
https://helda.helsinki.fi

A systematic literature review of capstone courses in software engineering

Tenhunen, Saara Maija

2023-07

Tenhunen , S M , Männistö , T , Luukkainen , M & Ihantola , P 2023 , ' A systematic literature

review of capstone courses in software engineering ' , Information and Software Technology

, vol. 159 , no. 2 . https://doi.org/10.1016/j.infsof.2023.107191

http://hdl.handle.net/10138/357159

https://doi.org/10.1016/j.infsof.2023.107191

cc_by

publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



Information and Software Technology 159 (2023) 107191

A
0

A
S
T

A

K
C
P
C
S

1

t
e
e
i
d
a

i
c
w
t
b
t
m
g

p

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

systematic literature review of capstone courses in software engineering
aara Tenhunen ∗, Tomi Männistö ∗, Matti Luukkainen, Petri Ihantola
he University of Helsinki, Finland

R T I C L E I N F O

eywords:
apstone
roject course
omputer science education
oftware engineering education

A B S T R A C T

Context: Tertiary education institutions aim to prepare their computer science and software engineering
students for working life. While much of the technical principles are covered in lower-level courses, team-based
capstone courses are a common way to provide students with hands-on experience and teach soft skills.
Objective: This paper explores the characteristics of project-based software engineering capstone courses
presented in the literature. The goal of this work is to understand the pros and cons of different approaches
by synthesising the various aspects of software engineering capstone courses and related experiences.
Method: In a systematic literature review for 2007–2022, we identified 127 articles describing real-world
capstone courses. These articles were analysed based on their presented course characteristics and the reported
course outcomes.
Results: The characteristics were synthesised into a taxonomy consisting of duration, team sizes, client and
project sources, project implementation, and student assessment. We found out that capstone courses generally
last one semester and divide students into groups of 4–5 where they work on a project for a client. For a slight
majority of courses, the clients are external to the course staff and students are often expected to produce a
proof-of-concept level software product as the main end deliverable. The courses generally include various
forms of student assessment both during and at the end of the course.
Conclusions: This paper provides researchers and educators with a classification of characteristics of software
engineering capstone courses based on previous research. We also further synthesise insights on the reported
course outcomes. Our review study aims to help educators to identify various ways of organising capstones
and effectively plan and deliver their own capstone courses. The characterisation also helps researchers to
conduct further studies on software engineering capstones.
. Introduction

Universities and other tertiary education institutions should provide
heir students with sufficient skills and abilities before the students
nter working life. In software engineering related programmes, this
ntails having an understanding of the common principles and theory
n computer science [1,2] and technical competencies and knowledge
emanded by the industry [3,4]. Any recent graduate should also be
ble to apply this technical knowledge in practice [1].

While much of the technical knowledge and theories are covered
n lower-level courses, many institutions hold team-based capstone
ourses to ensure students are ready to apply the knowledge in a
orkplace environment. A ‘‘capstone course’’ usually means a course

hat finishes an academic degree [5]. The main goal of a project-
ased capstone course is to provide hands-on experience in applying
he tools, techniques, principles and best practices that are taught
ore theoretically in previous courses [6–8]. Capstones are also re-

arded as crucial in teaching students the necessary soft skills such

∗ Corresponding authors.
E-mail addresses: saaraten@gmail.com (S. Tenhunen), tomi.mannisto@helsinki.fi (T. Männistö), matti.luukkainen@helsinki.fi (M. Luukkainen),

etri.ihantola@helsinki.fi (P. Ihantola).

as teamwork [9,10], verbal and written communication [11], time
management [12], problem solving [7] and project management [13].
In computer science (CS) and software engineering (SE) programmes,
capstone courses generally last one or two semesters, and they include
assigning students into teams and having them work on various kinds
of software engineering projects [5,14,15]. In these projects, they are
expected to experience stages of the software development life-cycle
from requirements elicitation to software maintenance [9].

Given the general acceptance of capstones as a practical way of
teaching industry-relevant skills, a high number of institutions include
a capstone course in their curriculum. This has resulted in a great
deal of research and experience reports done on capstones and their
outcomes. In order to provide a coherent and compact view of software
engineering capstones, this research synthesises the current body of
knowledge on the topic in a systematic manner. We believe that such
a review gives educators valuable knowledge when they plan and
vailable online 9 March 2023
950-5849/© 2023 The Authors. Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.infsof.2023.107191
eceived 18 October 2022; Received in revised form 26 February 2023; Accepted 2
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

March 2023

https://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:saaraten@gmail.com
mailto:tomi.mannisto@helsinki.fi
mailto:matti.luukkainen@helsinki.fi
mailto:petri.ihantola@helsinki.fi
https://doi.org/10.1016/j.infsof.2023.107191
https://doi.org/10.1016/j.infsof.2023.107191
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2023.107191&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Information and Software Technology 159 (2023) 107191S. Tenhunen et al.
Table 1
Searches for systematic reviews on software engineering capstones.

Database Search term Hits

Scopus TITLE-ABS-KEY(software AND engineering AND capstone AND literature AND review) 10
Scopus TITLE-ABS-KEY(software AND engineering AND capstone AND review) 61
Scopus TITLE-ABS-KEY(education AND ‘‘software engineering’’ AND literature AND mapping) 40
Scopus TITLE-ABS-KEY(project AND course AND software AND engineering AND systematic AND review) 20
Scopus TITLE-ABS-KEY(‘‘computer science’’ AND capstone AND literature AND review) 8
Scopus TITLE-ABS-KEY(software AND engineering AND project AND course AND systematic AND literature AND review) 17
Scopus TITLE-ABS-KEY(‘‘software engineering’’ AND education AND literature AND review) 182
Google Scholar Software engineering capstone systematic review 20 300
Google Scholar Software engineering capstone characteristics 31 400
Google Scholar Computer science capstone literature review 53 400
Google Scholar Capstone literature review 94 800
Table 2
Systematic reviews of software engineering capstones.

Title Year Ref Course characteristics examined in the survey

A survey of computer science capstone course literature 2011 Dugan Jr. [21] Course-related: models, learning theories, goals, topics, student
evaluation, evaluation.
Project-related: software process models, phases, type, documentation,
tools, groups, instructor administration.

Designing the IT capstone course 2019 Martin [22] Course duration, learning of new skills, project identification and
selection, teams sizes, team formation, followed methodologies,
assessment of learning outcomes, team and project supervisiona

A review of literature on assessment practices in capstone engineering
design courses: Implications for formative assessment

2006 Trevisan et al.
[23]

Connection to student achievement

aFor the survey by Martin [22], these are characteristics, which would have been examined in the actual survey.
modify their own capstone courses. Researchers can also benefit from a
systematic review of capstones to conduct further comparative studies
on the impact of the varying course forms.

This study is organised as follows. The next section focuses on the
previous literature reviews on SE capstones, as well as general charac-
teristics of such courses. Section 3 describes the research questions and
the related methods, including how the articles were selected. Section 4
presents the results of the literature review. The main findings and
their validity are discussed in Section 5. Finally, Section 6 concludes
the research and provides suggestions for future research.

2. Previous work

2.1. Systematic literature reviews of SE capstones

Many literature reviews have been written in the general area
of software engineering education (SEE). Usually, they focus on spe-
cific sub-areas of SEE such as teaching methods in software engineer-
ing [16], practical approaches to SEE [17], trends in SEE [18,19] or
teaching global software engineering [20].

As the focus of this research is especially on project-based cap-
stone courses in software engineering, we carefully sought any earlier
systematic reviews done on them. The search was conducted on May
17th, 2022, first in the citation database Scopus and secondly in Google
Scholar. Table 1 lists the search terms used in both databases. All
search results produced by Scopus were checked to see whether they
include an SLR of SE capstones, whereas for Google Scholar, each
search produced tens of thousands of hits, so we went through the first
20 pages of each search (200 hits). At this point, the results started to
become highly irrelevant and often repetitive. Based on our search, we
believe that the three review papers presented in Table 2 are the ones
that have been published so far on this topic. Table 2 also presents the
characteristics of capstone courses each of these reviews investigated.
Next, we will briefly present these studies and discuss the necessity of
this review.

Dugan Jr. [21] presents a survey done on the literature related
to undergraduate computer science capstone courses. The survey is
comprehensive, comprising of 200 papers on the subject and summaris-
2

ing them under two major themes: course issues and project issues
(Table 2). Out of these, course issues include aspects related to the
general course organisation, such as course models, learning theories
present in the course and student evaluation. Project issues, on the
other hand, categorise and describe the projects and how they are
implemented. The category includes issues such as software process
phases, project type and documentation of the projects.

Martin [22] has provided an abstract of a systematic literature
review for designing an IT capstone course. The review plans to provide
answers to several questions relating to capstone course design, such
as the optimal team size for project teams, identifying and selecting
suitable projects and determining the correct duration for the course
(Table 2). We are not aware that the research proposed in the abstract
would have been completed.

Trevisan et al. [23] have performed a systematic review on the
assessment practices in capstone engineering design courses. They were
especially interested in discovering the extent to which classroom
assessment has received attention in the capstone literature. The paper
included 32 journal articles and conference proceedings presenting
varying assessment techniques and their use.

In addition to the presented three literature reviews, a study on
the dimensions of SE and CS capstone courses has been conducted
by Burge and Gannod [24]. Said dimensions are roughly divided into
two groups: project dimensions such as customer identity and devel-
opment dimensions such as project type and source code visibility.
The purpose of their study is to provide a framework for analysing
capstone courses, especially in terms of risk and realism. While their
categorisation is versatile, their study does not, however, include a
thorough systematic literature review. The categorisation presented is
more of an experience-based proposal, and therefore the study is left
out of Table 2.

To the best of our knowledge, there is no extensive, recent litera-
ture review done on software engineering capstone courses. A survey
conducted by Dugan Jr. [21] is comprehensive but dated to 2011 and
therefore does not cover the large number of primary studies published
in the past decade. It also does not provide any statistics of the course
characteristics, which would enable educators or researchers to assess
how common some aspect in reality is. Trevisan et al. [23] provide a
review on capstone literature, but it is limited to continuous assessment



Information and Software Technology 159 (2023) 107191S. Tenhunen et al.
Table 3
ACM/IEEE recommendations for SE capstones.

CR # Recommendation

CR 1 The project should span a full academic year, giving students adequate time to reflect upon experiences and retry solutions as appropriate.

CR 2 Where possible, this should preferably be undertaken as a group project. If such factors as assessment make this difficult, it is essential that there should be a
separate group project of substantial size.

CR 3 Where possible, a project should have a ‘‘customer’’ other than the supervisor so that the student gains fuller experience with product development life-cycle
activities.

CR 4 A project should have some form of implementation as its end deliverable so that the students can experience a wide set of software development activities and
adequately evaluate these experiences. Theory-based projects such as the development of formal specifications is therefore inappropriate for this role.

CR 5 Evaluation of project outcomes should go beyond concept implementation (‘‘we built it, and it worked’’ [26]), using walkthroughs, interviews, or simple
experiments to assess the effectiveness and limitations of the deliverables.

CR 6 Assessment of a capstone project should consider how effectively software engineering practices and processes have been employed, including the quality of
student reflection on the experience, and not be based only on the delivery of a working system.
techniques and is dated to 2006. Martin [22] aims to provide a sys-
tematic literature review on IT capstone design and characteristics, but
as of now, the paper has not proceeded beyond the original abstract.
In light of this, current research does not provide an up-to-date view
of how SE capstone courses generally are organised and with what
kind of outcomes. Such a view on the software engineering capstones
would not only provide educators with important information for plan-
ning their own capstone courses but also give researchers a basis for
performing comparative studies on these courses.

2.2. Background: Capstone course characteristics

ACM/IEEE Curriculum Guidelines for Software Engineering (SE)
Degree Programmes [2] view the capstone as an essential element of
a SE degree programme and state that the main goal of a capstone
course is to ensure that the curriculum has a significant real-world
basis. According to ACM/IEEE [2], incorporating real-world elements
into the curriculum is necessary to enable effective learning of software
engineering skills and concepts. The ACM/IEEE Curriculum Guidelines
for Computer Science (CS) degree programmes [1] align with these
views and state that all graduates of CS programmes should have been
involved in at least one substantial project. Such projects should chal-
lenge students by being integrative, requiring evaluation of potential
solutions and working on a larger scale than typical course projects.
For students, a project-based capstone course typically represents a
culmination of their studies and is one of the last milestones before
graduation [1,25]. Indeed, since the 1970s, hundreds of primary studies
have been written on this large, final-year project course [21].

The ACM/IEEE [2] also lists a set of key recommendations that a
capstone course should follow. The recommendations are listed word
by word in Table 3. We decided to use these recommendations as
the basis for formulating our research questions. They give a general
outline of capstone courses and therefore provide a valid starting point
for the categorisation done in this research.

Thus according to these guidelines, there are some basic characteris-
tics that capstone courses have. They can be characterised as long and
substantial projects (CR1, CR2) that should preferably be completed
in a team (CR2). Projects should have customers (CR3) for whom the
students are expected to deliver some form of real implementation at
the end of the course (CR4). Students should therefore engage in real
software development activities and not just complete simple, theory-
based assignments provided by the teacher (CR4). Evaluation of the
project outcomes should focus not only on the fact that the project
‘‘works’’, but also assess the deliverables on how well they have been
completed (CR5). Finally, the focus of the course and its assessment
should be on software engineering practices and processes and students
should give adequate opportunities to reflect on the experience (CR6).
The next section describes in more detail the process of how we derived
3

the research questions based on these basic characteristics.
3. Research questions and method

3.1. Research questions

Characteristics of capstone courses (described in Section 2.2) can
be achieved in many ways. The main goal of this research was to un-
derstand these differences in how capstone courses are implemented in
universities and other tertiary education institutions, and thus provide
a holistic view over the various capstone course implementations.

