 ATA + SSc-patients with disease progression 
were significantly more often anti- 
topo I IgM-positive than those who 
did not experience disease 
progression (21 [91%] of 23 versus 33 
[57%] of 58; P < 0.01) which was 
confirmed in the independent 
validation samples. 
ATA IgG-positive SSc-patients who 
are also positive for anti-topo I IgM 
more often experience disease 
progression compared to anti-topo I 
IgG-positive patients who are 
negative for anti-topo I IgM. 
ATA IgG-positive patients are almost 
always positive for anti-topo IgA. 

2020 Van Leeuwen  
[84] 

129 ACA+ and 
102 ATA+

Patients that solely expressed ACA- 
IgG showed a trend towards less 
severe microangiopathy compared to 
patients expressing also ACA-IgM 
and/or IgA. 
Levels of ACA-IgG and ATA IgM were 
associated with the severity of 
microangiopathy. 

2021 Van Leeuwen  
[69] 

624 ACA IgG 
+

Definite SSc-patients with organ 
involvement express higher ACA-IgG 
and higher-ACA IgM levels compared 
to very early SSc-patients. Within the 
group of definite SSc-patients ACA- 
IgG levels and ACA IgM levels 
associated with future disease 
progression. 
In very early SSc, higher levels of 
ACA-IgG associate with progression to 
definite SSc within two years.  
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baseline or during the disease course did not predict organ complica
tions in 64 ARA-positive SSc-patients, although they correlated with the 
severity of skin involvement [109]. 

By assessing B cell populations containing TOP1-reactive B cells, 
Fukasawa et al. [110] recently reported a positive correlation between 
the affinity of ATA-expressing B cells for TOP1 and production of 
pro-inflammatory cytokines. The results of this study not only imply a 
pro-inflammatory and pro-fibrotic role of TOP1-reactive B cells in the 
disease pathogenesis of SSc, but also that these effects mediated by 
TOP1-reactive B cells are dependent on their affinity for the antigen 
[110]. However, these results have to be interpreted with caution and 
independent replication is needed. For example, in this study, the af
finity of B cells for TOP1 was not directly determined. Instead, a 
non-validated assay was used to determine the reactivity of ATA towards 
TOP1. Consequently, single-cell sorting of the TOP1-reactive B cells 
using fluorescently labelled antigen might have influenced the analysis 
in an affinity-dependent manner. 

When evaluating the presence of multiple isotypes in patients, 
generally speaking, studies find a high frequency of ATA-IgA and ACA- 
IgA, and a lesser frequency of ATA-IgM and ACA-IgM [27,69,84,101, 
105]. Of importance when interpreting these results is that often only 
patients positive for IgG are included in these studies. It is not possible to 
completely exclude the possibility that patients who were positive only 
for IgM or IgA were missed. 

To summarize, only recently a few large international studies have 
assessed ATA- and ACA-isotypes and titers and their associations with 
disease phenotype in larger sample sets. These studies show more 
frequent disease progression and worse disease activity when more 
isotypes are present or if the autoantibody levels are higher. This could 
indicate a pathogenic role of ATA and ACA or of their underlying B cell 
responses. In ARA, higher levels were seen more often in dcSSc-patients 
and seem to associate with skin score, but large studies are lacking 
making it difficult to draw definitive conclusions. No studies on levels 
and isotypes of AFA were found. 

Effect of most frequently used immunosuppressive therapies in SSc on 
autoantibody B cell responses 

The efficacy of immune interventions targeting individual compo
nents of the immune system (e.g. B cells) can be indicative for the 
contribution of the targeted component of the immune system to disease 
pathogenesis. For the most commonly used immunosuppressive thera
pies in SSc [111,112], no studies have evaluated the effect of cyclo
phosphamide or mycophenolate mofetil on the autoreactive B cell 
response targeting nuclear proteins. For methotrexate, one case report 
described the disappearance of ARA after treatment with corticosteroids 
and methotrexate [113], but no other studies have evaluated metho
trexate alone. 

