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A method for deriving the complex refractive index of a mm-sized single particle in
a specific wavelength using laboratory measurements is presented. Laboratory mea-
surements were done using the 4π scatterometer, which measures Mueller matrix
elements of a particle suspended in air using acoustic levitation as a function of scat-
tering angle. To obtain the complex refractive index of the particle, measurements
were compared to simulations from a newly developed SIRIS4 Fixed Orientation
(SIRIS4 FO) geometric optics simulation.

The 4π scatterometer is a unique instrument which measures Mueller matrix elements
from a particle using linear polarizers and a detector rotating about the particle
on a rotational stage. The scatterometer uses an acoustic levitator as a sample
holder which provides nondestructive measurements and full orientation control of
the sample.

To compare the measurement results to simulations, SIRIS4 single-particle geometric
optics code was modified to handle particles in a fixed orientation. The original code
is able to calculate the Mueller matrix elements for a given 3D model, but averages
the results over the orientation of the particle. The modified SIRIS4 FO calculates
the Mueller matrix elements over the full solid angle as functions of the two scattering
angles, which give the direction of observation of the scattered wave compared to the
direction of the incident wave. A 3D model of the shape of the measured particle
was constructed using X-ray microtomography, and was translated to SIRIS4 FO.

The complex refractive index was obtained with a nonlinear least squares analysis by
minimizing the sum of squared residuals between the measurements and simulations
with varying refractive index values. Finally, confidence regions were constrained for
the results, by estimating the computed residuals between simulations and measure-
ments as the random errors in the nonlinear model.
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1. Introduction

1.1 Study of light scattering

The scattering of light can be described macroscopically using classical electro-
dynamics which describes the behavior of electromagnetic radiation (Born, 1999).
Light scattering is the process of electromagnetic waves encountering an obstruction,
and their propagation path being changed in the process (Mayinger and Feldmann,
2001). The collective interactions of these waves can be described by reflection, re-
fraction, diffraction, and absorption phenomena (Bohren and Huffman, 2008). The
electromagnetic waves are described by their wavelength, and all scattering phenom-
ena are wavelength-dependent.

How a material interacts with incoming light depends on the complex refractive
index of the material. The complex refractive index is given by its real and imaginary
parts. The complex refractive index describes how the oscillations of the charges in
the matter, caused by the incident electromagnetic wave, change the propagation of
the wave itself. (Bohren and Huffman, 2008)

Light scattering from a particle depends on the particle size, shape, and ma-
terial. To infer light scattering from a particle with known properties is a forward
problem. To deduce the particle properties, which define the light scattering, from
scattered light is then an inverse problem. There are no unique solutions to the
inverse problem of light scattering, and the solutions usually rely on solutions to the
forward problem. Experimental and numerical models are needed to understand
light scattering behavior, from which the solutions to the inverse problem can be
found. (Bohren and Huffman, 2008)

In the context of the Solar System, light scattering research is crucial when
studying objects such as the planets, asteroids, and dust; objects which do not
themselves emit light. Light coming from the Sun is scattered by these objects,
and the scattered light can be measured to study the properties of the object. Solar
System objects consist of multiple different materials, are of different shape, and have

1



2 CHAPTER 1. INTRODUCTION

differing surface properties, such as possible regolith on the surface. To model the
light scattering from these objects requires extensive knowledge of light scattering
effects. (Hovenier and Muñoz, 2009)

1.2 Complex refractive index

The size, shape, and material define light scattering from a sample. To constrain
one of these properties, the shape for example, the other properties need to be
well defined. How the material affects light scattering is confined to the complex
refractive index. The knowledge of the complex refractive index of a material is thus
important.

The complex refractive index is not a value that could be measured directly.
The solutions to the inverse problem of defining the complex refractive index from
light scattering are easier for samples with known properties. Analytical solutions
to the problem are available for homogeneous samples with known size and shape.
Even slight deviations from these requirements usually make the analytical solutions
unusable, and numerical methods need to be utilized. (Bohren and Huffman, 2008)
To produce numerical methods to derive the refractive index for differing samples
is an active field of study. Different methods need to be utilized depending on
the sample properties. In the thesis, a numerical method which utilizes laboratory
measurements for deriving the complex refractive index of a mm-sized single-particle
is introduced. The laboratory measurements are done using a 4π scatterometer that
measures the intensity of polarized light scattered from an acoustically levitated
sample as a function of scattering angle.

1.3 Aims of the thesis

The aim of the thesis is to develop a method for deriving the complex refractive
index from an acoustically levitated sample in fixed orientation. Measurements are
done using the 4π scatterometer, which are then compared to light scattering simu-
lations, to deduce the complex refractive index. To first validate the measurements
from the 4π scatterometer, measurements of glass particles in random orientation
are compared to results from geometric optics light scattering simulation. After-
wards, the simulation is modified to produce light scattering results from particles
in fixed orientation. 4π scatterometer measurements from the glass sample are then
compared to the modified light scattering simulations from the same particle. The
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real and imaginary parts of the complex refractive index of the particle are deduced
by iterating the values in simulations and comparing to measurements.

The thesis is divided into 8 chapters. In chapter 2, some background and
motivation to light scattering study is briefly given, with theory on light scattering
and geometric optics. Chapter 3 describes the geometric optics framework SIRIS4,
used for light scattering simulations, and how it was modified to produce the new
SIRIS4 Fixed Orientation code. Chapter 4 describes the working principles and
measurement steps of the 4π scatterometer. Chapter 5 discusses the samples used
in the study, and the process of creating their 3D geometry models. In chapter 6, the
measurements using the 4π scatterometer are described in detail and the pipeline of
deriving the refractive index is explained. Chapter 7 describes the results from the
measurements and simulations, and the derivation of the complex refractive index.
Finally in chapter 8, conclusions are given with some remarks on the future work.



2. Light scattering

Light scattering enables the study of objects remotely. From scattering, the physical
properties, which correspond to the material of the object, together with the size
and shape of an object can be studied. Scattering from an object includes wave
reflection, refraction and diffraction phenomena.

A scattering problem is constructed of two elements; the incident radiation,
and the scatterer (Frezza et al., 2018). To formulate the scattering properties of
an object from the scattered radiation is an inverse problem. The inverse problem
does not have a unique solution and requires assumptions of the scatterer, such as
constant bulk optical properties or a measured shape. The optical properties of a
material are wavelength dependent, and so are the scattering effects.

Three elements are of interest when studying scattered light: the intensity
of the scattered radiation, its polarization, and the directional distribution of the
scattering. To solve scattering problems, boundary conditions need to be estab-
lished. They require the continuity of the tangential components of the electric and
magnetic fields at the surface of the scatterer (Frezza et al., 2018).

2.1 Electromagnetic wave

The electromagnetic wave is formulated using Maxwell’s equations. Maxwell’s equa-
tions can be written in terms of free charges and currents,

∇ · D⃗ = ρf ,

∇ × E⃗ = −∂B⃗

∂t
,

∇ · B⃗ = 0,

∇ × H⃗ = J⃗f + ∂D⃗

∂t
.

(2.1)

D⃗ is the electric field displacement, E⃗ and B⃗ the electric field and magnetic flux
density, and H⃗ the magnetic field. ρf is the free-charge density and J⃗f free-current
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2.1. ELECTROMAGNETIC WAVE 5

density. The equations are supplemented by constitutive relations, which give D⃗
and H⃗ in terms of E⃗ and B⃗

D⃗ = ϵE⃗,

H⃗ = 1
µ
B⃗,

(2.2)

where ϵ = ϵ0(1 + χe) and µ = µ0(1 + χm). In a non-magnetic space where there is
no charge or current (χm = 0, χe = 0, ρf = 0, J⃗f = 0), the Maxwell’s equations can
be written

∇ · E⃗ = 0,

∇ × E⃗ = −∂B⃗

∂t
,

∇ · B⃗ = 0,

∇ × B⃗ = µ0ϵ0
∂E⃗

∂t
.

(2.3)

The equations couple the electric field E⃗ and the magnetic field B⃗. They can be
separated to second-order differential equations in relation to E⃗ and B⃗,

∇2E⃗ − µ0ϵ0
∂2E⃗

∂t2
= 0,

∇2B⃗ − µ0ϵ0
∂2B⃗

∂t2
= 0.

(2.4)

A plane wave solution can be found for the equations of the form,

E⃗ = E⃗0 exp(i⃗kz − iωt),
B⃗ = B⃗0 exp(i⃗kz − iωt).

(2.5)

E⃗0 and B⃗0 are constant complex vectors, ω is an angular frequency, and k⃗ a wave
vector. The electromagnetic field is now presented as a wave equation everywhere in
space, with respect to time. With appropriate boundary conditions on the surface
of the particle studied, and radiation conditions at infinity, unique solutions can be
found for the scattering of light, using the wave equations. (Griffiths, 2017)

2.1.1 Scattering matrix

The electric field in Equation (2.5) can be expressed as the fields parallel ∥ and
perpendicular components ⊥,

E⃗0 = E∥ê∥ + E⊥ê⊥. (2.6)
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E∥ and E⊥ are determined by the amplitude a and phase δ of the wave,

E∥ = a∥e
−iδ∥ ,

E⊥ = a⊥e
−iδ⊥ .

(2.7)

Scattering from an arbitrary particle is defined by the incident field E⃗i and the
scattered field E⃗s. The scattering event can be described with a scattering plane
pictured in Figure 2.1, and the angles associated with it. The incident field, coming
from the xy plane, is defined as in Equation (2.5) and (2.6),

E⃗i = (E0∥ê∥i + E0⊥ê⊥i) exp(i⃗kz − iωt) = E∥iê∥i + E⊥iê⊥i. (2.8)

The scattered field is then,

E⃗s = E∥sê∥s + E⊥sê⊥s. (2.9)

Far away from the particle, the scattered field has the form of a transverse spherical

Figure 2.1: The scattering plane and the angles resulting from its geometry are defined by the
incident beam and the x⃗ vector. The incident beam is orthogonal to the xy plane and vector x⃗

gives the direction of the observer. (Bohren and Huffman, 2008).

wave,

E⃗s = exp(ikr)
−ikr

A⃗, êr · A = 0. (2.10)
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A relation is now found between the incident and the scattered field. It can be
written in matrix form,E∥s

E⊥s

 = exp[ik(r − z)]
−ikr

S2 S3

S4 S1

 E∥i

E⊥i

 . (2.11)

The 2 × 2 matrix is called the amplitude scattering matrix. Its components depend
on the scattering angle θ and azimuthal angle ϕ. The scattering equation (2.11)
describes a scattered wave with respect to the incident field and the scatterer prop-
erties, which are included in the amplitude scattering matrix. (Bohren and Huffman,
2008)

2.2 Polarization of light

Polarization describes the geometric orientation of oscillations in a wave. For light,
polarization is usually used to describe the oscillation of the electric field component.
Light is called unpolarized if the direction of the electric field fluctuates randomly in
time. Scattering events change the polarization of light. The change in polarization
is credited to the properties of the scatterer. The scatterer can be thus studied using
polarized light. (Hansen and Travis, 1974)

Polarization can be presented as the amplitudes of the perpendicular and par-
allel components of an electromagnetic wave. Time-averaged polarization properties
of a wave can be represented using Stokes parameters, which can be formulated using
the parallel and perpendicular components of a wave,

I = ⟨E∥E
∗
∥ + E⊥E

∗
⊥⟩,

Q = ⟨E∥E
∗
∥ − E⊥E

∗
⊥⟩,

U = ⟨E∥E
∗
⊥ + E⊥E

∗
∥⟩,

V = ⟨i(E∥E
∗
⊥ − E⊥E

∗
∥)⟩.