We decided to use the ACM/IEEE Curriculum Guidelines for Under-
graduate SE Degree Programmes [2] as the basis for starting to explore
these characteristics. The recommendations are listed in Table 3. We
are not aware of any study covering all the aspects mentioned in the
ACM/IEEE recommendations.

Related to CR1, we were interested in the duration of the courses
and what rationale articles provide for choosing a specific course
duration, if any:

RQ1 What is the duration of SE capstone courses, and what advantages
or disadvantages are related to a certain duration?

Related to CR2, we wanted to find out if these projects are con-
ducted in teams and what is the rationale behind choosing a certain
team size. Team formation strategies were left out of scope as there
are pre-existing literature reviews done on that matter alone [27]. The
research question was therefore formed as:

RQ2 What team sizes do SE capstone courses have, and how are team
sizes justified?

Based on the ACM/IEEE recommendations (i.e., CR3), a project
should have a customer other than the teacher of the course. An
alternative approach to bringing an outside view to a project is to
outsource project topics. Thus, our third research question, how are
the project and client sourcing handled in SE capstone courses (RQ3), was
divided into two sub-questions:

RQ3.1 Who acts as the client for capstone projects?

RQ3.2 How are the ideas for projects sourced?

Related to CR4, we wanted to find out: How are the projects in cap-
stone courses implemented (RQ4). We wanted to uncover what students
do in these courses and therefore, we looked into the actual project
implementation. As ‘project implementation’ can mean a multitude of
things, we decided to divide this research question into smaller, more
concrete sub-questions:

RQ4.1 What artefacts are students expected to produce on capstone
courses?
RQ4.2 What is the software life-cycle adopted on these courses?



Information and Software Technology 159 (2023) 107191S. Tenhunen et al.
RQ4.3 How are the implementation technologies chosen for capstone
projects?

With RQ4.1 we aimed to find out what students actually produce
in these courses and whether any software is being developed. RQ4.2
helped us to find out if the capstone project is as integrative experi-
ence on software engineering practices as curriculum guidelines [2,25]
suggest. Finally, finding out how educators make the choices for imple-
mentation technologies and what implications these choices have, gave
some insight into project implementation.

Since CR5 and CR6 consider assessment, our last research ques-
tion was formulated as: How is the student assessment conducted on SE
capstone courses (RQ5). As assessment can be divided into continuous
feedback and final grading, RQ5 was also split into two:

RQ5.1 How are the students assessed at the end of SE capstone
courses?

RQ5.2 How are the students guided through continuous assessment, if
at all, during SE capstone courses?

The rationalisation here was that we wanted to uncover whether
the evaluation is based on a multitude of factors like [2] suggests and
whether students are given adequate possibilities to reflect on their
experiences [28].

In order to get a comprehensive representation of how project-
based capstone courses are generally organised, relevant articles were
searched. One could argue that the characteristics and any organisa-
tional details of these courses could be derived from the web pages
of universities and other tertiary institutions. However, we wanted
not only to produce a list of characteristics such as the duration and
workload of the courses but also to reveal more about the contents of
these courses. An important part of the research was also to provide ed-
ucators with insights related to the various characteristics. Without any
evaluation or assessment of the chosen structure and characteristics,
this would have been impossible to achieve.

3.2. Search strategy

The method used in this study follows the SLR method by Kitchen-
ham and Charters [29]. The initial data collection was done by finding
relevant sources from scientific databases: Scopus, ACM Digital Li-
brary, IEEE Xplore and ScienceDirect. Some preliminary searches were
conducted on these databases to find out to which extent sources
use the word ‘‘capstone’’ and its synonyms when describing large,
degree-culminating project courses in software engineering-related pro-
grammes. It turned out that the term ‘‘capstone’’ is well-known and
widely used in relevant literature. It was also used by Dugan Jr. [21]
in their earlier work. Therefore, the first search string was simply
constructed as:

software AND capstone

In order to have a complete picture of the project course landscape
in software engineering, a second search was performed using the
second search string:

software AND ’project course’

This was deemed necessary as not all sources had the word ‘‘cap-
stone’’ present in the metadata even though they clearly were describ-
ing courses relevant to this research. Searches with the two search
strings were conducted sequentially in each database.

Dugan Jr. [21] used ‘‘software engineering course’’ as another
search term, but we did not want to limit ourselves to the SE discipline,
as relevant software-related courses might be presented, for instance, in
computer science. Using only the words ‘‘software’’ and ‘‘course’’ on the
other hand, provided too many irrelevant hits. Scopus alone produced
4

Fig. 1. Search strategy.

nearly 30 000 hits of which only a small fraction would have been
relevant to our study.

A total of 981 unique papers were found after combining the papers
found from all four databases using the search strings and removing
duplicates. The databases were searched on June 11th and June 12th
2022, one after the other, starting with Scopus, moving on to ACM
Digital Library, followed by ScienceDirect and finishing with IEEE
Xplore. As the search fields and filters are slightly different in each
of these databases, the search strings were adjusted to match each
specific set-up. They were, however, kept semantically the same across
the searches. Exact search strings and initial search results are listed in
Table 4. As we wanted to identify current ways of organising capstone
courses, the searches in all four databases were limited to the years
2007 to the search day in June 2022. This time period was regarded
as sufficiently long to provide a holistic view of the current capstone
courses. It overlaps with Dugan Jr. [21] by a few years but also
uncovers 11 years of research and reporting done on the area that
has not been systematically reviewed since. Three stages of selection
were applied to this initial set, after which 127 articles remained.
Fig. 1 summarises the search and selection process, and the following
subsections will describe it in greater detail.

3.3. Paper selection

The paper selection was conducted from the initial set of 981
sources by the first author (Fig. 1). The details of inclusion and ex-
clusion are explained next.



Information and Software Technology 159 (2023) 107191S. Tenhunen et al.

l
A
u

E

E

E

E

E

a
[
p
f
f

Table 4
Initial search results.

Database Search strings Hits

Scopus TITLE-ABS-KEY (software AND capstone) 762
Scopus TITLE-ABS-KEY (software AND ‘‘project course’’) 262
ACM Digital Library [Title: software] AND [Title: capstone] 24
ACM Digital Library [Keywords: software] AND [Keywords: capstone] 32
ACM Digital Library [Abstract: software] AND [Abstract: capstone] 130
ACM Digital Library [Title: software] AND [Title: ‘‘project course’’] 6
ACM Digital Library [Keywords: software] AND [Keywords: ‘‘project course’’] 7
ACM Digital Library [Abstract: software] AND [Abstract: ‘‘project course’’] 44
ScienceDirect (TITLE ABS KEY: SOFTWARE CAPSTONE) 22
ScienceDirect (TITLE ABS KEY: SOFTWARE PROJECT COURSE) 12
IEEE Xplore (‘‘All Metadata’’:Software) AND (‘‘All Metadata’’:capstone) 223
IEEE Xplore (‘‘All Metadata’’:software) AND (‘‘All Metadata’’:‘‘project course’’) 86
3.3.1. The first stage—Inclusion criteria
The titles, abstracts and keywords of the initial papers were read

and evaluated against the inclusion criteria presented below (IC1–IC3).
After the first stage, 398 papers remained.

IC1 The title or abstract strongly hints that the article presents frame-
works or case studies of software engineering capstones or other
large, project-based courses in software engineering.

IC2 Based on the title or abstract, the article describes real experiences
of implementing a software engineering capstone course.

IC3 The title or abstract indicates that the article assesses the outcomes
of the course or its characteristics.

The first inclusion criterion was developed to set the focus on soft-
ware engineering courses in particular. A large number of the articles
in the initial set were ruled out due to the first criterion (IC1). The
papers were found to research, for instance, mechanical engineering
courses, which were out of the scope of this research. We also wanted to
rule out any purely hypothetical papers, where the researchers show no
course that follows the frameworks or structures presented. The second
inclusion criterion (IC2) aimed to ensure that all included papers would
present a real-world course. The final inclusion criterion (IC3) was
generated so that all papers would also evaluate the outcomes of the
various course implementations.

3.3.2. The second stage—Exclusion criteria
The second stage was performed on the 398 papers remaining from

the first stage. Any article that, based on reading the full paper, met at
east one of the presented exclusion criteria was excluded at this stage.
fter this selection, 171 articles remained for the final evaluation. The
sed exclusion criteria were:

C1 The length of the article is less than four pages.

C2 The article is not published in conference proceedings or as a
journal article.

C3 The article does not have full text available in English.

C4 The article turned out not to describe a software engineering
capstone course in a tertiary institution.

C5 The article is not able to provide answers to most of the research
questions.

Exclusion criteria from EC1 through EC3 aimed to ensure that the
rticle was of sufficient quality. According to Kitchenham and Charters
29] workshop proceedings often do not provide sufficient input for the
urposes of an SLR. Additionally, quite many of the papers that were
irst published as short workshop proceedings or abstracts were also
5

ound to have a conference proceeding or a journal article published
later on. EC3 relates to the language skills of the authors as well as
the status of English as the primary language in software engineering-
related research. These exclusion criteria led to some papers being
rejected before reading their entire content.

For exclusion criteria EC4–EC5, the content of the article was exam-
ined more carefully and, in most cases, read in its entirety to make a
justified decision. Exclusion criteria EC4 and EC5 relate to our research
goal. For instance, many articles were found to describe courses in
computer engineering or mini-projects conducted prior to SE capstones
which meant that they were out of the scope of this research and
excluded based on EC4. Most of the papers left out during this stage
met EC4. As for EC5, some articles were, for example, found to describe
a whole curriculum with capstone courses playing only a minor part
in the research, and they could therefore not provide answers to our
research questions. A number of articles also evaluated a tool, method
or framework relevant to the software engineering industry, not the
capstone course itself. In many of these articles, the capstone course
presented the researchers merely a convenient way of gaining study
participants, which is why they did not fit this research. This led them
to be excluded due to EC5.

3.3.3. The third stage—Removal of duplicates and articles of poor quality
The third stage was included mainly to rule out any duplicate data

and articles of poor quality from our research. After the third stage, the
final set of 127 papers remained.

Duplicate data—All 171 articles remaining after the second stage
describe real-life software engineering capstones. As educators often
like to modify their courses over time to find the best ways of teaching,
articles here too reflect on the changes done to the courses. Some
authors also have written multiple articles based on the same capstone
course. In such cases, the most recent article was chosen. Similarly, if
the authors describe several instances of the course in one paper, the
principal characteristics of the most recent course instance were chosen
for the data extraction. Choosing the latest instance of each course
stems from the goal of this research to synthesise the current state of
knowledge on capstone implementations. In addition, the decision of
whether two descriptions of the same course are different enough for
them to be included as their own capstone courses would have been too
ambiguous and open for interpretation. Kitchenham and Charters [29]
also state that it is important not to include multiple publications of the
same data, as it would seriously bias any results. Due to this procedure,
42 articles were removed from the final set.

Quality assessment—In addition to inclusion/exclusion crite-
ria, Kitchenham and Charters [29] state that it is critical to perform
a quality assessment on the primary studies. We also conducted such
an assessment and used it to ensure that our final data set is of sufficient
quality. At this stage, two articles were filtered out. Any tables or
graphs presented from here on do not include these two excluded
articles, and therefore represent the final set of 127 articles.

Table 5 lists the set of questions used by Dybå and Dingsøyr [30],
Ali et al. [31] and Mahdavi-Hezavehi et al. [32] which we also used

to determine the quality of the articles. Originally the questions were



Information and Software Technology 159 (2023) 107191S. Tenhunen et al.
Fig. 2. Quality scores of the final set of articles.
Table 5
Questions for quality assessment.

No. Question

Q1 Is there a rationale for why the study was undertaken?
Q2 Is there an adequate description of the context (e.g. industry, laboratory setting, products used, etc.) in which the research was carried out?
Q3 Is there a justification and description for the research design?
Q4 Has the researcher explained how the study sample (participants or cases) was identified and selected, and what was the justification for such selection?
Q5 Is it clear how the data was collected (e.g. through interviews, forms, observation, tools, etc.)?
Q6 Does the study provide a description and justification of the data analysis approaches?
Q7 Has ‘sufficient’ data been presented to support the findings?
Q8 Is there a clear statement of the findings?

Q9 Did the researcher critically examine their own role, potential bias and influence during the formulation of research questions, sample recruitment, data collection,
and analysis and selection of data for presentation?

Q10 Do the authors discuss the credibility of their findings?
Q11 Are limitations of the study discussed explicitly?
supposed to be graded on a dichotomous (‘‘Yes’’ = 1 or ‘‘No’’ = 0)
scale [30], but we decided to use a three-point scale of ‘‘Yes’’ (=1),
‘‘To some extent’’ (=0.5) and ‘‘No’’ (=0). This three-point scale has also
been adopted by Ali et al. [31] and Mahdavi-Hezavehi et al. [32] and
allowed us better to assess the articles where authors only provided
some answers to the question. The two articles filtered out had a quality
score of less than 4.

In our assessment, we decided to group the first eight questions to
represent the quality of reporting and rigour of the articles and the final
three questions to represent the credibility of evidence, similarly to Ali
et al. [31]. The grouped scores are presented in Fig. 2 and individual
scores for each article can be found at https://github.com/article-
additions. Regarding the quality of reporting, the selected articles per-
formed fairly well. It was mostly clear how the data had been collected,
and the relevance of the study was explicitly discussed. However, the
aspect most articles were lacking was providing justifications either
for the sample selection or research designs. Regarding the credibility
of evidence, the articles performed fairly poorly. Interestingly, many
of the otherwise well-established articles did not include a section for
explicitly discussing the limitations of the study or the author’s role in
data and sample selection. This is indicated in the low averages of the
credibility category.
6

3.3.4. Overview of the final papers
The three stages taken resulted in 127 articles, published between

2007 and 2022 (June). Research activity in this area has been fairly
steady over the years, as depicted in Fig. 3. It is worth noting, that we
conducted the searches in June 2022, thus covering the year 2022 only
partially. Also, as explained in Section 3.3.3, 42 earlier articles, which
otherwise would have been valid for this research, were excluded from
the final set as there was a newer article of the same course available.
This procedure skews the publication year distribution towards the end
of the scale. The figure also shows the distribution by article type. In
total, 73% of articles were published in conference proceedings and
27% were journal articles.

