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Horizontal gene transfer (HGT) plays a critical role in the evolution and diversification of many microbial species. The re-

sulting dynamics of gene gain and loss can have important implications for the development of antibiotic resistance and the

design of vaccine and drug interventions. Methods for the analysis of gene presence/absence patterns typically do not ac-

count for errors introduced in the automated annotation and clustering of gene sequences. In particular, methods adapted

from ecological studies, including the pangenome gene accumulation curve, can be misleading as they may reflect the un-

derlying diversity in the temporal sampling of genomes rather than a difference in the dynamics of HGT. Here, we intro-

duce Panstripe, a method based on generalized linear regression that is robust to population structure, sampling bias, and

errors in the predicted presence/absence of genes. We show using simulations that Panstripe can effectively identify differ-

ences in the rate and number of genes involved in HGT events, and illustrate its capability by analyzing several diverse bac-

terial genome data sets representing major human pathogens.

[Supplemental material is available for this article.]

Genetic variation within microbial populations is shaped by both
the accumulation of variation from point mutations as well as by
the acquisition and loss of genetic material through horizontal
gene transfer (HGT). HGT can occur via the uptake of DNA from
the environment, with the help of mobile genetic elements
(MGEs; phages, integrative conjugative elements, and plasmids),
or from direct contact between bacterial cells (Thomas and
Nielsen 2005). Genes are also frequently duplicated and lost verti-
cally upon cell division (Arnold et al. 2022). The influence of these
sources of variation varies by species. Clonal species such as
Mycobacterium tuberculosis (Mtb) typically accumulate variation
nearly entirely through point mutations, whereas naturally trans-
formable species such as Streptococcus pneumoniae and Neisseria
meningitidis have very high rates of homologous recombination
(Dubnau 1999). In other species such as Salmonella enterica, hori-
zontal exchange is generally restricted to the movement of
MGEs (Harris et al. 2010). Although HGT does not always have
an impact on a microbe’s fitness, it can lead to critical phenotypic
changes such as the acquisition of antimicrobial resistance, viru-
lence factors, and vaccine escape (Croucher et al. 2013; Wyres
et al. 2019).

A commonapproach to analyzing horizontal exchange inmi-
crobial genomics is to group homologous gene sequences into
orthologous and paralogous gene clusters. The union of these clus-
ters within a particular species or group is commonly referred to as
the pangenome (Medini et al. 2005). Genes are often further clas-
sified into either the “core” genome, which is found in almost all
members of the group, or the “accessory” genome, which is only
found in a subset of genomes. Species with a limited accessory ge-
nome such that all genes are likely to have already been observed

are often described as “closed,” whereas species with a diverse ac-
cessory genome are described as “open.”

A number of tools have been developed to infer a pangenome
given a collection of annotated genomes (Page et al. 2015; Ding
et al. 2018; Bayliss et al. 2019; Gautreau et al. 2020; Tonkin-Hill
et al. 2020; Zhou et al. 2020). A common output of these algo-
rithms is a binary gene presence/absence matrix where genomes
are represented by rows and orthologous gene clusters by columns.
After generating a gene presence/absence matrix, researchers are
often interested in comparing the size of pangenomes between
data sets, determining the rate of horizontal gene exchange as
well as identifying whether a pangenome is “open” or “closed.”

A gene accumulation curve, as is often performed in ecologi-
cal studies of species diversity, is often used to investigate these
questions (Ugland et al. 2003; Medini et al. 2005). Here, the num-
ber of unique gene clusters identified is plotted against the number
of genomes. Random permutations are often used to account for
the variation caused by the order inwhich genomes are considered
in the plot. In some cases, a power law such as Heaps’ or Zipf’s law
is fit to this curve to give a parameter estimate of the diminishing
number of new genes found with each additional genome and to
determine whether the pangenome is open or closed (Tettelin
et al. 2008).

A neglected problem with this approach is that it fails to ac-
count for the underlying diversity of the set of sampled genomes.
For example, a set of genomes taken from within an outbreak is
likely to involve far fewer gene exchange events than a diverse
sample from a species with thousands of years of evolution sepa-
rating isolates. Methods that make use of a phylogeny constructed
from the genetic diversity present in genes found in all the ge-
nomes (the “core” genome) help to address this issue by
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controlling for the underlying diversity of the sample. The branch
lengths of the core genome phylogeny indicate the evolutionary
time over which gene gain and loss events could have occurred.
Shorter branch lengths separating more closely related taxa would
be expected to have fewer associated gene exchange events.
Methods that rely on the construction of such a phylogeny include
those based on maximum parsimony (Mirkin et al. 2003), maxi-
mum likelihood (Hao and Golding 2006; Cohen and Pupko
2010; Han et al. 2013), and Bayesian phylogenetics (Liu et al.
2011). Two notable models that use this approach are the infinite-
ly many genes (IMG) model and the finitely many genes (FMG)
model (Baumdicker et al. 2010, 2012; Collins and Higgs 2012;
Zamani-Dahaj et al. 2016). The IMG model assumes an infinite
pool of genes and that a particular gene can only be gained
once, whereas the FMG model assumes that genes belong to a fi-
nite pool and that multiple gene gain and loss events of the
same gene can occur. Many models also collapse paralogous clus-
ters into gene families before the inference of gene gain and loss
rates (Mirkin et al. 2003; Cohen and Pupko 2010; Han et al. 2013).

A significant limitation of these approaches is that they gen-
erally assume that there is no error in the inferred pangenomepres-
ence/absence matrix. We and others have shown that gene
annotation errors and the complexities of clustering genes into
orthologous families can introduce substantial numbers of errone-
ous gene clusters (Han et al. 2013; Salzberg 2019; Tonkin-Hill et al.
2020; Zhou et al. 2020). Although a subset of models do account
for errors in the predicted presence/absence of genes, these have
mostly been optimized for the analysis of eukaryotes and focus
on a small number of gene families involving multiple genes
(Han et al. 2013). Most models also make the simplifying assump-
tion that genes are gained or lost individually, which can signifi-
cantly bias estimates of the rate of gene exchange, particularly
when the exchange of MGEs is frequent (Baumdicker et al. 2012;
Zamani-Dahaj et al. 2016).

