
https://helda.helsinki.fi

Changes of Raw Texture, Intramuscular Connective Tissue

Properties and Collagen Profiles in Broiler Wooden Breast

during Early Storage

Zhu, Xueshen

Multidisciplinary Digital Publishing Institute

2023-04-04

Zhu, X.; Puolanne, E.; Ertbjerg, P. Changes of Raw Texture, Intramuscular Connective

Tissue Properties and Collagen Profiles in Broiler Wooden Breast during Early Storage.

Foods 2023, 12, 1530.

http://hdl.handle.net/10138/356960

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



Citation: Zhu, X.; Puolanne, E.;

Ertbjerg, P. Changes of Raw Texture,

Intramuscular Connective Tissue

Properties and Collagen Profiles in

Broiler Wooden Breast during Early

Storage. Foods 2023, 12, 1530.

https://doi.org/10.3390/

foods12071530

Academic Editors: Samir Smeti and

Mokhtar Mahouachi

Received: 7 March 2023

Revised: 28 March 2023

Accepted: 1 April 2023

Published: 4 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Article

Changes of Raw Texture, Intramuscular Connective Tissue
Properties and Collagen Profiles in Broiler Wooden Breast
during Early Storage
Xueshen Zhu 1 , Eero Puolanne 2 and Per Ertbjerg 2,*

1 Key Laboratory of Biological Functional Molecules of Jiangsu Province, College of Life Science and Chemistry,
Jiangsu Second Normal University, Nanjing 211200, China; xueshen_zhu@163.com

2 Department of Food and Nutrition, University of Helsinki, 00014 Helsinki, Finland; eropuolanne@gmail.com
* Correspondence: per.ertbjerg@helsinki.fi

Abstract: A recently identified broiler myopathy known as wooden breast (WB) is predominantly
found in the pectoralis major muscle of fast-growing broiler hybrids and is causing significant losses
to the poultry industry. The aim of this study was to investigate the effects of WB syndrome on
raw meat texture, purge loss and thermal properties of intramuscular connective tissue of pectoralis
major muscle in the early postmortem period (1–3 days). Results showed that the presence of the
WB muscles condition at 1 day postmortem was associated with significantly increased stiffness
(27.0 N vs. 23.1 N) and significantly increased purge loss (1.8% vs. 1.0%) compared to normal breast
(NB). However, on 3 days postmortem, these parameters did not differ between WB and NB groups.
Insoluble and total collagen content was significantly higher in WB muscles compared to NB muscles,
and the extractability of intramuscular connective tissue (IMCT) of WB was also higher (0.42% vs.
0.37%) compared to NB and remained stable in the early postmortem period. There was significantly
lower protein content in the sarcoplasmic protein fraction and myofibrillar protein fraction of WB
muscles compared to NB muscles (p < 0.05). The IMCT of these two groups showed different thermal
properties, as the enthalpy of denaturation (∆H) was significantly lower in WB muscles compared to
NB muscles. The WB syndrome had a great effect on the texture and connective tissue properties of
the meat compared to normal muscle, with a tendency for having a lower purge loss and higher raw
meat hardness.

Keywords: wooden breast; collagen profiles; intramuscular connective tissue; thermal properties;
postmortem

1. Introduction

The increasing demand for chicken meat has led the poultry industry over the past
50 years to focus on high-energy diets and intensive selection for genotypes that exhibit
faster growth and higher breast yields. However, the breast muscle of fast-growing chickens
is associated with an increased number of giant fibers, which are typically three to five
times larger in cross-sectional area than those of slower-growing chickens [1]. The incidence
of many pectoral meat abnormalities has increased dramatically over time. White striping,
deep pectoral disease also known as Oregon disease, PSE-like breast meat and poor meat
cohesion are some examples of the various observed defects [2–4]. Recently, wooden
breast (WB) myopathy has become a growing concern as affected fillets have an unsightly
appearance, and it has been found in many countries around the world [5].WB is generally
characterized by muscle fiber necrosis, inflammatory cell accumulation and fibrosis [6,7].
The pathophysiology of this condition remains unknown, but oxidative stress in the poorly
vascularized breast muscle has been anticipated to be the causative factor [5]. In contrast
to normal meat, WB defects can be classified by palpation, for example, on the slaughter
line, based on a harder texture [6]. Although WB-affected cuts of meat are edible without
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any health risk, they are not readily accepted by consumers due to outward appearance
and texture problems, thus leading to losses in the poultry industry and potential poultry
welfare issues. Wooden breast myopathy is associated with impairment of gait scores and
may also cause welfare problems [8]. Therefore, WB is a concern for the poultry industry,
as this myopathy can cause an unpleasant consumer experience and thus affect consumer
acceptance. There is much evidence regarding a plausible etiology. Recent RNA-seq
analysis studies suggest that local hypoxia, oxidative stress, higher intracellular calcium
levels, and muscle fiber type conversion associated with modern fast-growing broilers may
be associated with the development of these myopathies [9]. The occurrence of defects also
seems to be influenced by location in the muscle: the thickest part of the breast muscle,
the cranial portion, may be susceptible to hyperextension or ischemia, leading to tissue
damage and repair responses due to impaired blood supply [2].