All the articles included for further analysis are listed in Table 6,
and referenced later in this section with their publication ID in the table
(i.e., S1–S127.)

3.4. Data extraction and synthesis

After applying the article selection process, the properties presented
in Table 7 were extracted from the remaining 127 articles to a common
datasheet. Table 7 defines how each extracted field relates to the
research questions of this study.

https://github.com/UniversityOfHelsinkiCS/article-additions/blob/main/capstone-courses-in-software-engineering/Quality_Assessment_Scores.png
https://github.com/UniversityOfHelsinkiCS/article-additions/blob/main/capstone-courses-in-software-engineering/Quality_Assessment_Scores.png
https://github.com/UniversityOfHelsinkiCS/article-additions/blob/main/capstone-courses-in-software-engineering/Quality_Assessment_Scores.png


Information and Software Technology 159 (2023) 107191

7

S. Tenhunen et al.

Table 6
Included sources for data extraction.

ID Author(s) Year Title Source title

S1 Marzolo, P., Guazzaloca, M.,
Ciancarini, P.

2021 ‘‘Extreme Development’’ as a Means for Learning
Agile

International Conference on Frontiers in Software
Engineering

S2 Tan, J., Jones, M. 2008 A case study of classroom experience with
client-based team projects

Journal of Computing Sciences in Colleges

S3 Wong, W., Pepe, J., Stahl, J.,
Englander, I.

2013 A collaborative capstone to develop a mobile
hospital clinic application through a student team
competition

Information Systems Education Journal

S4 Tappert, C. C., Stix, A. 2011 A decade review of a masters-level
real-world-projects capstone course

Info. Systems Educators Conf., ISECON 2011

S5 Gotel, O., Kulkarni, V., Say,
M., Scharff, C., Sunetnanta,
T.

2009 A global and competition-Based model for
fostering technical and soft skills in software
engineering education

22nd Conference on Software Engineering
Education and Training, CSEE&T 2009

S6 Scott, A., Kreahling, W.,
Holliday, M., Barlowe, S.

2017 A holistic capstone experience: Beyond technical
ability

18th Annual Conference on Information
Technology Education

S7 Koolmanojwong, S., Boehm,
B.

2013 A look at software engineering risks in a team
project course

26th International Conference on Software
Engineering Education and Training, CSEE&T 2013

S8abcd Braught, G., et al. 2018 A multi-institutional perspective on H/FOSS
projects in the computing curriculum

ACM Transactions on Computing Education

S9 Mertz, J., Quesenberry, J. 2019 A scalable model of community-based experiential
learning through courses and international projects

2018 World Engineering Education Forum - Global
Engineering Deans Council, WEEF-GEDC 2018

S10 Bloomfield, A., Sherriff, M.,
Williams, K.

2014 A Service Learning Practicum capstone 45th ACM technical symposium on Computer
science education

S11 Brazier, P., Garcia, A., Vaca,
A.

2007 A software engineering senior design project
inherited from a partially implemented software
engineering class project

37th Annual Frontiers in Education Conference -
Global Engineering

S12 Morales-Trujillo, M.E.,
Galster, M., Gilson, F.,
Mathews, M.

2021 A Three-Year Study on Peer Evaluation in a
Software Engineering Project Course

IEEE Transactions on Education

S13 Liang, Z., Chapa-Martell,
M.A.

2019 A Top-Down Approach to Teaching Web
Development in the Cloud

IEEE International Conference on Teaching,
Assessment, and Learning for Engineering, TALE
2018

S14 Murphy, C., Sheth, S.,
Morton, S.

2017 A Two-Course Sequence of Real Projects for Real
Customers

Conference on Integrating Technology into
Computer Science Education, ITiCSE 2017

S15 Rusu, A., Rusu, A., Docimo,
R., Santiago, C., Paglione, M.

2009 Academia-academia-industry collaborations on
software engineering projects using local-remote
teams

40th ACM Technical Symposium on Computer
Science Education, SIGCSE’09

S16 Stettina, C.J., Zhao, Z., Back,
T., Katzy, B.

2013 Academic education of software engineering
practices: towards planning and improving
capstone courses based upon intensive coaching
and team routines

26th International Conference on Software
Engineering Education and Training, CSEE&T 2013

S17 Venson, E., Figueiredo, R.,
Silva, W., Ribeiro, L.C.M.

2016 Academy-industry collaboration and the effects of
the involvement of undergraduate students in real
world activities

IEEE Frontiers in Education Conference, FIE 2016

S18 Eloe, N., Hoot, C. 2020 Accommodating Shortened Term Lengths in a
Capstone Course using Minimally Viable Prototypes

IEEE Frontiers in Education Conference, FIE 2020

S19 Schneider, J.-G., Eklund,
P.W., Lee, K., Chen, F., Cain,
A., Abdelrazek, M.

2020 Adopting industry agile practices in large-scale
capstone education

42nd International Conference on Software
Engineering: Software Engineering Education and
Training, ICSE-SEET 2020

S20 Ye, H. 2009 An academia-industry collaborative teaching and
learning model for software engineering education

21st International Conference on Software
Engineering and Knowledge Engineering, SEKE
2009

S21 Demuth, B., Kandler, M. 2017 An Approach for Project Task Approximation in a
Large-Scale Software Project Course

30th IEEE Conference on Software Engineering
Education and Training, CSEE&T 2017

S22 Ellis, H.J.C. 2007 An assessment of a self-directed learning approach
in a graduate web application design and
development course

IEEE Transactions on Education

S23 Anslow, C., Maurer, F. 2015 An experience report at teaching a group based
agile software development project course

46th ACM Technical Symposium on Computer
Science Education

S24 Bareiss, R., Katz, E. 2011 An exploration of knowledge and skills transfer
from a formal software engineering curriculum to
a capstone practicum project

24th IEEE-CS Conference on Software Engineering
Education and Training, CSEE&T 2011

S25 Stephenson, B., James, M.,
Brooke, N., Aycock, J.

2016 An Industrial Partnership Game Development
Capstone Course

17th Annual Conference on Information
Technology Education

(continued on next page)



Information and Software Technology 159 (2023) 107191

8

S. Tenhunen et al.

Table 6 (continued).
S26 Bell, J.T., Prabhu, A. 2015 An innovative approach to Software Engineering

term projects, coordinating student efforts between
multiple teams over multiple semesters

IEEE Frontiers in Education Conference, FIE 2014

S27 Vasilevskaya, M., Broman,
D., Sandahl, K.

2015 Assessing large-project courses: Model, activities,
and lessons learned

ACM Transactions on Computing Education, TOCE

S28 von Konsky, B.R., Ivins, J. 2008 Assessing the capability and maturity of capstone
software engineering projects

Tenth conference on Australasian computing
education - Volume 78

S29 Fontao, A., Gadelha, B.,
Junior, A.C.

2019 Balancing Theory and Practice in Software
Engineering Education - A PBL, toolset based
approach

IEEE Frontiers in Education Conference, FIE 2019

S30 Harding, T. 2007 Benefits and struggles of using large team projects
in capstone courses

ASEE Annual Conference and Exposition

S31 Engelsma, J. R. 2014 Best practices for industry-sponsored CS capstone
courses

Journal of Computing Sciences in Colleges

S32 Matthies, C., Teusner, R.,
Hesse, G.

2019 Beyond Surveys: Analyzing Software Development
Artifacts to Assess Teaching Efforts

IEEE Frontiers in Education Conference, FIE 2018

S33 Ziv, H., Patil, S. 2010 Capstone project: From software engineering to
‘‘Informatics’’

23rd IEEE Conference on Software Engineering
Education and Training, CSEE&T 2010

S34 Anderson, Ruth E.; Borriello,
Gaetano; Martin, Hélène;
Black, Leonard

2009 Capstone projects as community connectors Journal of Computing Sciences in Colleges

S35 Paasivaara, M., Vanhanen, J.,
Lassenius, C.

2019 Collaborating with industrial customers in a
capstone project course: The customers’ perspective

IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering
Education and Training, ICSE-SEET 2019

S36 Adams, R., Kleiner, C. 2016 Collaboration support in an international computer
science capstone course

International Conference on Social Computing and
Social Media

S37 Watkins, K.Z., Barnes, T. 2010 Competitive and agile software engineering
education

IEEE SoutheastCon, SoutheastCon 2010

S38 Gustavsson, H., Brohede, M. 2019 Continuous assessment in software engineering
project course using publicly available data from
GitHub

15th International Symposium on Open
Collaboration, OpenSym 2019

S39 Hadfield, Steven M.; Jensen,
Nathan A.

2007 Crafting a software engineering capstone project
course

Journal of Computing Sciences in Colleges

S40 Rong, G., Shao, D. 2012 Delivering software process-specific project courses
in tertiary education environment: Challenges and
solution

25th IEEE Conference on Software Engineering
Education and Training, CSEE&T 2012

S41 Nguyen, D.M., Truong, T.V.,
Le, N.B.

2013 Deployment of capstone projects in software
engineering education at Duy Tan university as
part of a university-wide project-based learning
effort

Learning and Teaching in Computing and
Engineering, LaTiCE 2013

S42 Lago, P., Schalken, J., Vliet,
H.V.

2009 Designing a multi-disciplinary software engineering
project

22nd IEEE Conference on Software Engineering
Education and Training, CSEE&T 2009

S43 Angelov, S., de Beer, P. 2017 Designing and applying an approach to software
architecting in agile projects in education

Journal of Systems and Software

S44 Anderson, R.E., Kolko, B. 2011 Designing technology for resource-constrained
environments: A multidisciplinary capstone
sequence

Frontiers in Education, FIE 2012

S45 Leilde, V., Ribaud, V. 2017 Does Process Assessment Drive Process Learning?
the Case of a Bachelor Capstone Project

30th IEEE Conference on Software Engineering
Education and Training, CSEE&T 2017

S46 Brown, Q., Lee, F.,
Alejandre, S.

2009 Emphasizing soft skills and team development in
an educational digital game design course

4th International Conference on the Foundations of
Digital Games, FDG 2009

S47 Takala, T. M., Malmi, L.,
Pugliese, R., Takala, T.

2016 Empowering students to create better virtual
reality applications: A longitudinal study of a VR
capstone course

Informatics in Education

S48 Marques, M., Ochoa, S.F.,
Bastarrica, M.C., Gutierrez,
F.J.

2018 Enhancing the Student Learning Experience in
Software Engineering Project Courses

IEEE Transactions on Education

S49 De Souza, R.T., Zorzo, S.D.,
Da Silva, D.A.

2015 Evaluating capstone project through flexible and
collaborative use of Scrum framework

Frontiers in Education Conference, FIE 2015

S50 Vu, J.H., Frojd, N.,
Shenkel-Therolf, C., Janzen,
D.S.

2009 Evaluating test-driven development in an
industry-sponsored capstone project

6th International Conference on Information
Technology: New Generations, ITNG 2009

S51 Laplante, P.A., Defranco,
J.F., Guimaraes, E.

2019 Evolution of a graduate software engineering
capstone course - A course review

International Journal of Engineering Education

S52 Lederman, Timoth C. 2010 Evolution of capstone-courses in software
engineering a finishing school

Journal of Computing Sciences in Colleges

S53 Delgado, D., Velasco, A.,
Aponte, J., Marcus, A.

2017 Evolving a Project-Based Software Engineering
Course: A Case Study

30th IEEE Conference on Software Engineering
Education and Training, CSEE&T 2017

(continued on next page)



Information and Software Technology 159 (2023) 107191

9

S. Tenhunen et al.

Table 6 (continued).
S54 Widyani, Yani 2013 Experience in Software Development Project

Course
Procedia Technology

S55 Ras, Eric and Carbon, Ralf
and Decker, Bj̀‘orn and Rech,
J’́org

2007 Experience Management Wikis for Reflective
Practice in Software Capstone Projects

IEEE Transactions on Education

S56 Schorr, R. 2020 Experience Report on Key Success Factors for
Promoting Students’ Engagement in Software
Development Group Projects

4th IEEE World Conference on Engineering
Education, EDUNINE 2020

S57 Longstreet, C. Shaun;
Cooper, Kendra

2013 Experience report: A sustainable serious
educational game capstone project

CGAMES’2013 USA

S58 Dupuis, R., Champagne, R.,
April, A., Séguin, N.

2010 Experiments with Adding to the Experience that
Can be Acquired from Software Courses

7th International Conference on the Quality of
Information and Communications Technology,
QUATIC 2010

S59 Burge, J. 2007 Exploiting Multiplicity to Teach Reliability and
Maintainability in a Capstone Project

20th IEEE Conference on Software Engineering
Education and Training, CSEE&T 2007

S60 Marshall, L., Pieterse, V.,
Thompson, L., Venter, D.M.

2016 Exploration of Participation in Student Software
Engineering Teams

ACM Transactions on Computing Education, TOCE

S61 Ganci, A., Ramnath, R.,
Ribeiro, B., Stone, R.B.

2011 Exploring collaboration between computer science
engineers and visual communication designers in
educational settings

13th International Conference on Engineering and
Product Design Education, E&PDE 2011

S62 Burden, H., Steghöfer, J.-P.,
Hagvall Svensson, O.

2019 Facilitating entrepreneurial experiences through a
software engineering project course

41st International Conference on Software
Engineering: Software Engineering Education and
Training, ICSE-SEET 2019

S63 Basholli, A., Baxhaku, F.,
Dranidis, D., Hatziapostolou,
T.

