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Abstract
Objective. This study focuses on the effects of dynamical vascular modeling on source localization
errors in electroencephalography (EEG). Our aim of this in silico study is to (a) find out the effects
of cerebral circulation on the accuracy of EEG source localization estimates, and (b) evaluate its
relevance with respect to measurement noise and interpatient variation. Approach.We employ a
four-dimensional (3D+ T) statistical atlas of the electrical properties of the human head with a
cerebral circulation model to generate virtual patients with different cerebral circulatory conditions
for EEG source localization analysis. As source reconstruction techniques, we use the linearly
constraint minimum variance (LCMV) beamformer, standardized low-resolution brain
electromagnetic tomography (sLORETA), and the dipole scan (DS).Main results. Results indicate
that arterial blood flow affects source localization at different depths and with varying significance.
The average flow rate plays an important role in source localization performance, while the
pulsatility effects are very small. In cases where a personalized model of the head is available, blood
circulation mismodeling causes localization errors, especially in the deep structures of the brain
where the main cerebral arteries are located. When interpatient variations are considered, the
results show differences up to 15 mm for sLORETA and LCMV beamformer and 10 mm for DS in
the brainstem and entorhinal cortices regions. In regions far from the main arteries vessels, the
discrepancies are smaller than 3 mm. When measurement noise is added and interpatient
differences are considered in a deep dipolar source, the results indicate that the effects of
conductivity mismatch are detectable even for moderate measurement noise. The signal-to-noise
ratio limit for sLORETA and LCMV beamformer is 15 dB, while the limit is under 30 dB for DS.
Significance. Localization of the brain activity via EEG constitutes an ill-posed inverse problem,
where any modeling uncertainty, e.g. a slight amount of noise in the data or material parameter
discrepancies, can lead to a significant deviation of the estimated activity, especially in the deep
structures of the brain. Proper modeling of the conductivity distribution is necessary in order to
obtain an appropriate source localization. In this study, we show that the conductivity of the deep
brain structures is particularly impacted by blood flow-induced changes in conductivity because
large arteries and veins access the brain through that region.

1. Introduction

Electroencephalography (EEG) source localiza-
tion poses an ill-posed inverse problem, the solu-
tion to which is non-unique and sensitive to any

uncertainties in the measurements and/or forward
modeling [1, 2]. Specifically for EEG, the meas-
urement device records surface voltages that reflect
the state of the brain and the mental condition of the
patient, but also records artifacts either caused by the
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measurement device itself, such as electronic noise
and interference (e.g. faulty electrodes and parasitic
capacitances), and undesired physiological sources
(e.g. muscular and cardiac activities) [3]. Finite pre-
cision measurements are another source of problems
in source localization, especially in deep brain struc-
tures due to the signal-to-noise ratio necessary to
record brain activity in these regions.

In particular, modeling errors in the lead field
matrix, i.e. in the linear operator relating the electrical
activity of the brain to potentials on EEG electrodes,
can result in large reconstruction errors. Electrode
position, head geometry, and the electrical proper-
ties of the tissues in the human head play an import-
ant role in the quality of the reconstruction [4–8].
Electrical conductivity distribution in the head is a
central parameter affecting the accuracy of the lead
field matrix as a forward map. The human head is
a complex conductor volume and must be simpli-
fied to create a numerical model. The head is usu-
ally split into segments and an average conductivity
is assigned to piecewise constant distribution—one
value per segment [9, 10]. In addition to the geomet-
rical complexity, the electrical properties of the tis-
sues change from subject to subject and even within
the same subject due to physiologic changes or patho-
logical conditions.

In this work, our aim is to investigate how con-
ductivity changes due to the pulsatile blood flow
influence the accuracy of EEG source localization.
The relationship between blood flow velocity and
electrical properties has previously been identified,
both in vitro and in vivo [11–13]. To approximate
the dynamical blood flow, we use an interpolated
atlas [14] which follows from a cylindrical Navier–
Stokes equations (NSE) model of a blood vessel com-
bined with a statistical approach to take into account
the effects of the circulatory system and inter-subject
variations. Incorporating such an atlas into the for-
ward model necessitates using a volumetric forward
solver.

