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Effects of climate and plant functional types 
on forest above‑ground biomass accumulation
Xia Chen1†, Mingyu Luo1† and Markku Larjavaara1,2* 

Abstract 

Background  Forest above-ground biomass (AGB) accumulation is widely considered an important tool for mitigat-
ing climate change. However, the general pattern of forest AGB accumulation associated with age and climate gradi-
ents across various forest functional types at a global scale have remained unclear. In this study, we compiled a global 
AGB data set and applied a Bayesian statistical model to reveal the age-related dynamics of forest AGB accumulation, 
and to quantify the effects of mean annual temperature and annual precipitation on the initial AGB accumulation rate 
and on the saturated AGB characterizing the limit to AGB accumulation.

Results  The results of the study suggest that mean annual temperature has a significant positive effect on the initial 
AGB accumulation rate in needleleaf evergreen forest, and a negative effect in broadleaf deciduous forest; whereas 
annual precipitation has a positive effect in broadleaf deciduous forest, and negative effect in broadleaf evergreen for-
est. The positive effect of mean annual temperature on the saturated AGB in broadleaf evergreen forest is greater than 
in broadleaf deciduous forest; annual precipitation has a greater negative effect on the saturated AGB in deciduous 
forests than in evergreen forests. Additionally, the difference of AGB accumulation rate across four forest functional 
types is closely correlated with the forest development stage at a given climate.

Conclusions  The contrasting responses of AGB accumulation rate to mean annual temperature and precipitation 
across four forest functional types emphasizes the importance of incorporating the complexity of forest types into the 
models which are used in planning climate change mitigation. This study also highlights the high potential for further 
AGB growth in existing evergreen forests.
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Background
Curbing dangerous climate change requires both drastic 
emissions cuts and the removal of large carbon dioxide 
quantities from the atmosphere [1]. Forest above-ground 
biomass (AGB), referring to the accumulated dry matter 

resulting from photosynthesis and tree growth, is an 
important carbon stock because nearly 50% of AGB is 
carbon [2]. The role that forests play in mitigating global 
warming depends on the rate at which carbon is assimi-
lated by trees and converted into biomass, along with the 
quantity and persistence of this biomass in the forests [3, 
4]. Positively influencing forest area change, including 
decelerating deforestation [5–7] or accelerating refor-
estation [1, 3, 8] has widely been discussed as a potential 
large-scale method for curbing climate change. How-
ever, the levels of C storage vary with forest development 
stages, the increasing the C density of successional for-
ests may be an equally important method for mitigating 
climate change.
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Biomass accumulation during forest stand develop-
ment is one of the most paradigmatic processes in ecol-
ogy [9]. Generally, the feedback between forest structure 
which influences light environments and tree growth may 
control forest dynamics [10]. The causes behind age- or 
size-related declines in biomass accumulation have been 
and remain widely discussed. The increasing respira-
tional cost of larger AGB causes the productivity decline 
[11], and the reorganization of the forest canopy and 
changes in population structure following canopy closure 
lead directly to the decline in stand growth [12]. Also, the 
age-related decline of stand biomass accumulation could 
be attributable to declined production, increased mortal-
ity or both [13].

The response of forests to environmental variations has 
spatial variability [14]. Several studies have shown that 
mean annual temperature is an important determinant of 
the spatial distribution of biomass, due to its effect on the 
ecophysiological processes that control the net primary 
productivity rate [15]. Temperature variables, the mean 
annual temperature or temperature seasonality, could 
explain 19–71% of the variation in the C fluxes analysis 
[16]. Meanwhile, the effects of temperature on C storage 
might be moderated by moisture availability and water 
pressure deficit [17]. Because precipitation could influence 
water availability, which in turn affects stomatal conduct-
ance, nutrient uptake, leaf area index, and thus tree’s pro-
ductivity across a broad range of forest types [18]. Also, 
the interactions between temperature and precipitation 
may influence C fluxes [19]. The responses of forest bio-
mass accumulation to the climate largely depend on plant 
functional types (PFTs) [20, 21]. The contrasting responses 
of growth to temperature in angiosperm and coniferous 
trees have been demonstrated in several studies. For exam-
ple, increased temperatures had positive effects on the tree 
growth of deciduous broadleaved species, but neutral or 
negative effects on conifers in Mediterranean forests [22, 
23]. Deciduous broadleaved species show stronger growth 
(measured as stem diameter and biomass) responses to 
elevated temperature when compared with evergreen trees 
and conifers [24]. By contrast, the effect of precipitation on 
growth was much more uniform across tree species than 
that of temperature. A reduction in precipitation was pre-
dicted to decrease tree growth in angiosperm and conifer-
ous trees [23]. However, a recent study reported that low 
precipitation favors the growth of deciduous broad-leaved 
trees [25]. An in-depth understanding of functional type-
specific forest growth responses to climate and age varia-
bility is necessary for evaluating the potential of forest AGB 
accumulation in global climate change mitigation [26]. 
Forest growth responses to climate warming still include 
many uncertainties, especially at the functional type level 
[27]. The global patterns of these contrasting growth and 