For autologous hematopoietic stem cell transplantation (HSCT), 
multiple studies have investigated its effect on the ATA B cell response, 
but not for ACA, ARA and AFA. The exact mechanism of action in HSCT 
is unknown. The rationale is that high-dose immunosuppression eradi
cates autoreactive T and B cells and that the infused autologous he
matopoietic stem cells reconstitute a naïve and self-tolerant immune 
system. Indeed, one study showed that the phenotype of B cells upon 
HSCT is less proinflammatory and that B cells post-HSCT more often 
have regulatory capacities [114]. 

Two studies categorized SSc-patients treated with HSCT in clinical 
responders and no-responders. One study showed that peripheral B cell 
counts were significantly higher in the 3 clinical no-responders than in 
the 4 clinical responders after HSCT [115]. Another study showed that 
the absolute number of B cells was lower in the responders than in 
healthy controls, but comparable to the non-responders [116]. More
over, 4/5 responders and 3/4 non-responders seropositive for ATA 
before HSCT became negative after HSCT [116]. 

In an earlier study, serum ATA-levels were found to decrease after 
HSCT. A significant, although limited correlation (r=0.52,p<0.05) was 

observed between the change in mRSS and change in serum ATA-levels 
at 36 months after HSCT [117]. Subsequently, one study assessed the 
effect of HSCT on ATA-levels in 18 SSc-patients of whom 15 were 
ATA-IgG positive and 5 ATA-IgM positive [118]. After HSCT, ATA-IgG 
prevalence did not change significantly, whereas all patients no longer 
had detectable serum ATA-IgM. Although ATA-levels decreased in most 
of the patients after HSCT, they still remained strongly positive in most, 
and there was no correlation with clinical response [118]. 

Immunoadsorption, therapeutic plasma exchange and plasmaphe
resis are more specific immunosuppressive therapies targeting the 
antinuclear B cell response, but to the best of our knowledge no studies 
in SSc have been published. 

Tocilizumab and rituximab (RTX) are two more recent immuno
suppressive therapies. Of these, tocilizumab has a broader mechanism of 
action by indirectly and directly targeting B cells in SSc via the inhibi
tion of IL-6 function. So far, no studies have been published with regard 
to the effect of tocilizumab specifically on the antinuclear B cell response 
in SSc. RTX is a CD20-specific monoclonal antibody applied for auto
immune diseases including RA and ANCA-associated vasculitis [119]. 
CD20 is a molecule expressed throughout the development and differ
entiation of B cells and only downregulated when B cells differentiate 
into plasmablasts and plasma cells. RTX can affect antibody titers 
through targeting of cells that can differentiate towards autoantibody 
producing cells. A study of 12 ATA positive dcSSc patients undergoing 
RTX monotherapy for up to 5 years showed a decrease of the ATA/total 
IgG ratio during RTX treatment [120]. This ratio, however, is difficult to 
interpret because RTX decreases total IgG. In one study, only modest and 
variable changes in autoantibody titers after RTX was found in 15 
dcSSc-patients receiving two intravenous doses of 1000mg RTX [121]. 
Bosello et al. found that ATA levels did not change significantly over 
time in 14 ATA positive dcSSc patients treated with RTX [122]. Similar, 
a recent RCT in Japan showed no significant difference in ATA titers 
between the RTX and placebo groups in the study period of 24 weeks 
[123]. This may indicate that SSc IgG autoantibodies are largely derived 
from long-lived plasma cells, a population that remains unaffected by 
RTX. 

Conclusions on associations between B cell response targeting nuclear 
antigens and clinical characteristics of SSc 

In conclusion, the coincidence of ATA, ACA, ARA and AFA is 
extremely rare. In very early disease, the SSc-specific autoantibodies are 
the most important predictors for progression to definite SSc. Moreover, 
ATA, ACA and ARA occur preferentially on distinct genetic background 
(HLA), are associated with distinctive clinical subsets, specific patterns 
of organ involvement, and levels of certain isotypes have been associ
ated with disease progression and severity of skin involvement. HSCT 
seems to lower ATA-titers in a subgroup of patients, whereas RTX does 
not affect autoantibody titers. So far, most research has focused on the 
presence of B cell responses targeting nuclear antigens, but a more in- 
depth analysis of antigen-specific B cell responses and of the autoanti
bodies in SSc is missing. Importantly, most studies have small sample 
sizes and often methodological shortcomings. The clinical evidence 
presented so far shows that SSc-specific autoantibodies are important 
diagnostic and prognostic biomarkers, and gives some evidence for a 
possible pathogenic role of disease-relevant processes. 

