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In my mathematics master’s thesis we dive into the wave equation and its inverse problem and try
to solve it with neural networks we create in Python. There are different types of artificial neural
networks. The basic structure is that there are several layers and each layer contains neurons. The
input goes to all the neurons in the first layer, the neurons do calculations and send the output to all
the neurons in the next layer. In this way, the input data goes through all the neurons and changes
and the last layer outputs this changed data. In our code we use operator recurrent neural network.
The biggest difference between the standard neural network and the operator recurrent neural
network is, that instead of matrix-vector multiplications we use matrix-matrix multiplications in
the neurons.
We teach the neural networks for a certain number of times with training data and then we check
how well they learned with test data. It is up to us how long and how far we teach the networks.
Easy criterion would be when a neural network has learned the inversion completely, but it takes
a lot of time and might never happen. So we settle for a situation when the error, the difference
between the actual inverse and the inverse calculated by the neural network, is as small as we
wanted.
We start the coding by studying the matrix inversion. The idea is to teach the neural networks to
do the inversion of a given 2×2 real valued matrix. First we deal with networks that don’t have the
activation function ReLU in their layers. We seek a learning rate, a small constant, that speeds up
the learning of a neural network the most. After this we start comparing networks that don’t have
ReLU layers to networks that do have ReLU layers. The hypothesis is that ReLU assists neural
networks to learn quicker.
After this we study the one-dimensional wave equation and we calculate its general form of solution.
The inverse problem of the wave equation is to recover wave speed c(x) when we have boundary
terms. Inverse problems in general do not often have a unique solution, but in real life if we have
measured data and some additional a priori information, it is possible to find a unique solution. In
our case we do know that the inverse problem of the wave equation has a unique solution.
When coding the inverse problem of the wave equation we use the same approach as with the matrix
inversion. First we seek the best learning rate and then start to compare neural networks with and
without ReLU layers. The hypothesis once again is that ReLU supports the learning of the neural
networks. This turns out to be true and happens more clearly with wave equation than with matrix
inversion. All the teaching was run on one computer. There is a chance to get even better results
if a more powerful computer is used.
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1 Introduction
In this mathematics master’s thesis we dive into the wave equation and its in-
verse problem and try to solve it with neural networks we create in Python [8].
There are different types of artificial neural networks [5], [6], [14]. The basic
structure is that there are several layers and each layer contains neurons. The
input goes to all the neurons in the first layer, the neurons do calculations and
send the output to all the neurons in the next layer. In this way, the input data
goes through all the neurons and changes and the last layer outputs this changed
data. In our code we use operator recurrent neural network introduced in article
[6]. The biggest difference between the standard neural network and the oper-
ator recurrent neural network is, that instead of matrix-vector multiplications
we use matrix-matrix multiplications in the neurons.

We teach the neural networks for a certain number of times with training
data and then we check how well they learned with test data. It is up to us how
long and how far we teach the networks. Easy criterion would be when a neural
network has learned the inversion completely, but it takes a lot of time and
might never happen. So we settle for a situation when the error, the difference
between the actual inverse and the inverse calculated by the neural network, is
as small as we wanted.

We start the coding by studying the matrix inversion [7]. The idea is to teach
the neural networks to do the inversion of a given 2×2 real valued matrix. First
we deal with networks that don’t have the activation function ReLU in their
layers. We seek a learning rate, a small constant, that speeds up the learning of
a neural network the most. After this we start comparing networks that don’t
have ReLU layers to networks that do have ReLU layers. The hypothesis is that
ReLU assists neural networks to learn quicker [4], [11].

After this we study the one-dimensional wave equation [1], [2], [12], and we
calculate its general form of solution. The inverse problem of the wave equation
is to recover wave speed c(x) when we have boundary terms. Inverse problems in
general do not often have a unique solution, but in real life if we have measured
data and some additional a priori information, it is possible to find a unique
solution [9]. In our case we do know that the inverse problem of the wave
equation has a unique solution [10].

When coding the inverse problem of the wave equation we use the same
approach as with the matrix inversion. First we seek the best learning rate
and then start to compare neural networks with and without ReLU layers. The
hypothesis once again is that ReLU supports the learning of the neural networks.
This turns out to be true and happens more clearly with wave equation than
with matrix inversion.

All the teaching was run on one computer. There is a chance to get even
better results if a more powerful computer is used. Thanks to L̄ıva Freimane
for helping with the code. L̄ıva’s code can be found in [3].
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2 About artificial neural networks
2.1 Standard neural network
Initially we have a data set and a problem regarding the data set that we want
to solve. We form a mapping to help us. When approaching the problem from
an artificial neural network perspective we use repeatedly some simple nonlinear
function σ, for example sigmoid function, to the data we have.

At a general form of a neural network there are an input layer, general layers
and an output layer. Each layer has multiple neurons. The number of layers
and neurons varies between different networks. At the input layer the neutrons
receive the input vector. At the general layers, each neuron receives the values
formed by the neurons in the previous layer and produces a value which is
passed to every neuron at the next layer. Each neuron forms its own weighted
(scaled) combination of these values, adds its own bias (shifting) and applies the
function σ. Finally at an output layer the neurons provide the overall output
of the network. So neural network is like mapping. We give input data to the
network and it gives us an output.

We vectorize the nonlinear function σ so we will manage the notation of
every layer of neurons. For z ∈ Rm, σ : Rm → Rm is defined componentwise
such that (σ(z))i = σ(zi). If we collect the values, real numbers, produced by
the neurons in one layer into a vector a, then the output vector from the next
layer has the form

σ(Wa+ b), (1)
where W is a matrix that contains the weights and b is a vector that contains
the biases. The number of columns in W is the number of neurons in the
previous layer. The number of rows in W and the number of components in b
is the number of neurons at the current layer. So the value produced by the ith
neuron in the network would be

σ

∑
j

wijaj + bi

 , (2)

where the sum runs over all entries in the vector a.

2.1.1 General form of notation

We mark the layers of a network with l. Layer 1 is the input layer and layer L
is the output layer. Layer l, for l = 1, 2, 3, . . . , L, contains nl neurons and this
indicates the dimension of the layer. The input data has a dimension of n1 and
the output data has a dimension of nL, so the network maps from Rn1 to RnL .
The matrix W of weights at the layer l is denoted by W [l] ∈ Rnl×nl−1 . The
element w[l]

jk of the matrix W [l] is the weight that the neuron j at the layer l
applies to the output from the neuron k at the previous layer l − 1. And the
vector b of biases for layer l is marked by b[l] ∈ Rnl , so the neuron j at the layer
l uses the bias b[l]

j . For the input x ∈ Rn1 and the output, or activation, a[l]
j ,

from the neuron j at the layer l, the action of the network is

a[1] = x ∈ Rn1 , (3)

a[l] = σ
(
W [l]a[l−1] + b[l]

)
∈ Rnl for l = 2, 3, . . . , L. (4)
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To make this model look comparable with the operator recurrent network,
introduced in section 2.2, we need to modify it a little. We write the standard
neural network as a function fθ : Rn1 → RnL . We also write the weight matrices
and the bias vectors a little differently by W [l] = W

[l,1]
θ and b[l] = b

[l]
θ , respec-

tively. The function fθ handles the given data in two ways and adds them to-
gether. The first part is to multiply the data with the matrix W [l,0]

θ ∈ Rnl×nl−1

and add the vector b[l]
θ ∈ Rnl . The matrix W

[l,0]
θ skips an activation func-

tion (introduced in section 2.3.3) and connects the output from previous layer
l − 1 to the next layer l. In the second part the data is put to the function
σ. We call the function σ an activation function. The activation function ap-
plies a scalar function to each component a[l], that is, for a = (aj)nl

j=1 ∈ Rnl ,
σl(a) = (σl(aj))nl

j=1 ∈ Rnl . The standard neural network defined this way is

a[1] = x ∈ Rn1 , (5)
fθ(a[1]) = a[L] ∈ RnL , (6)

a[l] = W
[l,0]
θ a[l−1] + σ

(
W

[l,1]
θ a[l−1] + b

[l]
θ

)
∈ Rnl for l = 2, 3, . . . , L. (7)

Each of W [l,0]
θ , W [l,1]

θ , b[l]
θ are dependent on parameters θ, which is to be learned

later.

2.1.2 Example of a neural network

In figure 1 we see an example of how a neural network can look. First we have
an input layer containing one circle denoting one input vector. The second
and the third layer, general or hidden layers, have three circles indicating three
neurons. The fourth layer, the output layer, has two circles indicating two
neurons. Arrows from the neuron in the input layer to the neurons in the first
hidden layer indicate that the data from the input vector is available for all three
neurons in the first hidden layer. In the same way the data from the neurons
in the first hidden layer is available to all the neurons in the next hidden layer
and from this layer to the output layer. Arrows from the output layer indicates
the overall output that the network gives.