(2.12)

The Stokes parameters S⃗ = (I,Q, U, V ) describe intensities of polarized light, if it
would be measured through a polarizer. The components are time averages of the
wave components, which means that the Stokes parameters can be used to represent
unpolarized or arbitrarily polarized light. I gives the total intensity of both parallel
and perpendicular polarizations, Q gives the intensity difference between parallel and
perpendicular polarizations, U the difference between +45° and −45° polarizations,
and V describes circular polarization by giving the difference between right-handed
and left-handed circular polarizations. Visual presentation of the Stokes parameters
is given in Figure 2.2. (Hansen and Travis, 1974)
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Figure 2.2: The Stokes parameters presented visually, in reference to the propagation plane. The
sign of the parameters gives the orientation of the oscillation. The intensity parameter I gives the
amplitude of the oscillation, and is not related to the geometry. The circular polarization in V is
caused by the two oscillating components traveling in different phases, and the head of the wave
drawing a circular pattern as it travels. (Väisänen, 2020)

2.2.1 Mueller matrix

The change of Stokes parameters, as the light encounters a particle, can be expressed
from the amplitude scattering matrix in Equation (2.11) using a 4 × 4 matrix called
the Mueller matrix,


Is

Qs

Us

Vs

 = 1
k2r2


S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44




Ii

Qi

Ui

Vi

 . (2.13)

A Mueller matrix describes the change of Stokes parameters in an event that changes
polarization. Such an event can be the light transmitting through a polarizer, or
light scattering from a particle, as pictured in Figure 2.3. In scattering by a particle,
the Sij matrix is commonly known as the scattering matrix. Its elements are given
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with the elements of the amplitude scattering matrix, (Bohren and Huffman, 2008)

S11 = 1
2(|S1|2 + |S2|2 + |S3|2 + |S4|2),

S12 = 1
2(|S2|2 − |S1|2 + |S4|2 − |S3|2),

S13 = Re(S2S
∗
3 + S1S

∗
4),

S14 = Im(S2S
∗
3 − S1S

∗
4),

S21 = 1
2(|S2|2 − |S1|2 − |S4|2 + |S3|2),

S22 = 1
2(|S2|2 + |S1|2 − |S4|2 − |S3|2),

S23 = Re(S2S
∗
3 − S1S

∗
4),

S24 = Im(S2S
∗
3 + S1S

∗
4),

S31 = Re(S2S
∗
4 + S1S

∗
3),

S32 = Re(S2S
∗
4 − S1S

∗
3),

S33 = Re(S1S
∗
2 + S3S

∗
4),

S34 = Im(S2S
∗
1 + S4S

∗
3),

S41 = Im(S∗
2S4 + S∗

3S1),
S42 = Im(S∗

2S4 − S∗
3S1),

S43 = Im(S1S
∗
2 − S3S

∗
4),

S44 = Re(S1S
∗
2 + S3S

∗
4).

(2.14)

With the scattering matrix, the Stokes parameters of light can be formulated if the
amplitude scattering matrix elements can be derived. Vice versa the scattering ma-
trix elements for the scattering particle can be derived by measuring the intensity of
differently polarized scattered light. The scattering matrix elements are representa-
tive of the material and shape of the particle. The scattering particle can thus be
studied by measuring polarization of the scattered field. The amount of independent
scattering matrix elements may be reduced due to the scatterer symmetries, or if the
scatterer is a collection of randomly orientated particles (Kemppinen et al., 2015).

A general form for the Mueller matrix M describes any polarizing event,

S⃗1 = MS⃗0. (2.15)

The Mueller matrix describes the change in polarization, as arbitrarily polarized
light interacts with a polarizing component. These components can be for example
polarizing filters. If multiple polarizers would be in line with the incident light, the
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Figure 2.3: Unpolarized light incident on a dust particle changes polarization in the scattering
process. The change in polarization varies based on the viewing angle. (Persson, 2013)

effect of all of the components could easily be presented as multiplication of their
Mueller matrixes (Hunt and Huffman, 1973).

Polarizers manipulate light, creating a beam with a well-defined polarization.
Polarizers are also used when measuring polarization, as specific polarizations can
be filtered out, and the resulting intensity measured. The polarizers can simply be
presented using a Mueller matrix for the component. For example, an ideal linear
polarizer transmits only the electric field components parallel to an axis the wave
passes through the polarizer, called the transmission axis. For such a wave, the
incident and transmitted components are related through,

E∥t

E⊥t

 =
 cos2 ξ sin ξ cos ξ

sin ξ cos ξ sin2 ξ

 E∥i

E⊥i

 , (2.16)

where ξ is the angle between ê∥ and the transmission axis. The resulting Mueller
matrix of the linear polarizer is,

1
2


1 cos 2ξ sin 2ξ 0

cos 2ξ cos2 2ξ cos 2ξ sin 2ξ 0
sin 2ξ sin 2ξ cos 2ξ sin2 2ξ 0

0 0 0 0

 . (2.17)

If the transmission axis is orthogonal to the linear polarizer (ξ = 0°), the Mueller
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matrix simplifies to,

1
2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 . (2.18)

Using the knowledge that the total effect of multiple polarizing components can be
found by multiplying their Mueller matrixes, a circular polarizer can be constructed
using a linear polarizer and a quarter-wave plate. A quarter-wave plate introduces
a phase shift between the parallel and perpendicular components of a wave. The
Mueller matrix for a quarter-wave plate, orthogonal to the transmission axis, is given
as, 

1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 0

 . (2.19)

The Mueller matrix for a system containing both of the components is obtained
using matrix multiplication

1
2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0




1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 0

 = 1
2


1 1 0 0
0 0 0 0
0 0 0 0
1 1 0 0

 . (2.20)

The resulting matrix right-circularly polarizes the light, and from the two different
polarizers a circular polarizer is constructed. (Bohren and Huffman, 2008)

2.2.2 Vibration ellipse

Polarization can also be presented using a so-called vibration ellipse, scetched in
Figure 2.4. As can be seen from Equation (2.5) and (2.6), the propagating electric
field traces out an ellipse with the components E∥ and E⊥. The resulting ellipse can
be expressed with its semi-major axis a, semi-minor axis b, and azimuth angle γ. The
ellipticity is then given as b/a. Using the vibration ellipse, the Stokes parameters
can be written as,

I = c2,

Q = c2 cos 2η cos 2γ,
U = c2 cos 2η sin 2γ,
V = c2 sin 2η,

(2.21)
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Figure 2.4: Vibration ellipse with semi-major axis a, semi-minor axis b and azimuth angle γ,
which gives the angle between the semi-major axis and an arbitrary reference direction (Bohren
and Huffman, 2008).

where c2 = a2 + b2 and | tan η| = b/a. The Mueller matrix can then be used
to describe the change of form of the vibration ellipse as the polarization of light
changes. (Bohren and Huffman, 2008)

2.3 Complex refractive index

One of the optical properties that fundamentally defines the scattering of light
from a particle is the complex refractive index. The refractive index is a complex,
wavelength-dependent constant, which describes the refraction and attenuation of
light in material. The refractive index is a property of the material, and not depen-
dent on the size and shape of a particle. To know the refractive index of a material
is crucial in simulating and understanding a scattering event, for example, to model
the scattering of a Solar System body, atmosphere or ocean, as well as biological
systems. The refractive index is an important constant in many fields, spanning
physics, chemistry, biology, and mineralogy (Bohren and Huffman, 2008).

Maxwell’s equations in Equation (2.3) can be written using a plane wave so-
lution for a complex wave vector k⃗,

k⃗ · E⃗ = 0,
k⃗ × E⃗ = ωµB⃗,

k⃗ · B⃗ = 0,
k⃗ × B⃗ = −ωεE⃗.

(2.22)
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Using the plane wave formalism, the wavenumber k =
∣∣∣⃗k∣∣∣ can be defined as

k = ω
√
εµ = ωm

c
, (2.23)

wherem is now the complex refractive index defined as permeability and permittivity
of the medium, in respect to vacuum, (Griffiths, 2017)

m =
√

ϵµ

ϵ0µ0
. (2.24)

The refractive index is defined by its real part n and imaginary part κ:

m = n+ iκ. (2.25)

The real part describes the angle of refraction at the boundary of two medium. The
imaginary part is commonly called the attenuation coefficient, and it describes the
attenuation of light in a medium.

The determination of the refractive index is especially difficult for materials
with either very low or high absorption (Bohren and Huffman, 2008). The refractive
index in itself is not directly measurable, and needs to be resolved from the inverse
scattering problems. Analytical or numerical models need to be compared to scat-
tering measurements. Samples for which the simpler methods of determining the
refractive index are valid are homogeneous materials with known size and shape.
These kinds of samples include single crystals, slabs of amorphous solids, such as
glass, and liquid filled cuvettes (Bohren and Huffman, 2008). Samples returned from
space are often found in single particles, and for the valuable specimens the alter-
ation of the sample is not ideal. Unique samples usually require complex models
and multiple measurements to deduce the refractive index.

2.3.1 Analytical solutions

To measure the complex refractive index, both the real and imaginary parts need to
be solved. This usually requires two different measurements to deduce the two quan-
tities. Analytical solutions to the inverse problem are found by interposing suitable
theories to measurements of reflectance, transmittance, and angles of refraction. For
materials of high opacity, the real part is measurable from the refraction angle of
light using Snel’s law. Intensity measurements can be utilized by measuring the re-
flection and transmission of an homogeneous slab at near-normal incidence. These
measurements require a sample opaque enough that transmission measurements are
feasible. Reflectance measurements at near-normal incidence can also be done over
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a wide wavelength range. Kramers-Kronig analysis can then be utilized to obtain
the phase shift of the measured light and deduce the refractive index. Again this
method requires an opaque sample, and the measurements need to be extrapolated
to apply the Kramers-Kronig analysis. Ellipsometric techniques directly measure
the amplitude ratio and phase shift of the reflected light, eliminating the need for
Kramers-Kronig analysis and extrapolation. These measurements still require thin
opaque slabs and multiple optical elements, making the measurements over a large
wavelength range laborious. Measurements using polarized light enable the use of
Fresnel formulas. Reflectance can be measured at different polarization states and
different incident angles to deduce the refractive index. (Bohren and Huffman, 2008)

2.3.2 Powder samples

The refractive index for particulate samples can be derived from measurements of
single particles in the powder, or for the collection of particles. Multiple scattering
models can be utilized for a powder if its packing density and the approximate shape
and size of the particles are known. For example in Martikainen et al. (2018) the
imaginary part of the refractive index was inferred by modeling measured reflectance
spectra using ray-tracing codes. Other option is to try to press the loose powder
into solid pellets, for which reflection measurements can be utilized. The surface
of such pellet can also be polished to make the measurements more exact. The
refractive indices derived from the crushed pellets are approximations. The creation
of pellets mixes possible orientations of particles in the original material, and overall
has a lower reflectance than for example a single crystal would (Long et al., 1993).
Both the real and imaginary parts can be inferred from bidirectional reflectance
measurements by utilizing for example the Hapke model (Hapke, 2012). Through
the Hapke model, the reflectance measurements of powders are related to the single
scattering albedo, and the single scattering albedo to the refractive index, if the
grain size of the powder is known (Lucey, 1998).