Lessons learned from animal models on SSc-specific antinuclear B cell 
responses 

Autoreactive B cells responses and their corresponding autoanti
bodies have been studied in detail in in vivo animal models. The stron
gest evidence for autoantibody pathogenicity is usually obtained by 
passively transferring human serum or isolated autoantibodies into 
mice, and evaluating if this leads to disease manifestations compatible 
with the human disease. As far as we know, there are no studies directly 
transferring ATA, ACA ARA or AFA autoantibodies into animals. 
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Alternatively, autoreactive B cell responses can also be evoked in 
animals by immunization with the autoantigen. Several studies have 
investigated the ATA B cell response upon administration of TOP1 to 
mice. Hu et al. initially found that an ATA-response can be induced by 
the immunization of BALB/c, SJL, NOD and C57/BL6 mice with TOP1, 
but no signs of inflammation or fibrosis using this model were observed 
[124]. However, administration of TOP1 with a strong adjuvant induced 
inflammation and fibrosis of skin and lungs in C57BL/6 mice [125,126], 
suggesting that additional immune activators may be required for the 
development of SSc-related disease manifestations in mice with 
ATA-autoantibodies. Notably, Mehta et al. reported that an 
ATA-response and fibrosis could be induced upon immunization of 
Balb/c mice with TOP1-loaded dendritic cells [127]. However, 
ATA-titers were only marginally increased in mice immunized with 
TOP1-loaded dendritic cells compared to mice immunized with 
unpulsed dendritic cells and fibrosis was observed before the ATA 
detection. This makes it difficult to draw conclusions on the role of the 
ATA B cell response within this model [127]. Studies inducing an ACA, 
ARA or AFA B cell responses in vivo upon administration of CENP-B, Pol 
III or fib are lacking, or do not report murine outcomes [128]. 

Yue et al. [129] studied autoreactive B cell responses in immuno
deficient Rag2− /− IL2rg− /− upon adoptively transferring peripheral 
blood mononuclear cells of SSc-patients. Inflammation of lung, kidney 
and muscles characterized by B cell dominated cellular infiltrates was 
observed in the recipient mice engrafted with peripheral blood mono
nuclear cells from SSc-patients, but not in mice that received cells from 
healthy donors or SSc-patients treated with RTX [129]. Moreover, au
toantibodies matching the ANA-pattern (determined by immunofluo
rescence staining of human HEp-2 cells) of the donor were observed in 
2/6 mice [129]. This study indicates that B cells from SSc-patients are 
strongly pro-inflammatory. However, the exact contribution of the 
autoreactive B cells within this model remains to be determined. 

SSc-specific autoantibodies can also be observed in animal models in 
which SSc-associated disease manifestations develop spontaneously as a 
consequence of genetic modifications or are induced by injection of 
chemical or biological agents. In several spontaneous models, like Tsk1, 
Tsk2 and Fli-1 mice, the development of ATA-, ACA- and ARA-responses 
have been reported [130–133]. One study even found a correlation 
between ATA-levels and fibrosis and skin thickness in Tsk1-mice [134]. 
Besides these spontaneous models, an ATA-response could also be 
observed in mice in which SSc-characterizing disease manifestations 
were induced by bleomycin and hypochlorous acid [135,136]. Inter
estingly, an AFA B cell response can be induced in mice by mercury 
which can modify the antigenic properties of fib [31,137,138]. Whether 
chemical agents can also induce or contribute to the development of 
antinuclear autoreactive B cell responses in human is not clear. 