A recent study has shown a progressive course of this disease with acute vasculitis
confined to small caliber veins, lipid infiltration and deposition, and an early stage of fibrosis
followed by a chronic fibrotic stage [6]. Microscopically, there is muscle degeneration
with regeneration and accumulation of loose connective tissue in the muscle as well as
thickening of epimysial membrane [7]. Regardless of storage temperature, consistent results
including higher hardness and cook loss in WB muscles compared to NB were found in
early postmortem. However, the underlying mechanisms seemed to be an open topic [5].
Nonetheless, connective tissue is a minor element of meat, its contribution to texture is
important, but not well understood in WB. The objective of this study was to investigate
changes in texture, intramuscular connective tissue properties and collagen profile of broiler
wooden breast pectoral muscle during early storage.

2. Materials and Methods
2.1. Sample Collection and Chemicals

A total of 12 31-day-old broilers (Ross 308) were collected at a commercial slaughter-
house (Saarioinen Plc, Sahalahti, Finland). Muscles were sampled on the cutting line three
hours postmortem, in one day. The selection of fillets was based on visual appearance
and palpation of the pectoralis major muscle in fillets showing the wooden breast (WB) or
normal breast (NB) condition; pectoralis major muscles exhibiting diffuse hard areas with
color defects and petechiae were noted as WB. The WB status used here can be regarded
as severe WB according to commonly used grading [10,11]. In contrast, fillets with soft
and elastic tissue and uniform color were rated as NB. Immediately after the selection,
the breasts were placed in polyethylene bags on ice and transported to the University of
Helsinki, Finland, Department of Food Science and Nutrition, Meat Laboratory. The middle
parts of the fillets were excised (Figure 1) and stored at 4 ◦C for 72 h. A total of 6 pieces
of wooden breast meat (WB) and 6 pieces of normal breast meat (NB) were used, with the
average weight of 413.4 ± 29.7 g and 292.2 ± 46.8 g, respectively. All chemical reagents
were chemically pure.
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Figure 1. Sampling position diagram.

2.2. Compression Test

Compression tests were performed on a TA-XT2i texture analyzer (Stable Micro System
Ltd., Godalming, UK). In this study, the measurement unit was modified mainly according
to Soglia et al. [12], where muscle samples were deformed transversely in only one direction,
which means that the compressed meat strips can only extend longitudinally. Compression
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forces were measured on raw chicken samples. Each chicken fillet from the inner layer was
cut into three 1 × 1 × 3 cm strips with muscle fibers parallel to the longitudinal direction.
The test was performed by compressing the sample to 80% of its initial height with a trigger
force of 5 g at a speed of 50 mm/min. The highest compression values were filtered out
from all records. The average of three measurements was recorded for each of the three
strips of one fillet.

2.3. Purge Loss Measurements

For purge loss measurements, about 20 g of muscle sample was kept in a sealed
polyethylene package at 4 ◦C. After the bags were opened, the exudation on the surface of
muscles was removed with filter paper. The weight of the muscle samples was recorded
again, and the weight loss, expressed as a percentage of initial weight, was regarded
as purge loss. The purge loss was calculated from the average of three replicates for
each muscle.