To address these limitations, we have developed Panstripe, an
approach that compares the rates of core and accessory genome
evolution to account for both population structure and errors in
the pangenome gene presence/absence matrix. Using extensive
simulations and by analyzing a diverse range of bacterial genome
data sets, we show that Panstripe can effectively identify the rate
of gene exchange in pangenomes, detect the presence of a tempo-
ral signal in the accessory genome, and discern whether the size of
gene exchange events varies between pangenomes.

Results

Overview

Panstripe accepts a phylogeny produced using standard pipelines
and a corresponding gene presence/absence matrix as produced
by most pangenome inference tools (Page et al. 2015; Lees et al.
2018; Tonkin-Hill et al. 2020). The length of each branch in the
phylogeny is then compared with the number of gene gain and
loss events inferred to have occurred on that branch using a gener-
alized linearmodel (GLM) (Fig. 1). The ancestral gene gain and loss
events on each branch can be inferred using common ancestral
state reconstruction (ASR) methods including maximum parsimo-
ny, maximum likelihood, and stochastic mapping (Sankoff 1975;
Yang et al. 1995; Cohen and Pupko 2010; Louca and Doebeli
2018). Although this is a critical step in the Panstripe algorithm,
we have found that the approach is robust to the choice of ASR
method (see Results). The Panstripe algorithm is similar to root-

to-tip regression, which is used to test for temporal signal in phy-
logenies (Rambaut et al. 2016). However, in contrast to TempEst,
the regression is not performed on the root-to-tip distance but
rather on the individual branch lengths. This avoids the problem-
atic dependence structure thatmakes the root-to-tip regression not
suitable for statistical hypothesis testing (Drummond et al. 2003;
Rambaut et al. 2016).

Panstripe assumes that the number of gene gain and loss
events on each branch are distributed according to a compound
Poisson distribution. This allows for multiple genes to be gained
and lost in a single event (see Methods). Gene duplications are
treated as gene gain events and are typically represented by multi-
ple rows in the matrix output of common pangenome inference
pipelines. Errors in the gene presence/absence matrix introduced
at either the sequencing, assembly, annotation, or pangenome
clustering stage are unlikely to correlatewith the core genome phy-
logeny. That is, we expect to see a similar number of errors on
shorter terminal branches that originate from a closely related
clade as we would on a long terminal branch leading to a taxon
with no close relatives. ASR of these errors will place them at the
terminal branches (tips) of the phylogeny. By including a binary
covariate that indicates whether or not a branch is located at the
tip of the phylogeny, we can control for the presence of errors in
the pangenome. Differences in the error rates of different data
sets will often be reflected in this “tip” covariate. Without careful
consideration of the individual gene sequences, rare genes that
persist within genomes for periods of time that are much shorter
than the length of terminal branches can be difficult to distinguish
fromerrors. As a result, Panstripe groups the signal fromboth these
sources into a single term.

The GLM framework used by Panstripe can also be used to
compare the rates of HGT between pangenomes or to identify as-
sociations with additional covariates of interest. This relies on
the given phylogenies having the same scale, which can be
achieved using timescaled trees. Alternatively, SNP-scaled phylog-
enies can be used if differences in the ratio of core to accessory ge-
nome variation are of interest. To test whether the number of
genes involved in each recombination event is significantly differ-
ent between two pangenomes, Panstripe allows different models
to be fitted separately to the mean and dispersion structure of
the GLM (Smyth 1989).

The Panstripe package provides several plotting functions, in-
cluding an alternative to the popular pangenome accumulation

Figure 1. A schematic of the Panstripe algorithm. A binary gene pres-
ence/absence matrix and a core genome phylogeny are taken as input.
The ancestral states of each gene are then determined before fitting a com-
pound Poisson GLM to compare the core branch length with the number
of gene gain and loss events on each branch. Additional terms are included
to account for the depth of a branch and whether or not it occurs at the
tips of the phylogeny.
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curve that controls for both errors and differences in the core ge-
nome diversity of the underlying isolates. The package is written
in R and is available freely under an MIT license (see Software
availabilty).

Panstripe is robust to errors in pangenome clustering

To assess the robustness of the Panstripe algorithm to the choice of
pangenome clustering method, we considered the pangenome
analysis of a large outbreak of highly clonal Mtb in London span-
ning 14 yr (Casali et al. 2016). This collection of genomes has been
previously analyzed using both the Roary and Panaroo pange-
nome clustering pipelines (Tonkin-Hill et al. 2020). Because of
the very low mutation rate and highly clonal nature of the out-
break, we would expect there to be no pangenome variation in
this data set, making it a useful control for assessing whether pan-
genome inference tools can account for errors.

Figure 2A presents the pangenome accumulation curves of
the resulting gene presence/absence matrices output by the
Roary and Panaroo pipelines. The very large difference in the
two curves shows that the accumulation curve method is highly
sensitive to the different error rates of the two pipelines. We
have previously shown that Panaroo can significantly reduce the
number of errors when generating a pangenome clustering, as ob-
served in Figure 2A. However, Panaroo still estimates a small
amount of accessory variation in this clonal Mtb data set.