distributional responses among divergent tree functional 
types to climate still need to be further studied.

Understanding plant functional-related variations in 
biomass accumulation is critical for reducing uncertainty 
regarding the potential for carbon uptake and climate 
change mitigation through forest regrowth. The larg-
est contributor to the increment of vegetation C storage 
between 2010 and 2050 in China’s forests was deciduous 
broadleaf forest, followed by evergreen needleleaf forest, 
while the smallest was deciduous needleleaf forest. The 
vegetation C sequestration rate per area also varied signifi-
cantly between different forest types, deciduous broadleaf 
forest had the highest C sequestration rate, while deciduous 
needleleaf forest had the lowest [28]. The resource (light 
and water) use efficiency of evergreen forests increased ini-
tially and then gradually declined after reaching the mature 
stage, while deciduous forest resource use efficiency con-
tinuously increased with age [29].

The complexity of forest types has been increasingly 
noted in the AGB estimation modeling [30], however, 
more up-to-date information concerning the dynamics 
and spatial patterns of AGB accumulation across diverse 
forest functional types with stand development is neces-
sary. Therefore, in this study, we applied a Bayesian statisti-
cal model to fit the relationship between AGB and age in 
various forest functional types based on leaf morphology 
(broadleaf vs. needleleaf) and leaf phenology (deciduous vs. 
evergreen).

Methods
Overview
In this research, we developed a model of global forest AGB 
as a function of age, mean annual precipitation (MAP) 
and mean annual temperature (MAT). We then fitted the 
parameters of the model with a Bayesian method using a 
global AGB data set that we compiled. Based on the param-
eterized model and the global forest age data set, we then 
predicted global forest current AGB, saturated AGB, and 
the AGB accumulation potential (Additional file 2: Fig. S1).

Statistical model of forest AGB accumulation
We conducted separate analyses for four forest functional 
types (needleleaf evergreen, needleleaf deciduous, broad-
leaf evergreen, and broadleaf deciduous). For each forest 
functional type, suppose that we have n data points, labeled 
i = 1, 2, . . . , n . Let AGBi be the observed value of AGB. It is 
modeled as

where yi denotes the expected value of the observed 
AGB. The standard deviation is modeled as yiσ , where σ 
is the proportion of standard deviation contributed by a 

(1)AGBi ∼ Normal
(

yi,
(

yiσ
)2
)
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unit of mean AGB value. The mean value yi is modeled as 
a Monod function of age [31, 32], i.e.,

where ri is the initial AGB accumulation rate,ai is forest 
age, and µi is the saturated AGB (Mg ha–1). The realized 
AGB accumulation rate (Mg ha–1 year−1) is the derivative 
of y respective to a , that is

In the initial stage of forest growth, a = 0 , the accumu-
lation rate is equal to r . As forest age increases, the accu-
mulation rate will decrease.

We assume that ri and µi have a linear dependence on 
MAP and MAT

The covariates zi,1 and zi,2 are normalized MAP (mm) 
and MAT (℃). They are calculated as

and

to rescale them into variables with mean values near 0 
and standard deviations near 1. This normalization will 

(2)yi = µi
ai

ai + µi/ri

(3)
∂y

∂a
= r

1
(

1+ µ
r a

)2

(4)µi = βµ,0 + βµ,1zi,1 + βµ,2zi,2

(5)ri = βr,0 + βr,1zi,1 + βr,2zi,2

(6)zi,1 =
MAPi − 800

500

(7)zi,2 =
MATi − 7

7

not change statistical and prediction results but will only 
improve computational efficiency by letting the slopes 
be at similar scales. We rescale the precipitation and 
temperature conditions for four forest types together 
(MAP = 800  mm and MAT = 7 ℃, which are mean val-
ues calculated from the climate data in the AGB data set 
compiled for fitting models), to directly compare their 
intercept terms under the same climate condition.