2.3.3 Single particles

Single particles can be studied by comparing scattering measurements to scattering
models. In these methods the measured scattering is compared to numerical models
of the scattering process, and the refractive index deduced from them. Examples of
scattering models used for single particles include the Mie model, which is defined
for spherical particles, and the geometric optics approximation, which is used in this
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study. (Bohren and Huffman, 2008)

2.3.4 Absorption measurements

The imaginary part of the refractive index describes the attenuation of light in
a medium, and can thus be derived from measurements of absorption. This is
common practice for example in atmospheric models. Indirect methods to derive the
absorption of a sample include diffuse reflection, photoacoustic effect and integrating
plates. (Bohren and Huffman, 2008)

2.3.5 Mixture of materials

For a mixture of materials, such as minerals found on Solar System bodies, the def-
inition of refractive index is not unambiguous. For example, the refractive index of
an asteroid, or for a mixture of minerals found on the Moon, is calculable, but infer-
ring the refractive index of a single component is complicated. The refractive indices
in a mixture are not additive. The refractive index derived using one method, for
example by absorption, from a mixture might not be directly applicable to describe
reflectance measurements (Bohren and Huffman, 2008).

2.4 Geometric optics

Geometric optics describes light propagation and scattering when the incident plane
wave is subdivided into rays. When the local curvature radii are much larger than
the wavelength, the incident light can be approximated so that it does not travel
as a wave, and can be treated as a ray. (Molesini, 2005) As a result of the ray
approximation, geometric optics is valid for particles much larger than the wave-
length. Ray tracing is useful when the path of rays traveling inside the particle is of
interest. (Winston, 2005) The reflections inside the particle boosts some scattering
directions over the others. This causes the scattering phase function to have a dis-
tinct shape when the particle is illuminated from a certain direction. Rainbow and
halo phenomena are well modeled using geometric optics.

Traditional geometric optics is an approximation which assumes homogeneous
plane waves and absorption in the direction of propagation. The propagation of rays
at boundaries is governed by Snel’s law and Fresnel equations (Bohren and Huffman,
2008). The rays are split in two at boundaries, with one part being reflected and
another transmitted. Example of an incident ray reflecting and refracting in the
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Figure 2.5: Incident ray is split into the reflected and transmitted parts, at a boundary. The
angle of refraction is given by Snel’s law, and the amplitude of the reflected and refracted rays by
the Fresnel equation. (Bohren and Huffman, 2008)

geometric optics approximation on a spherical particle is given in Figure 2.5. Fresnel
equations govern the amount of light being reflected and transmitted at a boundary.
They are given as amplitude ratios compared to the incident light for the reflected
(r) and transmitted (t) light and for parallel and perpendicular polarizations,

r⊥ = n1 cos θi − n2 cos θt

n1 cos θi + n2 cos θt

,

t⊥ = 2n1 cos θi

n1 cos θi + n2 cos θt

,

r∥ = n2 cos θi − n1 cos θt

n2 cos θi + n1 cos θt

,

t∥ = 2n1 cos θi

n2 cos θi + n1 cos θt

.

(2.26)

In the above equations, θi is the angle of incidence, θt the angle of refraction, n1

the real part of the refractive index of the surrounding medium, and n2 that of the
particle. The angles at which the rays are refracted θt and reflected θr can be found
using Snel’s law and the law of reflection (Born, 1999)

sin θi

sin θt

= n2

n1
,

θr = θi.

(2.27)

The rays can also be absorbed. Absorption is considered along the ray path
inside and outside the particle. Absorption can be approximated from Beer-Lambert
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law, where the intensity I of the light attenuates in distance r exponentially accord-
ing to an absorption coefficient α,

I = I0e
−αr. (2.28)

The absorption coefficient is defined by the wavelength of the light λ and the imag-
inary part of the refractive index of the medium κ, (Fox, 2010)

α = 4πκ
λ
. (2.29)

Cross sections describe the scattered power in relation to the incident field
(Frezza et al., 2018). The absorption cross section σabs and scattering cross section
σsca can be derived for the particle in the geometric optics approximation. The
cross sections describe the total absorbed and scattered power. The total energy
absorbed Wabs by the particle can be calculated from the energy deposited by the
internal rays arising from an incident ray, and then integrating over all incident rays.
The fraction of total energy absorbed divided with the total energy of the incident
rays gives the absorption cross section,

σabs = Wabs

Ii

. (2.30)

For weakly absorbing particles, the absorption cross section is roughly proportional
to the volume of the particle. As the opacity and size of the particles increases,
large part of the absorption takes place near the surface of the particle, and the
absorption cross section becomes proportional to the area of the particle instead.
(Bohren and Huffman, 2008)

The total energy scattered is the sum of the reflected and transmitted energies
Wsca = Wrefl +Wtr, and the scattering cross section is,

σsca = Wsca

Ii

. (2.31)

The extinction cross section is the sum of scattering and absorption cross sections,
(Bohren and Huffman, 2008)

σext = σsca + σabs. (2.32)

The ratio of absorption and scattering can be characterized by the single-scattering
albedo ϖ,

ϖ = σsca

σext
. (2.33)

The cross sections characterize a scatterer and enable the comparison of scattering
behaviors of different scatterers (Frezza et al., 2018).
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2.4.1 Inhomogeneous waves

In an absorbing media the plane waves need to treated as inhomogeneous. For
inhomogeneous waves, the plane wave in Equation (2.5) takes on a form,

E⃗ = E⃗0 exp(i⃗kz − iωt) = E⃗0 exp(−k0Kf̂ · r⃗) exp(ik0Nê · r⃗ − iωt), (2.34)

where k⃗ is given as the complex wave vector k⃗ = k0(Nê + iKf̂), N and K are the
apparent refractive index components, ê and f̂ the directions of the propagating
wave, and k0 = ω/c. The above traditional geometric optics approximation is based
on the assumption that the imaginary part is small Kf̂ ≈ 0, and ê and f̂ are parallel.
Snel’s law can be given for inhomogeneous waves as functions of the angles θ and
ψ, which are the angles of ê and f̂ in respect to the normal of the surface,

N1 sin θi = N2 sin θt, K1 sinψi = K2 sinψt. (2.35)

Using the same formalism, the Fresnel equations can be given as,

r⊥ = ki − kt

ki + kt

,

t⊥ = 2ki

ki + kt

,

r∥ = m2
2ki −m2

1kt

m2
2ki +m2

1kt

,

t∥ = 2m1m2ki

m2
2ki +m2

1kt

,

(2.36)

where m1 and m2 are the complex refractive index of the two media, and ki =
(N1 cos θi+iK1 cosψi) and kt = (N2 cos θt+iK2 cosψt). (Chang et al., 2005) The rays
also exponentially attenuate along the ray path l. In the direction of propagation ê,
the wave is attenuated by,

exp(−Kl cosα), (2.37)

where α is the angle between the vectors ê and f̂ (cosα = ê · f̂). (Lindqvist et al.,
2018)

Polarization can be taken into account in the geometric optics approximation.
A Stokes vector can be given for every ray, and its values changed according to
a Mueller matrix at every reflection and refraction process. The scattered Stokes
vector in geometric optics approximation is given as,

S⃗s = σsca

4π2 PS⃗i, (2.38)
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where now P is normalized according to its element P11, also called the scattering
phase function, ∫

4π
P11dΩ = 4π. (2.39)

Geometric optics can be extended with a model for diffraction, and how the rays
interfere with one another. The diffraction has to be taken into account in the
scattering cross section, and is now the sum of the geometric optics cross section
combined with the cross section from forward diffraction,

σsca = σG
sca + σD

sca. (2.40)

Diffraction also affects the scattering matrix. The final scattering matrix is the sum
of the geometric optics scattering matrix PG in Equation (2.38) and a scattering
matrix derived from a diffraction model PD, (Lindqvist et al., 2018)

P = 1
σsca

(σG
scaPG + σD

scaPD). (2.41)



3. Geometric optics framework
SIRIS4

SIRIS4 geometric optics with diffuse scatterers framework is a collection of three
adaptions of ray-tracing codes and a Gaussian-random-sphere particle generator.
The ray-tracing codes calculate ray-optics with diffuse scatterers. The computa-
tions can be done for generated Gaussian-random-sphere particles, or for a given
3D model. In both of the cases the surface of the model is presented as a triangu-
lated 3D mesh. The three different variations of the code are for single particles,
single two-layer particles, and multiple particles. The single-particle code is used
for homogeneous particles. The two-layer code creates a core-mantle structure for
the particle. The multiple-particle code can handle models with multiple different
3D meshes separated from each other, basically a collection of particles. The single-
particle implementation was used in the study. The basic principles of the SIRIS4
single-particle code are detailed in this chapter, and the extensive description of
the framework can be found in Muinonen et al. (2009); Lindqvist et al. (2018);
Martikainen et al. (2018); Väisänen et al. (2020).

3.1 SIRIS4 light scattering code

SIRIS4 deals with inhomogeneous waves in absorbing media. It produces scattering
matrix and efficiencies for a particle or, in the case of Gaussian-random-sphere
particles, averages for a sample of particles. Instead of updating the Stokes vector
of a light ray, a Mueller matrix is related to every ray and its values updated. A
ray then holds the information of the combined effect of light scattering processes
in the particle, and not the polarization state of the light. At a boundary, the
ray is refracted and reflected according to Snel’s law and Fresnel’s reflection and
refraction coefficients. In the radiative transfer part, extinction mean free path
length describes the propagation in the medium, and the scattering is described by

20
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the single-scattering albedo and the scattering phase matrix. For the diffraction
part, the forward diffraction is calculated using the Kirchhoff approximation.

