
https://helda.helsinki.fi

HFST Training Environment and Recent Additions

Axelson, Erik

Northern European Association for Language Technology

2023-04

Axelson , E , Hardwick , S & Linden , K 2023 , HFST Training Environment and Recent

Additions . in Rule-Based Language Technology . NEALT Monograph Series , no. 2[1] ,

Northern European Association for Language Technology , Tartu , pp. 60-69 .

http://hdl.handle.net/10138/357039

cc_by_nc_nd

acceptedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

Rule-Based Language Technology
2023

NEALT Monograph Series, 2

60

HFST Training Environment and Recent Additions

Erik Axelson, Sam Hardwick, Krister Lindén

Department of Digital Humanities
FIN-00014 University of Helsinki, Finland

{erik.axelson,sam.hardwick,krister.linden}@helsinki.fi

Abstract
HFST - the Helsinki Finite-State Technology toolkit was launched in 2009 (Lindén &
al, 2009) and has since been used for developing a number of rule-based morphologies
for processing natural language. To promote the uptake of the toolkit a training
environment for linguists to learn how to use HFST has been designed in Jupyter. This
paper presents an overview of the training environment and some of the recent features
that have been added to HFST to keep the run-time size of the transducer reasonably
small despite exceptions and negative constraints that need to be added during
practical FST development.

Key Words: finite-state technology, morphological descriptions, negative constraints

1 Introduction

In natural language processing, finite-state string transducer methods have been found
useful for solving a number of practical problems ranging from language identification and
optical character recognition via morphological processing and generation to part-of-
speech tagging and named-entity recognition as well as machine translation, as long as the
problems lend themselves to a formulation based on matching and transforming local
context.

HFST–Helsinki Finite-State Technology (Lindén & al., 2009, 2011, 2013) is a
framework for compiling and applying linguistic descriptions with finite-state methods.
HFST connects some of the most important finite-state tools for creating morphologies and
spellers into one open-source platform and supports extending and improving the
descriptions with weights to accommodate the modelling of statistical information. HFST
offers a path from language descriptions to efficient language applications in key
environments and operating systems. HFST also provides an opportunity to exchange
transducers between different software providers in order to get the best out of each finite-
state library.

In this paper we present a training environment for linguists and some recent advances
to help model builders optimise the size of their transducers for processing text from
tokenization to recognizing semantic frames in context with HFST–Helsinki Finite-State
Technology.

In Section 2, we present an overview of the interactive online training modules available
in Jupyter. In Section 3, we present some advances in how to control the size of transducers

Rule-Based Language Technology
2023

NEALT Monograph Series, 2

61

that tend to grow rapidly in size when introducing exceptions to otherwise regular relations.
In Section 4, we conclude the presentation.

2 Online Tutorials

As part of SAFMORIL (CLARIN Knowledge Centre for Systems and Frameworks for
Morphologically Rich Languages, https://www.kielipankki.fi/safmoril/), we offer two
online tutorials for XFST-based morphology development at the Notebooks service hosted
by CSC (Finnish IT Center for Science): “Computational Morphology with HFST” and
“Morphologically Rich Languages with HFST”.

The tutorials are implemented as Python notebooks which use the Python interface of
HFST - Helsinki Finite-State Transducer Technology (Lindén & al, 2009, 2011, 2013). The
tutorials are based on teaching materials from courses organized at the University of
Helsinki. The tutorials mostly use the same examples and exercises as the original courses,
but HFST command line tools have been replaced with HFST Python interface.

Prerequisites of the tutorials are foundations of general linguistics as well as basic
knowledge on how to use a computer. Some programming experience is desirable, and
knowledge of Natural Language Processing (NLP) is also a plus.

The tutorials contain several parts or “lectures”. A lecture usually contains some theory
and simple examples where the user can test how things work in the HFST interface. At
the end there are more difficult examples or “assignments” where the user has to find the
solutions themselves and open questions to think about.