2013 Fair assessment in software engineering capstone
projects

6th Balkan Conference in Informatics

S64 Magana, A. J., Seah, Y. Y.,
Thomas, P.

2018 Fostering cooperative learning with Scrum in a
semi-capstone systems analysis and design course

Journal of Information Systems Education

S65 Sievi-Korte, O., Systä, K.,
Hjelsvold, R.

2015 Global vs. local – Experiences from a distributed
software project course using agile methodologies

Frontiers in Education, FIE 2015

S66 Hebig, R., Ho-Quang, T.,
Jolak, R., Schröder, J.,
Linero, H., Ågren, M., Maro,
S.H.

2020 How do students experience and judge software
comprehension techniques?

28th International Conference on Program
Comprehension

S67 Verdicchio, Michael 2021 Hurricanes and pandemics: an experience report
on adapting software engineering courses to ensure
continuity of instruction

Journal of Computing Sciences in Colleges

S68 Włodarski, R.,
Poniszewska-Marańda, A.,
Falleri, J.-R.

2022 Impact of software development processes on the
outcomes of student computing projects: A tale of
two universities

Information and Software Technology

S69 Izu, Cruz 2018 Improving Outcomes for a Masters Capstone IT
Project

IEEE International Conference on Teaching,
Assessment, and Learning for Engineering, TALE
2018

S70 Flowers, J.G. 2008 Improving the Capstone project experience: a case
study in software engineering

46th Annual Southeast Regional Conference on XX

S71 Gannod, Gerald C.; Bachman,
Kristen M.; Troy, Douglas A.;
Brockman, Steve D.

2010 Increasing alumni engagement through the
capstone experience

Frontiers in Education, FIE 2010

S72 Zilora, S.J. 2015 Industry-emulated projects in the classroom 16th Annual ACM Conference on Information
Technology Education, SIGITE 2015

S73 Spichkova, M. 2019 Industry-oriented project-based learning of
software engineering

24th International Conference on Engineering of
Complex Computer Systems, ICECCS 2019

S74 Carvalho, J.A., Sousa, R.D.,
Sá, J.O.

2010 Information systems development course:
Integrating business, IT and IS competencies

2010 IEEE Transforming Engineering Education:
Creating Interdisciplinary Skills for Complex Global
Environments

S75 Palacin-Silva, M.V., Seffah,
A., Porras, J.

2018 Infusing sustainability into software engineering
education: Lessons learned from capstone projects

Journal of Cleaner Production

S76 Kumar, S., Wallace, C. 2015 Instruction in software project communication
through guided inquiry and reflection

Frontiers in Education, FIE 2015

S77 Zeid, A. 2012 Integrating international students’ contests with
computer science capstone: Lessons learned and
best practices

Frontiers in Education, FIE 2012

S78 Lundqvist, K., Ahmed, A.,
Fridman, D., Bernard, J.-G.

2019 Interdisciplinary Agile Teaching Frontiers in Education, FIE 2019

S79 Santoso, H.B., Lawanto, O.,
Purwandari, B., Isal, R.Y.K.,
Fitriansyah, R.

2018 Investigating Students’ Metacognitive Skills while
Working on Information Systems Development
Projects

7th World Engineering Education Forum, WEEF
2017

(continued on next page)



Information and Software Technology 159 (2023) 107191

10

S. Tenhunen et al.

Table 6 (continued).
S80 Christensen, E.L., Paasivaara,

M.
2022 Learning Soft Skills through Distributed Software

Development
International Conference on Software and System
Processes and Internation Conference on Global
Software Engineering

S81 Rout, Terence P.; Seagrott,
John

2007 Maintaining High Process Capability in a Student
Project Course

20th Conference on Software Engineering
Education & Training, CSEE&T 2007

S82 Rodriguez, G., Soria, A.,
Campo, M.

2016 Measuring the Impact of Agile Coaching on
Students’ Performance

IEEE Transactions on Education

S83 Linhoff, J., Settle, A. 2009 Motivating and evaluating game development
capstone projects

4th International Conference on Foundations of
Digital Games

S84 Haddad, H.M. 2013 One-semester CS capstone: A 40-60 teaching
approach

10th International Conference on Information
Technology: New Generations, ITNG 2013

S85 Fan, Xiaocong 2018 Orchestrating Agile Sprint Reviews in
Undergraduate Capstone Projects

Frontiers in Education, FIE 2018

S86 Fagerholm, F., Vihavainen,
A.

2013 Peer assessment in experiential learning: Assessing
tacit and explicit skills in agile software
engineering capstone projects

Frontiers in Education, FIE 2013

S87 Vasankari, T., Majanoja,
A.-M.

2019 Practical Software Engineering Capstone Course –
Framework for Large, Open-Ended Projects to
Graduate Student Teams

Internation Conference on Computer Supported
Education

S88 Karunasekera, S., Bedse, K. 2007 Preparing software engineering graduates for an
industry career

20th Conference on Software Engineering
Education & Training, CSEE&T 2007

S89 Weerawarana, S.M., Perera,
A.S., Nanayakkara, V.

2012 Promoting creativity, innovation and engineering
excellence: A case study from Sri Lanka

IEEE International Conference on Teaching,
Assessment, and Learning for Engineering, TALE
2012

S90 Fornaro, R.J., Heil, M.R.,
Tharp, A.L.

2007 Reflections on 10 years of sponsored senior design
projects: Students win-clients win!

Journal of Systems and Software

S91 Roach, S. 2011 Retrospectives in a software engineering project
course: Getting students to get the most from a
project experience

24th IEEE-CS Conference on Software Engineering
Education and Training, CSEE&T 2011

S92 Mäkiaho, P., Poranen, T. 2018 Risks management in software development
capstone projects

19th International Conference on Computer
Systems and Technologies

S93(a,b) MacKellar, B. K., Sabin, M.,
Tucker, A.

2013 Scaling a framework for client-driven open source
software projects: A report from three schools

Journal of Computing Sciences in Colleges

S94 Yuen, T.T. 2015 Scrumming with educators: Cross-departmental
collaboration for a summer software engineering
capstone

International Conference on Learning and Teaching
in Computing and Engineering, LaTiCE 2015

S95 Isom‘̀ott́’onen, V., Daniels,
M., Cajander, Å., Pears, A.,
McDermott, R.

2019 Searching for global employability: Can students
capitalize on enabling learning environments?

ACM Transactions on Computing Education

S96 Maxim, B. 2008 Serious games as software engineering capstone
projects

ASEE Annual Conference and Exposition

S97 Krogstie, B.R., Divitini, M. 2009 Shared timeline and individual experience:
Supporting retrospective reflection in student
software engineering teams

22nd Conference on Software Engineering
Education and Training, CSEE&T 2009

S98 Johns-Boast, L., Flint, S. 2013 Simulating industry: An innovative software
engineering capstone design course

Frontiers in Education, FIE 2013

S99 Boti, E., Damasiotis, V.,
Fitsilis, P.

2021 Skills Development Through Agile Capstone
Projects

International Conference on Frontiers in Software
Engineering

S100 Paiva, S.C., Carvalho, D.B.F. 2018 Software creation workshop: A capstone course for
business-oriented software engineering teaching

XXXII Brazilian Symposium on Software
Engineering

S101 Saeedi, K., Visvizi, A. 2021 Software development methodologies, HEIs, and
the digital economy

Education Sciences

S102 Smith, T., Cooper, K.M.L.,
Longstreet, C.S.

2011 Software engineering senior design course:
Experiences with agile game development in a
capstone project

International Conference on Software Engineering

S103 Jaccheri, L., Sindre, G. 2007 Software engineering students meet
interdisciplinary project work and art

11th International Conference on Information
Visualisation, IV 2007

S104 Krusche, S., Dzvonyar, D.,
Xu, H., Bruegge, B.

2018 Software Theater—Teaching Demo-Oriented
Prototyping

ACM Transactions on Computing Education, TOCE

S105 Budd, A.J., Ellis, H.J.C. 2008 Spanning the gap between software engineering
instructor and student

Frontiers in Education, FIE 2008

S106 Decker, A., Egert, C.A.,
Phelps, A.

2016 Splat! er, shmup? A postmortem on a capstone
production experience

Frontiers in Education, FIE 2008

S107 Kerbs, R. 2007 Student teamwork: A capstone course in game
programming

Frontiers in Education, FIE 2007

(continued on next page)



Information and Software Technology 159 (2023) 107191S. Tenhunen et al.
Table 6 (continued).
S108 Tadros, Ibrahem; Hammami,

Samir; Al-Zoubi, Khaled
2008 Systems Development Projects 3rd International Conference on Information and

Communication Technologies: From Theory to
Applications

S109 Jarzabek, S. 2013 Teaching advanced software design in team-based
project course

26th IEEE International Conference on Software
Engineering Education and Training, CSEE&T 2013

S110 Lu, Baochuan; DeClue, Tim 2011 Teaching agile methodology in a software
engineering capstone course

Journal of Computing Sciences in Colleges

S111 Cagiltay, N.E. 2007 Teaching software engineering by means of
computer-game development: Challenges and
opportunities

British Journal of Educational Technology

S112 Tafliovich, A., Caswell, T.,
Estrada, F.

2019 Teaching software engineering with free open
source software development: An experience report

Annual Hawaii International Conference on System
Sciences

S113 Paasivaara, M., Lassenius, C.,
Damian, D., Raty, P.,
Schroter, A.

2013 Teaching students global software engineering
skills using distributed Scrum

35th International Conference on Software
Engineering, ICSE 2013

S114 Khmelevsky, Y. 2016 Ten years of capstone projects at Okanagan
College: A retrospective analysis

21st Western Canadian Conference on Computing
Education

S115 Mahnic̆, V. 2015 The capstone course as a means for teaching agile
software development through project-based
learning

World Transactions on Engineering and
Technology Education

S116 Broman, D., Sandahl, K.,
Baker, M.A.

2012 The company approach to software engineering
project courses

IEEE Transactions on Education

S117 Khakurel, J., Porras, J. 2020 The Effect of Real-World Capstone Project in an
Acquisition of Soft Skills among Software
Engineering Students

32nd IEEE Conference on Software Engineering
Education and Training, CSEE&T 2020

S118 Iacob, C., Faily, S. 2020 The impact of undergraduate mentorship on
student satisfaction and engagement, teamwork
performance, and team dysfunction in a software
engineering group project

51st ACM Technical Symposium on Computer
Science Education, SIGCSE 2020

S119 Hoar, R. 2014 The real world web: How institutional IT affects
the delivery of a capstone web development course

19th Western Canadian Conference on Computing
Education, WCCCE 2014

S120 Yue, K. B., Damania, Z.,
Nilekani, R., Abeysekera, K.

2011 The use of free and open source software in
real-world capstone projects

Journal of Computing Sciences in Colleges

S121 Isom‘̀ott́’onen, V.,
K‘̀arkk’́ainen, T.

2008 The value of a real customer in a capstone project 21st Conference on Software Engineering
Education and Training, CSEE&T 2008

S122 Mohan, S., Chenoweth, S.,
Bohner, S.

2012 Towards a better capstone experience 43rd ACM Technical Symposium on Computer
Science Education, SIGCSE’12

S123 Rico, D.F., Sayani, H.H. 2009 Use of agile methods in software engineering
education

Agile Conference, AGILE 2009

S124 Tribelhorn, B., Nuxoll, A.M. 2021 Using Agile and Active Learning in Software
Development Curriculum

ASEE Virtual Annual Conference and Exposition

S125 McDonald, J., Wolfe, R. 2008 Using computer graphics to foster interdisciplinary
collaboration in capstone courses

Journal of Computing Sciences in Colleges

S126 Ju, A., Hemani, A.,
Dimitriadis, Y., Fox, A.

2020 What agile processes should we use in software
engineering course projects?

51st ACM Technical Symposium on Computer
Science Education, SIGCSE 2020

S127 Bastarrica, M.C., Perovich,
D., Samary, M.M.

2017 What can students get from a software engineering
capstone course?

39th IEEE/ACM International Conference on
Software Engineering: Software Engineering and
Education Track, ICSE-SEET 2017
Table 7
Data extraction form.

Identifier Field RQ

F1 Title Metadata
F2 Author(s) Metadata
F3 Year Metadata
F4 Publication venue Metadata
F5 Duration of the course RQ1
F6 Course workload RQ1
F7 Team sizes RQ2
F8 Clients RQ3.1
F9 Project sources RQ3.2
F10 Artefacts produced RQ4.1
F11 Project phases RQ4.2
F12 Technologies RQ4.3
F13 Student assessment RQ5
F14 Outcomes of the course RQ1–RQ5
F15 Quality score QA
11
Values F1–F4 were extracted for basic documentation purposes.
Items F5–F14 concern the course and its organisation presented in the
article. Two of the reviewed articles present multiple separate capstone
courses from different institutions. For these two articles (S8 and S93
in Table 6), the items F5–F14 were extracted for each course they
presented. For F5–F14, we were not only interested in quantifying
these characteristics into statistics but also in providing implications
of different course design choices. Therefore, if the article stated, for
example, that they had a two-semester capstone course because it
provided students adequate time to learn, we recorded both of these
information pieces: the quantifiable duration and any such insight
relating to the characteristic. This enabled us to analyse and discuss
the course characteristics better in Section 4. A data-driven thematic
analysis was applied to synthesise the qualitative data extracted as part
of F5–F14 [33].

F5 and F6 were considered essential in assessing the general work-
load and duration of the course from the student’s perspective. Few

sources have given the duration of their course (F5) as months or



Information and Software Technology 159 (2023) 107191S. Tenhunen et al.
Fig. 3. Timeline and types of reviewed articles.

weeks. These were rounded to the nearest amount of semesters. Courses
lasting less than 4 months were categorised as ‘‘less than one semester’’,
4 to 6 months as ‘‘one semester’’ and anything more than 6 but less than
10 months as ‘‘two semesters’’.