If the input data has the form of x ∈ R, by using the notation in equations
(3) and (4) the weights and biases for the first hidden layer, overall layer 2, may
be represented by a matrix W [2] ∈ R3×1 and a vector b[2] ∈ R3, respectively. So
the output from layer 2 has the form

σ(W [2]x+ b[2]) ∈ R3. (8)

The second hidden layer, overall layer 3, has also three neurons, each receiving
input in R3 from layer 2. The weights and biases for the second hidden layer
may be represented by a matrix W [3] ∈ R3×3 and a vector b[3] ∈ R3, respectively
and the output from layer 3 has the form

σ
(
W [3]σ(W [2]x+ b[2]) + b[3]

)
∈ R3. (9)

The fourth and the last layer, output layer, has two neurons. These neurons
are receiving input in R3 and then the weights and biases for layer 4 may be
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represented by a matrix W [4] ∈ R2×3 and a vector b[4] ∈ R2, respectively and
the output from layer 4, and the overall network, has the form of

F (x) = σ
(
W [4]σ

(
W [3]σ(W [2]x+ b[2]) + b[3]

)
+ b[4]

)
∈ R2. (10)

The function F : R → R2 of the network is defined in the expression (10).
The function has 26 parameters; all the entries of the weight matrices and bias
vectors.

I
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H1
2

H1
3

H2
1

H2
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3

O1
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Input
layer

Hidden
layer

Hidden
layer
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Figure 1: An example of a neural network layout.

2.2 Basic and general operator recurrent network
Standard neural networks are useful in many applications, but for approximat-
ing functions with multiplicative and highly nonlinear structure they are not
efficient [14]. This motivates us to get to know the operator recurrent neural
network. When the standard neural network vectorizes the input and performs
matrix-vector multiplications, the operator recurrent network performs matrix-
matrix multiplications directly. This is the biggest difference between these two
networks. Next two definitions are based on [6].

Definition 1. A basic operator recurrent network with depth L, width n and
set of parameters (or weights) θ is defined as a function fθ : Rn×n → Rn given
by

fθ(X) = a[L], (11)

a[l] = b
[l,0]
θ +W

[l,0]
θ a[l−1] +B

[l,0]
θ Xa[l−1] (12)

+ σl(b[l,1]
θ +W

[l,1]
θ a[l−1] +B

[l,1]
θ Xa[l−1]),

where X ∈ Rn×n is the input dataset, a[1] ∈ Rn is an initial vector not explic-
itly given by the data, the quantities b[l,0]

θ , b
[l,1]
θ ∈ Rn and W

[l,0]
θ , W [l,1]

θ , B[l,0]
θ ,

B
[l,1]
θ ∈ Rn×n are dependent on the parameters θ, and the σl are the activation

functions.

From the basic operator recurrent network we get to the general network by
adding memory.
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Definition 2. A general operator recurrent network of level K is an extension
of the basic operator recurrent network, including terms that contain a[l−k] in
the expression for a[l], that is

fθ(X) = a[L], (13)

a[l] = b
[l,0]
θ +

∑
k=1,...,K

(
W

[l,k,0]
θ a[l−k] +B

[l,k,0]
θ Xa[l−k]

)
+ (14)

σl

b[l,1]
θ +

∑
k=1,...,K

(
W

[l,k,1]
θ a[l−k] +B

[l,k,1]
θ Xa[l−k]

) ,

for l ≥ 1, where a[0] ∈ Rn is some initial vector not explicitly given by the data
and the quantities b[l,0]

θ , b
[l,1]
θ ∈ Rn and W [l,k,0]

θ , W [l,k,1]
θ , B[l,k,0]

θ , B[l,k,1]
θ ∈ Rn×n

are dependent on the parameters θ, and the σl are the activation functions.

So how the biases and weights depend on the parameters θ? For a basic
operator recurrent network we have 4n column vectors θl,i

1 , . . . , θ
l,i
4n ∈ Rn within

the parameter set θ for each layer l and i = 0, 1 such that

W
[l,i]
θ = W [l,i,(0)] +W

[l,i,(1)]
θ , W

[l,i,(1)]
θ =

n∑
p=1

θl,i
2p−1

(
θl,i

2p

)T

, (15)

and

B
[l,i]
θ = B[l,i,(0)] +B

[l,i,(1)]
θ , B

[l,i,(1)]
θ =

2n∑
p=n+1

θl,i
2p−1

(
θl,i

2p

)T

. (16)

Both W [l,i,(0)] and B[l,i,(0)] are fixed operators that do not depend on parameter
θ. They are chosen depending on the specific application, but normally they
are either zero operator or the identity operator.

For the bias vectors we parametrize them by b
[l,i]
θ = θl,1,i

0 ∈ Rn, where
i = 0, 1. Now parameters θ can be written as an ordered sequence

θ = [θl,i
p ∈ Rn : l = 1, 2, . . . , L, p = 1, 2, . . . , 4n, i = 0, 1]

∪[θl,i
0 ∈ Rn : l = 1, 2, . . . , L, i = 0, 1].

(17)

To get to the general recurrent operator networks we add the index k = 1, . . . ,K
to the ordered sequences

θ̃ = [θ̃l,i,k
p ∈ Rn : l = 1, 2, . . . , L, p = 1, 2, . . . , 4n, k = 1, 2, . . . ,K, i = 0, 1]

∪[θ̃l,i,0
0 ∈ Rn : l = 1, 2, . . . , L, i = 0, 1]. (18)

With the parameters shown above, each layer is allowed to have different and
independent parameters.
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2.3 How to teach a neural network
2.3.1 Stochastic gradient descent

When training a neural network, the main goal is to choose the weights and
biases so that they minimize a cost function. In this section we consider that
the weights and biases are stored in a single vector p ∈ Rs, for some s ∈ N. A
cost function is a function of the weights and biases. It tells of the discrepancy
between an output of a network and a wanted output. To get closer to this
wanted output, we want to minimize the discrepancy and thereby minimize the
cost function. The cost function is an objective function and one common form
of it is a quadratic cost function, where the square Euclidean norm is averaged
over the k data points, or training points, in Rn1 , {x{i}}k

i=1. For the data
points there are given target outputs {y(x{i})}k

i=1 ∈ RnL . So the quadratic cost
function Cost : Rs → R we want to minimize has the form

Cost(p) = 1
k

k∑
i=1

1
2∥y(x{i}) − a[L](x{i})∥2

2. (19)

The gradient or steepest descent method is a classical optimization method. The
aim of the method is to find a vector v that minimizes the cost function. It pro-
ceeds iteratively by computing a sequence of vectors in Rs and tries to produce
such sequence that converges to the vector v. Our starting point is the vector
p and we want to find perturbation ∆p such that the next vector p+ ∆p shows
improvement from the vector p. Assume ∆p is small and we can ignore terms
of order ∥∆p∥2 and higher. Then the Tailor series expansion gives

Cost(p+ ∆p) ≈ Cost(p) +
s∑

r=1

∂ Cost(p)
∂pr

∆pr, (20)

where the ∂ Cost(p)/∂pr denotes the partial derivative of the cost function with
respect to the rth parameter. We put all the partial derivatives into a vector
∇Cost(p) ∈ Rs, the gradient, so that

∇Cost(p)r = ∂ Cost(p)
∂pr

. (21)

Then the equation (20) becomes

Cost(p+ ∆p) ≈ Cost(p) + ∇Cost(p)T ∆p. (22)

To minimize the value of the cost function we use the Cauchy-Schwarz inequality.
The inequality states that for any f, g ∈ Rs, we have |fT g| ≤ ∥f∥2∥g∥2. By
looking at the equation (22), choosing ∆p to lie in the direction of −∇Cost(p) we
will reduce the value of the cost function by making ∇Cost(p)T ∆p as negative
as possible. Equation (22) is only an approximation for small ∆p so it is wise
to proceed with small steps in that direction. Then we will write

p → p− η∇Cost(p). (23)

The η is a small stepsize known as the learning rate. This equation defines
the steepest descent method; we choose an initial vector and iterate with (23)
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until a stopping criterion is met. Since our cost function (19) is the sum of
individual terms also the partial derivative ∇Cost(p) is a sum of individual
partial derivatives over the training data. More precisely, let

Cx{i} = 1
2∥y(x{i}) − a[L](x{i})∥2

2, (24)

and then from (19) we get

∇Cost(p) = 1
k

k∑
i=1

∇Cx{i}(p). (25)

In steepest descent method computing the gradient vector in every iteration can
be expensive when having a large number of parameters and a large number of
training points. If we replace the mean of the gradients over all training points
by the gradient at a randomly chosen single training point we get a much cheaper
alternative. This method is called stochastic gradient method. So we pick only
one training point at a time by randomly choosing an integer i uniformly from
{1, 2, 3, . . . , k} and then update p → p− η∇Cx{i}(p). As the iteration proceeds
the method sees more training points, but after each step, the index i and the
used training point is put back to the training set. So the same point has the
same odds as any other point to be chosen at the next step.