Figure 2B indicates that the Panstripe algorithm can accurate-
ly account for the differences in error rates of the two pipelines. By
plotting the core branch lengths against the predicted number of
gene gain and loss events, it becomes clear that the large number
of accessory genes identified by the Roary pipeline do not correlate
with the core phylogeny and thus are likely to be erroneous.
Panstripe correctly estimates a very similar association between
the core genome branch length and the number of inferred gene
gain and loss events on each branch for both the Roary and
Panaroo pangenomes. The inferred coefficients of the GLM were
found to be βcore = 0.0621 and 0.0625, respectively. In both cases,
Panstripe found that the coefficients were not significantly differ-
ent from zero (P=0.871), which is consistent with the closed pan-
genome of Mtb. Panstripe can also be used to compare the
differences in the rate of gene exchange events associated with
the tips of the phylogeny. Here, it correctly identifies a signifi-

cantly elevated rate of errors in the Roary gene presence/absence
matrix (P<0.001).

Panstripe outperforms alternative methods on simulated data

Simulations indicate that Panstripe is more robust to the impacts
of errors and population structure than alternative methods, in-
cluding those based on information theory (Tettelin et al. 2005,
2008) and phylogenetically informed approaches (Fig. 3;
Supplemental Fig. 1; Baumdicker et al. 2012; Collins and Higgs
2012; Zamani-Dahaj et al. 2016). To simulate pangenome data
sets, we first generate core genome phylogenies before simulating
the number and size of gene gain and loss events along each
branch (seeMethods). In line with the assumptions of Dollo’s par-
simony, we assume an elevated frequency of gene loss relative to
gene gain as such an asymmetry is frequently observed in bacterial
genomes (Farris 1977; Apagyi et al. 2018). Errors in the pangenome
matrix were generated by randomly adding or removing single en-
tries in the matrix.

It is challenging to compare the output of the various pange-
nome dynamics inference tools as each makes different assump-
tions and they do not attempt to infer the same set of
parameters. To cope with this, we focused on the ability of each
tool to accurately quantify differences in the dynamics of gene
gain and loss betweenpangenomedata sets. For those tools that in-
fer a gene gain rate, we tested whether the ratio of inferred gene
gain rates matched that of the simulations. Thus, we would expect
a ratio of the estimated gene gain rate of one for a pair of simula-
tionswith the same parameters and a ratio of two if one simulation
used a gene gain rate that was twice as large. This allows us to inves-
tigate the ability of each tool to distinguish the dynamics of gene
gain and loss between data sets. Approaches based on information
theory, such as the pangenome accumulation curve and fitting a
Heaps’ power law, do not have a parameter that is easily compared
with the gene gain rate. Instead, we compare the results of these
methods using a fixed gene gain and loss rate subject to different
levels of error and bias.

Figure 3A indicates that Panstripe was the only tool that pro-
vided consistent parameter estimates both at higher error rates and
across a range of gene gain and loss rates. The phylogenetic in-
formed methods such as the IMG model of panicmage and the
FMG model of Zamani-Dahaj et al. (2016) both performed poorly
at higher error rates. Although these methods were generally accu-
rate in the absence of errors in the presence–absence matrix, they
both systematically underestimated higher gene gain rates. In our
analyses, we could not get the IMG model of Collins and Higgs
(2012) to give consistent results (Supplemental Fig. 1). The infor-
mation theory–based approaches were highly sensitive to errors
in the presence–absence matrix (Fig. 3B,C). Increased error rates
led to both substantial differences in the slopes of the pangenome
accumulation curve and an underestimate in the α parameter of
Heaps’ power law. This suggests that under realistic error rates,
the use of Heaps’ power law to classify pangenomes into “open”
and “closed” is problematic. To test whether these results held
for different ratios of gene gain and loss, we repeated the analysis
assuming equal frequencies of gene gain and loss, as well as an el-
evated rate of gene gain. In both cases, we observed very similar re-
sults (Supplemental Figs. 3, 4).

ASR forms a critical component of the Panstripe algorithm.
To test the sensitivity of the approach to the choice of algorithm,
we simulated multiple pangenome data sets with increasing rates
of annotation error. We then ran Panstripe using the included

A B

Figure 2. Comparison of methods on a highly clonalMycobacterium tu-
berculosis (Mtb) outbreak data set. (A) Pangenome accumulation curves af-
ter running both Roary (blue) and Panaroo (red) on 351 Mtb genomes
from an outbreak in London. The ribbon indicates the variation in the
curve found by permuting the genome order 100 times. (B) Plot of the
core branch length versus the predicted number of accessory genes for
the same set of Mtb genomes according to the Panstripe model. The rib-
bon displays the 95% confidence interval of the Panstripe model fit and in-
dicates that the inferred slopes are not significantly different from zero for
both the Panaroo and Roary presence–absence matrices.

Robust analysis of prokaryotic pangenome gene gain

Genome Research 131
www.genome.org

 Cold Spring Harbor Laboratory Press on April 17, 2023 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277340.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277340.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.277340.122/-/DC1
http://genome.cshlp.org/
http://www.cshlpress.com


ASR algorithms (maximum parsimony, maximum likelihood, and
stochastic mapping).We found that Panstripe performed similarly
using all three of the included algorithmswith the variation in the
estimated rate of gene gain and loss using the same set of simula-
tion parameters exceeding the variation between the different
ASR algorithms (Supplemental Fig. 5A). These simulations repre-
sent relatively well behaved data sets. When we compared the

gene gain and loss estimates on the more challenging clonal Mtb
data set, there was a larger difference between the different ASR al-
gorithms, and only maximum parsimony correctly indicated a
gene gain and loss rate that was indistinguishable from zero
(Supplemental Fig. 5B,C). The very low temporal signal in the
Mtb phylogeny leads to very short branch lengths and multichot-
omies. This causes the maximum likelihood and stochastic

B C

A

Figure 3. Results of each algorithm on simulated datawith different error rates. (A) Bars indicate themean percentage error in the estimated ratio of gene
gain and loss rate compared to the reference rate of 5 × 10−4 with a simulated annotation error of zero. The three rows represent increasingly large gene
gain and loss rates of 5 × 10−4, 0.001, and 0.01. The simulated annotation error rates are given along the x-axis. (B) Pangenome accumulation curves with a
simulated gene gain and loss rate of 0.001. The colors represent the increasing annotation error rates. (C) The corresponding error in the α parameter
estimates after fitting Heaps’ law to the curves in B. Lower α estimates indicate a more “open” pangenome. Thus, higher rates of annotation error can
lead to incorrect estimates of whether a pangenome is open or closed.
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mapping algorithms to incorrectly assign gene gain and loss events
to longer branches. Consequently, as the major goal of the
Panstripe algorithm is to enable robust inference of gene gain
and loss rates, we make use of maximum parsimony by default.
However, the program includes the option to use both maximum
likelihood and stochastic mapping algorithms so that users can
easily test the sensitivity of their analyses to the assumptions of
these different algorithms.