3.1.1 Ray tracing

A Mueller matrix, as described in Section 2.2.1, is related to a ray. The Mueller
matrix handles the polarization in the process. A normalized scattering phase matrix
relates the incident to the scattered ray. The ray-optics approximation is defined
so that the extinction and absorption cross sections are defined by the ensemble-
averaged cross-sectional area of the scattering particle ⟨A⟩,

σD
sca = ⟨A⟩,

σext = 2⟨A⟩.
(3.1)

The calculated absorption cross section comes from the ray tracing. The single
scattering albedo ϖ and asymmetry parameter g, defined by ray tracing are

ϖ = σRT
sca

⟨A⟩
,

g =
∫

4π

dΩ
4π cos θP11,

(3.2)

where θ is the scattering angle. The same way as in Equation (2.40), the asymmetry
parameter is the sum of the geometric optics gG and the forward diffraction gD parts.
(Muinonen et al., 2009)

The geometric optics part of the phase matrix comes from the traced rays that
have gone through a number of reflection and refraction processes and escaped from
the particle to an imaginary detector. The final geometric optics part of the phase
matrix and the cross sections are ensemble-averaged over a parameter {Q}, which
describes the physical properties of the particle,

σRT
sca = ⟨σRT

sca ({Q})⟩,
σRT

abs = ⟨σRT
abs({Q})⟩,

PRT = 1
σRT

sca
⟨σRT

sca ({Q})PRT ({Q})⟩.
(3.3)

In the forward diffraction part, the phase matrix is described by the silhouette of
the particle, given in parameter r(ϕ′),

PD ∝ k

4π⟨A⟩
⟨|u(θ, ϕ)2|⟩(1 + cos θ)21,

u(θ, ϕ) =
∫ 2π

0
dϕ′

∫ r(ϕ′)

0
dr′r′ exp[−ikr′ sin θ cos(ϕ− ϕ′)],

(3.4)
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where 1 is 4 × 4 unit matrix. The diffraction part of the phase matrix is also
normalized as in Equation (2.39). (Muinonen et al., 2009)

3.1.2 Surface reflection and refraction

At the boundary of medium and particle, the reflection and refraction is depicted by
Snel’s law (2.35) and Fresnel’s coefficients (2.36). The Mueller matrices of reflected
(MR) and refracted (MT ) rays are given by the Mueller matrices of reflection R and
refraction T,

MR = R · K · Minc,

MT = T · K · Minc,
(3.5)

where K is a rotation matrix, giving the rotation from the ray to the plane of
incidence. The rays also exponentially attenuate according to Equation (2.37).
(Muinonen et al., 1996)

3.1.3 Diffuse scattering

Inside the particle, SIRIS4 calculates diffuse and specular interactions from internal
diffuse scatterers. Inside the particle the diffuse scattering is given by the single-
scattering albedo ϖ0, extinction mean free path length l0, and a scattering phase
matrix P0. This internal medium consists of diffuse scatterers embedded in a homo-
geneous and isotropic medium described by the refractive index m. The scattering
phase matrix of the inhomogenities can be defined by the user, or an empirical dou-
ble Henyey-Greenstein (2HG) matrix can be generated from the Rayleigh scattering
phase matrix. The 2HG matrix is defined with four parameters: the asymmetry
parameter g0, the forward and backward symmetries g1 and g2, and the maximum
polarization parameter P0. The scattering matrix, using the 2HG single-scattering
phase function P2HG, is of the form

P0 = P2HG(θ)
1
2(1 + cos2 θ)


1
2(1 + cos2 θ) −1

2P0 sin2 θ 0 0
−1

2P0 sin2 θ 1
2(1 + cos2 θ) 0 0

0 0 cos θ 0
0 0 0 cos θ

 ,

P2HG(θ) = w0
1 − g2

1
(1 + g2

1 − 2g2
1 cos θ)3/2 + (1 − w0)

1 − g2
2

(1 + g2
2 − 2g2

2 cos θ)3/2 ,

g0 = w0g1 + (1 − w0)g2,

(3.6)
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where w0 is the normalized weight of the first Henye-Greenstein function obtained
from the symmetries w0 = g0−g2

g1−g2
. At each scattering event, the new scattering angle

θ is generated from the P11 element. (Muinonen et al., 2009)

3.2 Gaussian-random-sphere particles

A Gaussian-random-sphere particle is analogous to an infinite ensemble of particles
drawn from a probability density function for the Gaussian random sphere. In
practice an ensemble of particles can be represented using a Gaussian particle, if the
underlying distribution for the ensemble is known. A Gaussian sphere is described
in spherical coordinates (ϑ, φ) by the spherical-harmonics series for the logarithmic
radial distance s:

r(ϑ, φ)er = a exp[s(ϑ, φ)]√
1 + σ2

er,

s(ϑ, φ) =
∞∑

l=0

l∑
m=−l

slmYlm(ϑ, φ),
(3.7)

where a is the mean and σ the relative standard deviation of radial distance, slm the
Gaussian random variables, and Ylm orthonormal spherical harmonics. The auto-
covariance of two random variables s(ϑ1, φ1) and s(ϑ2, φ2), an angular distance γ
apart, is described with Σs and is defined with a series of Legendre polynomials Pl

and coefficient Cl:

Σs(γ) =
∞∑

l=0
ClPl(cos γ),

∞∑
l=0

Cl = ln(1 + σ2).
(3.8)

The Gaussian random sphere is now defined with a, σ and Cl. The coefficient Cl

can further be parameterized (correlation lengths l < 2 do not correspond to real
angles)

C0 = C1 = 0,

Cl = C̃

lν
,

C̃ = ln(1 + σ2)(
∞∑

l=0

1
lν

)−1.

(3.9)

The variable C̃ is a normalization constant, which is parameterized by the standard
deviation σ and a power-law index υ. The Gaussian sphere can be described using
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the two parameters; standard deviation σ and power-law index ν. (Muinonen et al.,
1996, 2009)

3.3 SIRIS4 Fixed Orientation

In their original state, the SIRIS4 ray-tracing codes calculate scattering from an
object in random orientation, as a function of one of the spherical coordinates θ
while averaging the scattering over the ϕ angle. The particle is also rotated to
a random orientation every time a new ray is generated. This is beneficial when
an average from an ensemble of particles is of interest, for example, in the case of
aerosols. In its core, the ray-tracing method traces the ray path using both of the
spherical angles. As the orientation averaging is removed, a simulation is produced
from the scattering of light from a particle to the full solid angle.

Each ray that escapes from the particle needs to be gathered to an imaginary
detector, which is defined with solid angles of constant intervals. This is already
implemented in the original SIRIS4 as scattering angle bins corresponding to the θ
angle. When averaging over the whole ϕ angle, the area of the bin which contribute
to the chance of rays hitting it, is defined only by the θ angle. The bins are finally
normalized to exclude the effect of the bin size from the Monte Carlo simulation. In
the modified version of SIRIS4, capable of handling fixed orientation, the ϕ-angle
step size has to be taken into account in the size of the bin and in the final nor-
malization of the results. This modified version is called SIRIS4 Fixed Orientation
(SIRIS4 FO).

The random orientation was changed to handle a user-defined orientation of
the particle. The original orientation of the particle is given in the 3D model of the
sample. SIRIS4 FO also has an orientation control that can rotate the particle using
the Euler angles (α, β, γ), which give the orientation of a body with respect to a
fixed coordinate system.

The amount of rays needed with the SIRIS4 FO to obtain the same accuracy
as with the random orientation is the amount of ϕ bins times the amount of rays
with the original SIRIS4 single-particle. This directly correlates to the run time of
the code, meaning that even with only 10 ϕ-bins being 36° apart, the run time is
10 times larger. To obtain accurate simulations of the small surface texture of the
sample requires hundreds of times more rays to that of the random orientation.

To validate the newly modified code, scattering measurements from orien-
tationally controlled glass samples were compared to the simulation results. The
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detailed description of validation measurements is given in Section 6.3.



4. 4π scatterometer

One of the first scatterometers was built by Hunt and Huffman (1973). The main
goal of a scatterometer is to measure the scattering matrix elements as a function
of scattering angle. The scattering matrix was earlier measured successfully using
intensity measurements from a scatterer with multiple different polarizing and wave-
length filters mounted after the light source and before the receiver (Holland and
Gagne, 1970). The innovation by Hunt and Huffman (1973) was the use of polariza-
tion modulators to achieve different polarization states. The use of the modulators
eliminated inaccuracies in earlier measurements. They measured small polystyrene
latex spheres dispersed in water in a cylindrical container, which produce Rayleigh-
type scattering in optical wavelengths. As a light source the scatterometer used a
high-pressure Hg lamp and could measure angles between 5◦ and 168°. The results
were compared against results from Mie theory.

Based on the scatterometer by Hunt and Huffman (1973), a new model was
built by Kuik et al. (1991). This scatterometer was built to measure the scattering
matrix of an ensemble of small particles. As a light source it used a He-Ne laser,
which produced linearly polarized light with 632.8 nm wavelength. The measure-
ment angle ranged from 5° to 175°. The main differences compared to the earlier
scatterometer was the use of a jet of particles instead of a container, which can
produce unwanted polarizing effects. The new scatterometer was also able to de-
rive all the scattering matrix elements during one measurement sweep. The Kuik
et al. (1991) scatterometer also used three detectors evenly mounted on the rotating
pedestal. The use of multiple detectors reduces the measurement time. Shorter
measurement time improves the accuracy of the measurements by reducing varia-
tions in the sample, such as the stability of the jet. Using the setup, they measured
irregularly shaped quartz (SiO2) particles. The validity of the measurements was
analyzed by comparing to Mie theory.

A scatterometer, similar to those by Hunt and Huffman (1973) and Kuik et al.
(1991), was built to directly measure the scattering matrix of different aerosol sam-
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ples (Volten et al., 2001). The scatterometer has a measurement angle from 5° to
173°, and uses a jet stream of particles produced by an aerosol generator. Two inter-
changeable lasers were used as a light source; He-Ne (632.8 nm) and He-Cd (441.6
nm). To validate the setup, they measured 7 different aerosol samples; feldspar,
red clay, quartz, loess, two kinds of volcanic ash, and Sahara sand. The measured
aerosols had different sizes ranging from 0.1 µm to 100 µm. The measurements were
compared to a ray-optics approximation by Muinonen et al. (1996), which is able to
model complex aerosol shapes by modeling the particles as Gaussian spheres. This
code was a precursor to SIRIS4.

The scatterometer by Volten et al. (2001) was further improved by Muñoz
et al. (2010). They used a similar setup, but with the measurement angles extended
to 3◦–177◦. The improved setup uses a tunable argon-krypton laser that emits
wavelengths of 483, 488, 520, 568, and 647 nm.

This is not an exhaustive list of all scatterometers in the world, but a preview
of previous work. Our scatterometer setup, called the 4π scatterometer, is a contin-
uation of this developement process, and is similiar to the system by Muñoz et al.
(2010). Before the 4π scatterometer, there was no system to measure the scatter-
ing matrix of a fixed particle of µm to mm size. Our scatterometer is built with
controlled orientation in mind, and its main characteristic is the ultrasonic levitator
sample holder, with which total control of the sample is achieved. (Recently, a scat-
terometer using ultrasonic levitation to measure liquid droplets has been built by
Onofri et al. (2015).) The light source in our setup uses white light source, which is
filtered to needed wavelengths. The process of building the 4π scatterometer and its
earlier versions are detailed in Maconi et al. (2017); Penttilä et al. (2017); Maconi
et al. (2018); Kassamakov et al. (2018); Muinonen et al. (2019); Maconi et al. (2020).
The 4π scatterometer in its current state is extensively described in the following
chapter.