Team sizes (F7) included the number of students per team. The
courses were also examined on whether the projects in the course were
done for a client (F8). The client could be external to the course staff,
the role of a client could be played by the course staff, and some
projects did not have clients at all. Some sources present a mix of these
categories, in which case, the source was labelled by the client category,
which we thought was the most prevalent in the course.

We were also interested in how the project topics were generated
(F9). Three main sources for projects were identified during the data
extraction: course staff, external clients and the students themselves.
The projects were also found to vary regarding whether the students
were working on the same project idea or whether each team had their
own initial problem.

We extracted all the artefacts students were expected to produce
during the course (F10). This included the deliverables used for grading
the course and the artefacts produced for project management reasons,
as in most cases, it was hard to distinguish between them. Evidence
of project phases (F11) was extracted to determine which software
life-cycle activities were adopted on these courses. F12 describes the
technologies used in the course. We found that most reviewed articles
do not explicitly specify all the technologies used for the projects in
their courses. Moreover, these technologies could potentially include
any software technologies available. We, therefore, categorised these
into two categories based on whether the main technology selections
are made team-wise or all use a common technology stack.

We extracted information on how the students’ learning process was
assessed and improved throughout the course and how the students’
progress and achievement were assessed at the end of the course (F13).
The key outcomes in the article (F14) were also extracted to assess the
advantages and disadvantages of the presented capstone characteristics.
F15 was extracted as presented in Section 3.3.3 for quality assessment
and article filtering.

4. Results and analysis

This section presents the quantitative analysis and qualitative out-
comes of the capstone characteristics from the articles. The characteri-
sation enables us to answer our research questions and ultimately helps
educators when they are planning their capstone courses.
12
4.1. Duration (RQ1)

Regarding course characteristics, we first looked into the reported
duration of these courses (F5). A clear majority of institutions con-
ducted capstone courses that lasted one semester (Table 8). Interest-
ingly, this is in conflict with the ACM/IEEE [2] recommendations
for undergraduate capstone courses, which propose having capstones
lasting the entire academic year. One reason given for a one-semester
capstone was that not all curricula can afford a full-year implementa-
tion [S117]. Also, capstones were regarded as very labour-intensive for
the teaching staff with many teams to manage and evaluate throughout
the course [S39], [S112]. In some cases, students might have had full-
or part-time work, which made it harder to arrange longer courses
[S49], [S58], [S73]. Students also perceived two-semester courses as
laborous [S73], [S109] and some even the one-semester ones [S23],
[S41]. In order to provide an intensive and realistic experience, many
of these courses took up at least half a work-week [S18], [S28], [S41],
[S69], [S73], [S109], [S127]. This might have made other courses
taken simultaneously suffer [S41], limiting the possibilities for an
intensive, year-long capstone.

However, some educators who had experiences with both shorter
and longer duration had shifted to longer duration since they felt
it was impossible to reach the wanted skill coverage and depth in
just a few months [S6], [S33]. One of the reviewed articles, which
was authored by a student, strongly recommends that their course be
lengthened into one academic year from one semester [S70]. One of
the reviewed articles states that the change to a longer course version
received overwhelmingly positive feedback from all the participating
parties [S33]. Students were able to gain more hands-on experience in
project management and in applying new and familiar tools. Industrial
clients received more ambitious and polished products, and the course
staff felt that the course learning objectives were finally truly met.

4.2. Team sizes (RQ2)

To find out how many students there were in project groups, we
extracted the reported team sizes (F7) in Fig. 4. If a reviewed article
refers to the course having teams of 4–5 students, this is thus reflected
in both columns 4 and 5. Looking at Fig. 4, it is evident that capstone
courses were almost always conducted as group projects. Only three
institutions in our research allowed their capstone or senior project
courses to be completed as single-student endeavours [S11], [S89],
[S111].

Team sizes varied a great deal, ranging from 1 to 35. In very small
groups, e.g., 2–3 students, the teams were not perceived to generate
the dynamics and issues that are common in collaborative software
development [S36], [S53], [S56], [S58]. One article stated that such
a small team size does not present enough of a challenge [S36], and
another that smaller groups are unable to complete substantial projects
in a typical one-semester course [S53]. Having very small teams was
also regarded as unmaintainable in large programmes with hundreds
of students due to the extra organisational overhead each team causes
[S19]. In the other extreme, larger groups with team sizes ranging
from 7 up to 35 students were often found to be facing other kinds
of problems, such as the inability to meet all together and other
management and coordination issues [S30], [S36], [S39], [S53], [S78].
The ‘‘free-rider’’ problem was also perceived to be more common in
larger teams, where it is possible for a few students to take a bigger
responsibility in ensuring the overall success and the small contribution
of others to go unnoticed [S9], [S56], [S58], [S69], [S87], [S121].
In larger teams, ensuring fair grading and an equal balance of work
and responsibilities also required more attention from the course staff
[S87].

One outlier course regarding team sizes is presented in [S106].
The course had 15 students working on the same game project in one
team. The idea was to simulate what large-scale game development in



Information and Software Technology 159 (2023) 107191S. Tenhunen et al.
Table 8
Duration of capstone courses.

Category Number of courses Percentage Article identifiers

Less than one semester 10 8% S16, S18, S40, S46, S55, S61, S78, S94, S99, S113

One semester 87 66% S1, S2, S3, S4, S5, S8b, S8d, S9, S11, S13, S15, S20, S21,
S22, S23, S24, S25, S26, S27, S30, S31, S32, S34, S35,
S36, S37, S38, S42, S43, S44, S45, S47, S48, S51, S53,
S54, S56, S57, S58, S60, S62, S63, S64, S65, S66, S67,
S68, S69, S70, S73, S74, S75, S76, S77, S79, S80, S81,
S82, S83, S84, S86, S89, S90, S92, S93a, S93b, S95, S97,
S100, S102, S103, S104, S105, S106, S107, S112, S115,
S116, S117, S119, S120, S121, S123, S124, S125, S126,
S127

Two semesters 32 24% S6, S7, S8a, S8c, S10, S12, S14, S17, S19, S28, S33, S39,
S41, S50, S52, S59, S71, S72, S85, S87, S88, S91, S96,
S98, S101, S108, S109, S110, S111, S114, S118, S122

More than two semesters 1 1% S49
Not specified 1 1% S29
Fig. 4. Team sizes in capstone courses.
a diverse team feels like. The authors share that their approach was not
entirely successful. In the aftermath of the course, it came up that some
students wanted explicit direction while others felt that they wanted
more autonomy and control. According to the authors, for the latter
group of students, it was clear that they were uncomfortable following
the leadership of the vision team and would have preferred to work on
a project of their own design.

Most educators do seem to opt for the middle ground regarding
team sizes and have 4 to 5 people working in a single group (Fig. 4).
This size was perceived as the sweet spot, cancelling out the negatives
of the two extremes [S36], [S52], [S53], [S56], [S58]. Students have
also reported being satisfied with such a team size [S56]. Additional
measures for combating non-productive group behaviour, such as free
riding, have also been proposed. For example, peer reviews were suc-
cessfully used to mitigate the risk of any opportunistic behaviour [S72],
[S98]. Some periodic monitoring should also be done by the course staff
to ensure working team dynamics [S69]. Both of these will be discussed
further in Section 4.5.

4.3. Clients and project ideas (RQ3)

4.3.1. Clients (RQ3.1)
We also looked at who was in the role of a client for these projects

(F8) and how the project ideas were sourced (F9). Almost half of
13
the reviewed articles (42%) conducted their capstone courses without
clients that are external to the course (Table 9). In these courses, the
course staff acted as clients or Product Owners for the projects or
alternatively, the student teams worked on their own and only reported
progress regularly to the course staff. In some cases instructors played
clients due to the difficulty of finding suitable clients [S6]. The insti-
tution’s wish to own the intellectual property rights for the developed
products was also found to put off potential clients [S6]. The time and
effort it takes to handle multiple external clients and to ensure that
their goals are aligned with the learning goals of the course might be
unsustainable for some institutions [S56]. Having a complicated, cross-
disciplinary course setup with technical and non-technical students
also made some educators shy away from involving external clients in
the course [S42]. Some reviewed articles also explain how the course
outcomes were less predictable with multiple external clients. One
article reports experiencing several cases when the project sponsors did
not show up for the bi-weekly meetings with the students [S114]. Such
client behaviour caused very low motivation in the student teams, and
some capstone projects failed due to client unavailability. Other authors
too have made similar observations and stress the importance of finding
committed clients to ensure a good experience for the students [S3],
[S23], [S78], [S122].



Information and Software Technology 159 (2023) 107191S. Tenhunen et al.

c
c
u
b
o
C
c
r
[
[
s
p
i
s
w

S
a
s
r
R
r
a
t
p
a
f
K
b
t
m
t

4

(
A
t
c
s
f
i
[
t
a
l
a
t

Table 9
Clients of capstone courses.

Category Number of courses Percentage Article identifiers

Clients external to the
course staff

76 58% S2, S3, S4, S5, S7, S8a, S8d, S9, S10, S11, S14, S15, S17,
S18, S19, S23, S24, S27, S28, S29, S30, S31, S33, S34,
S35, S37, S38, S39, S41, S46, S48, S49, S50, S52, S55,
S58, S59, S60, S61, S62, S63, S66, S67, S69, S71, S73,
S78, S80, S81, S84, S85, S86, S87, S88, S90, S91, S92,
S93a, S93b, S94, S96, S97, S98, S104, S108, S110, S112,
S113, S114, S117, S120, S121, S122, S124, S126, S127

Course staff acts as clients 16 12% S1, S6, S12, S21, S40, S43, S53, S54, S57, S68, S76, S82,
S99, S115, S116, S123

No clients 38 29% S8b, S8c, S13, S20, S22, S25, S26, S32, S36, S42, S44,
S45, S47, S51, S56, S64, S65, S70, S72, S74, S75, S77,
S79, S83, S89, S95, S100, S101, S102, S103, S105, S106,
S107, S109, S111, S118, S119, S125

Not specified 1 1% S16
Despite these risks, having real, external clients other than the
ourse staff is recommended for both undergraduate and graduate
apstones [2,25]. These clients can be from other units within the
niversity [S7], [S9], [S14], [S52], [S58], [S86], [S87], [S94], local
usinesses [S7], [S9], [S86], [S87], [S98], [S110], [S122] or vari-
us non-profit organisations [S7], [S9], [S11], [S16], [S58], [S110].
ontacting graduates, who already work in the industry, was also a
onvenient way for finding external clients [S35]. Working closely with
eal-world clients often received highly positive feedback from students
S14], [S15], [S52], [S73], [S98], [S117] and organising staff alike
S14], [S35], [S84], [S98], [S117]. The motivation and commitment of
tudents were found to increase when there was a real need behind the
roject [S9], [S14], [S15], [S35], [S66], [S73], [S84], [S121]. Having
ndustry clients improved the students’ technical and nontechnical
kills and was perceived to prepare them well for the challenges they
ill face in their future work life [S14].

The collaboration was reported to have benefits for the clients too.
uch benefits are specifically listed in a study by [S35], where the
uthors aimed to find out the reasons why clients participate in cap-
tone courses. The reasons included getting a tailored software product,
esearching new technologies and, as a clear number one, recruitment.
ecruiting could happen directly from the team or more indirectly by
aising awareness of the organisation as a potential employer. Other
rticles report this phenomenon too; it was not uncommon for students
o get hired by the industry partner who sponsored their capstone
roject [S15], [S28], [S35], [S73], [S84], [S114], [S121]. One of the
rticles reports that at least 60 out of a few hundred students secured
ull- or part-time job offers based on the project outcomes [S73].
eeping the experience positive also for the clients made them come
ack with new project ideas and thus helped with client acquisition in
he following years [S35]. Some institutions even managed to attract
ore external clients than there were student teams, which enabled

hem to collect a small fee from the participating clients [S35], [S121].

.3.2. Project sources (RQ3.2)
We also looked into how the projects for these courses were sourced

F9). Three main ways for project sourcing were identified (Table 10).
s most courses had multiple external clients, the project ideas in

hese courses were mainly derived from the customers’ needs. In these
ases, the organising staff often performed some pre-screening and
coping in collaboration with the clients to ensure that the expectations
or the projects were realistic and that the project scopes suited the
ntended learning outcomes [S9], [S24], [S35], [S52], [S61], [S87],
S90], [S94], [S98], [S121]. Some of the reviewed articles recommend
hat capstone projects should generally not be on the critical path of
ny external organisation, as the course is intended to remain a safe
earning place for the students [S35], [S52], [S87], [S90], [S121]. Some
rticles also emphasise that students are not supposed to be working for
hese clients but in collaboration with them [S9], [S52], [S87], [S121].
14
Thus, the students should have a say in how the software development
will be done in the project.

For 17% of the courses, the students were the main source of project
ideas. Students appeared to be more motivated if they got to choose
the project idea themselves [S36], [S53]. At the end of the semester,
the students had a strong sense of ownership towards the project,
rather than a feeling that they had just completed one additional
assignment [S36], [S53]. However, there are some potential pitfalls
with this approach that educators should be aware of. One article
states that students should not be allowed to bring project ideas from
the companies they work at as it causes a conflict of interest for the
student with the proposal and creates an unfair situation for the rest
of the team [S114]. In some cases students were allowed to form their
own teams and generate their own project ideas, even though this was
not perceived to accurately reflect the situation in the students’ future
professional lives [S36]. One article states that if the project idea comes
from the team all complexities associated with requirements elicitation
and analysis are eliminated, making the experience less realistic [S73].