We found that similar to the impacts of errors in the pange-
nome gene presence–absence matrix, Panstripe was more robust
to sampling biases and the underlying phylogenetic structure of
a pangenome data set. To test this, we simulated five large phylog-
enies and accompanying gene presence–absence matrices. We
then selected a small subclade (30 or more genomes) within each
simulation to create a smaller, more closely related data set. Here,
the simulation parameters of the large data set and the subclade
are the same, and thus, the ratio of the estimated parameter for
each method on each data set should be one. Figure 4A indicates
that both Panstripe and the phylogenetically informed method
of Zamani-Dahaj et al. (2016) provided consistent parameter esti-
mates of the full data set and subclade. Conversely, the ratios of
the gene gain rate estimated by panicmage and the Heaps’ power
law α parameter between the full data set and the subclade both
had error rates >50%. Similarly, the pangenome accumulation
curves (Fig. 4B) were highly sensitive to sampling bias. Overall,
these simulations indicate that Panstripe outperforms othermeth-
ods by providing gene gain and loss rate estimates that better re-
flect the true difference between data sets while being robust to
both sampling bias and error in the gene presence–absencematrix.

To verify that Panstripe can differentiate between different
rates of annotation error, we generated simulated pangenomes us-
ing three different gene gain and loss rates and five annotation er-
ror rates. Supplemental Figure 2 indicates the resulting P-values
associated with the tip parameter of the Panstripe GLM.
Panstripe was able to accurately differentiate different rates of an-
notation error for all data sets except those generated using the
highest gene gain and loss rate. At the highest gene gain and loss
rate, the number of real gene exchange events tends to dominate
the impact of errors, and thus, it is more challenging for the
Panstripe algorithm to distinguish different rates of annotation er-

ror. We also considered whether Panstripe can distinguish be-
tween the size of gene exchange events by simulating two gene
gain and loss rates and four different recombination sizes.
Supplemental Figure 6 shows that Panstripe was able to accurately
differentiate between all four simulated recombination sizes.

Panstripe accurately identifies within- and between-species

differences in gene gain and loss rates

To compare the estimates of the Panstripe algorithm on species
that are known to have a diverse accessory genome, we considered
two previously described data sets. The first included 315
Enterococcus faecalis genomes from threemajor hospital-associated
clades sampled in the Netherlands, Spain, and Portugal (Pöntinen
et al. 2021). E. faecalis is both a commensal and nosocomial path-
ogen and can successfully inhabit a wide range of host niches. The
generalist ecological lifestyle of the microbe is facilitated by a
diverse accessory genome with little association between specific
niches and particular accessory genes (Palmer et al. 2012;
Neumann et al. 2019). Instead, adaptation to the hospital-associat-
ed niche is thought to be owing to selection for survivability in a
broader set of niches (Pöntinen et al. 2021). We generated pange-
nome curves and ran the Panstripe algorithmon three of themajor
hospital-associated E. faecalis clades: pp18, pp2, and pp6 (Fig. 5A).

Although clade pp18 (including sequence types ST159 and
ST525) appeared to have a larger accessory genome according to
the pangenome accumulation curve (Fig. 5B), the Panstripe algo-
rithm revealed that this was likely to be driven by sampling biases
as clade pp18 included a more diverse set of genomes (Fig. 5C,D).
Instead, the pp6 clade (mainly of ST28) had a higher rate of gene
exchange compared with both the pp2 (mainly of ST6) (P<
0.001) and pp18 (P<0.001) clades. The pp6 clade is the most re-
cent hospital-associated clade to have emerged in this data set,
and thus, the elevated rate of gene exchange could be a result of
the additional selection pressures acting within the hospital envi-
ronment, which may drive the acquisition of antimicrobial resis-
tance plasmids (Pöntinen et al. 2021). Consistent with this
hypothesis, Panstripe found that the size of gene gain and loss
events was higher in clade pp6.

A B

Figure 4. Impact of simulated population structure on each algorithm. (A) Bars indicate the mean percentage error in the estimated ratio of gene gain
and loss rate in a smaller subclade of the simulated data compared with estimating the rate on the full simulation. Only Panstripe and the method of
Zamani-Dahaj et al. (2016) accurately reported similar parameters in both the small and large sets. This suggests that panicmage and fitting a Heaps’ power
law are highly sensitive to sampling biases in the data. (B) Similar to the Heaps’ power law, pangenome accumulation curves providemisleading differences
when comparing the subclade and full data sets.
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The second data set consisted of four subclades (A, B, C1,
C2) of the globally disseminated ST131 clone from a longitudi-
nal study of Escherichia coli isolates from the Norwegian surveil-
lance on resistant microbes (NORM) program (Gladstone et al.
2021). Similar to our analysis of E. faecalis, the estimated pange-
nome accumulation curve for these clades gave different results
to that produced by Panstripe (Fig. 6A–C). According to the pan-
genome accumulation curve, clade B showed the largest accesso-
ry genome diversity. However, this is likely because of the
increased age of clade B as its expansion in the Norwegian pop-
ulation occurred nearly a decade earlier than the other clades
(Gladstone et al. 2021). Thus, the pangenome accumulation
curve is reflecting the underlying population structure of the
data set rather than a difference in the accessory genome dynam-
ics of the clades. Instead, Panstripe predicts an increased rate of
gene gain and loss for the C1 and C2 clades, which expanded
more recently and have a higher prevalence of drug-resistance
loci (Fig. 6D). The emergence of C1 and C2 clades has been
shaped by the acquisition of specific F-plasmids involving a se-
ries of plasmid gene gains and losses and the exchange of gene
modules mediated by the insertion sequence IS26 (Johnson
et al. 2016). The increased rate of gains and loss in these two
clades is consistent with them acquiring and exchanging mul-
ti-drug-resistant (MDR) plasmids more easily than clade A,
which has also undergone a recent expansion but is generally
more susceptible to different classes of antibiotics (Gladstone
et al. 2021).

