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1 Introduction

The Standard Model (SM) of particle physics has been extensively tested and is in great
agreement with experiment with its last particle — the Higgs boson h— discovered in 2012
with a mass of ≈ 125GeV by the ATLAS and CMS experiments at the CERN Large Hadron
Collider (LHC) [1, 2]. Although the properties of the observed state are in agreement with
those of the SM Higgs boson, it is entirely possible that it is one member of an extended
scalar sector.

In fact, although in agreement with experiment, the SM is understood to be incomplete
with one of its shortcomings being the lack of a viable Dark Matter (DM) candidate in
its particle content. The standard cosmological ΛCDM Model [3] requires DM to be a
particle stable on cosmological time scales, cold (i.e., non-relativistic at the onset of galaxy
formation), non-baryonic, neutral and weakly interacting: such a state does not exist in the
SM. Within Beyond the SM (BSM) frameworks, many such candidates exist, with the most
well-studied being the Weakly Interacting Massive Particles (WIMPs) [4–6] with masses
between a few GeV and a few TeV. WIMPs are usually stable due to the conservation of a
discrete symmetry, such as scalar DM candidates in non-minimal Higgs frameworks which
are stabilised by the conserved discrete symmetry of the scalar potential, see, e.g., [7–14].

One of the simplest BSM scenarios which provides a scalar DM candidate is the Inert
Doublet Model (IDM) [9], which contains one inert doublet plus one active (Higgs) doublet,
hence also known as I(1+1)HDM. In this model, which has been studied extensively in the
literature (see, e.g., [10, 12, 13]), the additional SU(2)W scalar doublet has the same SM
quantum numbers as the SM Higgs doublet. One of the possible vacuum alignments in
this model is (v, 0) wherein the active (or Higgs) doublet acquires a non-zero Vacuum
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Expectation Value (VEV) while the inert (or dark) doublet does not develop a VEV and
therefore does not take part in electroweak symmetry breaking. The Lagrangian and the
vacuum are symmetric under a Z2 group under which only the inert doublet is odd. Due
to the conservation of this symmetry, the inert doublet provides a stable DM candidate:
the lightest neutral Z2-odd particle.

In the I(1+1)HDM, for masses of DM smaller thanmh/2, the dark sector communicates
with the SM mainly through the Higgs boson exchange which is a characteristic of all Higgs-
portal models [15–17]. Such a set-up leads to the DM-Higgs coupling, gDMh, dictating the
DM annihilation rate 〈σv〉, the DM-nucleon scattering cross-section σDM−N and the Higgs
invisible decays. Simultaneous fulfilment of current experimental constraints for these three
types of processes is a challenging task, as shown, e.g., in [18–20]. For heavier DM particles,
the direct annihilation into pairs of gauge bosons usually results in a relic density below
the observed value, with the exception of very heavy DM particles. A possible solution
to this problem is breaking the simple relation between the annihilation rate and direct
detection cross-section by introducing coannihilation processes between DM and other dark
particles which are close in mass. Co-annihilation processes (through constructive and/or
destructive interference) can decrease or increase the effective annihilation cross-section,
which in turn change the DM relic density value. In the I(1+1)HDM, the DM candidate
could potentially coannihilate with the neutral or charged Z2-odd particles. However, in
a vast region of the parameter space, this coannihilation is too efficient, which leads to a
total relic density below the observed value [21–42].

In models with an extended inert sector, more coannihilation processes are available
and lead to a much richer phenomenology, see, e.g., models with extra inert singlets [43–45]
or inert doublets [14] and, within the framework of 3-Higgs Doublet Models (3HDMs), the
I(2+1)HDM of refs. [46–54]. Proposed by Weinberg in 1976 [55], 3HDMs are very well
motivated scenarios [56, 57] due to their implications for flavour physics, CP-violation,
baryogenesis and inflation [58–65].

Here, we study an I(2+1)HDM framework symmetric under a Z2×Z ′2 group with one
inert doublet odd under Z2 and even under Z ′2, and the other inert doublet even under Z2
and odd under Z ′2. The lightest particle from each inert doublet is a viable DM candidate,
yielding a two-component DM model. In a previous study [66], we showed that other
dark particles from both doublets influence the thermal evolution and decoupling rate of
DM particles and significantly impact the final relic abundance. (A similar analysis was
performed in the context of a supersymmetric model in [67].) When there is a sufficient mass
difference between the two DM candidates, which are both typically at the Electro-Weak
(EW) scale, we showed that the light DM component can be probed by the nuclear recoil
energy in direct detection experiments while the heavy DM component appears through
its contribution to the photon flux in indirect detection experiments.