AGB and climate data
To fit the parameters in our forest biomass accumulation 
model, we compiled a data set containing AGB, age, for-
est functional type, and geographical location. The data 
were collected in two ways. First, we searched available 
databases, including (a) the Global Forest Carbon Data-
base [33, 34], (b) the Forest Biomass database of Eurasia 
[35], and (c) the Forest Biomass database of China [36]. 
Second, we conducted additional targeted literature 
searches to identify further available data on the AGB 
analyzed here. Details of our data collection can be found 
in “Data collection” in the Supporting Information (Addi-
tional file  1). Overall, the database consists of four for-
est functional types (Fig.  1): needleleaf evergreen (3839 
records), needleleaf deciduous (322 records), broadleaf 
evergreen (596 records), and broadleaf deciduous (1623 
records).

We extracted the monthly temperatures (near-surface 
air temperature) and precipitation (1970–2000) accord-
ing to their geographic coordinates from WorldClim ver-
sion 2.1 [37].

Model fitting and evaluation
For each forest type, we used Bayesian methods [38] 
to obtain the posterior distribution of parameters σ 2

Fig. 1  The studied sites at a global scale used as initial input data
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,βµ,0 , βµ,1 , βµ,2,βr,0 , βr,1 , and βr,2 . The posterior distribu-
tions were simulated using Markov chain Monte Carlo 
(MCMC) using R package rstan [39]. We performed 20 
000 iterations for each chain (a total of four chains). The 
prior distributions are chosen as σ 2 ∼ inv_Gamma(1, 1) , 
βµ,0 ∼ N

(

200, 106
)

 , βr,0 ∼ N
(

2, 106
)

 , and βµ,1 , βµ,2 , βr,1 , 
βr,2 ∼ N

(

0, 106
)

.
With a new data point l for a given forest type, from 

the posterior sample of the parameters, we can obtain the 
posterior prediction sample of

where rl and µl are calculated from Eq. 3 and Eq. 4 and 
are constrained in [0,+∞) (the negative values are set to 
0). The predicted AGB value is calculated by

where yl,pred is the posterior median of yl.
To assess the model performance, we computed the 

coefficient of determination ( R2 ) (Eq.  10) and the root-
mean-square error (RMSE) (Eq. 11). The percentage root 
mean-square error (RMSE%) (Eq. 12) were used to evalu-
ate the prediction performance of the models:

where yl is the observed AGB value, yl,pred is the pre-
dicted AGB value based on the model, y is the arithme-
tic mean of all the observed AGB values, and n is the 
sample number. In general, a higher R2 value and lower 
RMSE and RMSE% values indicate a relatively better 
estimation performance of the model. In addition, we 
compare the observed values AGBl and predicted val-
ues yl,pred to evaluate our model. The residual is defined 
as yl,pred − yl,obs , and the residual fraction is defined as 
(

yl,pred − yl,obs
)

/yl,pred . We also conducted cross valida-
tion to evaluate our model fitting. For the data set of each 
forest type, we randomly chose 70% of the data points 
as a training set, to fit the model parameters, and let 
the other data points be the testing set, to evaluate the 
obtained predictions. To test the sensitivity of our analy-
sis, we additionally used the climate data for the intervals 

(8)yl = µl
al

al + µl/rl

(9)yl,pred = median
(

yl
)

(10)R2
= 1−

∑n
l=1

(

yl − yl,pred
)2

∑n
l=1

(

yl − y
)2

(11)RMSE =

√

√

√

√

n
∑

l=1

(yl − yl,pred)
2

n

(12)RMSE% =
RMSE

y
× 100

1961–1969 and 2001–2009 to fit the model. To quantify 
the spatial similarity between our model-predicted AGB 
and remote sensing-based AGB estimates, we resampled 
the 1-km resolution AGB (Mg ha−1) to a 0.5-degree grid 
from a wall-to-wall global forest AGB map [40], after 
which we extracted AGB to compare with the model-pre-
dicted AGB.