An alternative way, that we use in our coding in section 3.3, is to not put
the used training point back to the training set, but to go through each of the
k training points in random order. Doing so is called as completing an epoch.
The idea is to put integers {1, 2, 3, . . . , k} into a new order {n1, n2, n3, . . . , nk}
and update p → p− η∇Cx{ni}(p) in this new order.

We want to compromise between stochastic gradient and the steepest descent
method. We will use a small sample average by choosing m ≪ k integers
n1, n2, n3, . . . , nm uniformly randomly from {1, 2, 3, . . . , k} and then updating

p → p− η
1
m

m∑
i=1

∇Cx{ni}(p). (26)

Here the set {x{ni}}m
i=1 is known as a minibatch. In our code, in section 3.3, we

have defined it in variable called ”batch size”. We pick a j such that k = j ·m
and split the training set into j minibatches and cycle through them.

2.3.2 Backpropagation

Now that we know what stochastic gradient method is, we can use it to train
a neural network. We switch back to the weight matrices W [l] and bias vectors
b[l] from the general vector p of parameters and we want to compute the partial
derivatives of the cost function. The cost function in (19) is a linear combination
of individual terms that runs over the training data. The same applies for
its partial derivatives. So our focus now is to calculate the individual partial
derivatives. For a fixed training point we drop the dependence on x{i} in (24)
and write

C = 1
2∥y − a[L]∥2

2. (27)

C depends on weights and biases only through a[L].
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To make things little bit easier, let’s introduce two new sets of variables.
First off

z[l] = W [l]a[l−1] + b[l] ∈ Rnl for l = 2, 3, . . . , L. (28)

Here an element z[l]
j of z[l] is the weighted input for neuron j at layer l. With

this new notation we can write equation (4) as

a[l] = σ(z[l]) for l = 2, 3, . . . , L. (29)

Second, let δ[l] ∈ Rnl , often called error, be defined as

δ
[l]
j = ∂C

∂z
[l]
j

for 1 ≤ j ≤ nl and 2 ≤ l ≤ L. (30)

Calling δ[l] an error is little ambiguous [5], but δ[l]
j = 0 is a useful goal, since

then all partial derivatives are zero and the cost function is at its minimum.
Next, we want to define the Hadamard, or componentwise, product of two

vectors: If x, y ∈ Rn, then x ◦ y ∈ Rn is defined by (x ◦ y)i = xiyi.

Lemma 1. Following results are consequence of the chain rule.

δ[L] = σ′(z[L]) ◦ (a[L] − y), (31)
δ[l] = σ′(z[l]) ◦ (W [l+1])T δ[l+1] for 2 ≤ l ≤ L− 1, (32)
∂C

∂b
[l]
j

= δ
[l]
j for 2 ≤ l ≤ L, (33)

∂C

∂w
[l]
jk

= δ
[l]
j a

[l−1]
k for 2 ≤ l ≤ L. (34)

Lemma 1 is proved in [5, p. 870]. The output a[L] of the network can be
evaluated with equations (28) and (29) from a forward pass by computing a[1],
z[2], a[2], z[3], a[3], . . . , a[L] in order. After this we are able to compute δ[L]

with the equation (31). And with the help of the equation (32) we are able to
compute also δ[L−1], δ[L−2], . . . , δ[2] in a backward pass. With (33) and (34) we
get the partial derivatives we originally wanted.

So first we compute all the outputs of the network and from these outputs
we calculate the partial derivatives from the last layer L back to the layer 1.
This method of computing gradients is known as backpropagation.

2.3.3 Activation function ReLU

In a neural network every neuron has an activation function. Its job is to
check whether an incoming data should activate computations in a neuron and
give an output to the next neuron or not. We have activation functions in
neural networks because without them networks would only be linear regression
models. Linear equations are easy to solve, but they have a limited capacity
to solve complex problems. Activation functions are usually non-linear for this
reason. They make neural networks learn more complex problems.

There are many suitable functions that can be used as an activation function,
such as a sigmoid function, a quadratic cost function or a rectified linear unit,
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ReLU. The choice is application-specific. There can also be a different activation
function for each layer l separately. Our choice of activation function is ReLU

σ(x) =
{

0, for x ≤ 0
x, for x > 0,

(35)

for all of the layers. There are studies [4], [11], which show that a neural network
with ReLU as an activation function increases sparsity within the network which
can explain improved performance and accelerated training.

3 Operator recurrent neural network for the ma-
trix inversion

3.1 Matrix inversion
Definition 3. Let GL(n,R) denote the general linear group, the set of all n×n
invertible matrices of real numbers with matrix multiplication as the group
operation. That is

GL(n,R) =
{
A ∈ Rn×n | A invertible

}
.

Now we form a mapping F : GL(n,R) → GL(n,R), F (A) = A−1 for matrix
inversion. In section 3.3 we will try to teach this mapping F to a neural network.

3.2 Motivating operator recurrent networks
This section is adapted from [6, p. 59-63].

For an integer n > 0 suppose we have a data set

{(Xj , yj) | j = 1, . . . , s}, (36)

where every Xj ∈ Rn×n is an invertible matrix and yj ∈ Rn is a vector. Our
problem is to construct a function f with a graph {X, y = f(X)}. We want this
graph to fit closely to the given data set. Assume we also know the algebraic
relationship of the dataset to be

Xy = h, (37)

where h ∈ Rn is a fixed vector. Now we can construct the function f as
f(X) = X−1h, so the actual problem we are having is how to apply the in-
version of the matrix X to some particular vector h.

This problem is different from a linear inverse problem. In the linear inverse
problem we have a data set consisting of pair of vectors {(xj , yj)} with linear
relationship x = Ay with fixed matrix A. Now, the problem is to construct the
linear map f(x) = A−1y. A neural network with ReLU activation function is
suitable for the job, but we want to investigate whether the operator recurrent
network is suitable to solve this problem and under which conditions.
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Theorem 4. Let fθ be an operator recurrent network on Rn×n with layerwise
outputs hl, l = 0, . . . , L. Then for each l, there exists a countable collection of
polynomial regions {U l

i } in Rn×n satisfying:

1. This collection partitions Rn×n; that is, U l
i ∩ U l

j = ∅ for every i ̸= j, and⋃
Ū l

i = Rn×n.

2. Every open ball B ⊂ Rn×n only nontrivially intersects U l
i for finitely many

i.

3. The restriction of hj to each U l
i is an operator polynomial of degree at

most l, applied to h0.

Theorem 4 is proved in [6]. With the help of this theorem we gather that
operator recurrent network equals to piecewise matrix polynomial. Now the
question to ask is how we approximate the matrix inversion problem with piece-
wise matrix polynomials.

We can represent the inverse of matrix X with the matrix power series called
Neumann series

X−1 =
∞∑

k=0
(I −X)k. (38)

This equality holds for ∥I−X∥ < 1 and that is when the power series converges.
If we truncate the power series we are able to approximate X−1 by a matrix
polynomial, which can be represented by an operator recurrent network. If we
happen to have some prior knowledge about spectral information, eigenvalues,
of X, we are able to produce approximation with better properties and which
also holds for other regions than ∥I − X∥ < 1. So for this, we assume that
the matrices Xj are from a set U of orthogonally diagonalizable matrices whose
eigenvalues are from a compact set K which does not contain some open neigh-
bourhood of zero. This way it is guaranteed that all Xj and their inverses have
uniformly bounded spectral norm. This means that every spectral norm

∥Xj∥2 =
√
λmax(X∗

jXj) = σmax(Xj), (39)

where X∗
j is the conjugate transpose of Xj , λmax is the largest eigenvalue and

σmax(Xj) is the largest singular value of matrix Xj , is bounded by

∥Xj∥2 = σmax(Xj) ≤ M, M ∈ R. (40)

Next we introduce a lemma which tells that for matrix X in the set U it is
possible to find a polynomial p such that p(X)h approximates X−1h well. Our
original problem was to find a function such that f(X) = X−1h and this lemma
gives a good approximation for it. For the proof of the lemma we first need
Mergelyan’s Theorem.

Theorem 5. (Mergelyan’s Theorem) If K is a compact subset of the complex
plane C such that C\K is connected, and if f is a continuous complex function
on K which is holomorphic in the interior of K, and if ϵ > 0, then there exists
a polynomial p such that ∥f(z) − p(z)∥ < ϵ for all z ∈ K.