In this paper, quite independently of astrophysical probes, we study collider signatures
of the I(2+1)HDM, namely, scalar cascade decays in 2` + ��ET final states at the LHC.
Specifically, we analyse several observable distributions whose shapes hint at the presence
of the two different DM candidates. The remainder of the paper is organised as follows.
In section 2, we present the model, its scalar mass spectrum and discuss theoretical and
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experimental constraints on its parameter space. In section 3, we discuss the experimental
probes of the model and construct some Benchmark Points (BPs). In section 4, we present
our results, and in section 5, we conclude.

2 Potential, mass spectrum and constraints

2.1 The scalar potential

The most general Z2 × Z ′2 symmetric 3HDM potential has the following form [57, 68]:

V = V0 + VZ2×Z′2 , (2.1)

V0 = −µ2
1(φ†1φ1)− µ2

2(φ†2φ2)− µ2
3(φ†3φ3) + λ11(φ†1φ1)2 + λ22(φ†2φ2)2 + λ33(φ†3φ3)2

+λ12(φ†1φ1)(φ†2φ2) + λ23(φ†2φ2)(φ†3φ3) + λ31(φ†3φ3)(φ†1φ1)
+λ′12(φ†1φ2)(φ†2φ1) + λ′23(φ†2φ3)(φ†3φ2) + λ′31(φ†3φ1)(φ†1φ3),

VZ2×Z′2 = λ1(φ†1φ2)2 + λ2(φ†2φ3)2 + λ3(φ†3φ1)2 + h.c.,

where V0 is invariant under any phase rotation while VZ2×Z′2 ensures the symmetry under
the Z2 × Z ′2 group generated by

gZ2 = diag(−1, 1, 1) , gZ′2 = diag(1,−1, 1) . (2.2)

Under this charge assignment, all SM fields, including the Higgs doublet φ3, are even under
both Z2 and Z ′2. The additional doublets, φ1 and φ2 are odd under Z2 and Z ′2, respectively.
In this paper, we assume that all parameters in the potential are real, therefore, we do not
introduce any explicit CP-violation in the scalar sector. In particular, we do not consider
the possible effects of dark CP-violation, a feature that was introduced for the first time
in [49] and further studied in [50, 51, 54, 69], which could indeed arise in an extended dark
sector. However, there is still the possibility of spontaneous breaking of the CP symmetry
in the active sector for particular choices of parameters, as discussed in [66]. This choice
of vacuum is not considered in this paper as it cannot lead to the appearance of two DM
candidates in the model.

The Yukawa interactions are set to “Type-I” interactions, i.e., only the third doublet,
φ3, will couple to fermions:

LY = Γumnq̄m,Lφ̃3un,R + Γdmnq̄m,Lφ3dn,R + Γemn l̄m,Lφ3en,R + Γνmn l̄m,Lφ̃3νn,R + h.c. (2.3)

Following the Z2×Z ′2 charge assignment, this choice of Yukawa interaction is the only one
which will not lead to breaking of the imposed discrete symmetries. This also ensures that
there are no Flavour Changing Neutral Currents (FCNCs), since fields from the doublets
which do not develop VEVs, φ1 and φ2, will not couple to fermions.

2.2 Mass spectrum and physical parameters

The 2Inert vacuum state, i.e., the one with two automatically stable inert particles, has
the alignment (0, 0, v) in which the composition of the doublets are

φ1 =
(

H+
1

H1+iA1√
2

)
, φ2 =

(
H+

2
H2+iA2√

2

)
, φ3 =

 H+
3

v+h+iA0
3√

2

 , (2.4)
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with the extremum condition for this state reading as

v2 = µ2
3

λ33
. (2.5)

The third doublet, φ3, plays the role of the SM Higgs doublet, with the Higgs particle h
having, by construction, tree-level interactions with gauge bosons and fermions identical
to those of the SM Higgs boson. Its mass is fixed through the tadpole conditions to be

m2
h = 2µ2

3 = 2v2λ33 (2.6)

and the A0
3 and H±3 states are the would-be Goldstone bosons.