At the moment, access requires a HAKA Identity Federation account. If you do not have
a HAKA account, you can contact SAFMORIL Helpdesk (safmoril@kielipankki.fi) to
arrange for local accounts or request a visitor account directly from CSC service desk
(servicedesk@csc.fi). You also need a join code that you can request from SAFMORIL
Helpdesk. New logins are available during the fall (Sept 1 – Dec 15) and spring (Jan 15 –
May 15) semesters.

2.1 Computational Morphology with HFST

The tutorial ”Computational Morphology with HFST” (Axelson et al., 2019) is an
adaptation of the teaching material of the course ”Computational Morphology” taught by
Mathias Creutz in the Master’s programme “Linguistic Diversity and Digital Humanities”
at the University of Helsinki. The original course and its exercises have been created by
Mathias Creutz and co-developed by Senka Drobac. Using an earlier version of the course
material, Erik Axelson has developed a Jupyter notebook interactive version.

The tutorial is divided into seven parts:

1. Theories of morphology, generators and analysers, lexc
2. Finite-state basics, xfst rules
3. Disambiguation, probabilities, finite-state networks summarized
4. Guessers, stemmers, regular expressions in xfst
5. Twolc, two-level rules
6. Flag diacritics, non-concatenative morphology

Rule-Based Language Technology
2023

NEALT Monograph Series, 2

62

7. Optimization of finite-state networks

2.1.1 Lecture 1

Theories of morphology and corresponding formalisms are introduced: word & paradigm
(lexc, xfst), item & arrangement (lexc, xfst) and item & process (twolc, xfst). The student
is familiarized with the concepts of generators and analysers. Lexc formalism is
exemplified with a script that implements a simple morphological generator for English
noun inflection.

2.1.2 Lecture 2

Finite-state basics and the underlying set theory (relations) for finite-state networks are
introduced. The simple morphological generator for English noun inflection from the
previous lecture is implemented and expanded with a different approach using a cascade
of rule transducers defined with xfst formalism.

2.1.3 Lecture 3

The lecture starts with basics of probability theory and how probabilities can be used to
disambiguate word forms and perform spelling correction. This leads to weighted
transducers and rules that are introduced. In the end, a summary of types of finite-state
automata and transducers is given.

2.1.4 Lecture 4

Guessers and stemmers are introduced. Esperanto verb guesser is used as a case study.
Pronunciation lexica are defined for a language with (almost) regular orthography
(Brazilian Portuguese) as well as for a language with highly irregular orthography
(English). Regular expressions in xfst are introduced in more detail.

2.1.5 Lecture 5

Sequential xfst rules are revisited and parallel two-level twolc rules introduced.
Morphology for English adjectives from lecture 2 is recalled and implemented with twolc.
Twol rule operators are exemplified with consonant gradation in Finnish.

2.1.6 Lecture 6

This lecture presents flag diacritics and their use in non-concatenative morphologies, such
as Arabian, Tagalog and Malay. Different diacritic operators are listed with examples.

2.1.7 Lecture 7

The final lecture deals with optimization of finite-state networks. Determinization and
minimization algorithms are introduced, both for unweighted and weighted networks.

Rule-Based Language Technology
2023

NEALT Monograph Series, 2

63

For an example of a lecture module, see Figure 1.

Figure 1. A running instance of lecture in a Notebook session where weighted finite-state
networks are exemplified and a simple network is constructed from scratch and a lookup
is performed on it.

2.2 Morphologically Rich Languages with HFST

The tutorial “Morphologically Rich Languages with HFST” (Axelson et al., 2020) is based
on a course by Jack Rueter & Sjur Moshagen organized at the University of Helsinki named
“Language Technology for Finno-Ugric Languages - Methods, Tools and Applications”.
The course belongs to the MA Programme “Linguistic Diversity in the Digital Age”. Using
the course material, Erik Axelson and Jack Rueter have developed a Jupyter notebook
interactive version.