4.1 4π scatterometer setup

The 4π scatterometer is composed of components in five groups: light source, sample
holder, detector, light source intensity monitor, and imaging system. The above,
except for the light source, are controlled using a computer interface which eliminates
the need to interfere with the sample or instruments during the measurement. The
components are in three closed compartments, which aim to minimize the amount
of stray light from different parts of the system. The compartments, as well as
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all feasible parts of the instruments, are coated in black, highly absorbing material
preventing reflections. The chambers are isolated from the rest of the room with
two overlapping, openable black curtains. The humidity and temperature inside the
measurement chamber is constantly monitored, although the practically insulated
setup keeps the setting rather constant. The first chamber, containing the optics
used to create the light beam, is shown in Figure 4.1, and the second measuring
chamber in Figure 4.2.

4.1.1 Light source

The light source and its cooling system are situated outside the chambers to exclude
the heat caused by the light source and the turbulence from the fan of the cooling
system. The light source is Energetiq EQ-99 Laser Driven Light Source, which
produces light covering a broad wavelength range (200–2400 nm). The light is guided
into the first chamber through an optical fiber, and the light beam is constructed. In
this setup, the light source can be easily replaced without re-aligning the beam. In
the first chamber the light is collimated by Thorlabs RC08FC-P01 mirror collimator,
after which it passes replaceable Thorlabs laser line filters. The filter has a black
square material around it, which prevents extra scattering from subsequent optics.
The collimated and filtered light goes to a planoconvex spherical lens (f = 750 mm),
which focuses the beam. The beam is finally polarized by a motorized birefringent
calcite polarizer (Newport 10GL08), before it enters the second chamber where the
sample is located.

4.1.2 Sample holder

What makes the 4π scatterometer unique is the sample holder which uses acoustic
levitation to levitate the sample mid-air. The sample holder comprises two �=15 cm
half spheres, each coated with 222 �=10 mm ultrasonic transducers with a central
frequency of 40 kHz and a bandwidth of 1 kHz. The transducers on each hemisphere
are further divided into 12 different sections, giving a total of 24 different sections,
each comprising multiple transducers. The sections can be controlled individually,
which enables complete orientation control of the sample by adjusting the shape of
the acoustic field inside the holder. Temperature measurement inside the chamber
is crucial for the stability of the levitated sample, as temperature fluctuations affect
the shape of the acoustic trap.

The acoustic levitator creates standing waves inside the hemispheres, which
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Figure 4.1: The optical setup used for constructing the beam: 1. Collimator 2. Wavelength filter
3. Focusing lens 4. Aperture 5. Polarizer 6. Beam splitter and light source intensity monitor.

Figure 4.2: The measurement chamber setup: 1. Imaging system camera 2. Microscope objective
of the camera 3. Levitator 4. Detector 5. Rotational stage 6. Pinhole to the third chamber.
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are adjusted to form an asymmetric potential well where the sample is trapped
in place with the largest physical dimension of the sample aligning itself with the
axis of the lowest gradient in the potential. The sample orientation can then be
controlled by adjusting the trap shape. This enables full control of the samples’
rotation around any of its axis (pitch, roll, and yaw). The ultrasonic levitation
provides nondestructive measurements and preserves the measured sample in its
original state. In a similar measurement setup, the levitator could be switched to
a classical sample holder where the object would lay on a pedestal, or for example
be glued to a holder. These methods are not feasible for valuable samples, such as
those returned from Solar System objects.

4.1.3 Detector

The sensor used in the detector is a Hamamatsu microPMT H12403-01 photomul-
tiplier tube module, connected to a Thorlabs TIA60 amplifier. The sensor is placed
in a measurement container with a Thorlabs LPVISE100-A motorized film polarizer
and a motorized aperture. The measurement container lies on a �=60 cm circular
board, controlled by a Standa 8MRB240-152–59D motorized rotational stage with a
resolution of 15’. The detector rotates around the sample, from 0° to 169°. The 11°
limitation in the backward direction is caused by the detector crossing the incom-
ing light beam. If angles smaller than 15° are to be used in the forward scattering
direction, a neutral density filter should be used in front of the detector to protect
it from direct exposure to the high intensity light beam. The mechanized shutter in
front of the detector can also be used to adjust the aperture, enabling closer angles
to the forward direction without the need of the density filter.

4.1.4 Light source intensity monitor

The intensity of the incoming light is monitored in the first chamber before it reaches
the sample. The light source in itself is very stable, but this extra step improves the
accuracy of the measurements. Before the polarizer, the light beam is split in two
using a beam splitter with the other part continuing to the sample and the other
ending up in a PMT sensor, equivalent to that used in the detector, with a neutral
density filter at the front.

The intensity of the incoming beam with vertical and horizontal polarizations
is monitored in the third chamber, where the beam enters through a small pin hole at
the end of the second chamber, using a Newport 918D-UV-OD3R UV Silicon Detec-
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tor. This is done to compensate for the possible intensity difference between the two
polarization states. These intensity calibration measurements are done separately
from the sample measurements, and the sensor in the third chamber is replaced with
a beam dampener during the sample measurements to reduce reflections from the
beam hitting the lens of the intensity monitor or the wall of the chamber.

4.1.5 Imaging system

The imaging system uses an Phantom v611 hi-speed camera with a microscope
objective. The hi-speed camera enables 6242 frames per second at full resolution, and
the microscope objective an 120-mm working distance from the lens. The imaging
system’s primary function is orientation, position, and rotation stability analysis of
the sample. This analysis would be best done during the measurements, but specular
reflections from the lens of the objective make it usually unfeasible. During the
measurements the lens is covered with a filter made from the same black absorbing
material the chambers are coated with. The imaging system is turned off during
the measurements, as the camera heats up considerably when in use creating heat
fluctuations, and the built-in cooling fan causes extra turbulence in the measurement
chamber, which both affect the orientation of the sample. The imaging system is
controlled individually from a separate computer using Phantom software.

The imaging system can also be used to create a 3D model of the sample, using
omnidirectional microscopy. This is done by taking multiple pictures of the sample
in different orientations, and then compiling the pictures using a structure-from-
motion pipeline. The pipeline creates a 3D point cloud from the sample, which can
then be used to create a 3D surface model of the object. Omnidirectional microscopy
is further discussed in Chapter 5.2.

4.1.6 Computer interface

The sample holder and detector can be simultaneously controlled from a computer
interface on a National Instruments PXIe system. For data acquisition a multi-
channel digital oscilloscope (NI PXIe-5171R, 250 MHz, 14 bit) is used to measure
the PMT signals, and a general-purpose digital/analog I/O interface (NI USB-60 0
0) is used to read the temperature and humidity sensors. The automation of the
measurement process is done with a user interface created in NI LabVIEW. The
user interface is used to create an automatic measurement procedure that controls
the rotation and the integration time of the detector. The user interface also has
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a graphical interface to track the obtained intensity measurements. The input pa-
rameters for the user interface are the start and end angles of the measurement, the
integration time of one acquisition, the amount of data points, and the number of
repeated measurements.

The levitator is controlled using the same computer with a graphical interface
built in Pygame. The interface shows how the sample should orient itself in the
acoustic trap, based on the sizes of its axis. The orientation can then be rotated in
the pitch, yaw, and roll directions. Depending on the material and the asymmetry
of the sample, the strength and asymmetry of the trap can be controlled. Gener-
ally, more power is needed for heavier objects and more asymmetric trap for more
elongated samples. The acoustic power of the trap should be set as low as possible
to obtain stable orientation.

4.2 Measurement steps

Before measurements the setup needs about half an hour to warm up and the light
source and the temperature in the measurement chambers to stabilize. To achieve
highest stability of the sample, the levitator should be calibrated since the shape
of the acoustic field is sensitive to variations in temperature, humidity, and air
pressure. This is done using an air-coupled transducer with a narrow aperture, with
the phase and aperture of each section of transducers on the hemispheres adjusted
individually.

Calibration measurements should be taken before and after the sample mea-
surements to check for possible changes during the measurements. The calibration
measurements include the intensity measurement of polarization states and mea-
surement of the empty chamber with the light beam on to compensate for specular
reflections, ambient light, and electric noise.

The sample is inserted in the levitator using an acoustically transparent mesh.
The mesh is made of nylon fabric and doubles as a safety net if the sample is to fall
during the measurements. In the acoustic trap, there are multiple potential wells,
and the sample needs to be inserted in the correct one which intersects the incoming
light beam. After giving the input parameters for the software, the software runs
the measurements without further input from the user.
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4.2.1 Mueller matrix of the sample

The light scattered from a particle is related to incoming light through the Stokes
vector S⃗ = (I,Q, U, V ). The scattering is then described with a 4 × 4 Mueller
matrix M, as in Equation (2.13). As the detector is situated on the rotating circular
board, the distance r remains constant during the measurements. To measure the
16 elements of the scattering matrix, polarizers and quarter wave plates are needed
in front of the incident light and the detector. The resulting scattering matrix is a
multiplication of the Mueller matrix of individual optical elements the light passes
through. If there is a polarizer and a quarter wave plate before and after the sample,
the transformation is simply

S⃗s = Mp(θ4)Mq(θ3)MMq(θ2)Mp(θ1)S⃗i, (4.1)

where Mp is the Mueller matrix of a linear polarizer and Mq that of a quarter wave
plate. The angles θ are the respective angles of polarization of each component. The
studied Mueller matrix is M, which is the effect caused by the particle itself. The
Mueller matrix of a linear polarizer and a quarter wave plate are given as,

Mp(θ) =


1 cos 2θ sin 2θ 0

cos 2θ cos2 2θ sin 2θ cos 2θ 0
sin 2θ sin 2θ cos 2θ sin2 2θ 0

0 0 0 0

 ,

Mq(θ) =


1 0 0 0
0 cos2 2θ sin 2θ cos 2θ sin 2θ
0 sin 2θ cos 2θ sin2 2θ − cos 2θ
0 − sin 2θ cos 2θ 0

 .

(4.2)

In our setup, only linear polarizers are used. The resulting transformation is then
simplified to

S⃗s = Mp(θ2)MMp(θ1)S⃗i. (4.3)

Without the quarter wave plates, the full 4×4 scattering matrix can not be derived,
and we are limited to the upper left 2 × 2 elements; M11, M12, M21, and M22.

The 4π scatterometer does not measure the Stokes vector (S⃗s) values directly.
The scatterometer measures intensities I of scattered light in four different polariza-
tion configurations from which the Mueller matrix elements can be constructed. To
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measure the elements, four different configurations, and measurements are needed:

I1 : θ1 = 0°; θ2 = 0°,
I2 : θ1 = 90°; θ2 = 90°,
I3 : θ1 = 0°; θ2 = 90°,
I4 : θ1 = 90°; θ2 = 0°.

(4.4)

Where θ1 and θ2 are the angles of polarization for the polarizers after the light source
and before the detector. The final four Mueller matrix elements can be derived from
these four measurements:

M11 = I1 + I2 + I3 + I4,

M12 = I1 − I2 + I3 − I4,

M21 = I1 − I2 − I3 + I4,

M22 = I1 + I2 − I3 − I4.