The two inert doublets, φ1 and φ2, provide two DM candidates. Each doublet consists
of two neutral particles,1 Hi and Ai, and one charged particle H±i with i = 1, 2. For the
two generations of inert scalars the mass spectrum is as follows:

m2
H1 = −µ2

1 + 1
2(λ31 + λ′31 + 2λ3)v2 ≡ −µ2

1 + Λ3v
2, (2.7)

m2
A1 = −µ2

1 + 1
2(λ31 + λ′31 − 2λ3)v2 ≡ −µ2

1 + Λ̄3v
2, (2.8)

m2
H±1

= −µ2
1 + 1

2λ31v
2 (2.9)

and

m2
H2 = −µ2

2 + 1
2(λ23 + λ′23 + 2λ2)v2 ≡ −µ2

2 + Λ2v
2, (2.10)

m2
A2 = −µ2

2 + 1
2(λ23 + λ′23 − 2λ2)v2 ≡ −µ2

2 + Λ̄2v
2, (2.11)

m2
H±2

= −µ2
2 + 1

2λ23v
2. (2.12)

Parameters of the potential can be rephrased in terms of physical observables, such as
masses and couplings. The tree-level SM couplings in the gauge and fermionic sectors follow
exactly the SM definitions. The relevant parameters arising from the extended scalar sector
are: (i) masses of inert particles and the Higgs-DM couplings, which represent parameters
from the visible sector; (ii) self-interaction parameters, which describe interaction within
the dark sector. The full list is:

v2,m2
h,m

2
H1 ,m

2
H2 ,m

2
A1 ,m

2
A2 ,m

2
H±1

,m2
H±2

,Λ2,Λ3,Λ1, λ11, λ22, λ
′
12, λ12. (2.13)

The self-couplings λ11, λ22, λ
′
12, λ12 correspond exactly to the terms in eq. (2.1), while the

1As it is the case in multi-scalar models with unbroken Z2 symmetries, the inert scalars Hi and Ai have
opposite CP parity, as evident from their gauge interactions, however, it is not possible to establish their
definite CP properties, as they do not couple to fermions.
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relations between remaining parameters and our chosen physical basis are as follows:

µ2
1 = −m2

H1 + Λ3v
2, (2.14)

λ3 = (m2
H1 −m

2
A1)/(2v2), (2.15)

λ′31 = (m2
H1 +m2

A1 − 2m2
H±1

)/v2, (2.16)

λ31 = 2Λ3 − 2λ3 − λ′31, (2.17)
µ2

2 = −m2
H2 + Λ2v

2, (2.18)
λ2 = (m2

H2 −m
2
A2)/(2v2), (2.19)

λ′23 = (m2
H2 +m2

A2 − 2m2
H±2

)/v2, (2.20)

λ23 = 2Λ2 − 2λ2 − λ′23, (2.21)
λ1 = 2Λ1 − (λ12 + λ′12). (2.22)

In principle, any particle among (Hi, Ai, H
±
i ) can be the lightest. Here, we dismiss

the possibility of H±i being the lightest, as it would mean that DM candidate is a charged
particle. Choosing between H1 and A1 (or H2 and A2) is related only to a change of the
sign of the quartic parameter λ3 (λ2) and has no impact on the ensuing phenomenology.
Therefore, we will choose mHi < mAi ,mH±i

, which leads to the following relations between
the parameters:

λ2 < 0, λ3 < 0, λ′31 + 2λ3 < 0, λ′23 + 2λ2 < 0. (2.23)

Notice that, unlike many ZN symmetric models, the two lightest states from two dou-
blets are automatically stable, regardless of their mass hierarchy, as they are stabilised by
different Z2 symmetries.

2.3 Theoretical and experimental constraints

The parameters of the potential V are subject to a number of theoretical and experimental
constraints (described in detail in [66]). Below, we summarise the constraints imposed on
the model to ensure that all proposed BPs are in agreement with current theoretical and
experimental knowledge.

Stability of the potential. For the potential to be bounded from below (i.e., having a
stable vacuum) the following conditions are required [70]:

λii > 0, i = 1, 2, 3, (2.24)
λx > −2

√
λ11λ22, λy > −2

√
λ11λ33, λz > −2

√
λ22λ33, (2.25)

√
λ33λx +

√
λ11λz +

√
λ22λy ≥ 0

or
λ33λ

2
x + λ11λ

2
z + λ22λ

2
y − λ11λ22λ33 − 2λxλyλz < 0,

(2.26)

where

λx = λ12 + min(0, λ′12 − 2|λ1|), (2.27)
λy = λ31 + min(0, λ′31 − 2|λ3|), (2.28)
λz = λ23 + min(0, λ′23 − 2|λ2|). (2.29)
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As noted in [71], these conditions are in fact sufficient but not necessary, as it is possible to
construct examples of this model in which the potential is bounded from below, but which
violate conditions (2.24)–(2.26). We do not explore such a region of parameter space in
this work.

Global minimum condition. For (0, 0, v) to be a local minimum, all mass-squared
values have to be positive, and, for it to be a global minimum, i.e., the true vacuum, its
energy, V2Inert, has to be lower than the energy of any other possible minima, VX, that exist
at the same time (see discussion in [66]). Following the chosen mass order and resulting
relations in eq. (2.23) we arrive at the following conditions:

Local minimum if:


v2 = µ2

3/λ33 > 0
Λ2 > µ2

2/v
2

Λ3 > µ2
1/v

2.