Conclusions based on the studies on animal models on SSc-specific 
antinuclear B cell responses 

So far, there are no studies describing the direct transfer of ATA, 
ACA, ARA or AFA in experimental animals. However, TOP1 immuni
zation can induce SSc-like disease and an ATA-response in mice, indi
cating that the ATA B cell response might be a decent contributor to 
disease pathogenesis. Nevertheless, from these ATA mouse models it is 
not yet clear by which effector mechanisms (e.g. antibody production, 
cytokine production, co-stimulation of T cells) the ATA B cell response 
exerts its effects. 

In vitro indications for a contribution of antinuclear B cell responses in SSc 
disease pathogenesis 

Whereas clinical studies and studies on animal models are particu
larly helpful in understanding whether autoantibodies are pathogenic, in 
vitro studies are important to elucidate how the pathogenic autoanti
bodies contribute to the disease pathogenesis. 

Antigens targeted by ATA, ACA, ARA and AFA are normally 
sequestered in the nucleus and, thereby, inaccessible for autoantibodies. 

However, when cells go into apoptosis, nuclear antigens can be released 
or become accessible on apoptotic vesicles [139,140]. For example, 
TOP1 and CENP-B can be found in the supernatant of apoptotic cells 
[141,142]. In addition, defects in the clearance of apoptotic cell rem
nants is implied in the pathogenesis of systemic sclerosis and could in
crease the amount of antigen available for the activation of B cells [143, 
144]. 

An interesting hypothesis regarding the pathogenicity of ATA was 
presented by Henault et al. who showed that purified ATA from SSc- 
patients could bind to fibroblasts after binding of soluble TOP1 to fi
broblasts [142,145]. This binding surface could induce adhesion and 
activation of co-cultured monocytes, indicating that the binding of 
ATA-TOP1 to fibroblasts had a direct functional effect on fibroblasts 
[142]. Additionally, a profibrotic effect of ATA-positive patient serum 
on fibroblasts was observed by Corallo et al. [146]. The interaction 
between TOP1 and fibroblasts needed for the subsequent interaction 
with ATA is thought to be mediated by a proteoglycan expressed on the 
membrane of fibroblast that contains a heparin sulfate group, as heparin 
sulfate and biosimilars block the interaction between TOP1 and fibro
blasts [147]. However, the specific interactor with TOP1 on the surface 
of fibroblasts and the mechanism by which the fibroblast is activated 
remain to be identified. 

SSc-associated antibodies might contribute to pathogenesis of SSc 
through formation of nucleic acid-containing immune complexes. ATA, 
ACA, ARA and AFA interact with antigens that bind nucleic acids. 
Nucleic acid-containing immune complexes can exert various pro- 
inflammatory effects by activating nucleic acid-sensing TLR receptors. 
Kim et al. initially found that ATA-containing but not ACA-containing 
sera of SSc-patients could form immune complexes that were able to 
induce IFN-α production by plasmacytoid dendritic cells [148]. How
ever, the induction of IFN-α in this study might have been caused by 
antibodies with other specificities, as Eloranta et al. showed that the 
effect observed was dependent on RNA-binding, rather than 
DNA-binding antibodies, as SSc-sera containing ATA or ACA but without 
autoantibodies targeting RNA-binding proteins were not able to induce 
IFN-α production by plasmacytoid dendritic cells [149]. 

Finally, Raschi et al. found that immune complexes obtained from 
ATA-, ACA- and ARA-positive serum of SSc-patients were able to acti
vate endothelial cells and induce the production of pro-fibrotic and pro- 
inflammatory mediators by fibroblasts [150,151]. However, it remains 
unclear how these immune complexes affected endothelial cells and fi
broblasts, in particular because fibroblasts and endothelial cells lack 
expression of Fcy receptors which are generally thought to be required 
to mediate the internalization of immune complexes [151,152]. 

Conclusions on in vitro indications for a contribution of antinuclear B cell 
responses in SSc disease pathogenesis. Besides the suggested direct effect 
of ATA on fibroblasts, ATA, ACA, ARA and AFA might contribute to 
disease pathogenesis by forming nucleic acid-containing immune com
plexes. However, the studies which hypothesize these possible patho
genic effects do not pose exact mechanisms. Moreover, the actual 
contribution of the measured effects of the autoantibodies in vitro to 
disease pathogenesis in vivo is unclear. 