As we have dated phylogenies for both the E. faecalis and E.
coli data sets, it is possible to use Panstripe to compare the rates of
gene gain and loss between the two species. We found that the E.
coli clades generally had significantly higher rates of gene gain
and loss than did the E. faecalis clades. This is in agreement
with the more generalistic lifestyle of E. faecalis. In contrast to
the specialization of each of the E. coli ST131 clades mediated
by the gain and loss of specific MDR plasmids, there was not a sig-
nificant difference between the E. faecalis clades and the E. coli
clade B (Johnson et al. 2016; Kondratyeva et al. 2020). Our ability
to detect smaller differences in the rates of gene exchange is lim-
ited by the large differences in the structure of the underlying
phylogenies, which leads to increased uncertainty and a reduc-
tion in the statistical power to detect differences in these pairwise
comparisons.

Although we found small differences in the error rates be-
tween the E. coli and E. faecalis data sets, there was a large differ-
ence in the dispersion parameters of the Panstripe GLM. This
suggests that the number of genes involved in each gain and loss
event differs significantly between the two species. The different
mechanisms driving HGT in the two species and the difference
in the size of the MGEs could explain this difference (Brockhurst
et al. 2019). HGT in E. coli is predominantly the result of phage in-
teractions and the exchange of large F-plasmids (size on average
>100 kbp), whereas the total plasmid content of E. faecalis is gen-
erally lower (average ∼24 kbp) (Johnson et al. 2016; Pöntinen et al.
2021). Therefore, E. coli has a substantial part of the accessory

A

B C D

Figure 5. Analysis of the pangenome dynamics of an E. faecalis data set. (A) Phylogenies of threemajor E. faecalis clades taken from Pöntinen et al. (2021)
with branches colored by the number of gene gain and loss events inferred using maximum parsimony. (B) The pangenome accumulation curves of the
same clades using the pangenomes inferred using Panaroo in Pöntinen et al. (2021). (C) The predicted slope of the relationship between core genome
branch length and the number of gene gain and loss events is inferred by the Panstripe algorithm. (D) The cumulative number of gene gain and loss events
versus the cumulative branch length starting from the root node of each tree in A. This is a similar plot to the common “root-to-tip” plot used in phylo-
genetic dating.
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genome residing on largeMGEs, which have shaped the evolution
of the subclades, whereas the events of gain and loss for E. faecalis
may involve smaller MGEs, which allocate fewer genes.

Improved estimates of associations between phenotypes and

pangenome evolutionary dynamics

The GLM framework used in Panstripe allows for other covariates
and phenotypes of interest to be easily incorporated into themodel
and tested to identify significant associations with the rate of gene
gain and loss. Common covariates of interest include whether line-
ages are associated with particular environments such as hospitals,
drug resistance, or invasive disease. Previously, we have used the
FMG model, as implemented in Panaroo, to estimate the rates of
gene gain and loss in 51 major Global Pneumococcal Sequencing
Clusters (GPSCs) (Zamani-Dahaj et al. 2016; Gladstone et al. 2019,
2020; Tonkin-Hill et al. 2020). The correlation between the estimat-
ed rates and the invasiveness of each lineage was estimated using
Spearman’s correlation coefficient. This approach identified an asso-
ciation between the rate of gene gain and loss and whether the lin-
eage had a significant odds ratio of invasive disease (Gladstone et al.
2019). Although Panaroo significantly reduced the number of er-
rors, this approach was still sensitive to any remaining errors in
the gene presence/absence matrix.

To address this, we redid the analysis using the same gene
presence/absence matrix inferred by Panaroo but with the

Panstripe algorithm. Similar to our previ-
ous analysis, Panstripe identified a lower
rate of gene gain and loss in GPSCs that
had a significant odds ratio of severe dis-
ease (P<1 ×10−3) (Fig. 7A; Gladstone
et al. 2019, 2020; Tonkin-Hill et al.
2020). This could be a signal of genome
reduction, which has been linked with
pathogenicity acrossmultiple divergence
scales (Murray et al. 2021).

Unlike our previous analysis,
Panstripe found that this result was sensi-
tive to which branches were included in
the analysis with low bootstrap support
for the identified association between in-
vasiveness and gene gain and loss rate.
Instead, Panstripe identified an enrich-
ment for gene gain and loss events locat-
ed on terminal branches of invasive
lineages (Fig. 7B). A potential explana-
tion is that the annotation error rates dif-
fered between severe and nonsevere
lineages. However, given that similar se-
quencing and annotation procedures
were used for all genomes in the Global
Pneumococcal Sequencing project, this
is unlikely. Another explanation is that
sampling bias or differences in the under-
lying population size of the lineages are
driving the signal. Most invasive isolates,
such as those expressing capsule serotype
1, are known to have outbreak epidemi-
ology (Gladstone et al. 2019). This could
lead to a greater sampling of highly relat-
ed pneumococcal strains from invasive
lineages. The greater evolutionary time

separating noninvasive lineages would thus allow for a higher
number of unique gene exchange events to occur at the tips of
the phylogenies, which are more heavily influenced by faster-
movingMGEs. This hypothesis is supported by looking at the pair-
wise patristic distance separating invasive andnoninvasive isolates
(Fig. 7C). Here, invasive isolates aremore closely related, leading to
a smaller number of rare unique genes being identified at the tips
of the phylogeny. This highlights the utility of the Panstripe algo-
rithm and helps to show its ability to account for annotation er-
rors, population structure, and sampling biases.