(2.30)

Global minimum if, in addition: V2Inert = − µ4
3

4λ33
< VX. (2.31)

Perturbative unitarity. We require that the scalar 2→ 2 scattering matrix is unitary,
i.e., the absolute values of all eigenvalues of such a matrix for Goldstones, Higgs and dark
states with specific hypercharge and isospin should be smaller than 8π. Furthermore, all
quartic scalar couplings should be perturbative, i.e., λi ≤ 4π.

EW Precision Observables (EWPOs). We demand a 2σ, i.e., 95% Confidence Level
(CL) agreement with EWPOs which are parametrised through the EW oblique parameters
S, T, U . Assuming an SM Higgs boson mass of mh = 125GeV, the central values of the
oblique parameters are given by [72]:

Ŝ = 0.05± 0.11, T̂ = 0.09± 0.13, Û = 0.01± 0.11. (2.32)

In the I(1+1)HDM these constraints impose a strict order on the masses of the inert par-
ticles, with two neutral dark scalars being lighter than the charged particle. Furthermore,
mass splitting between heavier neutral scalar and charged scalar is limited to roughly
50GeV. However, in the case of a Z2 × Z ′2 3HDM, these conclusions are no longer neces-
sary. Cancellations between contributions to S, T, U parameters from the two generations
of dark particles may lead to a different mass orderings, where either of Ai or H±i is the
heaviest, as well as to an increased mass splittings between these particles (for a detailed
discussion, see [66]).

Collider searches for new physics. The presence of additional scalars, especially if
they are sufficiently light, can influence properties of SM particles, e.g., their decay channels
and widths. We forbid decays of EW gauge bosons into new scalars by enforcing:

mHi +mH±i
≥ m±W , mAi +mH±i

≥ m±W , mHi +mAi ≥ mZ , 2mH±i
≥ mZ . (2.33)

Furthermore, we adopt LEP 2 searches for supersymmetric particles re-interpreted for the
I(1+1)HDM in order to exclude the region of masses where the following conditions are
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simultaneously satisfied [73] (i = 1, 2):

mAi ≤ 100 GeV, mHi ≤ 80 GeV, ∆m = |mAi −mHi | ≥ 8 GeV, (2.34)

since this would lead to a visible di-jet or di-lepton signal.
The model also must agree with null results for additional neutral scalar searches at

the LHC. As discused in [66], current searches at the LHC for multi-lepton final states
with missing transverse energy, ��ET , are, in general, not sensitive enough to probe the
parameter space of this model. This is mainly due to a relatively large cut on ��ET used in
experimental analyses, which results in a reduced sensitivity to probe the viable parameter
space of the I(2+1)HDM scenario. Notice also that, as new charged particles are inert and
hence do not couple to fermions, they are not subject to many constraints present in the
2HDM framework, e.g., flavour bounds on the charged scalar mass from b → sγ, are not
applicable here.

Charged scalar mass and lifetime. We take a model independent lower estimate on
the masses of all charged states: mH±i

> 70GeV (i = 1, 2) [74]. Furthermore, in this work
we will not consider scenarios with possibly long-lived charged particles and, following [75],
we set the limit for a charged state lifetime to be τ ≤ 10−7 s .

Higgs mass and signal strengths. The combined ATLAS and CMS result for the
Higgs mass is [76]:

mh = 125.09± 0.21 (stat.)± 0.11 (syst.) GeV. (2.35)

The Higgs particle detected at the LHC is in excellent agreement with the SM predictions.
By construction, the h state in the 2Inert vacuum in eq. (2.4) is SM-like and its (tree-level)
couplings to gluons, massive gauge bosons and fermions are identical to the SM values.

The Higgs total width can be modified through additional decays into light inert
scalars, S, by contributing to the h → SS decay channel when mS ≤ mh/2 as well as
through modifications to decay channels already present in the SM, in particular, the
h → γγ decay. In this work we take the upper limit on the Higgs total decay width
to be [77]:

Γtot ≤ 9.1MeV. (2.36)

The partial decay width Γ(h → γγ) is modified with the respect to the SM through the
presence of two charged inert scalars. In this work, we use the combined ATLAS and CMS
limit for the signal strength [78]:

µγγ = 1.14+0.19
−0.018, (2.37)

ensuring a 2σ agreement with the observation.
The latest constraints on the Higgs invisible decays from CMS and ATLAS are [79, 80]:

BR(h→ inv.) < 0.19 (CMS), 0.26 (ATLAS). (2.38)

These constraints significantly limit the allowed values of Higgs-inert couplings for light
inert states.
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DM constraints. The total relic density is given by the sum of the contributions from
both DM candidates H1 and H2,

ΩTh
2 = ΩH1h

2 + ΩH2h
2 , (2.39)

and is constrained by Planck data [81] to be:

ΩDMh
2 = 0.1200± 0.0012. (2.40)

The current strongest upper limit on the spin-independent (SI) scattering cross-section
of DM particles off of nuclei, σDM−N, are provided by the XENON1T and PandaX-4T
experiments and are relevant for all regions of DM mass [82, 83].