2.4. Collagen Profiles Measurements

The method for analysis of insoluble collagen and total collagen content was adopted
from Latorre et al. [13]. Muscles were first minced using a blender (Blendtec, Orem, UT,
USA), then samples in triplicates (2.5 g) were weighed and transferred into the digestion
tubes. After addition of 30 mL of 6 M sulphuric acid, the flask was covered with a watch
glass. The samples were hydrolyzed in a digester (Tecator Digestion System 20-1015, Teca-
tor, Inc., Herndon, VA, USA) at 110 ◦C for 16 h. The hydrolyzed samples were diluted in
100 mL milliQ water and filtered using Whatman No 1 filter paper. The filtered samples
were further diluted in 50 mL milliQ water and neutralized with 6 M NaOH. The hydrox-
yproline in the samples was oxidized by chloramine-T in the prepared aqueous buffer
solution, followed by colorimetric reaction with the 4-(Dimethylamino)benzaldehyde. The
samples were then incubated at 60 ◦C for 30 min and after cooling and letting the samples
set for 25 min, absorbance was measured at λ = 560 nm using a spectrophotometer (Ordior
Shimadzu UV Spectrophotometer, Shimadzu Corporation, Kyoto, Japan). The hydroxypro-
line content was determined against a standard calibration curve prepared in a similar
manner. The total collagen content was determined from hydroxyproline content by using
a conversion factor of 7.25 and finally expressed as a percentage.

In order to measure the insoluble collagen content, the minced muscle samples were
first kept in a water bath at 77 ◦C for 65 min, then centrifuged at 5800 rpm for 10 min. The
precipitates were taken as the insoluble part. The average of three measurements of total
and insoluble collagen content of each sample was recorded.

2.5. Filter Residue and Thermal Properties of IMCT Analysis

Filter residues of intramuscular connective tissue were analyzed as described by
Chang et al. [14] with some modifications. Forty grams wet weight of raw breast was first
cut into 0.5 cm3 cubes and was homogenized in 50 mL of ice-cold water for 30 s at 3000 rpm
using a IKA-T25 homogenizer (Labortechnik, Staufen, Germany). The homogenate was
filtered through a metal sieve (1 mm2 perforations), and the material retained on the filter
was re-homogenized in 50 mL of CaCl2 and re-filtered. The process was repeated three
times. The material retained on the filter, designated as filtering residues, was freeze-dried
(Alpha 21.2, Christ, Germany) until a constant weight was reached. The contents of filtering
residues were calculated as a percentage of the initial wet sample weight. Filter residues
were mainly composed of intramuscular connective tissue (IMCT).

Thermal properties of intramuscular connective tissue were analyzed by differential
scanning calorimetry (DSC) to determine the onset, peak and end temperatures (To, Tp, Te,
respectively); and the enthalpy (∆H) of thermal denaturation of intramuscular connective
tissue [15]. Briefly, 10% (w/w) of milliQ water was added to the freeze-dried samples of
IMCT, which were then kept overnight to equilibrate the water distribution. The ∆H, the
extra energy that was needed to maintain a constant increase of temperature during DSC
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analysis when collagen in the intramuscular connective tissue sample contracted, was
expressed in J/g. Approximately 10 mg was placed in a 40 µL aluminum DSC sample pan
and the pans were hermetically sealed. The samples were heated from 10 to 95 ◦C at a
heating rate of 5 ◦C/min using a TA 4000, DSC 30 (Mettler Toledo, Greifensee, Switzerland).
The instrument was calibrated before use. An empty sample pan was used as a reference.
After the DSC analysis, the lid of each sample pan was pierced, the sample was then dried
overnight at 103 ◦C to measure the weight.