Proof. Can be found in [13].
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Lemma 2. Let U consist of the set of orthogonally diagonalizable matrices
whose eigenvalues lie in a compact set K ⊂ C that does not contain zero, and
assume that C \K is connected. Then there exists a sequence of operator poly-
nomials that approximate the function X 7→ X−1 uniformly on U .

Proof. Since K does not contain zero, the complex function z 7→ 1/z is differen-
tiable in K. This makes the function holomorphic on some open set containing
K. Then the function is infinitely differentiable and locally equal to its own
Taylor series, which means it is an analytic function. Since C \K is connected
the theorem 5 of Mergelyan helps us to construct a sequence of polynomials
{pi(z)}. This sequence uniformly approximates z 7→ 1/z on K. By the holo-
morphic functional calculus, we now have a sequence of operator polynomials
pi(X), that uniformly approximates X 7→ X−1 on U .

The function f(z) = 1/z fulfils the requirements of Mergelyan’s theorem.
Next we construct a polynomial p(z). First we take a geometric series

∞∑
n=0

qn = 1
1 − q

.

Mark 1 − q = z and from here we get q = 1 − z. Next we approximate the
infinite sum by a finite sum

1
z

=
∞∑

n=0
(1 − z)n ≈

N∑
n=0

(1 − z)n = pN (z).

Polynomial pN (z) is the wanted polynomial that approximates the function
f(z) = 1/z. The approximation holds only when z is close to 1, i.e. |1 − z| < ϵ
for some ϵ > 0.

Now we use holomorphic functional calculus to get a sequence of operator
polynomials {pi(X)} that uniformly approximates X 7→ X−1 on U . Since the
function f(z) is analytic, we can write it as a power series

f(z) =
∞∑

n=0
anz

n.

We replace the complex variable z with complex valued matrix X ∈ Cn×n

f(X) =
∞∑

n=0
anX

n.

Let’s remind ourselves about singular values and the operator norm of a matrix
A ∈ Cm×n. A singular value of the matrix A is an eigenvalue λ ∈ C of a matrix
(A∗A)1/2. If we mark the singular values as σi, where i = 1, 2, . . . ,min{m,n},
we can write the relation between the singular value and the eigenvalue as
σ2(A) = λ(A∗A) = λ(AA∗). The biggest singular value σ of the matrix A is
called the operator norm of A and is defined as

∥A∥ = max{σi} = max{∥Ax∥ : x ∈ Rn×1, ∥x∥ = 1}.
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The operator norm is possible to write using the eigenvalues in the following way.
If the matrix A is symmetric, i.e. A∗ = A, the eigenvalues of matrix A∗A = A2

are λ2, where λ is the eigenvalue of A. Singular values are (λ2)1/2 = |λ|. Then

∥A∥ = max{|λ| : λ is the eigenvalue of A, A is symmetric}.

This also applies to our function ∥f(X)∥ = max |f(λ)|. We take a sequence of
complex functions fn such that |(fn −f)(z)| < ϵ for ∀z ∈ K. From here we have

∥fn(X) − f(X)∥ = max |fn(λ) − f(λ)| < ϵ, for some ϵ > 0.

Now the fn(X) is the sequence of operator polynomials we were looking for.
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3.3 Coding for the matrix inversion
We have created a code, found in [8], that generates a neural network and
data elements for training and testing the network. The code first teaches the
network to do an inversion of a given matrix. The teaching is done in epochs
with a training data set. The trained network is then tested with a test data
set to see how well it learned to produce an inversion. After testing the trained
network, the computer calculates the average loss which tells how close the
network got to the actual inverse of the matrix. We repeat this cycle of training
and testing the network multiple times which makes the network learn to do the
inverse better. The whole idea is for the neural network to learn the inversion
as well as possible. This means the error between the actual inverse and the
inverse calculated by the neural network is wanted to be as small as possible.
So we want the average loss to be small. In this section we work with 2 × 2 real
valued matrices.

When searching the best learning rate we set the limit to 50 epochs just
to see the beginning of the learning. After this we use a stopping criterion to
define how far the network will be taught. The stopping criterion is when the
average loss goes smaller than 9 · 10−5. This limit is completely arbitrary. By
setting the limit to a very small number the inverse calculated by the network
is very close to the actual inverse. On the other hand teaching to any smaller
average loss than 9 · 10−5 would take too much time with the capacity we had.

3.3.1 Finding the best learning rate

The first thing we study is the learning rate (”lr” in the code). The goal is to
find the learning rate that makes the neural network learn the quickest. With
each different learning rate we use four new networks and observe the changes in
the average loss. All networks have ten layers and randomly picked parameters
at the beginning and they are independent from each other.

We create data sets and use them for all the networks so the results would
be comparable. The training set contains 60 000 elements and testing set 10 000
elements. We train the networks for 50 epochs with each learning rate. Learn-
ing rates studied were 1 · 10−1, 10−2, 10−3 and 10−4. Learning rates bigger
than 1 · 10−1 made the networks unstable to learn and were excluded from the
comparison. Each group of four networks with studied learning rates took on
average 18 minutes each, so one network took 4–5 minutes to go through 50
epochs. The results are in tables 1–4 and in figures 2–5.

Viewing the results we can see there is some variation on how well and how
quickly different networks learn. In general the networks learn well with all of
the learning rates, but when learning rate goes smaller, learning gets slower for
all the networks. In 50 epochs we can see that on average the networks learn
the quickest with the learning rate 1 · 10−1. We will be using this learning rate
for all the runs from now on.
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10 epochs 20 epochs 30 epochs 40 epochs 50 epochs
lr
0.1 0.001766 0.001554 0.001623 0.001542 0.001463
0.1 0.003488 0.002262 0.001613 0.001340 0.001219
0.1 0.001463 0.000659 0.000460 0.000333 0.000251
0.1 0.000987 0.000460 0.000344 0.000292 0.000261

Table 1: Studying the development of the average loss on networks without ReLU
when the learning rate is 1 · 10−1. Each of the networks is new and structurally the
same but the initial states are randomly picked and can vary. See figure 2.

10 epochs 20 epochs 30 epochs 40 epochs 50 epochs
lr
0.01 0.003610 0.002943 0.002478 0.002132 0.001819
0.01 0.004851 0.003364 0.002559 0.001932 0.001417
0.01 0.006535 0.004404 0.003274 0.002701 0.002260
0.01 0.004984 0.002832 0.002144 0.001735 0.001458

Table 2: Studying the development of the average loss on networks without ReLU
when the learning rate is 1 · 10−2. See figure 3.

10 epochs 20 epochs 30 epochs 40 epochs 50 epochs
lr
0.001 0.053339 0.020258 0.010881 0.007840 0.006353
0.001 0.058097 0.039330 0.030043 0.020909 0.014186
0.001 0.030381 0.011845 0.010171 0.009575 0.009121
0.001 0.050086 0.034006 0.024042 0.015542 0.010670

Table 3: Studying the development of the average loss on networks without ReLU
when the learning rate is 1 · 10−3. See figure 4.

10 epochs 20 epochs 30 epochs 40 epochs 50 epochs
lr
0.0001 0.275042 0.169904 0.111861 0.073311 0.054786
0.0001 0.113693 0.080240 0.062574 0.053541 0.047360
0.0001 0.159241 0.073552 0.043187 0.034231 0.030052
0.0001 0.112535 0.101051 0.088696 0.073609 0.059076

Table 4: Studying the development of the average loss on networks without ReLU
when the learning rate is 1 · 10−4. See figure 5.
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Figure 2: Studying the development of the average loss on networks without ReLU
when the learning rate is 1 · 10−1. Each of the networks is new and structurally the
same but the initial states are randomly picked and can vary. A plot from table 1.
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Figure 3: Studying the development of the average loss on networks without ReLU
when the learning rate is 1 · 10−2. Each of the networks is new and structurally the
same but the initial states are randomly picked and can vary. A plot from table 2.
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Figure 4: Studying the development of the average loss on networks without ReLU
when the learning rate is 1 · 10−3. Each of the networks is new and structurally the
same but the initial states are randomly picked and can vary. A plot from table 3.
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Figure 5: Studying the development of the average loss on networks without ReLU
when the learning rate is 1 · 10−4. Each of the networks is new and structurally the
same but the initial states are randomly picked and can vary. A plot from table 4.
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3.3.2 Teaching until the wanted small average loss

Now we know that a network learns the quickest with the learning rate 1 · 10−1.
Next up we shall see how quickly new untrained networks learn with this learning
rate. We switch from 50 epochs to stopping criterion. We kept the data sets
the same as before. It took 15–30 minutes on average for a network to learn
until the stopping criterion. Results are in the table 5 and in figure 6.