Regarding indirect detection searches, for light DM particles annihilating into bb or
ττ , the strongest constraints come from the Fermi-LAT satellite, ruling out the canonical
cross-section 〈σv〉 ≈ 3× 10−26 cm3/s for mDM . 100GeV [84]. For heavier DM candidates
the PAMELA and Fermi-LAT experiments provide similar limits of 〈σv〉 ≈ 10−25 cm3/s
for mDM = 200GeV in the bb, ττ or WW channels [85].

3 Experimental probes of the model

A detailed DM analysis of the Z2 ×Z ′2 symmetric I(2+1)HDM was presented in [66], with
an emphasis on astrophysical probes of it. Here we focus instead on the complementarity
between astrophysical and collider tests of the model. In our present analysis, we use
the micrOMEGAs package [86] to calculate the relic density of the two DM candidates.
During the analysis we follow the standard assumptions included in the code, namely: 1)
particles within the dark sector are in thermal equilibrium; 2) they have the same kinetic
temperature as that of the SM particle bath; 3) the number densities of DM particles can
differ from the equilibrium values once their number density multiplied by their annihilation
cross-section becomes too small to compete with the expansion rate of the Universe.

The lightest particle in each family is a viable DM candidate. As discussed previously,
without loss of generality, we can take H1 from the first family and H2 from the second
family to be the respective DM candidates. However, other dark particles from both families
have a significant impact on the final relic abundances of these two stable particles, as they
influence the thermal evolution and decoupling rate of DM particles.

In the discussion that follows, xa denotes any relevant dark particle for a particular
process from a respective dark sector. There are two2 distinct classes of processes that
can influence number densities of dark particles in each sector. In the first class there are
(co)annihilation processes of the type:

xaxa → SM SM. (3.1)

In this class of processes, we have the standard DM annihilation, HiHi → SM SM with
i = 1, 2, whose product depends mostly on the mass of the DM particles: we observe mostly

2Due to the imposed symmetry there are no processes that would be classified as semi-annihilation, i.e.,
processes of the form xaxb → SM xd.
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H2 H1

H2 H1

(a)

∝ Λ2 · Λ3
h

H2 H1

H2 H1

(b)

∝ Λ1

A2 H1

H2 A1

(c)

∝ g2Z

Figure 1. Example of DM conversion diagrams: (a) Higgs-mediated conversion of H2H2 → H1H1,
present always as long as Λ2,3 6= 0; (b) direct DM conversion depending on the self-interaction
parameter Λ1; (c) Z-mediated conversion due to coannihilation channels.

Higgs-mediated annihilation into fermions for relatively light DM (mDM . mh/2), while
heavier DM particles annihilate predominantly into gauge boson pairs, either directly or
through Higgs s-channel. In our calculations, we also include annihilation into virtual gauge
bosons, as these processes have a significant impact on DM annihilation rates for medium
DM masses (mh/2 . mDM . mW±). Furthermore, if the mass difference between the DM
candidate and other neutral or charged inert scalars from the same generation is small,
then coannihilation channels such as HiAi → Z → SM SM play an essential role. This is,
in fact, the dominant class of processes for relatively high DM masses (mDM & 500GeV),
exactly as it happens in the I(1+1)HDM. We would like to stress that, due to the Z2 ×Z ′2
imposed symmetry in this class of processes, the two DM sectors are separated. There
are no vertices that involve fields from two separate families, e.g., Higgs or gauge bosons
couple only to a pair of inert particles from the same generation.

The second class of processes is DM conversion in which a pair of heavier scalars from
one generation converts, either directly or through interaction with an SM particle, into a
pair of dark particles from the other generation:

xaxa → xbxb . (3.2)

Note that the conversion between two generations of DM particles occurs even if all self-
interaction couplings are switched off. In figure 1, diagrams (a) and (b) represent the
same initial/final state where a pair of H2 particles are converted to a pair of H1 particles
through either Higgs-mediated or direct conversion. Even if the self-interaction parameter
Λ1 was set to zero, there would still be a non-zero contribution coming from diagram (a),
as long as both particles couple to the Higgs boson (Λ2,3 6= 0). We expect cancellations or
enhancements depending on the relative sign of Λ2Λ3 and Λ1. Furthermore, depending on
the masses and couplings, we also need to take into account annihilation of heavier dark
particles from the second generation directly into stable particles from the first generation,
e.g., A2A2 → h→ H1H1. All these processes are automatically included in our numerical
analysis.