Discussion

Determining the presence/absence of genes in prokaryotic ge-
nomes is a complex and error-prone process. Annotation and clus-
tering errors, as well as sampling bias and differences in the
underlying population structure of strains and species, can all
complicate the analysis of pangenome dynamics. To address these
problems, we developed Panstripe, an algorithm that is robust to
both errors in the gene presence/absence matrix and the diversity
of the underlying genomes. Panstripe can compare the gene ex-
change rates between pangenomes and determine if these differ-
ences are associated with the underlying core genome diversity,
rare and erroneous genes occurring at the tips of a phylogeny, or
the average size of gene gain and loss events. The use of a GLM

A B

C D

Figure 6. Comparison of the gene gain and loss rate in major clades of E. coli. (A) Pangenome accumu-
lation curves for the clades in the E. coli-ST131 data sets. Pangenome data sets were taken fromGladstone
et al. (2021) and were constructed using Panaroo. (B) The corresponding predicted slope of the relation-
ship between core genome branch length and the number of gene gain and loss events as inferred by the
Panstripe algorithm. (C ) The cumulative number of gene gain and loss events versus the cumulative
branch length starting from the root node of each tree in A. This is a similar plot to the common
“root-to-tip” plot used in phylogenetic dating. (D) The estimated parameters of the generalized linear
model used in Panstripe. Error bars represent the 95% confidence interval of the parameter estimates.
Higher values of the core coefficient indicate an increased rate of gene gain and loss.
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framework also allows for associations between gene exchange and
covariates of interest to be investigated.

We found that methods that do not account for the diversity
of the underlying genomes perform particularly badly, including
the commonly used pangenome accumulation curve and Heaps’
power law. This was most evident in the analysis of two gene pres-
ence/absence matrices obtained after running the Panaroo and
Roary pipelines on the same data set. The pangenome accumula-
tion curve incorrectly indicated a diverse pangenome, whereas
Panstripe was able to use the additional core genome phylogenetic
information to correct for the large difference in error rates of the
two pangenome clustering tools. Another common approach is to
separate genes into different classes with different rates of gene
gain and loss. This is often performed using fixed thresholds indi-
cating the prevalence of a gene within a pangenome, although
statistical methods have recently been suggested (Collins and
Higgs 2012; Page et al. 2015;Gautreau et al. 2020). Although allow-
ing for different rates of gene gain and loss can improve the fit of a
model, these approaches still neglect to account for errors. In the
previous example, filtering genes present in <5% of genomes
would likely reduce the difference between the Roary and
Panaroo algorithms. However, without accounting for the core ge-
nome variation, it would be impossible to tell if the filtered genes
were erroneous or reflected real biology.

Given a lack of an association between the core genome
branch length and the accessory genome, it is tempting to say
that such a pangenome is “closed.”However, the binary classifica-
tion of pangenome into “open” and “closed” can be problematic
as it does not incorporate the evolutionary timescale being consid-
ered. For example, although there is unlikely to be any gene ex-
change in an outbreak of Mtb, there is evidence of pangenome
variation across the Mycobacterium genus (Rosas-Magallanes
et al. 2006; Becq et al. 2007; Chiner-Oms et al. 2019). Instead,
we suggest that it is better to report whether the core and accessory
genome variation is “coupled” in that there is a significant associ-
ation between the core and accessory genome diversity in a partic-
ular data set.

Although we have shown that Panstripe provides consider-
able improvements to the analysis of pangenome dynamics, it
does not implement a formal evolutionary model. Panstripe also
assumes that annotation and clustering errors occur randomly
with respect to the core genome phylogeny. Systematic errors

that are associated with the underlying population structure may
thus be underestimated. This issue can bemitigatedwhen combin-
ing different data sets by including the data set as a covariate in the
Panstripe model. As most pangenome inference tools are not opti-
mized for metagenome-assembled genomes (MAGs), we did not
consider this application. We hope Panstripe provides a substan-
tial improvement over the use of pangenome accumulation curves
and allows for simple hypotheses to be tested. As more complex
evolutionary models are proposed, we expect that Panstripe will
be used similarly to TempEst: as a check for a temporal signal be-
fore running more computationally intensive algorithms.

Methods

Overview

The Panstripe algorithm takes a binary gene presence/absence ma-
trix and an accompanying core genome phylogeny as input for
each pangenome data set being considered. Initially, the ancestral
state of the presence of each gene at each node in the core genome
phylogeny is inferred using either maximum parsimony or maxi-
mum likelihoodmethods. Using these estimates, the total number
of gene gain and loss events on each branch of the phylogeny is
calculated. A GLM framework implemented in R is then used to
compare the number of gene gain and loss events with the branch
length of the core genome phylogeny (R Core Team 2022). Terms
are also included in the GLM to indicate the depth of the branch
within the phylogeny and whether or not the branch occurs at
the tips of the tree. These help to control for the reduced ability
to observe gene gain and loss events at higher branches of the
tree as well as errors in the gene presence/absence matrix, respec-
tively. Comparisons between pangenomes are made by including
an additional categorical covariate in the GLM for the pangenome
and investigating the interaction terms between this variable and
the core, tip, and depth terms. The Panstripe algorithm scales ap-
proximately linearly in the number of genes and number of
branches when using the default settings as both the Sankoff’s
ASR algorithm and the GLM fit are linear in the number of genes
and branches, respectively. The resulting runtime is substantially
less than the computational time required to run the preceding
pangenome clustering steps using tools such as Roary, Panaroo,
and PPanGGOLiN (see Supplemental Fig. 7). The size of data sets
will thus be limited by these tools.
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Figure 7. Associations between invasiveness and the dynamics of gene gain and loss in major sequencing clusters of S. pneumoniae. (A) The estimated
coefficient of the core genome parameter of the Panstripe GLM for each of the GPSCs. A higher value indicates an increased rate of gene gain and loss, and
invasive GPSCs were found to have a decreased rate of gene exchange. (B) The number of accessory genes found to have been either gained or lost at the
tips of the core genome phylogenies in each GPSC. (C) Histograms of the pairwise patristic distance (in years) between isolates in invasive and noninvasive
GPSCs.
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Ancestral state reconstruction