20 epochs 130 epochs 206 epochs 250 epochs 358 epochs
Network
1 0.000890 0.000166 0.000109 0.000089 NaN
2 0.000357 0.000089 NaN NaN NaN
3 0.001488 0.000217 0.000134 0.000116 0.00009
4 0.000788 0.000148 0.000090 NaN NaN

Table 5: Development of the average loss. Four newly generated networks without
ReLU layers trained until the stopping criterion when the average loss is smaller than
9 · 10−5. See figure 6.

0 50 100 150 200 250 300 350
Epochs

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Av
er

ag
e 

Lo
ss

Network 1 without ReLU
Network 2 without ReLU
Network 3 without ReLU
Network 4 without ReLU

Figure 6: Development of the average loss. Four newly generated networks without
ReLU trained until the stopping criterion when the average loss is smaller than 9·10−5.
A plot from table 5.
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3.3.3 Adding ReLU layers

The next step is to add ReLU layers to the networks and see how that affects the
learning. We update the creation of the neural network in the opnet.py-file by
adding ReLU layers to the class OperatorNet. Now the code fully implements
the network presented in definition 2.1 of [6]. The new implementation with
ReLU layers doubles the amount of parameters so we decrease the number of
layers down to five, but when using a network without ReLU we double the
number to ten so the comparison is reasonable.

We create two groups of four networks, one group with ReLU layers and
the other without. Now we can study the effect of ReLU on the learning. We
keep the data sets the same as before and train the networks until the stopping
criterion. The hypothesis is that the networks with ReLU learn faster than the
networks without ReLU.

Results for networks without ReLU are in table 6 and in figure 7 and for
networks with ReLU in table 7 and in figure 8. We can see NaN-values in the
tables since the computer stops calculating after the network has reached the
stopping criterion and there are no values after that.

For the networks without ReLU it took 10–35 minutes to reach the stopping
criterion and for the networks with ReLU it took 10–73 minutes. Based on
the results, we cannot see a clear improvement in the learning when ReLU is
added. Compared to the networks without ReLU some networks with ReLU
learn quicker, but some take much longer. This could be explained with the
different initial states of the networks or the possibility that the optimization
method may be unstable in networks with ReLU. Also it could be due to the
used data sets since they are only a small sample of the whole data space and
therefore do not contain all the possible input values. This means that the data
sets may not represent the whole space so their distributions might not match
with the whole data space. With other and maybe bigger data sets the results
could be more even.

20 epochs 124 epochs 190 epochs 200 epochs 396 epochs
Network
1 0.000310 0.000089 NaN NaN NaN
2 0.000619 0.000126 0.000092 0.000090 NaN
3 0.000764 0.000187 0.000143 0.000138 0.00009
4 0.000598 0.000136 0.000089 NaN NaN

Table 6: Comparing the development of the average loss on networks without ReLU
layers. Every network is taught until the stopping criterion when the average loss is
smaller than 9 · 10−5. See figure 7.
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Figure 7: Development of the average loss. A network without ReLU layers taught
until the stopping criterion when the average loss is smaller than 9 · 10−5. Data from
table 6.

20 epochs 100 epochs 380 epochs 780 epochs 836 epochs
Network
1 0.000565 0.000141 0.000090 NaN NaN
2 0.000375 0.000089 NaN NaN NaN
3 0.000478 0.000188 0.000140 0.000087 NaN
4 0.001324 0.000294 0.000118 0.000092 0.00009

Table 7: Comparing the development of the average loss on networks with ReLU
layers. Every network is taught until the stopping criterion when the average loss is
smaller than 9 · 10−5. See figure 8.
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Figure 8: Development of the average loss. Four networks with ReLU layers taught
until the stopping criterion when the average loss is smaller than 9 · 10−5. Data from
table 6.

3.3.4 Changing the sign of eigenvalues

Next we want to study what is the impact of the signs of the eigenvalues of the
matrices for the learning of a neural network. Until now the eigenvalues have
been picked from the positive interval [1/2, 3/2]. We changed the interval to
negative [−3/2,−1/2] at simple_inversion_data.py, where the data sets are
created. Then we created new data sets where the training set contains 60 000
elements and the testing set contains 10 000 elements. Next, two groups of four
networks, one with ReLU and one without, were created and trained until the
stopping criterion. The assumption is that the networks with ReLU learn faster.

Results for networks without ReLU are in table 8 and in figure 9 and for
networks with ReLU in table 9 and in figure 10. For a network without ReLU it
took an average of 15–30 minutes to learn, and 25 minutes up to an hour for a
network with ReLU. Based on the time networks used learning, the negativity
of eigenvalues brought a challenge and surprisingly networks without ReLU
handled it better.

Next we modify the code such that every time it creates new data set, it
randomly picks a sign for the eigenvalues. It is possible that both eigenvalues
are positive or negative, or that one is positive and the other is negative. We
create a new data sets. The training set contains 60 000 elements and testing set
10 000 elements. Again, we compare the learning of two groups of four networks,
one with ReLU and one without. In this case the used learning rate 1 · 10−1 is
unstable with the networks with ReLU layers. Five out of eight networks did
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not give numerical values. Therefore, we had to change the learning rate to
9 · 10−2. We taught all of the networks until the stopping criterion.

Results for networks without ReLU are in table 10 and in figure 11, and
for networks with ReLU in table 11 and in figure 12. All the networks learned
slower than in the case when the signs of the eigenvalues are the same. Especially
networks with ReLU took a long time to reach the stopping criterion. At the
quickest one network with ReLU took 30 minutes, but the others took 60, 75
and 80 minutes. For networks without ReLU it took 20–30 minutes for each to
reach the stopping criterion. Based on the results, this change in data made
learning more difficult for the networks in general, but again networks without
ReLU learned faster.

Overall, the learning in figures 10–12 is very uneven for some networks. This
may be due to differences in the initial states and the optimization may also be
a bit unstable in these cases. This is an interesting phenomenon that we did
not have the time to study further.

50 epochs 126 epochs 184 epochs 236 epochs 430 epochs
Network
1 0.000203 0.000089 NaN NaN NaN
2 0.000830 0.000474 0.000212 0.000149 0.00009
3 0.000279 0.000275 0.000154 0.000089 NaN
4 0.000247 0.000135 0.000090 NaN NaN

Table 8: Studying the development of the average loss on networks without ReLU
layers until the stopping criterion when the eigenvalues of the matrices are negative.
Each of the networks is new and structurally the same but the initial states are ran-
domly picked and can vary. See figure 9.
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100 epochs 264 epochs 278 epochs 574 epochs 676 epochs
Network
1 0.000352 0.000135 0.000129 0.000090 NaN
2 0.000718 0.000267 0.000253 0.000111 0.00009
3 0.000283 0.000097 0.000089 NaN NaN
4 0.000148 0.000090 NaN NaN NaN

Table 9: Studying the development of the average loss on networks with ReLU layers
until the stopping criterion when the eigenvalues of the matrices are negative. Each
of the networks is new and structurally the same but the initial states are randomly
picked and can vary. See figure 10.

1052 epochs 1142 epochs 1482 epochs 1630 epochs
Network
1 0.000115 0.000109 0.000090 NaN
2 0.000090 NaN NaN NaN
3 0.000120 0.000112 0.000095 0.00009
4 0.000102 0.000090 NaN NaN

Table 10: Studying the development of the average loss on networks without ReLU
layers until the stopping criterion when the signs of the eigenvalues of the matrices
are randomly picked. The learning rate is 1 · 10−1. Each of the networks is new and
structurally the same but the initial states are randomly picked and can vary. See figure
11.

500 epochs 1804 epochs 3652 epochs 4686 epochs 5356 epochs
Network

1 0.000495 0.000090 NaN NaN NaN
2 0.000374 0.000194 0.000090 NaN NaN
3 0.000760 0.000252 0.000160 0.000081 NaN
4 0.000271 0.000168 0.000127 0.000108 0.00009

Table 11: Studying the development of the average loss on networks with ReLU
layers until the stopping criterion when the signs of the eigenvalues of the matrices
are randomly picked. The learning rate is 9 · 10−2. Each of the networks is new and
structurally the same but the initial states are randomly picked and can vary. See figure
12.
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Figure 9: Learning of the networks without ReLU layers until the stopping criterion
when the eigenvalues of the matrices are negative. Each of the networks is new and
structurally the same but the initial states are randomly picked and can vary. Data
from table 8.
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Figure 10: Learning of the networks with ReLU layers until the stopping criterion
when the eigenvalues of the matrices are negative. Each of the networks is new and
structurally the same but the initial states are randomly picked and can vary. Data
from table 9.
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Figure 11: Learning of the networks without ReLU layers until the stopping criterion
when the signs of the eigenvalues of the matrices are randomly picked. The learning
rate is 1 · 10−1. Each of the networks is new and structurally the same but the initial
states are randomly picked and can vary. Data from table 10.
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Figure 12: Learning of the networks with ReLU layers until the stopping criterion
when the signs of the eigenvalues of the matrices are randomly picked. The learning
rate is 9 · 10−2. Each of the networks is new and structurally the same but the initial
states are randomly picked and can vary. Data from table 11.
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4 The inverse problem of the wave equation
In this chapter we move from square matrices to the one dimensional wave
equation. First we address the general form of the equation and prove there is
a general solution for it [12]. Then we look at the inverse problem of the wave
equation and prove there is a unique solution for it [10].