(4.5)

4.2.2 Data reduction and accuracy of measurements

The measurement procedure produces the four intensities (I1, I2, I3, and I4) for
different polarization states. The error of the detector is included in the measure-
ment data. To reduce the data, the average value of multiple measurements was
first taken. This still includes the possible stray light from the components of the
device and the electric noise. The calibration measurements should contain this
information and stray light and electric noise are subtracted from the measurement
data. If there is a discrepancy between the intensities of the two incoming polar-
ization states, the difference should be taken into account in the measurement and
calibration intensities by dividing them with the polarization-calibrated intensity.
The final Mueller matrix elements can be calculated as given in Equation (4.5).

Problems in the orientation stability of the sample are not easily reduced from
the measurement data, or even quantified. Especially for the heavy glass samples,
even small variations in the atmospheric conditions of the measurement chamber
correlate to instability of orientation. With multiple measurements the effects of
small perturbations should be cancelled out. A considerable problem comes from
periodical perturbations of the sample in a particular rotation axis. If the periodic
perturbations are present in multiple measurements, they can cause effects to the
measured results that are not really present on the sample itself. The best way
to tackle the periodic perturbations is to choose a particle orientation that is most
stable. The orientation stability of the sample can be quantified using the imag-
ing system. In Helander et al. (2020), the deviations from a desired orientation of
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a sample were measured using image detecting software. Unfortunately the main
cause for atmospheric variation in the measurement chamber is the imaging sys-
tem. Orientation stability analysis was not done for the measurements of the glass
particles.



5. Laboratory samples

To compare the scattering matrix results from measurements to those from sim-
ulations, we used samples with varying shapes, sizes, and refractive indices. The
samples were fragments of silicate glass, created as planetary surface analogs by
Carli et al. (2016). Silicate glass is a product of volcanism and impact cratering on
planetary surfaces, and is a significant contributor to the scattering in visible and
near-infrared wavelengths from planetary surfaces (Carli et al., 2016). The samples
were suitable to test the pipeline of retrieving the refractive index, as there were
four different glassy materials available with slightly different refractive indices, and
with fragments of varying shapes. The materials are created from different igneous
rock samples and vary in composition, mainly in iron content. They were named by
the authors, from the highest iron content to the lowest, Py7, St8, St14, and St18.
Of the fragments, three were chosen for every material for 3D modeling, with a total
of 12 samples. The original plan was to obtain the refractive index from all of the
12 samples, but ultimately the derivation was done for one particle, as the process
proved too laborous for the scope of the thesis. The sample sizes ranged from 1 to
3 mm. There were also prior measurements of the imaginary part of the refractive
index of the materials with an integrating sphere, done by A. Penttilä (2022), priv.
comm.1. The igneous rock samples used to produce the glasses are given in Table
5.1.

For the study, the main difference of the samples is in the refractive indices, for
which Carli et al. (2016) also derived approximations. They measured the real part
of the refractive index using the Brewster angle θB. Fresnel equations state that at a
certain incidence angle, called the Brewster angle, the light reflected from a boundary
is fully polarized. Using polarized incident light, at the Brewster angle all of the
parallelly polarized light is transmitted. (Bohren and Huffman, 2008) The Brewster
angle depends on the real parts of refractive indices of the two media, here the glass
sample (n2) and air (n1), by θB = arctan(n2/n1). The measurements were done

1Penttilä, A. (2022). antti.i.penttila@helsinki.fi
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Glass Original rock sample n (635 nm)
Py7 Ol-basalt 1.62
St8 Gabbronorite 1.60
St14 Gabbronorite 1.60
St18 Anorthosite 1.58

Table 5.1: The materials of the original rocks the glass samples were produced from, and real
parts of the refractive indices (n) of the glasses in 635 nm wavelength, measured in Carli et al.
(2016) using the Brewster angle.

using 635-nm red light, and the results are in Table 5.1. For the imaginary part, they
used the Hapke model for reflectance spectra described in Hapke (2012), which gives
analytical solutions for particulate media. The real part n was approximated to be
constant over all wavelengths, and the imaginary part κ was derived by minimizing
the difference in measurements and calculations. The reflectance measurements
were done on loose grain samples created from the glass materials with different
grain sizes. They give the resulting κ-values as a function of wavelength for the
different grain sizes, see Figure 5.1.

Measurements on the imaginary part of the refractive index for the glass ma-
terials were done in our laboratory using a method by Penttilä et al. (2022). The
measurements were done from coarse powders produced by Carli et al. (2016) by
grounding the glass samples. Reflectance spectra in 500–2300 nm range were mea-
sured from the powders using the Gooch & Housego OL-750 integrating-sphere
spectrometer. To derive the imaginary part of the refractive index, the spectra were
modeled using a ray-tracing code, and the difference between measurements and
model results minimized as a function of κ. A linear extrapolation was done using
values in 500 − 550 nm to get a value for the wavelength of 488 nm used in the
scatterometer. The derived values for the imaginary parts in 500 and 488 nm are
given in Table 5.2 (A. Penttilä, 2022, priv. comm.)2.

5.1 3D modeling of laboratory samples

To compare the results to simulations, the shape of the sample fragments were mod-
eled in 3D to be used in the SIRIS4 code. The sample shape was measured by H.
Suhonen (2021), priv. comm.3 using X-ray microtomography, which can, using mul-

2Penttilä, A. (2022). antti.i.penttila@helsinki.fi
3Suhonen, H. (2021). heikki.suhonen@helsinki.fi
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Figure 5.1: Imaginary parts of the refractive indices derived using the Hapke model in Carli et al.
(2016), for the four different materials (a) St18, (b) St14, (c) St8 and (d) Py7. The different colors
represent different grain sizes, and white the averaged values with its standard deviation in gray.

Glass κ (500 nm) κ (488 nm)
Py7 0.0017403 0.00175949
St8 0.000487812 0.000503549
St14 0.000176199 0.000182417
St18 0.0000227323 0.0000233384

Table 5.2: The imaginary parts of the refractive index derived by Penttilä et al. (2022), using
an integrating sphere. The 500 nm values are the closest measured values to the wavelength used
in the scatterometer measurements, and the 488 nm values have been linearly extrapolated using
values in 500 − 550 nm.
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tiple measurement angles, capture the shape and internal structure of the sample,
from which the triangulated 3D model can be reconstructed. The method of X-ray
microtomography is described in Flannery et al. (1987). X-ray microtomography
also models the interior of the particle, so the solidity of the particle can be verified.
The models produced by the method are accurate to few micrometers, which is be-
yond the needed accuracy to derive refractive indices from the general shape of the
sample. The accuracy is also too high to be used in ray-tracing simulations without
needing extensive CPU-times. The models were simplified using automated algo-
rithms available in Meshlab software. The models were first simplified using Quadric
Edge Collapse Decimation, and the possible holes in the mesh patched using Surface
Construction: Screened Poisson method. The resulting 3D-models had around 5000
faces and 2500 vertices. Examples of the original model and the final model are
given in Figure 5.2. The reduced model has ∼0.01 % of the triangles in the original,
but retains the overall shape, positively affecting computation time with SIRIS4.
The downside of the reduction in model accuracy is that small surface structure is
completely lost, causing possibly small differences in the simulated results compared
to the measured. The problems from the simplification can be reduced by choosing
samples with relatively smooth surfaces. An example of how the surface structure
affects the scattering and how the information about the structure is lost in the
simplification is given in Section 7.

Figure 5.2: Triangulated 3D models of a sample with semi-major axis length of 3 mm. The model
on the left has 3000000 faces and 1500000 vertices, and the model on the right has been reduced
to 5000 faces and 2500 vertices.

5.2 Omnidirectional microscopy

Before choosing X-ray microtomography as the modeling method for the shape,
omnidirectional microscopy was attempted, which uses only the scatterometer itself,
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detailed in Helander et al. (2020). In their method, 3 × 120 images of the sample
were taken with 3° increments over the main rotation axis. The images were then
reconstructed using a structure-from-motion (SfM) pipeline. SfM detects common
features between the images and finds the correct camera angles around the sample.
In the imaging system, the camera is stationary while the sample rotates around
its axis, which is analogous to the camera rotating around a stationary sample.
The SfM pipeline assumes that the sample is stationary and the pictures are taken
around the sample. SfM generates a 3D point cloud from the target, which can then
be used to create a 3D surface model using mesh processing software.

As Helander et al. (2020) point out, the challenges in creating a 3D model using
omnidirectional microscopy come from a sample not having a perfect Lambertian
reflection and not enough surface texture to find common features between the
images. Surface texture could be artificially added to the sample by, e.g., drawing
on it, but this is obviously not suitable for the purposes of light scattering studies.
Additionally, SfM is not suitable for transparent objects as the algorithm is not
able to distinguish surface reflections from those coming from inside the sample.
Despite the limitations, omnidirectional microscopy was tried for modeling of the
most opaque samples. The method ultimately proved insufficient for the glassy
samples used in this study but is a valuable tool in the future, for example for
opaque rock samples, constraining the whole measurement procedure to only one
device.



6. Measurements

6.1 Calibration measurements

Before constructing the new SIRIS4 FO simulation, the SIRIS4 single-particle soft-
ware was used to validate the method of comparing scatterometer measurements to
computer simulations. The single-particle code gives the scattering results averaged
over random particle orientations, so the results could not be compared to measure-
ments using fixed orientation. As a first test for the measurements, a matte-surfaced
glass sphere was used. A symmetric spherical particle gives the same scattering re-
sults regardless of the orientation, so the averaging does not affect the results. The
matte surface is caused by micro roughness on the surface of the glass, which could
cause different scattering effects on specific measurement angles, and ruin the sym-
metry. This is counteracted by the sphere not being stable in the acoustic trap and
spinning rapidly during the measurements.

The measured particle was a 3-mm sized N-BK7 glass sphere with a matte
surface. To model the matte-surfaced sphere in SIRIS4, a similar model sphere was
created using the Gaussian particle generator within the SIRIS4 framework, which
eliminates the need for a precise modeling of the sample. The Gaussian sphere in
SIRIS4 is defined with 4 parameters: the standard deviation of radial distance, the
power law index for correlation, the maximum degree in the correlation series, and
the number of triangle rows per octant on the sphere. The values used for the
frosted sphere were 0.01, 0.1, 60, and 30. The model produced was a sphere with
very fine surface roughness. The size deviation of the surface roughness did not
affect the results much in the used size range, and the particle shape model proved
to be sufficient. The sample and the Gaussian 3D model are shown in Figure 6.1.

The refractive index of the N-BK7 glass is well documented (at λ = 488 nm,
m = 1.52 + i 9.8 · 10−9 (Schott Advanced Optics, 2023)), and the Gaussian sphere
was ran in SIRIS4 single-particle code to obtain orientation-averaged results. The
input parameters used in SIRIS4 single-particle are given in Table 6.1. The results
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Figure 6.1: On the left the matte surfaced N-BK7 glass sphere used in the scatterometer. On
the right is a Gaussian random particle model that mimicks the matte surface on the glass sphere.

of the measurements and SIRIS4 are given in Figure 6.2. The S11 elements are
normalized to provide meaningful comparison between the two. The measurements
and simulation follow each other remarkably well. The SIRIS4 simulation was used
as a calibration point for the measurements, and the likeness of the measurements
to the simulated data prove that the measurements work at the desired accuracy.