Global forest AGB prediction
The Global Forest Age Dataset (GFAD) [41] includes 
both natural and managed forests. This data set was 
inferred based on existing forest attributes and combined 
with MODIS fire information, which allows the calcula-
tion of the combined effect of artificial or natural events 
that result in forest regrowth [42].  GFAD describes the 
forest age distributions of four plant functional types 
(needleleaf evergreen, needleleaf deciduous, broadleaf 
evergreen, and broadleaf deciduous) in a 0.5-degree grid 
(Additional file 2: Fig. S2). The GFAD data set represents 
the 2000–2010 period. Each grid cell contains 15 for-
est age classes (mapped from the MODIS Collection 5.1 
land cover data set) of each forest functional type. The 
15 forest age classes contain the forest areal fractions in 
the age intervals[0, 10], [10, 20], [20, 30], . . . , [130, 140] , 
and[140,+∞) . We use 5, 15, …,135, and 145 to represent 
forest age in each age class. The current forest AGB for 
each forest functional type in each age class is predicted 
by Eq.  7 and Eq.  8 and are multiplied by the areal frac-
tions. The forest total AGB in each grid cell is calculated 
by summing the product of the AGB and the correspond-
ing areal fraction of each forest functional type. Let wi,j,k 
be the areal fraction of forest type j , age class k at loca-
tioni , and let yl,j,k ,pred be the predicted AGB, and then the 
predicted value of the forest AGB, including all four for-
est functional types, is calculated as

Results
Variations of above‑ground biomass accumulation 
during forest stand development across forest functional 
types
The AGB accumulation rate exhibited significant dif-
ferences with respect to forest functional types. 
As shown in Fig.  2, the broadleaf evergreen for-
est had the highest initial AGB accumulation rate 
(r = 16.37  Mg  ha–1  year−1), followed by needleleaf 
deciduous (r = 7.34 Mg  ha–1  year−1), broadleaf decidu-
ous (r = 5.89 Mg ha–1 year−1), and needleleaf evergreen 
forest (r = 4.46  Mg  ha–1  year−1) (annual precipita-
tion = 800  mm and mean annual temperature = 7  ℃). 

(13)Yl,pred =

4
∑

j=1

15
∑

k=1

wi,j,kyl,j,k ,pred
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After the age of 25  years, the differences in accumu-
lation rates between the functional types become 
relatively unimportant (Fig.  2). In addition, the AGB 
accumulation rate of the broadleaf evergreen forest 
is distinctly higher than that of the broadleaf decidu-
ous forest when the age was less than 35 years, but the 
broadleaf deciduous forest had a higher AGB accumu-
lation rate when exceeding 35 years. By contrast, in the 
needleleaf forests, the AGB accumulation rate of the 
deciduous forest was higher than that of the evergreen 
forest when the age was less than 25 years, after which 
the evergreen forest had a higher AGB accumulation 
rate (Fig. 2).

Based on the parameter estimates and the global for-
est age data set, we quantified the potential of AGB 
accumulation of four forest functional types respec-
tively with the median value of the posterior distri-
bution at a resolution of a 0.5-degree (Fig.  3). The 
broadleaf evergreen forest had the highest mean AGB 
increase potential (50.83 ± 76.02  Mg  ha−1) based on 
the difference between current and saturated AGB. 
As shown in Fig. 3b, broadleaf evergreen trees distrib-
uted in northern South America and central Africa 
had higher AGB increase potential. The mean AGB 
increase potential of the needleleaf evergreen forest 
was 42.9 ± 46.76  Mg  ha−1, and the AGB accumulation 
potential of needleleaf evergreen trees in northwestern 
Eurasia and western North America was high (Fig. 3d). 
The mean AGB increase potential of the broadleaf 
deciduous forest was 29.17 ± 43.25 Mg ha−1, high AGB 
accumulation potential was occurred in south-central 
South America (Fig.  3a). The needleleaf deciduous 
forest had the lowest mean AGB increase potential 

(16.78 ± 26.72  Mg  ha−1). Needleleaf deciduous trees 
distributed in northeast Eurasia had a higher AGB 
accumulation potential (Fig. 3c).