For 21% of the courses, the course staff provided the project spec-
ifications. Some educators assigned the same project idea to all the
student teams [S40], [S45], [S72], [S82]. Moreover, some courses had
only one project that the entire class worked on as one team [S106],
[S112]. Having common project idea had the benefit of giving the
course staff a consistent basis for teaching, grading [S40], [S59], [S72]
and for providing technical assistance to the students [S40], [S53]. In
such cases, all teams needed to deal with the same complexities, project
management issues and technology demands, which made the expe-
rience more predictable [S72]. Having one project idea also opened
up the possibility for competition amongst the teams, e.g., which team
would create the best design and implementation [S5], [S30], [S37],
[S42], [S54], [S72], [S106]. It also possibly allowed the course to focus
more on the quality of the developed software [S5]. One article reports
experiences with both approaches, having multiple project ideas and
having only one project [S5]. In the end, the authors found it more
rewarding to focus on doing one project really well rather than juggling
multiple projects and obtaining several incomplete systems.

4.4. Project implementation (RQ4)

We also aimed to uncover information on how capstone projects
were implemented and what students were expected to do in these
courses. For this, we extracted various information on project imple-
mentation (F10–F12).

4.4.1. Produced artefacts (RQ4.1)
We were interested in finding out what kind of artefacts students

were expected to produce on the course (F10). It was often difficult to
determine which artefacts were used for the final student assessment
(i.e. grading) and which were only produced to manage the project in



Information and Software Technology 159 (2023) 107191S. Tenhunen et al.
Table 10
Sources for projects in capstone courses.

Category Number of courses Percentage Article identifiers

External stakeholders
propose project ideas

81 62% S2, S3, S4, S5, S7, S8a, S8b, S8c, S8d, S9, S10, S11, S14,
S15, S17, S18, S19, S23, S24, S27, S28, S29, S30, S31,
S33, S34, S35, S37, S38, S39, S41, S46, S48, S49, S50,
S52, S55, S58, S59, S60, S61, S62, S63, S66, S67, S69,
S71, S72, S73, S77, S78, S80, S81, S84, S85, S86, S87,
S88, S90, S91, S92, S93a, S93b, S94, S96, S97, S98,
S104, S108, S110, S112, S113, S114, S117, S120, S121,
S122, S124, S125, S126, S127

Course staff provides
project ideas

27 21% S1, S6, S12, S13, S16, S20, S21, S25, S40, S42, S43, S45,
S54, S57, S65, S68, S74, S75, S79, S82, S99, S105, S106,
S109, S115, S116, S123

Students generate their
own project ideas

22 17% S22, S26, S36, S44, S47, S51, S53, S56, S64, S70, S76,
S83, S89, S95, S100, S101, S102, S103, S107, S111,
S118, S119

Not specified 1 1% S32
Fig. 5. Most commonly mentioned artefacts produced by students in capstone courses.
some way. Therefore we could not produce a list of graded artefacts.
Fig. 5 provides a rough view of the explicitly mentioned artefacts that
students were expected to produce in general.

We were, however, able to determine that all but three courses
[S16], [S17], [S103] expected some form of a software prototype,
a software product or source code as the only acceptable end de-
liverable. Most reviewed articles (70%) also mention requiring some
documentation for the software project (Fig. 5). The actual number
of courses that required documentation might be larger than reported
here, as we only counted the times the study explicitly mentions that
project documentation was done on the course. Reviewed articles at
the beginning of our time range are often following more ‘‘plan-first’’
software development approaches, such as the waterfall model, and as
a result, the quantity and detail of non-software artefacts were sub-
stantial [S2], [S11], [S22], [S70]. The documentation usually started
heavily upfront with students producing project plans [S2], [S68],
[S70], detailed designs [S2], [S22], [S52], [S68], architecture plans
[S22], [S68] and test plans [S2], [S70]. In later, more agile courses,
there was less evidence of extensive documentation and planning. With
agile projects, the system documentation was largely developed as the
project evolved [S14], [S65], [S94]. Students in these courses also often
produced agile artefacts, such as product backlogs, sprint backlogs and
burndown charts for project management and planning purposes [S6],
[S65], [S94], [S124].

A large share of the reviewed articles (60%) explicitly mentions
that students needed to present or demonstrate their projects to wider
15
audiences than just the immediate project team. This taught students
how to present and explain their work to a non-technical audience
[S6]. The most common time for presentations was at the end of the
semester, and typically these presentations were given at fairs or class
sessions to which all stakeholders of the course were invited [S2],
[S4], [S6], [S33], [S95]. The format of final presentations varied from
poster sessions [S6], [S28], [S34], [S44] to live software demonstration
sessions [S89], [S95] to different kinds of demo videos [S1], [S73],
[S118]. Students were sometimes also expected to draw up a project
proposal or a pitch and then present it to the teachers or the class
before starting to work on the implementation [S87]. In these cases,
the purpose was to offer the students a chance to practice their pitching
skills [S100].

Students were often expected to detail software requirements during
the course. These could be written down as Software Requirements
Specifications before the implementation phase began [S30]. For agile
projects, software requirements were often documented in an initial
backlog with user stories, and the backlog was then updated as the
project continued [S124]. Students were also quite often expected
to write some form of a report at the end of the experience, either
individually or as a group. The reports generally involved students
reflecting on the learning done and development processes employed
throughout the course [S6], [S19], [S21], [S24], [S27], [S41], [S63],
[S65].

The balance between too little and too many artefacts was con-
sidered a delicate one. Having more documentation and deliverables



Information and Software Technology 159 (2023) 107191S. Tenhunen et al.
Table 11
Development technologies in capstone courses.

Category Number of courses Percentage Article identifiers

Projects use common
technologies

33 25% S1, S5, S8a, S8d, S11, S13, S22, S32, S37, S38, S42, S43,
S45, S46, S48, S53, S54, S57, S59, S72, S76, S79, S82,
S83, S93b, S99, S105, S106, S107, S109, S112, S113,
S124

Choices done primarily
team-wise

65 50% S2, S3, S4, S8b, S8c, S9, S10, S12, S14, S19, S24, S26,
S29, S31, S33, S35, S36, S39, S44, S47, S50, S51, S52,
S56, S58, S61, S62, S65, S66, S68, S69, S71, S73, S74,
S75, S77, S80, S84, S85, S86, S87, S88, S89, S90, S92,
S95, S96, S98, S100, S101, S102, S103, S104, S110,
S111, S114, S116, S117, S118, S119, S120, S121, S122,
S125, S127

Not specified 33 25% S6, S7, S15, S16, S17, S18, S20, S21, S23, S25, S27, S28,
S30, S34, S40, S41, S49, S55, S60, S63, S64, S67, S70,
S78, S81, S91, S93a, S94, S97, S108, S115, S123, S126
presented teachers with more opportunities to grade and assess stu-
dents’ understanding of software development processes [S110]. On
the other hand, more documentation meant less product which might
not be in the interests of project clients [S49]. Indeed, some educators
mandated only basic time tracking and reflective reporting from the
students and left the majority of deliverables for the external client and
team to decide [S24].

4.4.2. Project phases (RQ4.2)
We sought evidence of the project phases and software life-cycle

adopted on these courses (F11). Software life-cycle models include,
with varying frequency and order, phases such as requirements gath-
ering or elicitation, planning and designing, developing, testing and
maintaining the product [34]. Several of the reviewed articles report
that for capstone courses the projects proceeded from ideas to robust
proofs-of-concept or products with few core requirements implemented
[S1], [S6], [S7], [S11], [S12] [S16], [S18], [S20], [S21], [S22], [S26],
[S40], [S42], [S45], [S52], [S54], [S55], [S62], [S64], [S65], [S68],
[S79], [S70], [S72], [S75], [S77], [S78], [S87], [S90], [S94], [S95],
[S99], [S100], [S106], [S107], [S109], [S115], [S118], [S122], [S123],
[S124], [S125]. Students thus got to experience the phases of planning,
designing, developing and testing the products in these projects. In
courses with clients, either external or internal, the students usually
had to elicit the requirements from the clients (Table 10). However,
sometimes the teachers provided students with ready-made feature
or requirements lists [S12], [S21], [S45], [S79], [S82] and in some
courses, students generated their own project proposals (Section 4.3.2).
In these cases, students did not get to experience requirements gather-
ing. Additionally, the projects generally did not include maintaining
existing software in actual production use during the course. In some
courses, some of the projects were production-ready at the end of the
course, but these too were then handed over to the customer [S5], [S9],
[S117]. This practice leaves students without the experience of work-
ing with existing products in the maintenance phase of the software
life-cycle. Assigning students to contribute to Free and Open Source
Software (FOSS) projects has recently been proposed as a potential
remedy to these shortcomings. Students in courses with FOSS were able
to deal with existing codebases, often large and complex, such as the
one they will face when working in the industry [S8b], [S8c], [S112],
[S113]. Some courses also had a continuation of earlier projects in the
course to expose students to code generated by other people [S14],
[S15], [S19], [S38], [103]. Both of these approaches allow students
to maintain existing code, but they still represent a minority in our
research.

4.4.3. Project technologies (RQ4.3)
We also looked into the development technologies used in cap-

stone courses and how they were selected (F12). Commonly, in multi-
16

customer courses or in courses with otherwise very differing project
ideas, the technology choices were made based on the project
(Table 11). In these cases, the course staff did not impose a common
technology stack for all the projects. For some of these projects, the
technology stack was based on the client’s infrastructure [S35]. In
other cases, the students made manager-like decisions on the suitable
development technologies [S6], [S84]. Having the teams decide on the
tools and technologies made the students explore available options and
justify their selections [S6], [S56], [S84]. However, even though the
majority of technologies would be selected based on the project, some
of the reviewed articles recommend having some shared infrastructural
tools and technologies across teams [S12], [S19], [S36], [S65], [S102].
Version-control [S6], [S12], [S19], [S29], [S36], [S67], [S102], project
management and communication tools [S19], [S29], [S65], [S67],
[S80] and tools for continuous integration and delivery [S32], [S78] are
examples of these. Having these technologies common for all the teams
made the management and evaluation of projects easier [S19], [S29].
Development technologies were fully common across teams especially
in cases where the teachers provided students with the project require-
ments [S42]. In some cases, the decision to use a common technology
stack was based on the evaluation methods being heavily focused on
technical implementation. For example, the course graders had sets
of tests to run to determine the quality of each project [S109]. Some
educators had the students competing on the same project proposal,
which made choosing a common stack justifiable [S37].

4.5. Assessment of students (RQ5)

We were also interested in finding out how the assessment was
conducted in these courses (F13), and to which extent students were
given possibilities to reflect on their experiences. We looked at both
the end-of-course student assessment (Section 4.5.1) and any contin-
uous guidance and feedback students were given during the course
(Section 4.5.2).

4.5.1. End of course student assessment (RQ5.1)
All articles which explicitly describe the course evaluation process

had course teachers involved in it (Table 12). Teachers were generally
the ones assessing any artefacts produced on the course such as the
software product itself, reports and documentation [S118]. Several
articles also report having additional sources for student assessment
beyond the teachers’ evaluation of produced artefacts. Reasons for
having additional sources included the decreased quantity of delivered
artefacts when using agile methodologies [S110]. Having a limited
view of teamwork and skills development in a non-classroom course
setting was also mentioned [S52], [S56], [S86]. Different kinds of
anonymous peer evaluations were fairly common (31%). They gave
course staff a look into the team dynamics during the course and helped
in detecting free-rider behaviour [S12], [S86], [S112]. Self-evaluation
was done either in combination with peer evaluations [S56] or as a part
of the reflection done in the final project report [S65].



Information and Software Technology 159 (2023) 107191S. Tenhunen et al.

a
e
t
[
u
w

4

s
a
[
c
w
a
t
r
i
f
t

Table 12
End of course assessment.

Category Number of courses Percentage Article identifiers

Course staff 93 71% S1, S2, S4, S6, S7, S8a, S8b, S8c, S8d, S9, S12, S13, S17,
S18, S19, S20, S22, S23, S24, S25, S26, S27, S28, S29,
S30, S31, S33, S35, S36, S37, S39, S40, S41, S42, S43,
S44, S46, S47, S48, S51, S52, S53, S56, S58, S62, S63,
S64, S66, S67, S68, S69, S71, S72, S73, S74, S77, S80,
S81, S82, S84, S85, S86, S87, S88, S89, S90, S94, S95,
S96, S97, S98, S99, S100, S101, S102, S103, S104, S105,
S106, S107, S108, S109, S110, S111, S112, S116, S117,
S118, S120, S123, S124, S126, S127

Students’ peer-evaluations 40 31% S2, S4, S7, S8a, S8b, S12, S13, S27, S30, S31, S33, S37,
S41, S42, S46, S48, S51, S52, S56, S58, S63, S64, S67,
S72, S73, S74, S81, S84, S86, S87, S90, S98, S106, S107,
S108, S110, S112, S117, S124, S127

Students’ self-evaluations 24 18% S1, S2, S4, S22, S23, S27, S37, S41, S42, S47, S51, S56,
S62, S64, S69, S73, S74, S80, S81, S86, S87, S116, S126,
S127

External project clients 17 13% S4, S20, S24, S29, S33, S35, S37, S42, S58, S73, S84,
S85, S86, S89, S96, S98, S127

Others 1 1% S17

Not specified 38 29% S3, S5, S10, S11, S14, S15, S16, S21, S32, S34, S38, S45,
S49, S50, S54, S55, S57, S59, S60, S61, S64, S65, S70,
S75, S76, S78, S79, S83, S91, S92, S93a, S93b, S113,
S114, S115, S119, S121, S122
Table 13
Continuous student assessment and guidance.