Panstripe includes three methods for inferring whether a gene was
present or not at each ancestral node of the core genome phylog-
eny. The default maximum parsimony approach uses a version
of Sankoff’s dynamic programming algorithm adapted from the
Castor R package to determine the ancestral states that correspond
with the smallest number of state changes along the phylogeny
(Sankoff 1975; Louca and Doebeli 2018). Alternatively, either a
maximum likelihood–based method or stochastic mapping can
be used. The included maximum likelihood–based method as-
sumes a fixed-rate continuous-time Markov model (Mk model),
as implemented in the APE R package (Yang et al. 1995; Paradis
et al. 2004). The simulation-free version of stochastic mapping is
included as implemented in the SFREEMAP R package v1.1
(Minin and Suchard 2008; Pasqualin et al. 2017). After reconstruct-
ing the ancestral state for each gene independently, the total num-
ber of gene gain and loss events for each branch is found by taking
the sum of events for each gene, assuming that, atmost, one chan-
ge occurs between consecutive nodes.

Although maximum likelihood–based methods can provide
improved estimates of the ancestral states in some instances
(Pagel 1999), using a maximum likelihood method effectively
uses the branch lengths of the core genome phylogeny twice:
once in the ASR and once in the regression. This can artificially in-
flate the correlation between the branch lengths and the number
of gene gain and loss events. Consequently, we prefer to use max-
imum parsimony. In practice, we have found that using either ap-
proach gives very similar results in most instances.

Tweedie generalized linear regression model

After inferring the number of gene gain and loss events, each
branch of the phylogeny is subsequently treated as an indepen-
dent data point. For each branch i, let gi be the number of gene
gain and loss events, li the core branch length, di the core genetic
distance from the root of the phylogeny to the node at the start of
the branch, and ki a binary variable indicating whether or not the
branch occurred at the tip of the phylogeny.

Weassume that thenumberof gene gain and loss events, gi, fol-
lows a compound Poisson distribution. That is, the number of HGT
events follows a Poisson distribution, but the size of each event fol-
lows a Gamma distribution. This is important as HGT events fre-
quently involve the acquisition or loss of multiple genes. To
estimate the association between the number of genes gained and
lost and the other covariates, wemake use of a Tweedie GLM imple-
mented in the Statmod R package (Dunn and Smyth 2018). The
Tweedie distribution generalizes many distributions commonly
used in GLMs including the normal, Poisson, and Gamma distribu-
tionsdependingupon the indexpower parameter p. For 1<p<2, the
Tweedie distribution is equivalent to a compound Poisson distribu-
tion (Jørgensen 1987).

A Tweedie GLM with a log link function assumes that the ex-
pectation of the ith response µi: =E(gi) is related to a vector xi of co-
variates with corresponding coefficients β by

log (mi) = xTi b = (li + ki + di + liki)
Tb. (1)

The corresponding variance of gi is given by

var(gi) = m
p
i . (2)

We include an interaction term between the branch length and
whether a branch is terminal to account for the increased chance
that a gene is both gained and erroneously omitted on longer ter-
minal branches. For data sets with reliable phylogenies, it is gener-
ally safe to assume that annotation errors will be unlikely to

propagate to nonterminal branches during ASR. The ability of
the algorithm to accurately characterize the gene gain and loss
rate can then be improved by setting the intercept of the GLM to
zero. This effectively assumes that no gene gain and loss events
can occur on internal branches of zero length. If a phylogeny is
thought to be unreliable, an intercept can be included to improve
the convergence of the algorithm and to account for the mean er-
ror of inferred gain and loss events on internal branches being
nonzero. This has the side effect of reducing the sensitivity of
the approach to detect differences between pangenome data sets.
Panstripe allows the user to choose which approach is best suited
for their analysis with the intercept excluded by default.

Using this framework, it is possible to perform standard hy-
pothesis tests based on a Student’s t distribution to determine
whether each of the parameters is significantly associated with
gene gain and loss. A significant association with the core branch
length indicates that there is evidence of HGT at the upper branch-
es of the phylogeny. The association with the “tip” covariate can
be driven by a combination of both the error rate in the inference
of the gene presence/absence matrix and the acquisition and loss
of rare genes that are seen only once. The depth parameter ac-
counts for the potential loss in power to identify HGT at higher
branches of the phylogeny. Because of the number of parameters
in the GLM, it is recommended that at least 30 genomes are avail-
able when running Panstripe.

Comparing pangenomes

Panstripe uses interaction terms to compare the relationship of the
covariates with gene gain and loss between two pangenome data
sets. Although the use of a standard GLM framework would allow
for the comparison of the inferred slope or β parameters between
data sets, it assumes a single dispersion parameter. This effectively
fixes the relationship between the rate of gene exchange and the
size of each HGT event. This can be seen in the relationship be-
tween the Tweedie distribution parameters and the corresponding
parameters of the Poisson and Gamma components of the com-
pound Poisson distribution:

l = m2−p

w(2− p)
,

a = 2− p
p− 1

,

u = w( p− 1)m p−1.