This tutorial gives an introduction to mainly rule-based language technology as used in
many full-scale, production projects using the GiellaLT and Apertium infrastructures. The

Rule-Based Language Technology
2023

NEALT Monograph Series, 2

64

technologies and methodologies presented can be used for any language, although the focus
is on morphologically complex ones.

The course is divided into five parts. More parts may be added later.

1. Course intro, field overview, majority vs minority language technology
2. Intro to the Giella infra and a variety of finite-state tasks
3. Simple lexc (numerals, dates, clocks)
4. Writing test material and applying simple concatenative morphology
5. Twolc & xfst rewrite rules

2.2.1 Lecture 1

A short history of language technology (LT) is given. Reusability of grammars and LT tool
components as well as scalability of infrastructure is also considered, in particular in the
context of a minority language with few speakers.

2.2.2 Lecture 2

The Giella infra is introduced, emphasizing the templating system and the split between
language-independent and language-specific code. The HFST interface is also introduced.

2.2.3 Lecture 3

Lexc formalism is exemplified with simple scripts where transducers for numerals, dates
and clocks are created for Olonets Karelian. The differences and similarities between
Olonets Karelian, Finnish and English are considered for numerals.

2.2.4 Lecture 4

This lecture shows how test material should be written for a given morphology in the Giella
infra. A simplified test case for Olonets Karelian nouns is created with a combination of
concatenative morphology and phonological rules.

2.2.5 Lecture 5

Twolc formalism is introduced. An example from the previous lecture is revisited, using
twolc rewrite rules. The differences between twolc and xfst rewrite rules are discussed.

For an example of a lecture module, see Figure 2.

Rule-Based Language Technology
2023

NEALT Monograph Series, 2

65

Figure 2. A running instance of a lecture in a Notebook session where a morphological
transducer is read from file, a few word forms are tested to see the analyses that the
transducer gives to them, and finally a larger text file is given as input to the transducer to
see how many out-of-vocabulary words are found. The user is also instructed to think of
reasons for words that are not covered by the transducer.

2.3. Advanced features

Advanced features may be added to future versions of the tutorials, including the dynamic
context constraints presented in Chapter 3.1. and arc compression presented in Chapter 3.2.

3 Relaxing the finite-state formalism

Finite-state methods have two major benefits. Firstly, they are predictable, in that their
possible configurations are enumerated ahead of time. Secondly, they have an algebra, so
they can be readily be operated on to obtain e.g. inverses and compositions with the same
computational constraints. Their limitations include their locality: a finite-state machine

Rule-Based Language Technology
2023

NEALT Monograph Series, 2

66

(FSM) can't combine information from multiple places in the input to make decisions,
rather each possible combination must have its own state. If the relevant parts of input are
separated by many intermediate steps, these combinations will include a large number of
redundant states, leading to inefficiency.

In the history of finite-state methods, some linguistic features have been a sufficient
problem that the methods have been extended. Non-consecutively appearing features with
interactions may be kept track of with flag diacritics, a way to assign values to variables
and use them to allow or disallow transitions to states. For example, a language may
disallow a propositional prefix with certain case-marking suffixes. Without the flag
diacritics, the entire repertoire of nouns must be repeated for the case where there was a
prepositional suffix and the case without. With flag diacritics, as in Attia (2005), this can
be avoided.

Certain applications have similarly revealed problems with the locality constraint. Rules
based on named regular expressions are conceptually tractable and easy to write, but can
explode in size, to the surprise of inexperienced rule-writers. We describe two methods of
reducing these problems: one of which requires a change in rule-writing and formalism,
and one which can be implemented on finished finite-state systems.