Category Number of courses Percentage Article identifiers

Course staff 99 76% S2, S3, S4, S6, S8a, S8b, S8d, S9, S12, S15, S16, S17,
S18, S19, S20, S22, S23, S24, S25, S27, S28, S29, S30,
S31, S32, S35, S36, S37, S39, S40, S41, S43, S44, S45,
S46, S47, S48, S49, S50, S51, S52, S53, S54, S55, S56,
S57, S59, S60, S62, S63, S64, S65, S66, S67, S68, S69,
S71, S73, S74, S75, S76, S77, S78, S80, S81, S82, S84,
S85, S86, S87, S88, S90, S91, S92, S93a, S94, S95, S96,
S97, S98, S99, S100, S101, S102, S103, S105, S106,
S108, S109, S110, S112, S113, S114, S115, S116, S122,
S123, S124, S126, S127

More experienced students 23 18% S5, S8a, S12, S14, S17, S19, S35, S40, S48, S58, S61,
S68, S81, S85, S92, S95, S104, S105, S112, S113, S118,
S119, S121

Industry advisers (other
than project clients)

22 17% S5, S8a, S8b, S8c, S10, S20, S25, S52, S58, S65, S71, S72,
S73, S77, S80, S83, S89, S93b, S98, S106, S118, S120

Not specified 15 11% S1, S7, S11, S13, S21, S26, S33, S34, S38, S42, S70, S79,
S107, S111, S117
Some studies report utilising the client’s opinion in the course
ssessment process. Clients sometimes filled out a questionnaire consid-
ring each student’s performance during the course [S86] or evaluated
he team’s deliverables and their value from the client’s point-of-view
S35], [S52], [S89], [S127]. As with self- and peer-reviews, educators
sed the client’s opinion as a complementary source of assessment
hen grading students (Table 12).

.5.2. Continuous student assessment and guidance (RQ5.2)
Many of the reviewed articles specifically mention that the teams

hould not be left entirely on their own to complete the course project
nd should be guided along the way [S6], [S9], [S10], [S16], [S18],
S53], [S69], [S72], [S86]. Three main ways for conducting such
ontinuous assessment and guidance were found (Table 13). Articles
here there was no mention of the teacher, or anyone else, having
n active role in how the teams worked during the course fell into
he category ‘‘Not specified’’. If the course staff only passively received
eports of students’ progress and evaluated the course outcomes after
ts completion, these were not the active guidance we were looking
or. Some courses had several types of guidance present, in which case
he article was listed under each corresponding category in Table 13.
17
Only 11% of the reviewed articles does not explicitly specify having
any ongoing feedback and guidance system present during the course.

The most common way was to have the course staff, such as the
responsible teacher or hired teaching assistants, acting in an advisory
role (76%). The intensity of the guidance given by course staff varied
a great deal between, or even within, these courses. Sometimes course
staff provided oversight in a more supervisory role and intervened in
the team’s work only if conflicts arose or some students clearly did not
contribute to the team [S6]. In contrast, some instructors had weekly
meetings with the students where the teachers actively proposed solu-
tions and guided the teams with technical and non-technical issues and
team dynamics [S6], [S88]. Some teachers even preferred to manage
the team [S6]. One article reports that the most successful changes
made on the course were those that allowed the course staff to take a
more active role in each team [S38]. The grades of students improved,
and the teams were able to complete more functionality to their the
software products.

Another, often complementary, guidance form was to have industry
experts occasionally participate in the course (16%). This could be
seen especially relevant when the course projects were focused around
a common theme for instance the gaming industry [S25], [S106].
However, finding the correct balance in this type of guidance was



Information and Software Technology 159 (2023) 107191S. Tenhunen et al.
sometimes tricky. One course had industry experts from the gaming and
software industries participating as advisers [S106]. While the course
staff took the advisers’ encouraging feedback to mean that the game
concept and development were merely acceptable, the students took
it to mean that the incomplete prototype was, as presented, worthy of
praise. This presented a dichotomy that never got resolved: students felt
that the project was near-complete, whereas the instructors felt that the
project was, at best, a rough sketch.

Many courses had more experienced students outside of the course
staff mentoring the students in the course (18%). More experienced
students were for instance students who had completed the project
course themselves in the past year [S122]. This was found to benefit
both the project implementation and group dynamics: an active and
knowledgeable coach could, for example, help students ask clarifying
questions from the customer, overcoming fear of these being stupid
[S122].

Forming a capstone team of final year students with similar skill
levels is in accordance with the ACM/IEEE Curriculum Guidelines for
Undergraduate SE Degree Programmes [2], but leaves out an integral
part of the real software development team experience: junior and
senior positions. This discrepancy is noted in some of the course
implementations, where senior students were involved not just as ad-
visers but also in the actual software development [S19], [S35], [S58],
[S98]. In these capstones, less-experienced students worked as junior
developers and more-experienced students as senior developers or team
leaders. One article presents a capstone course where students were
required to work on two-course units on the same project, one unit as
a junior member and one unit as a senior member [S19]. Each unit
lasted one period (a quarter of an academic year), but the periods did
not have to be consecutive to allow some flexibility for students in
organising their studies. In order for such an arrangement to work, the
projects in the course were large, long-term products which underwent
enhancements over a number of semesters. Such course implementation
was perceived to be a valuable and industry-relevant experience for
both student groups.

5. Discussion

Firstly, we summarise the main findings of this literature review and
compare them to the findings of previous systematic literature reviews
whenever appropriate (Section 5.1). Secondly, we discuss the validity
of the results in Section 5.2.

5.1. Main findings

5.1.1. Duration (RQ1)
Despite [2] recommending that undergraduate SE capstones should

span the whole academic year, most courses in this research lasted
only one semester. Average duration of one semester is in line with
the findings by Dugan Jr. [21], so it appears that there has been no
changes in this regard over time. In our research, the articles presenting
two-semester capstones often find one-semester courses inadequate in
depth and breadth of skills they can provide. According to Dugan Jr.
[21], a longer course better prepares students for the experiences
they can expect in their working life in software engineering. There
were, however, some real-world constraints to why the courses were
generally shorter, such as cramped curricula and the time and effort
longer capstones require from the staff and students.

5.1.2. Team sizes (RQ2)
In our survey, most capstone courses were large-scale group

projects. This aligns well with the ACM/IEEE [2] recommendations.
The team sizes varied greatly between courses, ranging from 1 to 35
students in one team. While Dugan Jr. [21] found no agreement in the
literature on the appropriate team size, in our research, several articles
that report having experiences with different team sizes found the
18
optimal to be 4–5 students per group. The average team size observed
in this study matches the perceived optimal team size. Groups of 2–
3 students did not have any communication challenges to solve, and
smaller groups often could not accomplish larger projects. In contrast,
larger teams often had issues with communication and coordination.
Larger teams also required more effort from the teaching staff to ensure
fair grading and an even distribution of work.

5.1.3. Clients and project ideas (RQ3)
In our research, 58% of the reviewed articles report having external

clients for student projects (RQ3.1) and projects were based on the
real needs of external stakeholders in 62% of the courses (RQ3.2).
ACM/IEEE highly recommends using external clients in capstones for
both undergraduate and graduate degree programmes in software en-
gineering [2,25]. Having clients outside the immediate course staff
presented more work for the teachers, but working on real projects
was often rewarding for students. It had positive implications for their
skills and employment after the course. Despite these recommenda-
tions and benefits, there still was a considerable number of capstone
courses (42%), where the course staff acted as the client for these
projects, or there were no project clients at all. In addition, there were
multiple cases where the teacher provided students with the project
specifications (21%) or students themselves generated project proposals
(17%). In these cases, students did not get the educational experience
of planning a project with an external stakeholder.

Regarding projects and clients in other literature reviews, the tax-
onomy used by Dugan Jr. [21] relates to project topics and not particu-
larly project sources or clients. This makes it difficult to assess whether
there have been changes in this over the years. In the future, it would be
important to explore this in more detail and evaluate the consequences
of different client choices similar to what Steghöfer et al. [35] have
done.

5.1.4. Project implementation (RQ4)
In 97% of the reviewed courses, students were expected to deliver

a software product at the end of the course (RQ4.1). This clearly aligns
with the ACM/IEEE recommendations [2], which state that a capstone
course should have an implementation as an end result. Additionally,
students were often required to produce agile development artefacts
(e.g. product and sprint backlogs), presentations, project plans and
software documentation. This supports the idea of a well-rounded
software development experience as ACM/IEEE [2] recommends. In our
research, the role of documentation was slightly different from the role
it had in the survey done by Dugan Jr. [21]. In their classification,
the core written documents include project proposals, requirements
documents, project plans, designs, test plans and user manuals. In
contrast, we found that when courses had shifted towards more agile
development approaches the number of written assignments had re-
duced, and the documentation was generated throughout the course
rather than as detailed plans up front. This indicates that tertiary
institutions have modified the course content over time according to
prevailing SE methodologies.

Regarding software life-cycle phases (RQ4.2), in many cases, the
students started the projects from scratch and produced a prototype
or a software product that was handed off to clients or teachers at
the end of the course. Therefore, the maintenance of existing soft-
ware products and working with existing codebases were usually left
unexperienced. Dugan Jr. [21] made similar observations and states
that maintenance was frequently mentioned in the literature with little
detail of its actual implementation. Maintenance thus still remains
an issue that is left with little attention in SE capstone literature,
despite its high relevance in the industry. Some educators had solved
this by assigning students to large projects, which underwent various
incremental improvements over the years. Others had students con-
tributing to large Open Source projects, but both of these approaches
still represented a minority in our study.



Information and Software Technology 159 (2023) 107191S. Tenhunen et al.
The reviewed articles mostly do not explicitly describe all the
technologies used in the course (RQ4.3). However, in most courses
technology selections were made based on the project specifications
and needs. This often entailed students learning new technologies and
having to justify their selections. This is in accordance with ACM/IEEE
recommending a wide set of product development life-cycle activities
to be adopted in capstone courses.

5.1.5. Assessment of students (RQ5)
In all articles that discussed the end-of-course student assessment

(RQ5.1), the teachers were involved in determining the final grades.
Concrete deliverables (produced software, plans, agile artefacts, re-
ports) were generally graded by the teacher. These artefacts provided
teachers with some understanding of how well students understood the
phases of software development. ACM/IEEE [2] suggests that assessing
the deliverables should not be based solely on a working system. Cap-
stones did include various deliverables, making them comply with this
recommendation well. ACM/IEEE [2] also recommends that capstone
assessment should include the quality of student reflection on the
experience. In this regard, the proportion of articles that mention using
self- and peer-reviews in end-of-course assessment was surprisingly
low. However, many courses which did not include student reviews in
grading had students writing reflective reports during the course.

Continuous assessment and guidance during the course (RQ5.2)
were explicitly addressed in most of the reviewed articles (89%). Our
research showed that any sort of mentoring or coaching was found to be
highly beneficial for students. It increased the success rate of projects
and helped teachers to identify problems early on. Course staff was the
one most often guiding students during the project, and several courses
had hired teaching assistants for the task. Some articles mention having
more experienced students advising the capstone participants. This was
found to be a rewarding experience for both student groups. ACM/IEEE
[2] recommends that students should be given adequate opportunities
to reflect on the experience. In the reviewed courses, students had
ample opportunities to gain feedback and reflect on their choices during
the course.

Trevisan et al. [23] also states that assessment during the course can
provide feedback to students about their current performance and by
implication, what they must do to close the gap between this perfor-
mance and the instructor’s expectations. Despite focusing on classroom
assessment specifically, they also feel that continuous assessment is
valuable in a capstone setting.

5.2. Threats to validity

5.2.1. Inaccuracy and bias in selected papers for review
One of the main limitations of any review is the possible bias in

the article selection process. In our research, the reviewed articles only
represent the capstone courses with some aspects or outcomes worthy
of publication. Therefore the study sample might be skewed towards
successful, well-planned courses or easy-to-research courses. This is not
a problem when mapping out the attributes of a capstone course, such
as team sizes or delivered artefacts. However, the quantitative results
(e.g., the portion of the courses having an external client) should be
addressed with caution as certain course aspects may be more likely in
real life than in SE education research publications.

Secondly, we also acknowledge that there are similar courses organ-
ised under other related disciplines, such as data science and computer
engineering. We, however, knowingly chose to leave other disciplines
out of the scope of this research as we wanted to provide a classification
and insights specifically on software-related capstones. We followed
the SLR method by Kitchenham and Charters [29] and provided a
detailed description of the paper selection process to avoid ambi-
guity. The ACM/IEEE [2] recommendations from where we derived
our research questions were also provided specifically for software
19

engineering capstones.
5.2.2. Inaccuracy and bias in data extraction
It is worth noting that the articles presented in this review are not

exclusively written to provide course descriptions or general course
evaluations. Some articles have a section dedicated to the course
overview, which might have provided all the details of the course
structure we needed. Then again, some articles had the relevant details
scattered across various sections and might not have been explicitly
referred to as our categories suggest. Especially regarding the produced
artefacts and student assessment, the descriptions varied greatly in
terms of detail and clarity. Further, the first author did the data ex-
traction and quality assessment without systematically cross-checking
analyses with other authors, which may have caused some bias.

To mitigate these problems, we tried to keep the data categories
generic and descriptive, so that it would be easy to grasp the general
outline of each course. We also refrained from reading too much into
the text itself and created the category ‘‘not specified’’ for unclear
cases. Regarding quality assessment, the two summed-up categories
presented, rigour and credibility, aimed to diminish the impact of a
single question and evaluate the article rather as a whole.

6. Conclusions

This research aimed to understand how software engineering cap-
stone courses are organised in tertiary education institutions. For this
purpose, we conducted a systematic literature review, including 127
articles on real-life SE capstone courses. The characteristics were syn-
thesised into a taxonomy consisting of duration, team sizes, clients and
project sources, project implementation and student assessment. Based
on the synthesised justifications and outcomes for these characteristics,
we provided an overview of how the courses can be organised and what
the trade-offs are to be weighted regarding each characteristic.

Summarised takeaways of the characteristics identified from articles
are as follows:

• Most capstone courses lasted one semester.
• Capstones were almost always conducted as team-based project

courses.
• The most common team size was between 4–5 students. This was

found to be optimal in many of the reviewed articles.
• Course projects were often lacking an external client (42%).
• Nearly all courses (97%) expected a software implementation as

the main deliverable.
• Number of artefacts produced during the course had diminished

over time as courses had moved to use agile development method-
ologies.