Effects of climate on AGB accumulation across different 
forest functional types
In this study, we used estimated model parameters to 
quantify the effects of annual precipitation (MAP) and 
mean annual temperature (MAT) on the initial AGB 
accumulation rate and saturated AGB. Table  1 shows 
parameter estimates from the current model. The MAT 
effects quantify the µ and initial AGB accumulation rat 
changes per a 1 °C change in MAT, and the MAP effects 
quantify the saturated AGB and initial AGB accumula-
tion rate changes per a 1  mm change in MAP for each 
forest type. Note that in our statistical model, MAP and 
MAT values are normalized, but the effects of MAP and 
MAT are reported in their original scales in Table 1. We 
consider the slope term statistically significant if its 95% 
credible interval does not contain 0. The initial AGB 
accumulation rate changes were closely correlated with 
climatic factors across the four functional types (Table 1). 
Specifically, MAT had a significant positive effect on the 
initial AGB accumulation rate of needleleaf evergreen 
forest but a significant negative effect on the initial AGB 
accumulation rate of broadleaf deciduous forest. By con-
trast, MAT had weak relationships with the initial AGB 
accumulation rate of needleleaf deciduous and broadleaf 
evergreen forests. The initial AGB accumulation rate of 
the broadleaf deciduous forest exhibited a positive corre-
lation with MAP but showed a negative correlation with 
MAP in the broadleaf evergreen forest. In addition, the 
saturated biomass changes were also associated with cli-
matic factors in all forest functional types (Table 1). MAT 
positively affected the saturated AGB of broadleaf decid-
uous, broadleaf evergreen, and needleleaf evergreen for-
ests. Except for a positive effect of MAP on the saturated 
AGB of needleleaf evergreen forest, precipitation nega-
tively affected the saturated AGB of the other three forest 
functional types. On a whole, the positive effect of MAT 
on the saturated AGB of the broadleaf evergreen forest 
was greater than on the broadleaf deciduous forest. Com-
pared with evergreen forests, MAP had a greater negative 
effect on saturated AGB in deciduous forests.

Model evaluation and sensitivity analysis
As the deviation between the modeled AGB and the 
observations is increased with the scales of AGB values, 
we added heteroscedasticity terms to the model (Eq. 1). 
We plotted the observed AGB (Mg ha−1) against model-
predicted AGB (Mg ha−1) in Fig. 4. The model of needle-
leaf deciduous and evergreen forests had the lower R2 
value (0.40 and 0.46, respectively) with an RMSE% of 

Fig. 2  Posterior medians and 80% credible intervals of forest AGB 
accumulation rates (Mg ha–1 year.−1) with stand age across forest 
type, calculated using the intercept terms of maximum biomass and 
initial accumulation rates (annual precipitation = 800 mm and mean 
annual temperature = 7 ℃)
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Fig. 3  Posterior medians of AGB (Mg ha−1) accumulation potential (the difference between current and saturated AGB) at a resolution of a 
0.5-degree of four forest types
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51.64% and 51.92%, respectively (Table  2). Conversely, 
the models of broadleaf deciduous and evergreen forests 
performed relatively better. The model of broadleaf for-
ests had a higher R2 value (0.56 and 0.72, respectively) 
with an RMSE% of 49.35% and 49.27%, respectively 

(Table  2). The residual fractions (the ratio between 
residual and predicted value) of broadleaf forests were 
lower than needleleaf forests (Additional file  2: Figs. S3 
and S4). Intuitively, the model of these four forest types 
was better at estimating AGB less than 400 Mg ha−1. We 

Table 1  Posterior mean and 95% credible interval of the parameter estimates from the current model

All parameters have credibility intervals non-overlapping with zero (bold type means statistically significant). Each forest type is fitted to the model separately. r is the 
initial biomass accumulation rate, and µ is the saturated AGB. MAP is mean annual precipitation and MAT is mean annual temperature

Parameters Broadleaf deciduous (n = 1623) Broadleaf evergreen (n = 596) Needleleaf deciduous (n = 322) Needleleaf 
evergreen 
(n = 3839)