3.1 The problem

Consider a rule-based system for tagging named entities with appropriate labels. It will
have a number of rules for proper names in general (probably using capitalization,
knowledge about personal names, dates, addresses, etc.) environments in which certain
named entities are likely to occur (in "the CEO of ______" the continuation is likely to be
a corporation) as well as lists of known names of different types. In such a system for
recognizing named entities in Finnish, FiNer (Ruokolainen et al. 2020) (1000+ rules and
100+ gazetteers), many situations called for rules of the type "here, allow anything, except
for this list of exceptions". If something could be the name of a city or of a corporation, it
is probably a city if it isn't one of a long list of known corporations.

In the regular expression syntax of XFST, one could write

?* - Exceptions

? is "any symbol" and the minus sign represents subtraction. This simple definition can
blow up in terms of space when compiled. For example, if the exception is the word
"exception", the FSM must allow any symbol, and provided that it read a "e", move to a
state where it is ready to disallow the continuation "xception". Then, in that state, it has to
be able to move to a state where the continuation to exclude is "ception", and so on.

For an implementation with a special symbol representing "any symbol not mentioned
in the FSM" and regular symbols for all the other letters, this compiles to 11 states and 99
arcs for just one word. For when using the set of strings up to eight letters long known to a
finite-state dictionary of Finnish, the expression compiles to 81 546 states and 27 807 186
arcs. In a real-world named entity recogniser ruleset in hfst-pmatch (Lindén et al., 2013)
this problem duplicated over many parts of the final network resulted in a compiled size of
over 700MB.

Rule-Based Language Technology
2023

NEALT Monograph Series, 2

67

3.2 Dynamic subtraction

hfst-pmatch, as the Xerox fst (Karttunen 2011) from which it derives, features run-
time context constraints. To require a rule to be followed by a particular right context, one
can write RC(context) after the rule, where context is whatever context one wants to
require. Similarly NRC for negative right context, and LC and NLC for left contexts. These
contexts trigger special runtime behaviour, and are effectively an extension of the finite-
state formalism, especially when combined with pmatch's recursive transition networks
(RTN). RTNs are stored separately from the rule, and can be used in multiple places
without space overhead.

In hfst-pmatch the rule syntax was relaxed to allow right context constraints to
appear not only on the right hand side of the rule, but anywhere. In particular, a right context
can be on the left side of the rule. This effectively provides run-time subtraction:

NRC(Exception) ?*

Here, the FSM will try to match Exception, and proceed only if it fails to do so. The

NRC directive compiles to two extra states and arcs.

3.3 Arc compression

Another more general phenomenon in large real-world finite-state applications is the
tendency of FSMs to repeat common sets of symbols with the same target state in many
places in the network. Sets of punctuation, digits, classes of alphabetic characters etc. are
often allowed in many places in rules either explicitly and implicitly. If the rule-writer
hasn't foreseen the problem, and used run-time features of the system (pre- or
postprocessing, or character classes that can be represented by a single symbol), this can
lead to bloated binaries. In the case of the previously mentioned NER system, millions of
redundant arcs.

This is especially true of applications such as taggers and hyphenators, but can also
apply to morphologies. For example, the Morphisto morphology for German contains
thousands of occurrences of the digits 0-9 appearing together, with the same target.

If the intended runtime environment supports character set symbols, as hfst-pmatch
does, the redundant arcs can be replaced as a post-compilation step. The pmatch syntax
Lst(Charset) compiles to a special symbol which matches the symbols used in
Charset.

3.4 Example outcome

In the previously mentioned named-entity recogniser, the original compiled size of over
700MB was reduced to 7MB using primarily dynamic subtraction. The source code for the
original and optimized versions of the system may be found on the project's Github
repository at https://github.com/Traubert/FiNer-rules. The release under tag 1.6.0 has the
dynamic subtraction code in place.

Rule-Based Language Technology
2023

NEALT Monograph Series, 2

68

4 Discussion and Conclusion

In this paper we presented a training environment in Jupyter for linguists. We also
presented some recent advances to help linguists optimise the size of their transducers with
HFST–Helsinki Finite-State Technology.