• Teachers graded the produced artefacts and were always involved
in the end-of-course assessment.

• Students’ self- and peer-reviews and clients’ opinions were used
in grading in a minority of courses.

• Nearly all (89%) articles reported that their course had regular
guidance available for students during the projects.

We found that for significant parts the courses were aligned with
the recommendations given by ACM/IEEE [2] for software engineering
capstones. The courses had a software implementation as the main
deliverable, the students were assessed based on various factors, not
just the delivery of a working system, and the projects in these courses
were almost always completed as group assignments. Students were
also often given guidance and continuous assessment throughout the
course via written and oral feedback on their progress and deliver-
ables. Although many of the courses follow the guidelines, there are
differences. Moreover, our taxonomy of the course features illustrates
how capstone courses can be implemented in many ways. Thus, studies
related to capstone courses should carefully describe the contextual

details, e.g., by using our framework.



Information and Software Technology 159 (2023) 107191S. Tenhunen et al.
The areas with the most discrepancies to ACM/IEEE [2] recom-
mendations were the duration of the course and the use of external
clients. The courses generally lasted one semester, while ACM/IEEE
recommends two semesters. A considerable number of courses did not
have a client external to the course staff, despite external clients being
recommended for undergraduate and graduate capstones [2,25]. Also,
only a minority of courses covered maintenance; the projects usually
progressed from idea to a basic product or prototype handed over at
the end of the course.

Especially regarding these discrepancies, it would be worthwhile
to see more experiments where the presented characteristics would be
controlled in order to understand their individual roles in the course
outcomes. Moreover, if the reality and guidelines are not aligned, it
would be important to understand which one should be changed. Most
of the research identified here does not provide controlled, comparative
results on the capstone characteristics.

Usually, at least one of the authors of the study was somehow
involved in organising the course in question. Additionally, quite a
large portion of these reports lacked an honest evaluation of the author
bias, as can be seen in Section 3.3.3. Therefore there is an inherent lack
of truly objective third-party assessment of SE capstone courses in the
literature. We would welcome more research on capstone courses, or on
SE education in general, where the author is an unbiased third party.
As capstones are meant to train students for the work-life, we would
also like to see more research done on how well these courses capture
what students face later on in their careers.

CRediT authorship contribution statement

Saara Tenhunen: Conceptualization, Methodology, Validation, For-
mal analysis, Investigation, Data curation, Writing – original draft,
Writing – review & editing, Visualisation. Tomi Männistö: Conceptu-
alization, Methodology, Writing – original draft, Writing – review &
editing, Supervision. Matti Luukkainen: Conceptualization, Methodol-
ogy, Writing – original draft, Writing – review & editing, Supervision.
Petri Ihantola: Conceptualization, Methodology, Writing – original
draft, Writing – review & editing, Supervision.

Declaration of competing interest

No author associated with this paper has disclosed any potential or
pertinent conflicts which may be perceived to have impending conflict
with this work. For full disclosure statements refer to https://doi.org/
10.1016/j.infsof.2023.107191.

Data availability

Data will be made available on request.

References

[1] ACM/IEEE, ACM/IEEE joint task force on computing curricula: Computer sci-
ence curricula 2013: Curriculum guidelines for undergraduate degree programs
in computer science, 2013, URL https://www.acm.org/binaries/content/assets/
education/cs2013_web_final.pdf (visited on 4/20/2022).

[2] ACM/IEEE, ACM/IEEE joint task force on computing curricula: Software en-
gineering 2014: Curriculum guidelines for undergraduate degree programs in
software engineering, 2014, URL https://ieeecs-media.computer.org/assets/pdf/
se2014.pdf.

[3] A. Radermacher, G. Walia, D. Knudson, Investigating the skill gap between
graduating students and industry expectations, in: Companion Proceedings of
the 36th International Conference on Software Engineering, 2014, pp. 291–300.

[4] V. Garousi, G. Giray, E. Tuzun, C. Catal, M. Felderer, Closing the gap between
software engineering education and industrial needs, IEEE Softw. 37 (2) (2019)
68–77.

[5] M. Ikonen, J. Kurhila, Discovering high-impact success factors in capstone soft-
ware projects, in: Proceedings of the 10th ACM Conference on SIG-Information
20

Technology Education, 2009, pp. 235–244.
[6] H. Ziv, S. Patil, Capstone project: From software engineering to ‘‘Informatics’’,
in: 2010 23rd IEEE Conference on Software Engineering Education and Training,
IEEE, 2010, pp. 185–188.

[7] A.-M. Majanoja, T. Vasankari, Reflections on teaching software engineering
capstone course, in: CSEDU (2), 2018, pp. 68–77.

[8] R.C. Panicker, S. Sasidhar, S.Y. Jien, C.K.-Y. Tan, Exposing students to a state-of-
the-art problem through a capstone project, in: 2020 IEEE Frontiers in Education
Conference, FIE, IEEE, 2020, pp. 1–8.

[9] K. Keogh, L. Sterling, A.T. Venables, A scalable and portable structure or
conducting successful year-long undergraduate software team projects, J. Inf.
Technol. Educ.: Res. 6 (1) (2007) 515–540.

[10] E. Venson, R. Figueiredo, W. Silva, L.C. Ribeiro, Academy-industry collaboration
and the effects of the involvement of undergraduate students in real world
activities, in: 2016 IEEE Frontiers in Education Conference, FIE, IEEE, 2016,
pp. 1–8.

[11] K.Z. Watkins, T. Barnes, Competitive and agile software engineering education,
in: Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon), IEEE, 2010, pp.
111–114.

[12] R. Dupuis, R. Champagne, A. April, N. Séguin, Experiments with adding to
the experience that can be acquired from software courses, in: 2010 Seventh
International Conference on the Quality of Information and Communications
Technology, IEEE, 2010, pp. 1–6.

[13] H.M. Haddad, One-semester CS capstone: A 40-60 teaching approach, in: 2013
10th International Conference on Information Technology: New Generations,
IEEE, 2013, pp. 97–102.

[14] J. Bowring, Q. Burke, Shaping software engineering curricula using open source
communities, J. Interact. Learn. Res. 27 (1) (2016) 5–26.

[15] M. Paasivaara, J. Vanhanen, C. Lassenius, Collaborating with industrial customers
in a capstone project course: the customers’ perspective, in: 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engineering
Education and Training (ICSE-SEET), IEEE, 2019, pp. 12–22.

[16] K.P. Anicic, Z. Stapic, Teaching methods in software engineering: Systematic
review, IEEE Softw. (2022).

[17] M.R. Marques, A. Quispe, S.F. Ochoa, A systematic mapping study on prac-
tical approaches to teaching software engineering, in: 2014 IEEE Frontiers in
Education Conference (FIE) Proceedings, IEEE, 2014, pp. 1–8.

[18] O. Cico, L. Jaccheri, Industry trends in software engineering education: a
systematic mapping study, in: 2019 IEEE/ACM 41st International Conference on
Software Engineering: Companion Proceedings (ICSE-Companion), IEEE, 2019,
pp. 292–293.

[19] O. Cico, L. Jaccheri, A. Nguyen-Duc, H. Zhang, Exploring the intersection
between software industry and software engineering education-a systematic
mapping of software engineering trends, J. Syst. Softw. 172 (2021) 110736.

[20] L.L. Fortaleza, T. Conte, S. Marczak, R. Prikladnicki, Towards a GSE international
teaching network: Mapping global software engineering courses, in: 2012 Sec-
ond International Workshop on Collaborative Teaching of Globally Distributed
Software Development, CTGDSD, IEEE, 2012, pp. 1–5.

[21] R.F. Dugan Jr., A survey of computer science capstone course literature, Comput.
Sci. Educ. 21 (3) (2011) 201–267.

[22] N. Martin, Designing the IT capstone course: A systematic literature review,
in: Proceedings of the 20th Annual SIG Conference on Information Technology
Education, 2019, pp. 102–102.

[23] M. Trevisan, D. Davis, S. Beyerlein, P. Thompson, O. Harrison, A review
of literature on assessment practices in capstone engineering design courses:
Implications for formative assessment, in: 2006 Annual Conference & Exposition,
2006, pp. 11–112.

[24] J.E. Burge, G.C. Gannod, Dimensions for categorizing capstone projects, in: 2009
22nd Conference on Software Engineering Education and Training, IEEE, 2009,
pp. 166–173.

[25] ACM, Graduate software engineering 2009(gswe2009) curriculum guidelines for
graduate degree programs in software engineering, 2009, URL https://www.acm.
org/binaries/content/assets/education/gsew2009.pdf.

[26] R.L. Glass, V. Ramesh, I. Vessey, An analysis of research in computing disciplines,
Commun. ACM 47 (6) (2004) 89–94.

[27] R. Parker, S. Sangelkar, M. Swenson, J.D. Ford, Launching for success: A
review of team formation for capstone design, Int. J. Eng. Educ. 35 (6) (2019)
1926–1936.

[28] J. Hattie, H. Timperley, The power of feedback, Rev. Educ. Res. 77 (1) (2007)
81–112.

[29] B. Kitchenham, S. Charters, Guidelines for performing systematic literature
reviews in software engineering, Technical Report, Ver. 2.3 EBSE Technical
Report EBSE, Citeseer, 2007.

[30] T. Dybå, T. Dingsøyr, Empirical studies of agile software development: A
systematic review, Inf. Softw. Technol. 50 (9–10) (2008) 833–859.

[31] M.S. Ali, M.A. Babar, L. Chen, K.-J. Stol, A systematic review of comparative
evidence of aspect-oriented programming, Inf. Softw. Technol. 52 (9) (2010)
871–887.

[32] S. Mahdavi-Hezavehi, M. Galster, P. Avgeriou, Variability in quality attributes
of service-based software systems: A systematic literature review, Inf. Softw.
Technol. 55 (2) (2013) 320–343.

https://doi.org/10.1016/j.infsof.2023.107191
https://doi.org/10.1016/j.infsof.2023.107191
https://doi.org/10.1016/j.infsof.2023.107191
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf
https://ieeecs-media.computer.org/assets/pdf/se2014.pdf
https://ieeecs-media.computer.org/assets/pdf/se2014.pdf
https://ieeecs-media.computer.org/assets/pdf/se2014.pdf
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb3
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb3
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb3
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb3
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb3
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb4
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb4
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb4
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb4
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb4
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb5
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb5
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb5
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb5
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb5
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb6
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb6
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb6
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb6
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb6
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb7
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb7
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb7
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb8
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb8
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb8
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb8
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb8
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb9
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb9
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb9
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb9
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb9
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb10
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb10
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb10
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb10
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb10
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb10
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb10
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb11
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb11
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb11
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb11
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb11
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb12
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb12
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb12
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb12
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb12
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb12
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb12
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb13
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb13
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb13
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb13
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb13
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb14
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb14
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb14
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb15
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb15
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb15
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb15
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb15
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb15
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb15
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb16
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb16
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb16
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb17
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb17
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb17
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb17
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb17
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb18
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb18
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb18
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb18
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb18
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb18
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb18
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb19
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb19
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb19
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb19
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb19
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb20
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb20
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb20
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb20
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb20
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb20
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb20
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb21
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb21
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb21
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb22
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb22
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb22
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb22
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb22
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb23
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb23
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb23
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb23
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb23
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb23
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb23
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb24
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb24
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb24
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb24
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb24
https://www.acm.org/binaries/content/assets/education/gsew2009.pdf
https://www.acm.org/binaries/content/assets/education/gsew2009.pdf
https://www.acm.org/binaries/content/assets/education/gsew2009.pdf
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb26
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb26
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb26
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb27
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb27
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb27
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb27
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb27
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb28
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb28
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb28
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb29
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb29
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb29
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb29
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb29
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb30
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb30
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb30
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb31
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb31
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb31
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb31
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb31
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb32
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb32
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb32
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb32
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb32


Information and Software Technology 159 (2023) 107191S. Tenhunen et al.
[33] A. Castleberry, A. Nolen, Thematic analysis of qualitative research data: Is it as
easy as it sounds? Curr. Pharm. Teach. Learn. 10 (6) (2018) 807–815.

[34] A. Mishra, D. Dubey, A comparative study of different software development life
cycle models in different scenarios, Int. J. Adv. Res. Comput. Sci. Manag. Stud.
1 (5) (2013).

[35] J.-P. Steghöfer, H. Burden, R. Hebig, G. Calikli, R. Feldt, I. Hammouda, J.
Horkoff, E. Knauss, G. Liebel, Involving external stakeholders in project courses,
ACM Trans. Comput. Educ. (TOCE) 18 (2) (2018) 1–32.

Saara Tenhunen has recently graduated with a Master of Science from the University
of Helsinki (UH) and works in software development. Her interests lie in software
engineering and improving software engineering education for students like herself.
21
Tomi Männistö received his PhD from the Helsinki University of Technology, nowadays
known as Aalto University. He is a full professor at the University of Helsinki of the
empirical software engineering research group. His research interests include software
architectures, variability modelling and management, configuration knowledge, and
requirements engineering.

Matti Luukkainen received his PhD from the University of Helsinki. He is a university
lecturer at the University of Helsinki, specialising in teaching web development and
software engineering. His current research interest is in computer science education.

Petri Ihantola works as an associate professor of big data learning analytics and
director of the MOOC-center at the University of Helsinki, Finland. He received his
PhD from Aalto University in 2011. His research interests span educational data mining
and building educational software with a particular focus on smart content, automated
assessment, and learning analytics in computing education.

http://refhub.elsevier.com/S0950-5849(23)00045-9/sb33
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb33
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb33
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb34
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb34
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb34
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb34
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb34
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb35
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb35
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb35
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb35
http://refhub.elsevier.com/S0950-5849(23)00045-9/sb35