As discussed in section 2.2 in eq. (2.13) we can parametrise the model by using masses
of scalar particles and their couplings as follows.

1. The masses of the inert particles, m2
H1
,m2

H2
,m2

A1
,m2

A2
,m2

H±1
,m2

H±2
dictate the anni-

hilation patterns of DM particles. Depending on the absolute values of masses, but
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also on mass splittings between particles, we can expect different dominant chan-
nels of annihilation, coannihilation and conversion. Furthermore, both absolute and
relative values of these masses will result in different possible collider signatures.

2. The couplings of the DM particles to the Higgs boson, Λ2 and Λ3, govern not only DM
annihilation and conversion but also influence possible invisible decays of the Higgs
particle as well as direct and indirect detection of DM. In our numerical analysis
we find that, in particular, the following vertices have significant impact on DM
phenomenology:

ghH1H1 = 2λ3 + λ31 + λ′31 = 2Λ3 , (3.3)
ghH2H2 = 2λ2 + λ23 + λ′23 = 2Λ2 , (3.4)
ghA1A1 = −2λ3 + λ31 + λ′31 = 2Λ3 + 2(m2

A1 −m
2
H1)/v2 , (3.5)

ghA2A2 = −2λ2 + λ23 + λ′23 = 2Λ2 + 2(m2
A2 −m

2
H2)/v2 . (3.6)

3. The self-couplings of dark particles, λ1, λ
′
12, λ12 and λ11, λ22, play two different roles.

The first set governs interactions between two different families and will have an
observable impact on DM relic abundance through DM conversion processes. In
particular, the following couplings have a crucial impact on DM phenomenology:

gH1H1H2H2 = 2λ1 + λ12 + λ′12 = 4Λ1 − (λ12 + λ′12) , (3.7)
gA1A1H2H2 = gA2A2H1H1 = −4λ1 + λ12 + λ′12 = −4Λ1 + 2(λ12 + λ′12) . (3.8)

In turn, λ11 and λ22 do not directly contribute to any observable process and do not
influence the DM abundance. They also have no impact on any observable collider
processes. However, they have a fundamental impact on the range of other parameters
through vacuum stability conditions.

Our numerical analysis shows that, due to the existence of the conversion processes, the
total DM relic density receives its dominant contribution from H1 while the contribution
from H2 is of a few percent of the total DM relic density.

3.1 Benchmark points

In our previous analysis [66], we showed that, as a consequence of both DM candidate
masses being in the EW region, astrophysical tools could be used to probe different DM
components in a complementary way. The total relic abundance receives its dominant
contribution from the lighter DM candidate, H1, while the contribution from the heavier
DM candidate, H2, is of a few percent of the total DM relic density. In all our BPs studied,
the total relic abundance is within 3σ deviation of the Planck experiment observation
in eq. (2.40).

As discussed in detail in our previous analysis [66], the lighter DM candidate, H1, could
have a detectable effect in the spectrum of the nuclear recoil energy measured at direct
direction experiments. In all the BPs studied here with mH1 = 50GeV, the nuclear recoil
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Figure 2. Diagrams leading to the 4`+�ET final state mediated by the h boson.

energy event rate, dN/dE, is of the order of 10−6 (keV kg day)−1 in the low (∼ 10) keV
region which is within reach of XENONnT/LZ or DARWIN experiments [87–89].

Complementary to the direct detection probes, in [66] we showed that the heavier DM
candidate, H2, may be detectable in its effect in enhancing the photon flux coming from
the galactic centre measured at indirect detection experiments. In all our BPs studied
here, with mH2 = 100GeV, the flux of the γ-rays emitted from the DM annihilation at the
galactic center, E2

γ dΦγ/dEγ , is of the order of 10−6 (GeV cm−2 s−1 sr−1) in the Eγ < 10GeV
region which is where Fermi-LAT experiment has observed an excess over the background
of the same order of magnitude [90].

In the present paper, we focus on yet another complementary and independent probe
of the two-component DM nature of this model, namely its collider signatures. We study
scalar cascade decays into the two different DM candidates, H1 and H2. Since the latter
have comparable masses, we show that their presence is detectable simultaneously. Fur-
thermore, their mass difference leads to different shapes in the distributions of several
observables such as ��ET and visible transverse momenta, as we will show.