SIRIS4 single-particle input parameters
Number of rays 105

Number of sample particles 1
Minimum relative flux 10−4

Max internal chord 21
Min internal chord 21
Number of scattering angle bins 60
Particle refractive index, real 1.52
Particle refractive index, imaginary 9.8 · 10−9

Seed for random number generation 0
Wavelength (micrometers) 0.488
Mean radius (micrometers) 2500

Table 6.1: SIRIS4 single-particle input parameters used in the simulation of the N-BK7 glass
sphere with a matter surface.
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Figure 6.2: Scattering matrix elements as a function of scattering angle for a matte surfaced
N-BK7 glass sphere. The blue lines describe the measured values and the orange lines those from
SIRIS4.

6.2 Random orientation

The measurement process was validated with the use of a spherical particle. To
validate the whole pipeline of measuring a sample and translating its 3D model to
SIRIS4, random-orientation measurements were used. In measurements, random
orientation can be achieved by taking measurements of a particle in different orien-
tations or from a collection of randomly orientated particles.

The levitator in the 4π scatterometer is originally built with controlled orien-
tation in mind, but can be extended to random orientation. There are two ways to
approach this, either take multiple measurements of the sample in different orien-
tations, or rotate the sample during the measurements. Both of the ways require
manual manipulation of the orientation of the particle. Producing truly random-
ized orientations manually is difficult, as it is hard to guarantee that no particular
orientation is favored. A solution was found by increasing the amplitude of the
acoustic trap, thus making it unstable. This causes the sample to spin rapidly and
chaotically inside the acoustic field.

A St18 glass particle, the 3D model of which is shown in Figure 5.2, was used for
the process. Different ways to measure random orientation were tried for the sample.
The sample was first measured in multiple different stationary orientations. Even
with 20 orientations, the results did not converge to those obtained from SIRIS4, and
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randomly orientating particles manually was found not to be sufficient. The best
way to measure random orientation is to achieve chaotic random orientation. Using
our levitator, this would be feasible for less dense objects that have a somewhat
spherical shape. The properties of the sample particle, being dense and elongated,
cause the particle to always rotate around a particular axis. This rotation symmetry
could be broken by increasing the amplitude of the acoustic trap, causing the sample
to rotate unexpectedly. This in turn causes instability in the levitation, with the
sample easily falling off of the trap. A middle ground was found by increasing the
amplitude slightly which causes the particle to rotate around a specific axis multiple
times during one detector integration. The orientation of the axis of rotation was
then changed after every measurement to produce a semi-randomly rotating particle.

SIRIS4 single-particle code was then run using the 3D model of the particle
measured in random orientation. As the input parameters defining the particle,
SIRIS4 needs the mean size of the particle and its refractive index. The size of the
particle was measured using a ruler. For refractive index, the values obtained by the
authors in Carli et al. (2016) were used. For the other input parameters, the same
values as for the N-BK7 glass sphere were used, given in Table 6.1.

The comparison of the measurements to SIRIS4 was done multiple times, and
after each, more semi-random measurements were taken. With around 20 measure-
ments in total, the average of the measurement results started to converge to those
of SIRIS4. The final results from 20 measurements and from SIRIS4 are shown
in Figure 6.3. There are errors in the measurements, but the overall trend in the
scattering matrix elements follow the simulations. The errors are credited to the
method of obtaining the random orientation. It is feasible to say that the results
from SIRIS4, using the refractive index provided by the manufacturer of the glass,
are similar to the measurements of the particle, and the 3D modeling of the parti-
cles is sufficient. The study was then conducted further with measurements of the
particles in a fixed orientation and the creation of the new SIRIS4 FO code.

6.3 Fixed orientation

Using randomly orientated particles, the SIRIS4 single-particle code was used to val-
idate the measurements. When the single-particle code was modified to the SIRIS4
FO method, the measurements in fixed orientation with the scatterometer could be
used to validate the newly created code. Fixed orientation measurements were done
on multiple particles and glasses to gather enough references to which the SIRIS4
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Figure 6.3: Scattering matrix elements as a function of scattering angle for a sample of St18
glass. Blue lines present the measured values obtained as an average of multiple semi-random
orientations. The orange lines are the results derived from SIRIS4 single-particle.

FO results could be compared to. The 4π scatterometer is specifically built to lev-
itate particles in a fixed position and orientation, and with the scatterometer the
fixed orientation measurements are easier to do and require less work than those
done with random orientation.

The glassy particles used in the study are difficult objects to levitate, because
of their high density. The acoustic trap does not take gravity into account in its
calculations. This causes the particles to be tilted towards the ground on the heav-
ier side of the elongated particle, with the consequence that all orientations are
not stable. The measurements needed to be done first to find a stable orientation,
and afterwards the particle and orientation translated to SIRIS4. Even the most
stable orientations still had some vibration on the particle. The vibrations were
often systematic in a specific direction, which causes systematic error in all of the
measurements and would not be canceled out in averaging multiple results. Fortu-
nately, the angular bin size in the simulations is a restricting factor and averages out
the small vibrations. If scattering is to be studied with a larger angular resolution,
the particle vibration needs to be resolved. The vibrations could be quantified and
analyzed with the imaging software and high-speed camera, but is too laborious to
be done in this study.

There is a large difference between the stabilities of different particles. As
many particles were levitated in fixed orientation to be used as references when
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constructing the SIRIS4 FO, a few suitable particles for which a specific levitation
orientation was extremely stable stood out. One of these particles of St18 glass
was chosen, for which the final refractive index determination was done. Another
positive property of the particle were the smooth surfaces, which meant that not a
lot of information was lost in the simplification of the 3D model. The particle had
multiple sharp corners which produce noticeable effects to the scattering matrix
elements and help to constrain the right orientation of the model in SIRIS4 FO. Six
measurements from the particle were made in 10° − 160° range with 40 data points,
which corresponds to 3.75° angle resolution. Another six calibration measurements
were taken after the measurements. The average of six measurements is adequate
to cancel out small effects caused by possible turbulence in the chamber which can
affect measurements. More measurements do not necessarily improve the results as
the atmospheric properties of the chamber change slowly.



7. Results for complex refractive
index

The measurements from the 4π scatterometer provide the data of the real scattering
behavior of the particle. The parameters defining the scattering can be derived by
comparing the measurements to light scattering simulations in which the parameters
can be varied. The accuracy of the derivation depends heavily on the accuracy the
particle and scattering effects can be modeled in simulations. As SIRIS4 code is used,
the variables defining the scattering are the 3D model of the scatterer, the orientation
of the scatterer in the model, the scatterer size, and the complex refractive index.
To determine the refractive index, the other parameters need to be known a priori.
SIRIS4 FO reads the size of the particle directly from the file of the 3D model.
The size is read in micrometers, so the 3D model should contain this information
in the correct units. The orientation of the particle should be translated to the
model using the particle coordinate system. The orientation analysis in the study
was done by eye using the imaging system of the scatterometer. The orientation
is thus not exact in the simulations. The orientation of the particle was further
iterated a bit, by running SIRIS4 with multiple orientations with small deviations
from the original. The complex refractive index derived by Carli et al. (2016) was
used, and the best results for the orientation chosen. The final problems caused by
the 3D model come from the simplification of the model. To calculate the scattering
effects in a reasonable amount of time, the models had to be considerably simplified,
which does not largely affect the overall shape of the model but does remove possible
surface texture.

A clear example of how the simplification of the model affects the results is seen
in one particular particle of St8 glass. Rough first model between the measured and
simulated scattering elements is given in Figure 7.1. In the S11 and S22/S11 elements,
the simulations seem to match the measurements well in 0° − 90°, compared to the
precision of the iteration. In 90°−160°, there is a large discrepancy between the two
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elements. In the backscattering region, the S11 element shows scattering intensity
familiar to those from asteroid observations. In the backscattering direction, the
sample gets brighter as the effect of rough surface shadowing disappears (Capaccioni
et al., 1990). The brightening effect is not simulated properly by SIRIS4. One
reason for the difference comes from the simplification of the 3D model. As to
the backscattering regime, the particle has small surface texture which seems to
mimic small loose particles on the surface of an asteroid. The simplification process
smooths out these surface imperfections, as can be seen in Figure 7.2, and SIRIS4
is not able to reproduce the effect.

Figure 7.1: Scattering matrix elements as a function of scattering angle for a sample of St8 glass.
The glass particle has small surface roughness, which can be seen affecting the measurements
(blue), but is not correctly translated to the measurements (orange). The discrepancies present in
the measurements in the backscattering regime (∼ 160°) are caused by the detector blocking the
light source.

With other simulation parameters chosen, which are given in Table 7.1, SIRIS4
FO was run with different values of the refractive index to obtain results the mea-
surements could be compared to. The values of the refractive index were chosen
around the result derived by Carli et al. (2016). The real part was iterated in
n = 1.44 − 1.78 with 0.01 intervals and the imaginary part in κ = 10−3 − 10−6 with
gradually increasing intervals by incrementing the exponent by 0.1. SIRIS4 calcu-
lates also the forward and backscattering parts of the scattering matrix, which are
out of the reach of the scatterometer. Measurement points that are out of the mea-
surement range of the scatterometer were removed from the S11 element to provide
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Figure 7.2: 3D models of a particle of St8 glass. On the left the model produced by X-ray
microtomography, and on the right a simplified version used in SIRIS4. The original model shows
the small surface texture present on one side of the particle. The simplification process loses the
information on the surface texture, which strongly affects scattering.

a better visual comparison between the two elements, as there is otherwise a large
spike present in the forward scattering part. As the simulation and scatterometer
give intensity in arbitrary units, the S11 elements are not directly comparable. To
compare the elements, all the points of S11 from simulations and measurements were
divided by the average value of the element.

SIRIS4 FO input parameters
Number of rays 105

Number of sample particles 1
Minimum relative flux 10−4

Max internal chord 21
Min internal chord 21
Number of polar scattering angle bins 36
Number of azimuthal scattering angle bins 36
Seed for random number generation 0
Wavelength (millimeters) 0.000488

Table 7.1: SIRIS4 FO input parameters used in the derivation of the refractive index. Compared
to SIRIS4 single-particle, in SIRIS4 FO the number of azimuthal scattering angle bins needs to
defined. The mean radius of the particle is read directly from the 3D model in millimeters, and
the wavelength needs to be given in millimeters as well.

The results from the simulations show a few differences from the measured
elements that are present in every iteration. An example of one iteration with a
refractive index of m = 1.58 + i1.5 · 10−5 is given in Figure 7.3. From the figure,
three inconsistencies that cannot be credited to random noise are visible. In the S11

element, the simulated values are lower near the backscattering direction, around
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100° − 160°. In the −S12/S11 and −S21/S11 elements, there is a spike near forward
scattering (10° − 30°). Lastly in the S22/S11 element, the end in 130° − 160° in
the backscattering regime gives smaller values than the measurements. All three
problems were systematic differences present in every iteration of the simulations and
no simple explanation for the cause was found. The causes for the inconsistencies
are probably the sum of imperfect translation of orientation to SIRIS4 FO, the
simplification of the 3D model, and the way the resolution in the ϕ-binning is chosen.
How the resolution for the ϕ-binning is chosen defines the area on the surface of the
particle from which the imaginary detector in the simulation measures scattering
effects. The 10° ϕ-angle coverage present in the simulations is more than the detector
angular area in the scatterometer measures. SIRIS4 averages the scattering over the
detection area of a single bin, and a smaller bin count can cause effects to a viewing
angle that are not visible in the measurements.