Intercept
(βr ,0 ) (Mg ha–1 year−1)

5.89
(5.55, 6.24)

16.37
(14.17, 18.77)

7.34
(5.85, 8.7)

4.46
(4.31, 4.61)

MAP effect (β r ,1)

(Mg ha–1 year−1 mm–1)
0.0071
(0.0062, 0.0079)

−0.0032
(−0.0037, −0.0027)

0.0028
(−0.0015, 0.0080)

−0.0002
(−0.0005, 0.0001)

MAT effect (β r ,2)

(Mg ha–1 year−1 °C–1)
-0.0386
(-0.0729, -0.0043)

−0.1429
(−0.2871, 0.0114)

0.2486
(−0.0243, 0.4443)

0.2686
(0.2514, 0.2857)

Intercept
(βµ,0 ) (Mg ha–1)

393.55
(360.95, 430.72)

373.10
(182.5, 645.17)

286.30
(227.29, 369.82)

449.56
(416.6, 486.7)

MAP effect (βµ,1)

(Mg ha–1 mm–1)
−0.2122
(−0.2693, −0.1418)

−0.1905
(−0.2621, −0.1210)

−0.1964
(−0.3613, −0.0263)

0.0874
(0.0064, 0.1745)

MAT effect (βµ,2)

(Mg ha–1 °C–1)
19.0471
(15.3600, 22.6571)

36.9300
(5.4271, 69.0714)

8.2000
(−4.3529, 19.4900)

22.3700
(18.7143, 26.0643)

Variance of error ( σ) 0.52
(0.49,0.54)

0.44
(0.41,0.47)

0.5
(0.46,0.52)

0.52
(0.5,0.53)

Fig. 4  Model-predicted above-ground biomass (AGB) (Mg ha−1) plotted against observed AGB across four forest types: a Broadleaf deciduous, 
b Broadleaf evergreen, c Needleleaf deciduous, and d Needleleaf evergreen. The shaded area represents one standard deviation of the mean 
predicted AGB
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conducted a sensitivity analysis to evaluate the impacts of 
climate conditions on the estimated parameters for AGB 
prediction. The 95% credible intervals of the parameter 
estimate from the climate periods (1970–2000) in the 
current model overlapped with the 95% credible intervals 
of the parameter estimates from the other two different 
climate periods (1961–1969 and 2001–2009) (Additional 
file 2: Table S1).

Discussion
Forest AGB accumulation varied across functional types
Our results suggest that the effect of forest age on the 
AGB accumulation rate depended on forest functional 
type (Fig.  2). In a given climate (MAP = 800  mm and 
MAT = 7 ℃, which are mean values calculated from the 
climate data in the AGB data set compiled for fitting 
models), the broadleaf evergreen forest had a higher AGB 
accumulation rate than the broadleaf deciduous forest 
when the forest age was below 35; but the AGB accumu-
lation rate of broadleaf deciduous forest was higher when 
the forest age exceeding 35 years. There are several possi-
ble explanations for this result. Evergreen forest resource 
use efficiencies initially increased before reaching the 
mature stage and then gradually declined, in contrast 
with deciduous forests, which exhibited continuously 
increasing trends with age [29]. Additionally, the varia-
tion of soil nitrogen (N) availability along with forest age 
also exhibits difference between evergreen and deciduous 
forests [43, 44]. Compared with evergreen forests, decid-
uous forests usually have a higher N mineralization rate 
due to their high-quality litter [45]. Therefore, deciduous 
forests can delay their functional decline by increasing 
soil fertility over time [46, 47]. However, the needleleaf 
forests exhibited an opposite dynamic in the variation of 
AGB accumulation rate between its evergreen and decid-
uous groups compared with the broadleaf forests (Fig. 2). 
This may attribute to the differences in photosynthetic 
performance [48] and hydraulic capacity [49] between 
broadleaf and needleleaf forests. These results reflect the 
high variability of the AGB accumulation rates along with 
age across various forest functional types.