Two candidates for relevant processes here would be gg → h → A1A1 → Z∗H1 Z
∗H1

and gg → h → A2A2 → Z∗H2 Z
∗H2, whose final states appear as 4` +��ET , as shown in

figure 2. Since the mass splitting of the two DM candidates, mH2−mH1 , is larger than the
��ET resolution at the LHC, one could potentially see the effect of the two DM components in
different distributions. These channels are particularly interesting since they are sensitive
to the hA1A1 and hA2A2 couplings, which highlight an important characteristic of the
model, i.e., the fact that, due to the sub-dominant relic density of H2, the couplings of the
heavier DM family to the SM-like Higgs boson could be exceptionally large (ghA2A2 ∼ 0.5)
while still in agreement with all collider and astrophysical bounds. However, the cross-
sections for these processes are very small (∼ 10−7 fb for the first family and ∼ 10−4 fb
for the second family) to have any visible effect in collider searches. As a result, we do not
discuss this process any further.

The ideal processes for our analysis are the qq̄ → Z∗ → H1A1 → H1H1Z
∗ and qq̄ →

Z∗ → H2A2 → H2H2Z
∗ ones, whose final states appear as 2`+��ET , as shown in figure 3. To

highlight these signatures, we have chosen four BPs as shown in table 1. The cross-sections
for the pp→ 2H1 + 2` and pp→ 2H2 + 2` processes for the four BPs are shown in table 2.

We now proceed to a Monte Carlo (MC) analysis of these BPs.
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Figure 3. Diagrams leading to the 2`+�ET final state mediated by the Z boson.

BP mA1 m
H±

1
mA2 m

H±
2

Λ2 ghA1A1 g
hH+

1 H−
1

ghH2H2 ghA2A2 g
hH+

2 H−
2

L2n2 59.3 104.86 130.06 123.53 -0.0053 0.0336141 0.280793 −0.0106 0.217955 0.163227
L2p1 59.3 94.6 129.7 141 0.073 0.0336141 0.213159 0.146 0.371464 0.472558
L2p2 59.06 94.6 149.07 108.96 0.065 0.0326753 0.213159 0.13 0.533922 0.191877
L2p3 59.18 97.78 143.66 140.82 0.0099 0.0331442 0.233377 0.0198 0.371383 0.344682

Table 1. The four BPs, for which we have chosen mH1 = 50GeV, mH2 = 100GeV and ghH1H1 =
0.00002, and we have set λ11 = 0.11, λ22 = 0.12, λ12 = 0.121, λ′12 = 0.13, Λ1 = Λ3 = 0.00001, the
SM Higgs mass mh = 125GeV and the VEV v = 246GeV, are in agreement with all astrophysical
and collider constraints.

BP pp→ 2H1 + 2` pp→ 2H2 + 2`
L2n2 σ = 1.058 [fb] σ = 1.929 [fb]
L2p1 σ = 1.043 [fb] σ = 1.912 [fb]
L2p2 σ = 0.9169 [fb] σ = 1.230 [fb]
L2p3 σ = 0.9797 [fb] σ = 2.448 [fb]

Table 2. The cross-sections for the processes yielding 2` +�ET final states, whose leading contri-
bution come from the qq̄ → Z∗ → H1A1 → H1H1Z

∗ and qq̄ → Z∗ → H2A2 → H2H2Z
∗ channels

shown in figure 3.

4 Numerical results

The integrated and differential cross-sections have been calculated using MadGraph [91] by
adopting a generic LHC parameter card. Furthermore, we have used MadAnalysis [92] for
constructing our selection, which involve basic cuts for leptons ` and jets j:3 in pseudo-
rapidity |η(`)|, |η(j)| < 3, transverse momentum pT (`), pT (j) > 10GeV as well as separation
∆R(j, `) > 0.5. Finally, event rates have been computed considering 100 fb−1 of luminosity
for the LHC machine.

The cross-sections for the two processes qq̄ → Z∗ → H1A1 → H1H1Z
∗ and qq̄ → Z∗ →

H2A2 → H2H2Z
∗ given in table 2 are instrumental to enable the extraction of distributions

sensitive to the simultaneous presence of the two DM candidates at the forthcoming LHC
Run 3 as they are both visible and comparable to each other. As mentioned before, in

3The latter being produced from QCD Initial State Radiation (ISR) and clustered with the Cam-
bridge/Aachen algorithm with a 0.4 cone size [93, 94].
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Figure 4. Missing transverse energy (left) and transverse momentum of either lepton (right) in
the case of H1 and H2 separately.

all four BPs presented herein, within each family the cross-section depends on both the
absolute value of the masses involved and their mass splittings MAi − MHi (i = 1, 2),
with the latter having been chosen (in agreement with all astrophysical bounds) to be
larger than or comparable to the expected experimental resolutions in (missing) transverse
energy/momentum and (transverse or invariant) mass. Therefore, we shall be looking
for differential spectra with a distinctive shape from which the existence of two different
underpinning component distributions could be easily inferred. As a proof of concept, we
show such observables for both the aforementioned two processes limitedly to one BP, e.g.,
L2n2. (Results are qualitatively similar for the other BPs, so we do not discuss these
here.) For this choice, it is worth highlighting that the inert masses involved are as follows:
mH1 = 50GeV with mA1 − mH1 = 9.3GeV for one doublet and mH2 = 100GeV with
mA2 −mH2 = 30.06GeV for the other.