2.6. Protein Extraction Analysis and Thiol Groups Content Measurements

Samples for the determination of protein extraction and thiol groups content were
taken at 1 d postmortem. These samples were immediately frozen in liquid nitrogen and
stored at −80 ◦C until analysis. Sarcoplasmic and myofibrillar protein fractions were
extracted according to Zhu et al. [16]. Exactly 1.00 g of frozen muscle samples was added
to 10 mL of rigor buffer containing 0.075 M KCl, 0.010 M KH2PO4, 0.002 M MgCl2, 0.002 M
EGTA, pH 7.0 and homogenized using a IKA-T25 homogenizer (Labortechnik, Staufen,
Germany) at 13,500 rpm for 20 s. The homogenate was centrifuged at 10,000× g for 10 min at
4 ◦C, and the supernatant was decanted and saved as the sarcoplasmic protein fraction. The
homogenization of the pellet in 20 mL fresh rigor buffer and centrifugation was repeated
3 times to extract the sarcoplasmic proteins and to obtain the myofibrillar protein fraction
pellet. The final pellet was then homogenized in 20 mL rigor buffer to obtain the suspension
of myofibrillar protein fraction. The protein content of the sarcoplasmic protein fraction
and myofibrillar protein fraction was determined using the BCA protein kit (Merck KgaA,
Darmstadt, Germany) and calculated as the average of three replicates of each muscle
sample. Protein thiol groups were then determined according to Bao et al. with minor
modification [17]. Briefly, one ml of sarcoplasmic and myofibrillar protein fraction extracted
as above was homogenized with 10 mL 5% SDS in 0.1 M Tris–HCl (pH 8.0) at 13,500 rpm
for 30 s, separately. The homogenates were heated in a water bath at 80 ◦C for 30 min. After
cooling, the homogenates were filtered through filter paper (Whatman 40, GE Healthcare).
The protein concentration of the filtrate was determined by reading absorbance at 280 nm.
Thiol groups were measured by mixing 0.5 mL filtrate, 2 mL of 0.1 M Tris–HCl (pH 8.0) and
0.5 mL 10 mM 5,5’-Dithiobis (2-nitrobenzoic acid) in 0.1 M Tris–HCl (pH 8.0). The mixture
was incubated in the dark at room temperature for 30 min. Absorbance at 412 nm was
recorded and the content of thiol groups was calculated and expressed as nmol/mg protein.

2.7. Statistical Analyses

Data were analyzed using the SPSS® Statistics Version 21 package (IBM, Chicago, IL,
USA). Duncan’s multiple range test for statistical analysis was performed with SPSS and
graphical representations were performed with Excel 2010 (Microsoft, Redmond, DC, USA).

3. Results and Discussion
3.1. Compression Values and Purge Loss

As expected, on day 1, raw breast meat within WB had higher compression values
than normal breast (Figure 2a, p < 0.05); however, on postmortem day 3, there was no
difference in compression values between these two groups. These results suggest a greater
tendency for WB compression values to decrease during storage compared to normal
compression values. Petracci et al. [4] reported that the increase in overall connective tissue
was detrimental to the protein content of WB meat, which was also found to be lower than
the content in normal meat. Increased compression values in the caudal pectoralis major
affected by WB abnormalities have been previously reported [18]. Furthermore, Soglia
et al. found a progressive tendency of softening of both superficial and deep layers of
raw WB samples from 10 to 72 h postmortem [12]. It should be noted that the increase
in interstitial connective tissue seen in WB samples leading to fibrosis [6], as well as the
increased deposition of extracellular matrix [7], likely had an impact on the hardness
of the raw meat. The fibrosis in wooden breast-affected muscle is characterized by the
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replacement of muscle fibers by extracellular matrix proteins, particularly fibril-forming
collagen [19].
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Figure 2. Compression value (a), purge loss (b) of wooden breast (WB) and normal breast (NB)
muscles of broilers at day 1 and day 3 postmortem. Means without a common superscript (abc) differ;
p < 0.05.

Along with higher hardness, the purge loss of WB was also significantly higher than
that of NB on 1 day postmortem (Figure 2b), indicating that WB had much lower water
holding capacity than NB on 1 day postmortem. However, no difference was found in the
total purge loss between the two groups after 3 days of refrigeration. Similarly, Mudalal
et al. reported that the presence of WB impaired not only the appearance of fillets but also
the quality of raw and cured meat, mainly by reducing the water holding capacity. Com-
pared to NB, WB showed higher compression values and cooking losses in raw meat, while
there was no difference in cooked meat shear force [18]. More recently, Tasoniero et al. [20]
investigated the role of the physico-chemical state of myowater on the development of
hardness in WB by NMR relaxometry and reported that water redistribution occurred
over time during storage, as evidenced by the increasing trend in T21 population. The cra-
nial/superficial portion of the breast exhibited the highest amount of the extramyofibrillar
water population (T22) and the texture of this part of the muscle was stiffer than the deeper
layers. It may be noted that although water loss was higher in WB-affected samples on one
day postmortem, it remained in the range of values observed normally at 24 h postmortem.