4.1 The general form and solution of the wave equation
The wave equation in one dimensional space has the form

∂2
t u− c2∂2

xu = 0, −∞ < x < ∞, (41)

where t > 0 is the time, x is the variable of one dimensional space and c ∈ R+

is the non-zero wave speed.
To obtain the general solution to this equation let’s first define two variables

as

ξ = ξ(x, t) = x− ct, (42)
η = η(x, t) = x+ ct. (43)

With the help of these characteristic coordinates we can write our function u in
a new way as

u(x, t) = ũ(ξ(x, t), η(x, t)) = ũ(ξ, η) (44)

= u

(
ξ + η

2 ,
ξ − η

2c

)
= u(x(ξ, η), t(ξ, η)), (45)

where x = (ξ + η)/2 and t = (ξ − η)/2c. Now we want to differentiate the
function u using the chain rule. First we differentiate twice with respect to x

∂xu = ∂ξũ∂xξ + ∂ηũ∂xη = ∂ξũ+ ∂ηũ = (∂ξ + ∂η)ũ, (46)

where ∂xξ = 1 = ∂xη.

∂2
xu = ∂x∂xu = ∂x(∂ξ + ∂η)ũ

= (∂ξ + ∂η)(∂ξ + ∂η)ũ
= (∂2

ξ − 2∂ξη + ∂2
η)ũ.

(47)

Next we differentiate twice with respect to t

∂tu = ∂ξũ∂tξ + ∂ηũ∂tη = c∂ξũ− c∂ηũ = c(∂ξ + ∂η)ũ, (48)

where ∂tξ = c and ∂tη = −c.

∂2
t u = ∂t∂tu = ∂tc (∂ξ + ∂η) ũ

= c (∂ξ + ∂η) c (∂ξ + ∂η) ũ
= c2 (

∂2
ξ − 2∂ξη + ∂2

η

)
ũ.

(49)

Now substituting these into the wave equation we get

∂2
t u− c2∂2

xu = c2∂2
ξ ũ− c22∂ξηũ+ c2∂2

η ũ− c2∂2
ξ ũ− c22∂ξηũ− c2∂2

η ũ

= −c24∂ξηũ = 0.
(50)
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So the problem comes down to the equation

−c24∂ξηũ = 0. (51)

We know that −4c2 ̸= 0 so it has to be

∂ξηũ = 0. (52)

We can solve ũ by integrating twice. From the equation (52) we observe that
derivative of ũ with respect to ξ does not depend on η and vice versa. So by
deriving some function g(η) with respect to ξ we have

∂ξg(η) = 0 (53)

and from here we can denote

∂ηũ(ξ, η) = g(η). (54)

Then integrating with respect to η we get∫
∂ηũ dη =

∫
g(η) dη + F. (55)

The function g is a derivative of some function G so we have g(η) = G′. F is
a constant with respect to η so we can write it as a function of ξ as F (ξ). And
we get the general form of the solution to the one dimensional wave equation

ũ(ξ, η) = F (ξ) +G(η) (56)
⇒ u(x, t) = F (x+ ct) +G(x− ct), (57)

where F,G ∈ C2(R) are arbitrary functions.

4.2 Piecewise wave speed function
In the previous section we assumed that the wave speed c was a constant, see
equation (41). In this section we consider the case where the wave speed is a
one-dimensional piecewise constant function c = c(x). That is how we use it in
our code [8].

If we start with the wave speed being c = 1 for all (x, t) ∈ R2, our wave
equation has the form

∂2
t u− ∂2

xu = 0. (58)

Let’s suppose we know that u(x, t) = f(x − t) and ∂tu(x, t) = g(x− t) when
t < 0. By chapter 4.4 we know that with these initial conditions the wave
equation (58) has a solution that is unique. It follows from the fact that the
wave propagation has finite speed.

Now, if our wave speed is a piecewise constant function

c(x) =
{

1, x < x0

1/2, x > x0,
(59)

it has discontinuity point at x = x0. When a wave comes to this point it splits
into two waves, reflected and transmitted wave. To get the general solution in
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this case, we will start with amplitudes aj and delays dj . Lets construct the
function u considering the change in the wave speed. Before discontinuity point,
when x < x0, our function equals to u(x, t) = f(x − t) and is zero elsewhere.
After the splitting there is a reflected wave travelling in the area of x < x0 with
some amplitude a1 and some delay d1 which are different from the amplitude
and delay of the original wave. We get

u(x, t) = f(x/c− t) + a1f(−x/c− t− d1)
= f(x− t) + a1f(−x− t− d1), when x < x0.

After the splitting there is also a transmitted wave travelling in the area of
x > x0 with amplitude a2 and delay d2, so we get

u(x, t) = a2f(x/c− t− d2) = a2f(2x− t− d2), when x > x0.

All in all our solution function has the form of

u(x, t) =
{
f(x− t) + a1f(−x− t− d1), x < x0

a2f(2x− t− d2), x > x0.
(60)

To make this function and its derivative continuous everywhere, we have to
require u and ∂xu to be continuous at x = x0 and t > 0 for all functions f .
So the solution function u(x, t) and its partial derivatives must be equal at this
point, so we have{

f(x0 − t) + a1f(−x0 − t− d1) = a2f(2x0 − t− d2)
∂x(f(x0 − t) + a1f(−x0 − t− d1)) = ∂x(a2f(2x0 − t− d2)).

(61)

And from here we get the conditions for the parameters aj and dj , j = 1, 2, as
x0 − t = −x0 − t− d1 = 2x0 − t− d2

1 + a1 = a2

1 − a1 = 2a2.

Solving this system of equations we get that a1 = −1/3 and a2 = 2/3. Param-
eters dj depend on x0 since d1 = −2x0 and d2 = x0.

Example 1. We take the function (59) and put x0 = 1. Then conditions for
parameters aj and dj takes the form of

1 − t = −1 − d1 = 2 − d2

1 + a1 = a2

1 − a1 = 2a2.

Parameters aj stay the same as they don’t depend on x, but dj will have more
precise forms now, d1 = −2 and d2 = 1.
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4.3 Initial and boundary values
It is usual to have some prior knowledge about the wave equation problem. If we
have information about the beginning point, we have an initial value problem.
If we also have information about the ending point, we have a boundary value
problem.

In the initial value problem we have information only about the beginning
state at time t = 0. For example we could have a given f ∈ C3(Rn) and
g ∈ C2(Rn) and the problem would be

∂2
t u− c2∂2

xu = 0
u(x, 0) = f in Rn

∂tu(x, 0) = g in Rn.

(62)

If the dimension n ≥ 3, the initial problem (62) can be solved by Poisson method
of spherical means, and if n = 2 by Hadamard method of descent.

An example of a boundary value problem is a string that is attached from
its end points x = 0 and x = L. The string vibrates and the function u(x, t)
denotes the vertical displacement at the time t of the point x ∈ (0, L). We know
the shape and the speed of the string at the beginning, at time t = 0, and they
are given as f, g ∈ C2[0, L]. Then we can write the boundary value problem as

∂2
t u− c2∂2

xu = 0 in (0, L) × R
u(0, t) = u(L, t) = 0 in R
u(x, 0) = f, ∂tu(x, 0) = g in (0, L).

(63)

The functions f and g have to satisfy the compatibility conditions

f(0) = f(L) = g(0) = g(L) = 0.

A solution to the boundary value problem can be found by using the solution
of Cauchy problem [1, p. 185].

4.4 The inverse problem and its unique solution
We denote R+ := (0,∞). The boundary value problem

∂2
t u− c(x)2∂2

xu = 0, in (0, 2T ) × R+

∂xu(0, t) = f(t)
u(x, 0) = ∂tu(x, 0) = 0

(64)

where f ∈ C∞
0 (R+) and the wave speed c(x) is strictly positive on R+, has a

unique solution uf ∈ H1((0, 2T ) × R+), [10]. Define the Neumann-to-Dirichlet
operator as

Λ : L2(0, 2T ) → L2(0, 2T ), Λf = uf (0, t). (65)

Next we define the space of velocity functions. Let C0, C1, S,m > 0 and then

D(A) := {c ∈ L∞(R+) | C0 ≤ c(x) ≤ C1, (66)
||c||C2(R+) ≤ m, c− 1 ∈ C2

0 (0, S)},
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and also set T >
S

C0
. Let E be a Banach space and define

L(E) = {A : E → E | A is linear and continuous}. (67)

Let X = L∞(R+) and Y = L(L2(0, 2T )) and now define the direct map

A : D(A) ⊂ X → Y, A(c(x)) = Λ. (68)

Our inverse problem is to recover the wave speed c(x) when we know the bound-
ary measurements Λ. So we have A−1(Λ) = c(x). The continuity of (65) and
(68) is proved in [10].