Here, λ is themean of the Poisson distribution, and α and θ are
the shape and scale parameters of the Gamma distribution,
respectively.

To relax this assumption, Panstripe optionally allows for the
dispersion parameter to vary between pangenomes using the dou-
ble generalized linear model (DGLM) framework described by
Smyth (1989). TheDGLM frameworkmodels themean anddisper-
sionusing two separateGLMswith both being a functionof the co-
variates. Amaximum likelihood estimate of the parameters is then
found by alternating between the two submodels. Setting the pan-
genome being considered for branch i as a binary covariate ni, the
DGLM used to compare pangenomes can be formulated as

log (mi) = xTi b1

= (li + ki + di + liki + dini + kini + lini + likini)
Tb1, (3)

log (w) = zTi b2 = (1+ ni)
Tb2. (4)

The significance of the inferred coefficients of the interaction
terms can be used to determine whether the association between
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HGTand the depth, core, and tip covariates differs significantly be-
tween pangenomes.When investigating the dispersion parameter,
Panstripe uses the likelihood ratio test to determine whether there
is a significant benefit to accounting for a variable dispersion be-
tween two pangenome data sets. In some cases, such as when com-
paring lineages from the same species, itmaybe safe to assume that
the relationship between the mean and dispersion is similar in
both pangenomes. In this case, it can be preferable to fix the dis-
persion parameter to improve the statistical power of an analysis.

Identifying associations with additional covariates

The GLM framework used by Panstripe allows for other covariates
that may influence pangenome dynamics to be considered. This
could include whether or not a lineage is highly drug resistant or
hospital associated or is frequently linked to invasive disease. In ge-
neral, this is most useful whenmany separate lineages from a large
genome collection of a single species are available as is becoming
increasingly common with the advent of large sequencing studies
and the introduction of WGS as a routine service for public health
surveillance (Chattaway et al. 2019; Gladstone et al. 2019, 2020).
To investigate such associations, Panstripe replaces the binary pan-
genome covariate in Equation 3 with the covariate(s) of interest.
These can be logical, continuous, or categorical.

Bootstrap confidence intervals

Panstripe estimates confidence intervals for each coefficient using
the bootstrap, by resampling each branchwith replacement (Efron
1987). Although it is possible to use the GLMmodel to obtain con-
fidence interval estimates, thismakes some assumptions about the
distribution of the coefficients and is more susceptible to outliers.
Panstripe uses the boot R package, which implements several com-
monly used methods for calculating the interval from the resam-
pled set of coefficients, to calculate these intervals (Efron 1987;
Davison and Hinkley 1997). In general, we have found the boot-
strap confidence intervals to provide similar estimates to that of
the GLMmodel. However, in some cases, differences have indicat-
ed a high sensitivity of the result to particular branches.
Optionally, Panstripe also includes the possibility of estimating
bootstrap P-values using the confidence interval inversionmethod
(Hall 2013).

Simulations

To compare the performance of Panstripe, we simulated core ge-
nome phylogenies using the “rtree” function from the APE pack-
age (Paradis 2006). The number of gene gain and loss events on
each branchwas simulated using the simSeq function in the phan-
gorn package (Schliep 2011) with an elevated frequency of gene
loss events (base frequency vector of [0.3, 0.2]). To verify that
Panstripe is robust to different gene gain/loss ratios, we repeated
the analysis with both equal base frequencies and an elevated
rate of gene gain events. We assume that each gain or loss event
will involve the same set of genes and simulate the size of the set
using a Poisson distribution as implemented in R. Errors in the
pangenomematrix were simulated by randomly adding or remov-
ing single entries in the final gene presence/absence matrix. The
number of errors for each genome was simulated using a Poisson
distribution. The full set of parameters used in the simulations is
given in Supplemental Table 1. All of the code to reproduce the
analyses is available in the accompanying GitHub repository.

Data set preparation

The phylogenies and pangenome gene presence–absence matrices
for the E. coli and E. faecalis data sets were taken directly from the
respective publications (Gladstone et al. 2021; Pöntinen et al.
2021). Briefly, in both data sets, clades were defined via align-
ment-free whole-genome clustering using Population
Partitioning Using Nucleotide K-mers (Pop-PUNK) v.1.2.2 (Lees
et al. 2019). Phylogenies of the resulting clades were then con-
structed using RAxMLv8.2.8with theGTR+Gamma ratemodel af-
ter removing recombination using Gubbins v2.4.0. Pangenomes
for both data sets were generated using Panaroo v1.2. A more de-
tailed description of the methods can be found in the original
publications.

The pangenome of the Mtb data set was taken directly from
the publication of the Panaroo algorithm (Panaroov1.0.0). This in-
cluded 414 genomes that were very closely related, originally pub-
lished as part of an analysis into an outbreak of isoniazid-resistant
tuberculosis in London (Casali et al. 2016). As our pangenome data
set included some genomes that were not included in the phylog-
eny of the original Mtb publication, we reconstructed a new phy-
logeny. This was achieved by generating a core genome from the
original assemblies using Snippy v4.6 with the “snippy-core” sub-
command. Gubbins v2.4.0 was then used to remove poor-quality
regions of the alignment, and the final phylogeny was generated
using FastTree v2.1.11.

Software availability

Panstripe is available under anMIT open-source license onGitHub
(https://github.com/gtonkinhill/panstripe) and Zenodo (https
://zenodo.org/record/6404363). The code, phylogenies, and gene
presence/absence matrices used in our analyses are available at
GitHub (https://github.com/gtonkinhill/panstripe-manuscript),
Zenodo (https://zenodo.org/record/6404403), and as Supplemen-
tal Material.
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