Figure 7.3: Comparison on simulations (blue) to measurements (orange), with a complex refrac-
tive index value of m = 1.58 + i1.5 · 10−5. The two graphs show remarkable likeness to each other,
except for a few outliers, which are credited to the translation of the scattering particle to SIRIS4.

Non-linear least squares analysis by Benšić (1997), and adopted by A. Penttilä
(2022), priv. comm.1, is used to quantify the likeness of the measurements and
simulations, and to derive confidence intervals for the results. The method works by
finding a vector m⃗ = (n, κ) that minimizes the sum of squared residuals. To quantify
the errors that come from the shape and orientation of the 3D model would require

1Penttilä, A. (2022). antti.i.penttila@helsinki.fi
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rigorous analysis on how the two variables affect the simulation results. In the
analysis, the residuals are estimates of the random errors in the nonlinear model.
The residuals e⃗ = e1, ..., eN are given as,

e⃗ = y⃗ − f⃗(m⃗), (7.1)

where y⃗ = y1, ..., yN are the measured values and f⃗(m⃗) = f1, ..., fN the simulation
results with two free parameters m⃗ = (n, κ). The sum-of-squared-errors (SSE) is
then

S(m⃗) =
N∑

i=1
e2

i =
N∑

i=1
(yi − fi(m⃗)). (7.2)

The SSE is then compared to a model which minimizes the SSE, called S( ˆ⃗m) and a
value quantifiying every combination of refractive index real and imaginary parts is
found S(m⃗)/S( ˆ⃗m).

In Figure 7.4, the S(m⃗)/S( ˆ⃗m) values are plotted as a function of the real
and imaginary parts of the refractive index, for the scattering matrix elements S11,
−S12/S11, and S22/S11, with smaller values corresponding to a greater likeness be-
tween measurements and simulation. Each of the three elements define upper bound-
aries for the imaginary part of the refractive index κ, but only the S22/S11 element,
which describes depolarization, gives also a clear lower boundary, defining the value
of κ only, without giving any information on the real part n. This is expected, as
can be seen from Equation (2.14). The light incident on a particle is completely
confined to the amplitude scattering matrix (2.11) elements S1 and S2. If κ is high
for the material, the light is scattered from the surface, and the S3 and S4 values
stay close to zero. With a smaller κ value, the incident light ray scatters multiple
times inside the particle, causing changes to polarization and rise to the S3 and S4

values, which is then seen in the depolarization value. In Figure 7.4c, it can be
seen that the best values are constrained to a straight line around κ = 10−4.4, but
that there are values with a smaller imaginary part outside this line that give good
results. These outliers are credited to the imprecision of the SIRIS4 FO simulations.
With a relatively low ray-count in the simulations, the results have some variation,
which causes the outliers. The same behavior affects all of the elements, which is
why the results are treated as trends instead of individual data points. A value
for κ can be found from the depolarization (S22/S11) element, and afterwards the
real part n can be derived from the intensity (S11) and degree of linear polarization
(S12/S11) elements. With just any of the elements alone, the complex refractive
index could not be confined fully. The results demonstrate well the importance of
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(a) S11 (b) S12/S11

(c) S22/S11

Figure 7.4: S(m⃗)/S( ˆ⃗m) values of scattering elements as a function of the refractive index real part
n and imaginary part κ. Smaller values correspond to a greater likeness between the simulations
and measurements. The plotted white contour gives an area where S(m⃗)/S( ˆ⃗m) ≤ 3. A linear trend
can be seen in the S22/S11 element, which constrains the value for κ. S11 and S12/S11 elements
constrain the value for n, but give only upper boundaries for κ.
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using polarized light and measuring the Mueller matrix elements instead of just the
intensity of scattered light.

Figure 7.5: Combined S(m⃗)/S( ˆ⃗m) values for all three (S11, S12/S11, S22/S11) of the elements
calculated in the interval from κ = 10−4.8 − 10−4.3. The white contour gives the 99.9% confidence
interval for the results.

λ = 488 nm
n 1.59 ± 0.02
κ 2.05 ± 0.46 · 10−5

Table 7.2: The final derived real (n) and imaginary (κ) parts of the complex refractive index
using λ = 488 nm wavelength.

From the derived S(m⃗)/S( ˆ⃗m) value, confidence regions for the model likeness
can be calculated [A. Penttilä, 2022, priv. comm.]2. The (1−α) % confidence region
for m⃗ is a region where,

S(m⃗)
S( ˆ⃗m)

≤ 1 + Nm

N −Nm

F(1 − α;Nm;N −Nm), (7.3)

where Nm is the amount of free parameters in the model (here 2), and F(1 −
α;Nm;N − Nm) the value of inverse cumulative distribution function of the F-
distribution at 1 − α. The method does not fully explain the errors between the
measurements and simulations, and gives very small confidence regions. The small

2Penttilä, A. (2022). antti.i.penttila@helsinki.fi
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confidence regions should not be trusted as the simulation accuracy is not well
confined in the presumed errors of the model. Because the S22/S11 element confines
the value of the imaginary part κ well, it is first used to give an interval for κ from
which the combined effect of all elements can be calculated. By choosing an interval
for κ first, most of the outliers resulting from simulation inaccuracies are removed.
A generous confidence interval is used with the S22/S11 element of S(m⃗)/S( ˆ⃗m) ≤ 3
(which corresponds to a 99.999999 % confidence interval), to get some information
of the relevant regions in (n, κ)-space. The confidence interval is plotted as a white
contour in Figure 7.4c. From the figure, it can be said with high confidence that
the value for κ should be inbetween κ = 10−4.8 and κ = 10−4.3, where there is a
straight line trend present. To derive a final result for the complex refractive index,
a combined SSE of all three elements was calculated in the κ = 10−4.8 − 10−4.3

region. The combined SSE (S(m⃗) in Equation (7.2)) was constructed by summing
the individual SSEs of the S11, S12, and S22 elements

S(m⃗) = S11(m⃗) + S12(m⃗) + S22(m⃗). (7.4)

The S(m⃗)/S( ˆ⃗m) values for the combined model, and the values inside a 99.9 %
interval are given in Figure 7.5. There is an outlier region below the larger confidence
region, which is ignored as it is caused by only one simulation result. The middle
point of the values that fit in the larger area defined by the 99.9 % interval is chosen
as the final value of the complex refractive index. The final results are given in Table
7.2.

The n = 1.58 value for the real part, derived in Carli et al. (2016) and given
in Table 5.1, and the imaginary part κ ∼ 2.5 · 10−5 (inferred by eye from Figure 5.1)
fit in the confidence region of our results. The imaginary part value κ = 2.33 · 10−5

derived by Penttilä et al. (2022), given in Table 5.2, also supports our findings.



8. Conclusions

In the thesis, the refractive index of a mm-sized single glass particle was derived suc-
cessfully with the 4π scatterometer using fixed orientation. The measurements were
done from an acoustically levitated particle, which can be orientationally controlled.
The measurements were compared to simulations from a newly created SIRIS4 FO
light scattering code. The complex refractive index values were varied in the simula-
tions, and the results were compared to measurements. The refractive index values
that give the best fit to the measurements were deduced as the correct refractive
index values for the sample.

The SIRIS4 light scattering codes calculate the scattering matrix elements
averaged over the orientation of the particle. To compare the simulations to mea-
surements from the scatterometer in fixed orientation, the SIRIS4 single-particle
implementation was modified to use particles in a fixed orientation, producing the
new version SIRIS4 Fixed Orientation (FO). In SIRIS4 FO the orientation of the
particle in respect to the laboratory coordinates needs to be defined in the input
using Euler angles. SIRIS4 FO calculates the scattering matrix elements over the
full solid angle around the particle.

SIRIS4 reads the shape of the scattering particle from a 3D model given as
input. The particle measured in the scatterometer was 3D-modeled using X-ray mi-
crotomography. The resulting 3D model had an accuracy of few micrometers which
is too accurate to be used in SIRIS4 simulations due to high computing times. The
3D model was simplified using automated algorithms in Meshlab software. The re-
sulting 3D model loses information about the surface texture of the particle, causing
discrepancies between the simulated and measured results. This was counteracted
by choosing particles with relatively smooth surfaces.

The 4π scatterometer uses an acoustic levitator as a sample holder. Acous-
tic levitation provides nondestructive measurements and full orientation control of
samples. The scattering matrix elements are measured from the particle using linear
polarizers and a detector rotating about the particle on a rotational stage. Mea-
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surements were first done on particles in semi-random orientation in the scatterome-
ter to produce orientation-averaged scattering. The orientation-averaged scattering
measurements closely resemble those from SIRIS4 single-particle simulations. The
orientation-averaged SIRIS4 simulations could also be used to determine the refrac-
tive index of samples by taking orientation-averaged measurements. Measurements
from fixed orientation were used in the study, as the scatterometer is specifically
built to handle particles in fixed orientation.

SIRIS4 FO was ran with multiple different values of the complex refractive
index to produce differing scattering matrix results. The comparison of scattering
matrix results from simulations to measurements was done using nonlinear least
squares analysis by finding the real and imaginary parts of the complex refractive
index that minimize the sum of squared residuals between the measurements and
simulations. The errors in the simulations mainly come from the simplification of
the 3D model of the sample and the orientation translated from measurements,
and are thus hard to quantify. Confidence regions could be derived for the results,
by estimating the residuals as the random errors in the non-linear model. Using
488 nm light, the refractive index of St18 glass particle was derived to be m =
1.59 ± 0.02 + i 2.05 ± 0.46 · 10−5, with a 99.9% confidence.

For future work, there are multiple improvements to be done in the measure-
ment pipeline to produce more accurate results faster. One is the ongoing process
of installing multiple detectors on the 4π scatterometer to be used simultaneously,
which reduces the measurement time, improving the measurement accuracy. The
discrepancies that arise from the orientation of the 3D model could be minimized by
measuring the orientation of the particle during the measurements using the scat-
terometer imaging system and an automated pipeline. The imaging system could
also be used to quantify the errors in the sample orientation during the measure-
ments by constantly imaging the sample and recording its orientation fluctuations.
The last action to easily improve the pipeline is to use more computing power for
the simulations. The simplification on the 3D model of the particle would not have
to be as coarse and the angular resolution in the simulations could be higher.

For the first time, scattering matrix results from a measurement of levitated
mm-sized particle in fixed orientation were compared to light scattering simulations.
The complex refractive index of a glass particle was derived successfully, and a new
pipeline was created to produce such measurements of the refractive index. The
available comparison of simulations to real measurements in fixed orientation is also
in itself a valuable tool in light scattering studies.
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