In figure 4, we show the��ET spectrum on the left and that of the transverse momentum
of either lepton on the right, for the two channels pp → `¯̀+ H1H1 and pp → `¯̀+ H2H2
separately. The two sets of distributions are strikingly different so that, even when summed,
one could clearly deduce the presence of two different DM candidates with different masses.
In the ��ET histogram, one can see two different peaks, a sharp one around 25GeV for the
H1 case and a smoother one around 35GeV for the H2 case, this tracking the fact that
mH1 � mH2 (even though the presence of two DM particles in the event in each case
spoils somewhat the correlations). In the p`T spectra, it can be noticed the much sharper
decrease of the H1 distribution with respect to the H2 one, this correlating to the fact that
mA1 −mH1 � mA2 −mH2 .

In figure 5, one can notice that leptons are similarly central (see the pseudo-rapidity
plot of either of these on the left) while their separation is noticeably different (see their
cone size on the right) between the two DM candidates, the former spectrum showing that
the overall events are not generally boosted but the Z∗ itself can be so and differently
between the H1 and H2 cases.

Figure 6 shows the invariant mass of the leptons, defined through M2
`` = (p`+ + p`−)2,

which is also correlated with the Ai and Hi mass splitting in each process, thus explaining
the low mass peak for the H1 case and the high mass peak for the H2 case.
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Figure 5. Pseudo-rapidity of either lepton (left) and separation between the leptons (right) in the
case of H1 and H2 separately.

Figure 6. The invariant mass of the final state leptons in the case of H1 and H2 separately.

Figure 7. The transverse mass of the final state leptons and DM candidates in the case of H1 and
H2 separately.

Figure 7 shows the transverse mass of the final state leptons, defined throughM2
T (``) =

(
∑
iET i)2− (

∑
i pT i)2 , which is rather strongly correlated to the A1 and A2 masses for the

H1 and H2 cases, respectively.
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Therefore, there exist several distributions which are significantly different in shape
between the two DM candidates while also yielding sizeable event rates for LHC Run 3
luminosities, so that one could not only establish the presence of H1 and H2 simultaneously
but also attempt to extract the underlying inert mass spectra from fitting the ensuing data
to the I(2+1)HDM predictions. All this is clearly subject to validation through a MC
analysis in presence of both reducible and irreducible backgrounds from the SM.

5 Conclusions

In this paper, we have studied a I(2+1)HDM framework symmetric under a Z2×Z ′2 group
with one inert doublet being odd under Z2 and even under Z ′2 and the other inert doublet
being even under Z2 and odd under Z ′2, while all SM particles transform trivially under the
Z2×Z ′2 symmetry. The lightest particle from each inert doublet is a viable DM candidate,
resulting in a two-component DM model. In a recent publication [66], we showed that,
when there is a sufficient mass difference between the two DM candidates, which are both
typically at the EW scale, the light DM component can be probed by the nuclear recoil
energy in direct detection experiments while the heavy DM component appears through
its contribution to the photon flux in indirect detection experiments.

Here, in addition to such astrophysical probes, we have shown that certain collider
signatures can serve the same purpose; in each family, the decay of the heavier neutral inert
state into the lighter one (i.e., the DM candidate) plus an off-shell (secondary) Z boson
(decaying to di-lepton pairs) in association with an additional identical DM candidate
emerging in parallel from primary production via an off-shell (primary) Z boson. The
smoking-gun signature of this two-component DM scenario is thus 2` + ��ET , which can
in fact be pursued already at the upcoming Run 3 of the LHC. Herein, one could study
a variety of differential distributions stemming from this final state that would have a
distinctive shape carrying the imprint of two underlying components, each corresponding
to a different DM candidate. Indeed, those having an energy dimension could even be used
to extract the underpinning inert state masses involved.

While these conclusions have been obtained without a signal-to-background analysis,
we encourage ATLAS and CMS experimentalists to look into this novel phenomenology,
as it would manifest itself in a well-studied final state at the LHC machine.
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