3.2. Collagen Profile

The result of collagen content analysis in our study is presented in Figure 3. Overall,
the total amount of collagen in WB affected muscles was higher than normal on postmortem
days 1 and 3 (p < 0.05). These results coincide with the findings of Soglia et al. [12]. The
middle part (ventral area) of the WB samples had higher levels of insoluble collagen
compared to normal samples (Figure 3b). Recent literature has also shown that insoluble,
soluble and total collagen were also higher in wooden breast heavy fillets than in normal
fillets at 9 weeks of age [5]. In general, WB shows muscle degradation conditions and
a relatively high collagen content, which was also demonstrated by microscopy studies
showing large areas of connective tissue in WB muscle [21]. Although this is very clear
in the previous literature, it is worth reiterating. Compression measurements of raw
meat generally show good correlations with collagen content and collagen properties of
different muscles [22], and within the longissimus muscle of beef the collagen properties
show correlation with raw meat texture [23]. Moreover, large proteoglycans interact with
hyaluronic acid to form larger aggregates that provide swelling pressure as well as matrix
elasticity, ultimately giving the tissue stiffness [24]. Regarding the intramuscular connective
tissue (IMCT) properties in this study, the results showed that the interior of WB showed
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the highest amount of insoluble and total collagen compared to normal samples, which
may be related to the increase in tissue stiffness and the decrease in fleshiness.
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3.3. Filter Residue and Thermal Properties of Intramuscular Connective Tissue

Thermal properties are an important parameter of connective tissue. Compared to
NB, more IMCT was extracted from WB, not only on day 1 but also on day 3 postmortem
(Figure 4). The DSC results showed no significant differences at the beginning and peak
temperatures; however, the enthalpy of denaturation (∆H) was significantly lower for
WB compared to NB (Table 1) and the endset temperature of WB was significantly lower
compared to NB at 3 days postmortem. It should be mentioned that there was a slight
downward trend in ∆H for WB and a subtle downward trend in end temperature from day
1 to day 3. According to Kopp et al. (1990), collagen in IMCT showed a decrease in ∆H with
increasing collagen cross-linking in dried samples of corrugated muscle, suggesting that
the result of hydrophobic action corresponds to a change in stable cross-linked collagen
fibers [25]. We speculated that an alteration involving cross-linkages in the structure of the
intramuscular connective tissue of WB may explain the lower ∆H; in addition, an increased
amount of cross-linkages attributed to decorin, a proteoglycan that mediates collagen
crosslinking, growth factor signaling, and cell growth in WB connective tissue [26], could
be another reason. SDS-PAGE patterns showed that the protein profiles of intramuscular
connective tissue extracted from WB and NB muscles differed (data not shown). The
thermal and mechanical stability of intramuscular connective tissue is primarily related
to the chemical nature of covalent intermolecular cross-linking of collagen [27]. Velleman
and Clark [7] used real-time quantitative PCR analysis of WB muscle and found that
the expression levels of decorin, a regulator of collagen cross-linking, correlated with
differences in collagen organization. Differences in connective tissue composition may
result in different thermal properties. Increased stiffness in muscle affected by WB is not
only associated with increased collagen content, but also with the degree of fibrillated
collagen and structural features such as fiber diameter, cross-linking, fiber density, and
other structural features [28]. According to Sanden et al. [29], wooden breast had more
diffuse and broader connective tissues with more gaps, showing a thin and thick mixture of
collagen fibers, and IMCT denaturation studied by DSC showed the presence of different
endothermic peaks in the range of 50–80 ◦C [30]. As for the surface of the pectoralis major
muscle, the total enthalpy of protein denaturation was found to be significantly lower
(p < 0.05) in the WB group if compared to the NB group (3.2 vs. 3.92 J/g) [31,32]. Collagen
biosynthesis and intermolecular crosslinking is a complex biological process mediated
by a series of key regulators [33]. More collagen cross-linking decreases the elasticity of
collagen fibers, leading to increased tissue stiffness and reduced meat quality, with lower
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∆H. Although an increase in the amount of connective tissue components was found in
the WB case mentioned above, thermally inert cross-linking could be responsible for a
similar evolution of compression and shear force values measured on WB and NB cooked
samples [31]. It is well known that in skeletal muscle there are three layers of connective
tissue containing extracellular matrix macromolecules, including epimysium, perimysium
and endomysium. The predominant extracellular matrix proteins in these layers are fibrillar
collagens, particularly types I and III [34]. Although different SDS-PAGE patterns were
found, it is not very clear how these collagen types are affected by WB, if both type I and
type III collagens were affected in the current study. This warrants more research in the
future. Notably, the results showed that the two fractions of myofibrillar proteins and
sarcoplasmic proteins are probably being replaced by connective tissue, thus contributing
to increased muscle hardness.
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Figure 4. Intramuscular connective tissue (IMCT) residues after extraction and filtration in wooden
breast (WB) and normal breast (NB) muscles of broilers at day 1 and day 3 postmortem. Means
without a common superscript differ, p < 0.05.