The broadleaf evergreen and needleleaf evergreen for-
ests showed a relatively high AGB increase potential 

(Fig.  3), suggesting the increasing biomass in existing 
evergreen forests might continue to take up atmospheric 
CO2 over the upcoming decades. However, we should 
note that there was a large uncertainty in the parameters 
of the broadleaf evergreen forest (Fig. 2). The insufficient 
sample size might be a reason caused this uncertainty. 
Additionally, forest productivity is also influenced by soil 
properties [50], and the variation of soil properties in the 
tropical forest might be larger than in other forest types. 
It should be noted that, the statistical model applied in 
this study assumed that climatic conditions do not fluctu-
ate with time, we focused on the forest AGB accumula-
tion potential without taking future climate change into 
account in our current study.

The divergent response of AGB accumulation to climate 
across four forest functional types
Temperature and soil water availability are important 
environmental factors that may influence forest growth 
and development [51, 52]. In our study, the estimated 
model parameters were used to quantify the effects of 
annual mean temperature and annual precipitation on 
the saturated AGB and initial AGB accumulation rate. 
We found that the changes in the saturated AGB and ini-
tial AGB accumulation rate were closely correlated with 
climatic factors across the four functional types (Table 1). 
A study conducted in the Iberian Peninsula reported 
contrasting effects of temperature in Mediterranean 
angiosperms and conifers, there was a positive effect of 
rising temperatures on angiosperm tree growth, but neu-
tral or negative effects on coniferous trees [22, 23]. How-
ever, the response of tree growth to the climate becomes 
more varied when the leaf attributes of deciduous and 
evergreen trees are added into consideration (Table  1). 
Our results showed that the direction and intensity of 
the influence caused by climatic factors (temperature 
and precipitation) on the saturated AGB and initial AGB 
accumulation rate of deciduous and evergreen forests 
are very different. Deciduous forests have time limits for 
photosynthesis each year and C allocation compared with 
evergreen forests [53], and the Weng et al. (2017) noted 
that temperature drives the distribution of deciduous and 
evergreen forests by affecting the N mineralization rates 

Table 2  Summary of AGB estimation of the models for different forest functional types

Forest type R2 RMSE (Mg ha−1) RMSE% Residual fraction (%) Standard 
deviation (σ) (Mg 
ha−1)

Broadleaf deciduous 0.56 69.11 49.35 0.07 70.85

Broadleaf evergreen 0.72 67.61 49.27 0.21 61.80

Needleleaf deciduous 0.40 65.09 51.64 0.49 63.37

Needleleaf evergreen 0.46 64.97 51.92 52.16 63.32
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[54]. Overall, these physiological and phenological differ-
ences may modulate the divergent response across vari-
ous forest types to environmental changes [23, 55]. We 
also observed that the effects of climatic factors on the 
initial AGB accumulation rate and saturated AGB could 
be contrasting in the same forest type. For example, tem-
perature negatively affected the initial AGB accumula-
tion rate of the broadleaf deciduous forest but positively 
affected its saturated AGB. This implies that age-related 
biological changes should be considered when evaluat-
ing forest functional responses to climate change and 
managing forest productivity [29]. Moreover, we found 
that precipitation had a negative effect on the saturated 
AGB of three forest types except the needleleaf evergreen 
forest (Table  1). It suggests that the positive correlation 
between precipitation and biomass [56–58] may not be 
an absolute pattern. A 100-mm increase in mean annual 
precipitation causes a 1.52% decrease in larch AGB in 
China [59]. Additionally, forest height exhibited a hump-
shaped curve along a gradient of water availability, which 
suggests that excessive water supply negatively affects 
canopy height, possibly resulting in lower forest biomass 
[60]. Also, the highest biomass C density in a temperate 
moist forest occurs in moderately wet conditions [61]. 
Furthermore, our results show that the effect of precipi-
tation on the initial AGB accumulation rate is largely 
inconsistent with its effect on saturated AGB for these 
four forest functional types (Table  1), reflecting an age 
dependence of this influence. One possible explanation is 
related to how precipitation affects organ biomass allo-
cation (above- and below- ground) in various age stages 
[62].