We start solving the problem with the fact that the wave propagation has
finite speed. This means that u(x, t) = 0 for x ≥ r(t), with some smooth and
increasing function r(t) ∈ R. We want to find the optimal r(t) that satisfies the
given requirements. Set the measurement error as

E(x, t) = c−2|∂tu(x, t)|2 + |∂xu(x, t)|2 (69)

and the energy of the wave above the function r(t) as

E(t) = 1
2

∫ ∞

r(t)
E(x, t)dx, (70)

which can also be written as

E(t) = E(0) +
∫ t

0
∂tE(s)ds. (71)

We will show below that ∂tE(t) ≤ 0. Then also E(t) ≤ 0. This implies that
E(t) = 0, which gives us u(x, t) = 0 for x ≥ r(t). So our goal is to find r(t) such
that ∂tE(t) ≤ 0.

Lets investigate the ∂tE(t) a little more and calculate it open using Leibniz
integral rule

∂tE(t) = 1
2

∫ ∞

r(t)
∂tE(x, t)dx (72)

= −1
2∂tr(t)E(r(t), t) + 1

2

∫ ∞

r(t)
∂tE(x, t)dx (73)

= −1
2∂tr(t)E(r(t), t) +

∫ ∞

r(t)
c−2(x)∂tu∂

2
t u+ ∂xu∂txu dx. (74)

Integrating by parts the integral in (74) we get∫ ∞

r(t)
c−2(x)∂tu∂

2
t u+ ∂xu∂txu dx (75)

=
∫ ∞

r(t)
c−2(x)∂tu∂

2
t u dx+

∫ ∞

r(t)
∂xu∂txu dx (76)

=
∫ ∞

r(t)
c−2(x)∂tu∂

2
t u dx+ [∂xu∂tu]∞r(t) −

∫ ∞

r(t)
∂2

xu∂tu dx (77)

=
∫ ∞

r(t)
(c−2(x)∂2

t u− ∂2
xu)∂tu dx+ [∂xu∂tu]∞r(t). (78)
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The integral in (78) equals to zero since u is the solution of the wave equation.
For the second term, to keep the argument simple, let’s assume that since the
finite speed of wave propagation the boundary terms vanish at infinity. This is
proven in [2, p. 84] at theorem 6, but only for a constant wave speed. If we
assume that there exists a maximum of c(x), then the the boundary terms have
to vanish at infinity. So we can mark c̃ = max(c(x)) and then the proof holds
for our situation too and the second term in (78) vanishes at infinity. Now our
equation in (72) shrinks down to

∂tE(t) = −1
2∂tr(t)E(r(t), t) − (∂xu∂tu)|x=r(t). (79)

We want the first and second terms to cancel each other out. If we have

0 ≤ (x+ y)2 = x2 + 2xy + y2 (80)

⇒ −xy ≤ 1
2(x2 + y2) (81)

and with a ∈ R+
√
a√
a

(−xy) = −( x√
a

)(
√
ay) ≤ 1

2(a−1x2 + ay2), (82)

then we can use this to our second term in (79) as follows

−(∂xu∂tu)|x=r(t) ≤ 1
2(a−1|∂xu|2 + a|∂tu|2).

We are at a point x = r(t). The first and second term cancel each other only
when a−1 = r′ and a = r′c−2. Then

r′(t)c−2 = a = 1/r′(t)
⇔ (r′(t))2 = c2(r(t))
⇔ r′(t) = c(r(t)). (83)

Now we have an equation for r(t). We will solve this by first defining the
following function

ρ(x) =
∫ x

0

1
c(y)dy.

Function ρ(x) is strictly increasing and therefore it has inverse function. We
can set

r(t) = ρ−1(t), (84)

since this satisfies the equation (83) as we can see

r′(t) = 1
ρ′(r(t)) = 1

1/c(r(t)) = c(r(t)). (85)

With this choice of r(t) we have ∂tE ≤ 0 and the finite speed of propagation
holds.

Next we will give a control problem that we will use as a tool to solve the
inverse problem. The idea of the control problem is that we can control the
solution. First let us define an inner product for functions in L2 space as

(ϕ, ψ)L2(R+,c−2) =
∫ ∞

0
ϕ(x)ψ(x)c−2(x)dx. (86)
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Proposition 1. For any function ϕ ∈ L2([0, T ]) with ϕ(x) = 0 for x > r(T ),
there exists f ∈ L2([0, T ]) such that

uf (x, T ) = ϕ(x). (87)

Proof. The proof is introduced in [9] but in more general situation. With the
help of chapter 1.2 in [9] we can write the wave equation (64) the following way

∂2
t u−m−1g−1/2∂x(mg−1/2∂xu) + cu = 0. (88)

To get our form of the wave equation from (88) we want m−1g−1/2 = c2 and
mg−1/2 = 1. By solving these equations we get that m = 1/c and g = 1/c2.
Now the proof of Lemma 1.15 in [9] holds for our situation.

Next let us define a function W as follows

W (t, s) :=(uf (·, t), uf (·, s))L2(R+,c−2) (89)

=
∫ ∞

0
uf (x, t)uf (x, s)c−2(x)dx.

Proposition 2. Operator Λ determines function W .

Proof. For the simplicity we write u = uf . By using the integration by parts
we can see that the boundary terms at infinity are vanishing. First, since u is
the solution of the wave equation we have that ∂2

t u = c2∂2
xu and we can write

(∂2
t − ∂2

s )W (t, s) = ∂2
tW (t, s) − ∂2

sW (t, s)
= (∂2

t u(·, t), u(·, s))L2(R+,c−2) − (u(·, t), ∂2
su(·, s))L(R+,c−2)

= (c2∂2
xu(·, t), u(·, s))L2(R+,c−2) − (u(·, t), c2∂2

xu(·, s))L(R+,c−2)

= (∂2
xu(·, t), u(·, s))L2(R+) − (u(·, t), ∂2

xu(·, s))L(R+).

And integrating by parts we get

= [u(·, s)∂xu(·, t)]∞0 −
∫ ∞

0
∂xu(·, s)∂xu(·, t)dx

− [u(·, t)∂xu(·, s)]∞0 +
∫ ∞

0
∂xu(·, s)∂xu(·, t)dx

= [u(·, s)∂xu(·, t)]∞0 − [u(·, t)∂xu(·, s)]∞0 .

The function u is zero after some 0 < T < ∞ so at infinity the function u is
also zero. Thus

(∂2
t − ∂2

s )W (t, s) = u(0, t)∂xu(0, s) − u(0, s)∂xu(0, t).

Since we have u(x, 0) = 0 and ∂tu(x, 0) = 0 we get W (0, s) = 0 and
∂tW (0, s) = 0. Now we see that W is the solution of the following initial value
problem {

(∂2
t − ∂2

s )W (t, s) = f(t)Λf(s) − f(s)Λf(t)
W (0, s) = ∂tW (0, s) = 0.

(90)
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In similar way the operator Λ determines the inner product
(uf (·, t), 1)L2(R+,c−2) as follows

∂2
t (uf (·, t), 1)L2(R+,c−2) = (∂2

t u(·, t), 1)L2(R+,c−2)

= (∂2
xu(·, t), 1)L2(R+)

=
∫ ∞

0
∂2

xu(x, t)dx

= [∂xu(x, t)]∞0
= −∂xu(0, t)
= −Λf(t).

And hence we can recover also

||uf (·, T ) − 1||2L2(R+,c−2) − ||1||2L2(R+,c−2) (91)

= ||uf (·, T )||2L2(R+,c−2) − 2(uf (·, T ), 1)L2(R+,c−2).

Recall that uf satisfies (64) where f appears as the source. We want to minimize
equation (91). For this we use Proposition 1 and find such f that gives us uf as

uf (x, T ) =
{

1, x ≤ r(T )
0, otherwise.

(92)

This form of function uf is a minimizer. Then we define a volume as

(uf (·, T ), 1)L2(R+,c−2) =
∫

x<r(T )
1 · c−2(x)dx

=
∫ r(T )

0
c−2(x)dx =: V (T ). (93)

When we differentiate this we obtain

V ′(t) = r′(t)c−2(r(t)) = c(r(t))
c2(r(t)) = 1

c(r(t)) ,

since r′(t) = c(r(t)). Denote that

c(r(t)) = 1
V ′(t) . (94)

Now we have recovered c(x) in ”wrong” coordinates, the time travel coordinates.
To find c(x) in right coordinates let’s mark c(r(t)) = g(t) and recall that

c(x) = c(ρ−1(ρ(x))) = c(r(ρ(x))) = g(ρ(x)).