Table 1. Thermal properties of intramuscular connective tissue from wooden breast (WB) and normal
breast (NB) muscles at day 1 and day 3 postmortem shown as onset, peak and endset denaturation
temperatures, and the denaturation enthalpy (∆H).

WB-1d NB-1d WB-3d NB-3d

onset T (◦C) 58.22 ± 0.82 a 57.24 ± 2.77 a 56.70 ± 0.76 a 57.66 ± 2.33 a

peak T (◦C) 63.73 ± 0.36 a 63.58 ± 2.17 a 62.81 ± 0.25 a 64.04 ± 1.87 a

endset T (◦C) 71.55 ± 0.66 a 72.62 ± 1.59 a 69.91 ± 0.90 b 72.84 ± 1.13 a

∆H (J/g) 9.76 ± 4.34 a 14.71 ± 5.04 b 7.86 ± 3.69 a 14.16 ± 3.62 b

Each treatment was performed in triplicate (n = 6). Means within rows having different superscripts (ab) differ,
p < 0.05.

3.4. Protein Extraction Characteristics

Our results also showed that when protein was extracted from 1d postmortem samples,
the sarcoplasmic protein fraction of WB had significantly lower protein content compared
to NB (Figure 5a). In addition, the protein content of the myofibrillar protein fraction was
also significantly lower in WB compared to NB (p < 0.05). However, the current study
showed a trend towards increased thiol content in both the myofibrillar protein fraction
and the sarcoplasmic protein fraction as between WB and normal individuals, although no
significant differences were found (Figure 3b). Li et al. [35] and Carvalho et al. [36] reported
greater loss of carbonyl content and free thiol groups in severe wooden breast samples
(p < 0.05). In this study, more subtle differences arose between WB and NB, which may
contribute to altering the oxidative homeostasis associated with increased oxidative stress in
severe WB muscle [37]. In general, the loss of free thiols indicates the formation of disulfide
cross-linked myosin heavy chains [38]. It is also important to mention that the WB samples
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exhibited a significantly higher level of protein carbonyls (p < 0.05) indicating that a greater
degree of protein oxidation was found [39]. As also mentioned above, more intramuscular
connective tissue could be extracted after blending from WB samples compared to NB
samples, not only at day 1 but also at day 3 postmortem. In sum, in our study, WB samples
displayed worse raw meat texture characteristics on 1 day postmortem compared to 3 days
postmortem. Notably, the differences among the groups were mainly detected when raw
meat rather than cooked was analyzed. However, higher cook loss and lower shear force of
WB compared with NB were found after prolonged 4 ◦C storage [12,40].
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Figure 5. Protein extraction content (a) and free thiol content (b) in wooden breast (WB) and normal
breast (NB) muscles of broilers in myofibrillar (MF) and sarcoplasmic (SF) protein fractions. Means
within groups without a match in superscripts (abcd) differ, p < 0.05.

In conclusion, this investigation suggests that the presence of WB has adverse effects
on meat quality characteristics such as raw meat hardness and lower water retention
capacity. WB has a higher collagen content, including insoluble collagen, which may help
explain the hardness of its raw meat. The different thermal properties of isolated IMCT
may be explained by the different protein composition in the wooden pectoral muscle.
These results could provide more information on the meat processing properties of wooden
pectoral muscle and could serve as a guide for the future. Therefore, future studies should
elucidate the links that exist between the types of collagen and their involvement in the
development of meat texture and thermal properties, in order to better understand the
mechanisms underlying the condition of wooden breast myopathy.
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