Discussion 

This review summarized available evidence on the role of SSc- 
specific antinuclear B cell responses against TOP1, CENPs, Pol III and 
fib in the development and progression of SSc. Understanding the 
contribution of these antinuclear B cell responses to disease patho
physiology is important in a time of therapeutic progress with focus on 
personalized medicine and the development of more targeted pharma
cological approaches. 

Intriguingly, presence of specific antinuclear B cells responses in SSc 
can be associated with distinct clinical disease subsets, and different 
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prognostic features. Moreover, ATA-, ACA-, ARA- and AFA-levels in SSc- 
patients have been associated with progression of the disease [69, 
101-105,108,109], which might be indicative of a contribution of the 
SSc-specific antinuclear B cell responses to the pathogenesis of SSc. The 
rare co-existence of the B cell responses targeting TOP1, CENPs, Pol III 
and fib [74-76,79] might be in line with this concept, as this indicates 
that the development of autoreactive antinuclear B cell responses is not 
simply the consequence of certain disease processes in SSc, like fibrosis. 

Nonetheless, the available evidence on ATA, ACA, ARA and AFA is 
not in favor of a direct pathogenic role of these autoantibodies. This is 
particularly indicated by the disconnection between the beneficial ef
fects of RTX and a reduction in autoantibodies levels [121,123, 
153-155]. Antibody transfer of ATA/ACA/ARA/AFA resulting in 
SSc-like phenotypes has not been described in animal models. Moreover, 
there is a lack in hypotheses on how the antinuclear autoantibodies 
might lead to disease manifestations. 

However, it cannot be excluded that autoantibodies contribute to 
disease pathogenesis. Autoantibodies might possibly aggravate inflam
mation once this is initiated, especially since autoantigens can become 
accessible for autoantibodies when cells die [139–142]. Alternatively, it 
could be possible that only part of the autoantibodies that have a specific 
feature could be pathogenic. Such autoantibody diversity is, for 
example, also observed for anti-myeloperoxidase antibodies in 
ANCA-associated vasculitis in which antibodies against specific epitopes 
of myeloperoxidase had pathogenic properties [156]. In line with this 
notion: a subgroup of ATA-positive patients shows a milder disease 
course with hardly any fibrotic complications. This could point to a 
certain degree of heterogeneity of the 
ATA/ACA/ARA/AFA-autoantibody responses, which needs further 
study to be fully understood. 

Besides a role for the autoantibodies, the close association between 
SSc and specific autoantibody responses might be caused by features of 
the underlying B cell responses, which by themselves contribute to 
disease pathogenesis. The favorable outcomes observed by B cell tar
geting therapies in SSc support this concept. Eventually, it will be 
important to characterize TOP1-reactive, CENP-reactive, Pol III-reactive 
and fib-reactive B cells to SSc-pathogenesis in an antigen-specific 
manner to enable the characterization of function and phenotype of 
these cells. This will allow to determine their T cell co-stimulatory 

potential, for example, and the ability to produce pro-inflammatory 
cytokines or pro-fibrotic mediators. 

In light of the above, we conclude that several aspects should be 
addressed in future studies, particularly because the majority of the data 
presented in this review is derived from studies with small sample sizes 
or methodological limitations. Firstly, the initiation and development of 
the autoantibody responses in genetically susceptible individuals and 
individuals that progress from pre-disease to disease is poorly under
stood. An evolution of the autoantibody response just before disease 
onset has been reported in other diseases, like SLE and RA. The ACPA- 
response in RA patients, for example, matures before disease onset, as 
indicated by rising ACPA-titers, an increase of citrullinated antigens 
recognized and an expanded use of immunoglobulin isotypes. In SSc, 
however, only one study has so far investigated autoantibody profiles 
before clinical disease onset and found that half of the SSc-patients had 
detectable autoantibodies before diagnosis [7]. Such a link between 
disease and evolution of autoreactive B cell responses might be indica
tive for a considerable role of these responses in disease pathogenesis. 
Topics to investigate include the course of autoantibodies titers, class 
switching, affinity maturation and epitope spreading of antinuclear 
antibodies. Furthermore, to be able to understand how autoreactive 
antinuclear B cell responses are initiated and driven, it would be 
important to determine the source and nature of the antigen activating 
the B cells. There are various hypothesis on the origin of the antigen, for 
example studies in mice have shown that various environmental toxins 
and pollutants can initiate SSc-specific autoreactive B cell responses [31, 
135,136]. In addition, the presence of nuclear autoantibodies of the IgA 
isotype and involvement of various mucosal tissues in SSc patients might 
indicate a mucosal origin of the autoreactive B cell responses [105,157]. 
Another interesting observation is the co-occurrence of malignancies in 
SSc patients with particular antinuclear B cell responses, like the anti-pol 
III B cell response [158]. This indicates that malignancies might also be a 
source of antigen. The aforementioned hypotheses might include anti
gens which are structurally altered or have structural similarities in 
comparison with the originally described antigen. 