To solve this we first need to calculate r(t). Recall from (85) that
r′(t) = c(r(t)) = g(t). Thus

r(t) =
∫ t

0
r′(s)ds =

∫ t

0
g(s)ds.

Then we get ρ = r−1 and from there we can solve c(x) = g(ρ(x)).
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5 Operator recurrent neural network for the in-
verse of the wave equation

The initial set-up is the same as in chapter 3.3 where we modified the code
for the matrix inversion. Once again we want the neural networks to learn
the inversion as well as possible. This means we want the error between the
actual inverse and the inverse calculated by the neural network to be as small
as possible. The code is improved with the help of [3].

In this section we concentrate on a subproblem related to the inverse problem
of the wave equation to find the wave speed c(x) as written in section 2 of [10].
We start by finding the best learning rate and for this we only want to see how
the networks start to learn with different learning rates to get the idea. That is
why we run 50 epochs with each network. After the best learning rate is found
we switch to the stopping criterion. We set the same stopping criterion as in
the matrix inversion, the average loss has to go smaller than 9 · 10−5.

The data of the wave equation take more memory than in the case of ma-
trix inversion, so we had to drop the amount of elements in the data sets to
make it manageable for our computer. We generated a training set containing
10 000 elements and testing set containing 2 500 elements. We trained all of the
networks with these data sets. This way the results are comparable.

5.1 Finding the best learning rate
Like in section 3.3.1 we are going to start with finding the best learning rate.
With each of the learning rates we trained four new networks and observed the
changes in the average loss. All of the networks have ten layers and randomly
picked parameters at the beginning. These parameters are independent from
each other. Each of the networks is taught 50 epochs.

We studied learning rates 1 · 10−1,10−2,10−3 and 10−4. All the other values
of learning rate worked well except for 1 · 10−1. This was unstable and did not
produce any values. Everything between 1 · 10−2 and 1 · 10−1 was unstable and
were removed from the comparison.

Results are in tables 12–14 and in figures 13–15. Training four networks with
each of the learning rates took 20 minutes on average. So teaching one neural
network with some learning rate takes approximately 5 minutes.

Based on the results there is some variation between how quickly networks
learn. All the learning rates help networks to learn, but as in section 3.3.1 we
also see here that as the learning rate gets smaller the learning gets slower for
all the networks. In 50 epochs we see that on average the networks learn the
quickest with the learning rate 1 · 10−2.
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10 epochs 20 epochs 30 epochs 40 epochs 50 epochs
Network
1 0.025264 0.013921 0.010738 0.009030 0.007798
2 0.069024 0.032439 0.018876 0.014757 0.012109
3 0.038485 0.022752 0.016397 0.012319 0.009525
4 0.056649 0.034920 0.025393 0.020453 0.017084

Table 12: Studying the development of the average loss on networks without ReLU
when the learning rate is 1 · 10−4. Each of the networks is new and structurally the
same but the initial states are randomly picked and can vary. See figure 13.

10 epochs 20 epochs 30 epochs 40 epochs 50 epochs
Network
1 0.005307 0.003073 0.002180 0.001696 0.001399
2 0.006279 0.003001 0.002189 0.001788 0.001534
3 0.004777 0.002557 0.001904 0.001548 0.001321
4 0.007543 0.004039 0.002751 0.002141 0.001794

Table 13: Studying the development of the average loss on networks without ReLU
when the learning rate is 1 · 10−3. Each of the networks is new and structurally the
same but the initial states are randomly picked and can vary. See figure 14.

10 epochs 20 epochs 30 epochs 40 epochs 50 epochs
Network
1 0.000806 0.000453 0.000328 0.000260 0.000218
2 0.000829 0.000471 0.000335 0.000264 0.000221
3 0.000978 0.000633 0.000473 0.000374 0.000308
4 0.000718 0.000450 0.000324 0.000250 0.000204

Table 14: Studying the development of the average loss on networks without ReLU
when the learning rate is 1 · 10−2. Each of the networks is new and structurally the
same but the initial states are randomly picked and can vary. See figure 15.
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Figure 13: Studying the development of the average loss on networks without ReLU
when the learning rate is 1 · 10−4. Each of the networks is new and structurally the
same but the initial states are randomly picked and can vary. A plot from table 12.
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Figure 14: Studying the development of the average loss on networks without ReLU
when the learning rate is 1 · 10−3. Each of the networks is new and structurally the
same but the initial states are randomly picked and can vary. A plot from table 13.
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Figure 15: Studying the development of the average loss on networks without ReLU
when the learning rate is 1 · 10−2. Each of the networks is new and structurally the
same but the initial states are randomly picked and can vary. A plot from table 14.

36



5.2 Teaching until the wanted small average loss
We learned in the previous section that networks learn best with the learning
rate 1 · 10−2. We continue with that from now on. Next up we want to see how
quickly an untrained network learns. We generate four new networks and teach
them until the stopping criterion.

Results are in table 15 and in figure 16. The learning was quicker than ex-
pected. The first network took 200 epochs and 19 minutes to meet the stopping
criterion. The second network took 130 epochs and 10 minutes. The third net-
work took 166 epochs and 12 minutes. The last network took 200 epochs and
14 minutes.

10 epochs 50 epochs 100 epochs 150 epochs 200 epochs
Network
1 0.000918 0.000314 0.000173 0.000118 0.000089
2 0.000841 0.000212 0.000113 NaN NaN
3 0.000826 0.000239 0.000143 0.000100 NaN
4 0.000584 0.000228 0.000148 0.000111 0.000090

Table 15: Studying the development of the average loss on networks without ReLU
layers until the stopping criterion. Each of the networks is new and structurally the
same but the initial states are randomly picked and can vary. See figure 16.
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Figure 16: Studying the development of the average loss on networks without ReLU
layers until the stopping criterion. Each of the networks is new and structurally the
same but the initial states are randomly picked and can vary. A plot from table 15.
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5.3 Compare networks with and without ReLU layers
Now we want to compare networks with and without ReLU layers. We want to
see whether the ReLU layers help and speed up the learning. This turned out
to be more complicated than we hoped. When teaching the network with ReLU
layers with the learning rate of 1 · 10−2 networks did not produce any values.
We had to go down to the value of 8 · 10−4 before calculations started to give
any numerical values, but it was still unstable. Value 1 ·10−4 is the most reliable
and we continue with it with all of the networks with and without ReLU.

When adding the ReLU layers to a network it doubles the amount of layers.
So always when we compare networks with and without ReLU we double the
number of the layers in a network without ReLU. Now we have 5 layers but for
networks without ReLU we have 10.

We generate four networks with ReLU layers and four networks without
ReLU layers and teach them until the stopping criterion. We switched the stop-
ping criterion from 9 ·10−5 to 9 ·10−4 since with the new learning rate networks
learn much slower. The hypothesis is that ReLU does help the networks to learn
faster.

Results are in the table 16 and in the figures 17 and 18. The networks
without ReLU took 1034-1155 epochs and 69-77 minutes to reach the stopping
criterion and the networks with ReLU took mainly around 526-634 epochs and
30-40 minutes. One network with ReLU took a little longer, 1070 epochs, to
learn until the stopping criterion. Based on the results we can conclude that
ReLU does help the networks to learn faster.

50 epochs 150 epochs 1034 epochs 1068 epochs 1150 epochs
Network

1 no ReLU 0.010811 0.004400 0.000922 0.000900 NaN
2 no ReLU 0.010590 0.003996 0.000963 0.000944 0.0009
3 no ReLU 0.008306 0.003540 0.000907 NaN NaN
4 no ReLU 0.009749 0.004008 0.000900 NaN NaN
1 with ReLU 0.004149 0.002435 NaN NaN NaN
2 with ReLU 0.005814 0.002156 NaN NaN NaN
3 with ReLU 0.009970 0.002576 0.000921 0.000900 NaN
4 with ReLU 0.003698 0.001606 NaN NaN NaN

Table 16: A comparison of the development of the average loss on neural networks
with and without ReLU layers until the stopping criterion. The learning rate is 1 · 10−4.
Each of the networks is new and structurally the same but the initial states are ran-
domly picked and can vary. See figures 17 and 18.
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Figure 17: A comparison of the development of the average loss on neural net-
works with and without ReLU layers until the stopping criterion. The learning rate is
1 · 10−4. Each of the networks is new and structurally the same but the initial states
are randomly picked and can vary. A plot from table 16.
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Figure 18: Zoomed version of the figure 17. A comparison of the development of
the average loss on neural networks with and without ReLU layers. A plot from table
16.
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