The HFTS tutorials are implemented as Python notebooks which use the Python
interface of HFST. The tutorial ”Computational Morphology with HFST” (Axelson et al.,
2019) is an adaptation of the teaching material of the course ”Computational Morphology”
taught by Mathias Creutz teaching the basics of Finite-State Technology. The tutorial
“Morphologically Rich Languages with HFST” (Axelson et al., 2020) is based on a course
by Jack Rueter & Sjur Moshagen and is more directed towards practical solutions in
linguistic descriptions.

As pointed out in the article, Finite-state methods have two major benefits. Firstly, they
are predictable, in that their possible configurations are enumerated ahead of time.
Secondly, they have an algebra, so they can be readily be operated on to obtain eg. inverses
and compositions with the same computational constraints. However, one of their main
drawbacks has been their locality constraint: a finite-state machine (FSM) can't easily
combine information from multiple places in the input to make decisions, rather each
possible combination must have its own state. In this article we described two methods for
reducing these problems: one of which requires a change in rule-writing and formalism,
and one which can be implemented on finished finite-state systems.

References

Attia, Mohammed A., 2005:
 Developing a robust arabic morphological transducer using finite state technology.
 Paper presented at The 8th Annual CLUK Research, 2005.
Axelson Erik, Mathias Creutz, Senka Drobac, 2019:

Computational Morphology with HFST – an adaptation of the teaching material of the
course “Computational Morphology” taught by Mathias Creutz in the Master’s
programme “Linguistic Diversity and Digital Humanities” at the University of Helsinki.
[Learning material]. Language bank of Finland. Accessible at http://urn.fi/urn:nbn:fi:lb-
2021053001

Axelson Erik, Jack Rueter, Sjur Moshagen, 2020:
Morphologically Rich Languages with HFST – an adaptation of the teaching material of
the course “Language Technology for Finno-Ugric Languages - Methods, Tools and
 Applications” taught by Jack Rueter and Sjur Moshagen in the Master’s programme
“Linguistic Diversity in the Digital Age” at the University of Helsinki. [Learning
material]. Language bank of Finland. Accessible at http://urn.fi/urn:nbn:fi:lb-2022082903

Karttunen Lauri, 2011:
Beyond Morphology: Pattern Matching with FST. In Cerstin Mahlow and Michael
Piotrowski, editors, Systems and Frameworks for Computational Morphology, volume
100 of Communications in Computer and Information Science, pages 1–13, Berlin
Heidelberg. Springer.

Lindén Krister, Erik Axelson, Senka Drobac, Sam Hardwick, Juha Kuokkala, Jyrki Niemi, Tommi
Pirinen, Miikka Silfverberg, 2013:

Rule-Based Language Technology
2023

NEALT Monograph Series, 2

69

HFST – a system for creating NLP tools. In: Mahlow, C., Piotrowski, M. (eds.) vol. 380,
pp. 53–71. Springer, Berlin Heidelberg

Lindén Krister, Erik Axelson, Sam Hardwick, Tommi Pirinen, Miikka Silfverberg, 2011:
HFST—framework for compiling and applying morphologies. In: Mahlow, C.,
Piotrowski, M. (eds.) Systems and Frameworks for Computational Morphology.
Communications in Computer and Information Science, vol. 100, pp. 67–85. Springer,
Berlin Heidelberg.

Lindén Krister, Miikka Silfverberg, Tommi Pirinen, 2009:
HFST tools for morphology—an efficient opensource package for construction of
morphological analyzers. In: Mahlow, C., Piotrowski, M. (eds.) Systems and Frameworks
for Computational Morphology. Lecture Notes in Computer Science, vol. 41, pp. 28–47.
Springer.

Ruokolainen Teemu, Pekka Kauppinen, Miikka Silfverberg, Krister Lindén, 2020:
A Finnish news corpus for named entity recognition. Lang Resources & Evaluation 54,
247–272.