Uncertainty analysis of biomass model predictions 
and improvement
Understanding the robustness of the models and reli-
ability of estimates requires an evaluation of estimation 
results. With the median value of the posterior distribu-
tion, the total AGB in each grid cell is calculated based on 
the age and proportion of the four forest functional types 
at a 0.5-degree resolution. The coefficient of determina-
tion (R2) between the model-predicted total forest AGB 
and the global wall-to-wall remote sensing-based AGB 
[40] (Hu et  al., 2016) was 0.69 (P < 0.001) (Additional 
file  2: Fig. S5). The plot location uncertainty brought 
unneglectable error in their remote sensing-based for-
est AGB estimation [40]. In forest succession studies, the 
approach assuming the variation in biomass over time 
could be approximated by the variation across space was 
common [32]. However, the space-for-time approach 
used in this study might introduce some uncertainties 
because we could not incorporate the soil nutrients and 
properties into the model. In our study, we computed 

the uncertainty caused by the posterior distribution of 
parameter estimates (upper and lower quartiles) (Addi-
tional file 2: Fig. S6). However, the difficulty in collecting 
sufficient observation data including four forest func-
tional types was a constraint for evaluating biomass esti-
mates, the spatial uncertainty analysis and error budget 
of the forest AGB map was not fully quantified in this 
study. Moreover, in the current work, we mainly focus 
on the effects of species characteristics and climate on 
above-ground biomass accumulation, however, the forest 
productivity could also be influenced by soil character-
istics and other factors such as natural and human dis-
turbances and forest management. This reminds us that 
more comprehensive data should be collected to further 
enrich the model structure and therefore enhance the 
validity of the estimates of the proposed model and its 
application.

Conclusion
In this study, we applied a Bayesian statistical model to fit 
the relationship between AGB and age in different forest 
functional types based on leaf morphology and phenol-
ogy. Our results clearly showed the dynamics and spatial 
patterns of AGB accumulation across diverse forest func-
tional types with stand development, and the contrast-
ing responses of AGB accumulation to temperature and 
precipitation across four forest functional types. These 
findings highlighted the importance of incorporating the 
complexity of forest types into the forest biomass mod-
eling. Moreover, high AGB accumulation potential of the 
evergreen forest implies that the increasing biomass in 
existing evergreen forest could play a crucial role in car-
bon storage and global warming mitigation.
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Additional file 1. Data Collection.

Additional file 2: Figure S1. A flowchart of the study. The blue arrow 
indicates the main working path, the red arrow indicates data input, and 
the yellow arrow indicates model evaluation. Figure S2. Age distribu-
tions of four forest functional types ((a) Broadleaf deciduous, (b) Broadleaf 
evergreen, (c) Needleleaf deciduous and (d) Needleleaf evergreen) at 
0.5-degree grid from the Global Forest Age Dataset (GFAD) (Poulter et al., 
2019). Figure S3. Residual fraction of the model prediction against the 
predicted AGB (Mg ha−1) across four forest types. The residual is defined as 
the difference between observed and predicted AGB. The residual fraction 
is the ratio between residual and predicted AGB. The red lines indicate the 
zero residual and the data points above it represent cases where predicted 
AGB is smaller than observed AGB. Figure S4. Cross-validation results of 
model fitting. For the data set of each forest type, we randomly chose 70% 
data points as the training set, to fit the model parameters and let the 
other data points be used as the testing set to evaluate the predictions. 
Figure S5. The comparison between predicted AGB (Mg ha−1) calculated 
based on the fitted model and a global wall-to-wall remote sensing-
based AGB (Mg ha−1) maps made by Hu et al. (2016). The 1-km resolution 
wall-to-wall global forest AGB map was resampled and extracted at a 

https://doi.org/10.1186/s13021-023-00225-1
https://doi.org/10.1186/s13021-023-00225-1


Page 10 of 11Chen et al. Carbon Balance and Management            (2023) 18:5 

0.5-degree resolution. The mean residual is 33.32 Mg ha−1 and the mean 
residual fraction is 0.199. Figure S6. Global geographic distribution of the 
predicted current (2000–2010 era) forest AGB (Mg ha−1). The total AGB in 
each grid cell is calculated based on the age and proportion of the four 
forest functional types at a 0.5-degree resolution with the median value 
(a), lower quartiles (b) and upper quartiles (c) of the posterior distribution. 
The blank area in southern Australia occurs because no data for this area 
exist in the global forest age data set. Other blank areas show grid cells 
without any forests due to glaciers or extreme aridity. Table S1. Sensitivity 
analysis of climate conditions on parameter estimation.
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