In summary, although the autoreactive B cell responses targeting 
nuclear proteins are closely linked to the SSc-pathogenesis, their exact 
role remains to be fully determined (Box 1). This overview shows that a 
better understanding of the role of autoreactive B cells in SSc is relevant 

Box 1 
Highlights regarding the role of the B cell responses targeting nuclear antigens in the disease pathogenesis in SSc. 

Clinical:  

- There is a strong association between B cell response targeting nuclear antigens and diagnosis/presence of SSc.  
- Clinical phenotypes of SSc and several disease manifestations are associated with specific antinuclear B cells responses.  
- An in-depth analysis of the B cell response targeting nuclear antigens in SSc is still largely missing.  
- The precise effect of immunosuppressive therapy on the autoreactive antinuclear B cell responses has not been studied. 

Animal models:  

- Direct transfer of ATA/ACA/ARA/AFA into animal models has not been described.  
- Immunization with TOP1 can induce SSc-like disease and an ATA response in mice, but it is not clear to what extend the induced ATA B cell 

response contributes to the development of SSc-like features in these mice. 

In vitro experiments:  

- Nuclear autoantigens targeted by ATA and ACA can become accessible when cells die.  
- A direct proinflammatory and profibrotic effect of ATA on fibroblasts is suggested, however a clear mechanisms underlying these effects is 

missing.  
- ACA/ATA/ARA/AFA might form immunogenic nucleic-acid containing immune complexes, however whether these immune complexes are 

formed in SSc in vivo is unclear.  

S.I.E. Liem et al.                                                                                                                                                                                                                                



Seminars in Arthritis and Rheumatism 58 (2023) 152136

8

for better elucidation of the SSc-pathogenesis and consequently 
personalized treatment options. Future research should particularly 
focus on a more in-depth analysis of the B cell response targeting nuclear 
antigens and characteristics of the autoantibodies in SSc (Box 2).  
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Box 2 
Open questions on autoreactive B cells targeting nuclear antigens in SSc.  

• What triggers the break of B cell tolerance against nuclear antigens in SSc?  
○ Is it specific for SSc?  

• How does the autoreactive B cell response against nuclear antigens develop over time?  
○ Is it present before disease onset?  
○ Does it evolve before disease onset?  

• What are the specific features of the autoantibody response targeting nuclear antigens in SSc patients?  
• What is the contribution of autoreactive B cells to disease (progression/inflammation/onset?)? 

Research Question: What is the contribution of the autoreactive B cell responses targeting nuclear antigens to disease pathogenesis of SSc?  
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autoantigen CENP-B displays cytokine-like activities toward vascular smooth 
muscle cells. Arthritis Rheum 2007;56(11):3814–26. 

[142] Henault J, Robitaille G, Senecal JL, Raymond Y. DNA topoisomerase I binding to 
fibroblasts induces monocyte adhesion and activation in the presence of anti- 
topoisomerase I autoantibodies from systemic sclerosis patients. Arthritis Rheum 
2006;54(3):963–73. 

[143] Prasad RM, Bellacosa A, Yen TJ. Clinical and molecular features of anti-CENP-B 
autoantibodies. J Mol Pathol 2021;2(4):281–95. 
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