Our hypothesis is that EEG source localization
error increases if conductivity changes due to blood
flow are not taken into consideration, especially in
the deepest structures of the brain. The rationale
behind this hypothesis is based on the combination of
two factors: (a) The deep structures of the brain are
the farthest regions from the scalp electrodes, mak-
ing any activity in this region the hardest to meas-
ure using surface electrodes. (b) Arterial blood enters
the brain cavity via the foramen magnum (verteb-
ral arteries) or carotid canals (internal carotid arter-
ies). These are the largest arteries in the brain, all loc-
ated near the brainstem, base of the thalamus, and
hypothalamus. They form the circle of Willis at the
interpeduncular fossa, and from there, the middle
cerebral arteries branch to the sides along the lateral

sulci, the anterior cerebral arteries branch along the
longitudinal fissure, and the posterior cerebral arter-
ies branch along the basal surface of the temporal
and occipital lobes. Because of the disposition of the
main arteries, any electrical activity near these vessels
will be affected by the conductivity of the blood flow-
ing nearby, influencing surface measurements. Neg-
lecting conductivity changes in deep brain structures
caused by arterial blood flow, combined with small
measured signals from these regions, leads to signi-
ficant source localization errors.

2. Method

In this study, the EEG source localization error result-
ing from the interpolated conductivity atlas is evalu-
ated using numerical simulations. For this objective,
we use a forward model to simulate surface electrode
measurements and inverse solvers to reconstruct the
sources. Figure 1 presents an overview of the method
we employed to assess the reconstructions.

We consider volumetric FEM based forward
modeling to solve Maxwell’s electromagnetic field
equations for the non-invasive EEG [9, 15, 16], where
128 contact electrodes are attached on the scalp
(figure 2) with electrode impedance of 2 kΩ uni-
formly. The multi-compartment head model con-
tains superficial and deep brain structures using
realistic geometries provided by an openly available
anatomical T1-weighted Magnetic Resonance Ima-
ging (MRI) data (https://brain-development.org/ixi-
dataset/).

For the calculation of the lead fields, we have
used the Zeffiro Interface toolbox for electromag-
netic brain imaging [17]. Zeffiro utilizes highly adapt-
ive and automated tetrahedral mesh generation for
multi-compartment head models [18]. For source
modeling, we use FEM and the current preservation-
based H(div) approach [19–21].

Because of the ill-posed nature of the inverse
problem, we perform our investigation by compar-
ing multiple source localization algorithms: linearly
constraint minimum variance (LCMV) beamformer
[22], standardized low-resolution brain electromag-
netic tomography (sLORETA) [23], and dipole scan
(DS) [24].

To investigate the role of blood in EEG source
localization, we created conductivity distributions σf

and σp for the forward and inverse solvers, respect-
ively, based on an anatomical atlas. The process to
construct the conductivity distributions is detailed in
the following subsections.

2.1. Conductivity distributions
Three conductivity distributions were considered: (a)
σ0 the conductivity of the main tissues in the human
head without blood vessels and flow effects; (b) σd
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Figure 1. EEG source localization assessment method.

Figure 2. Used EEG electrode cap containing 128 contact
electrodes represented by black dots.

containing the conductivity of the main tissues with
arterial flow effects in the blood vessels and vascu-
lar territories at the end of diastole; and (c) σs sim-
ilar to the second case but at peak systole. With this
choice, σ0 represents a static model that does not take
into account the effects of blood and its flow, whereas
σd and σs represent a dynamic model in two instants
with minimum and maximum blood flows, respect-
ively. It is worth emphasizing that choosing end dia-
stole and peak systole instants can provide bounds to
pulsatility effects. Conductivity of biological tissues
depends also on the frequency. For this investigation,
we will use a frequency of 3 kHz.

2.2. Anatomical atlas
In Moura et al [14], the authors develop a statistical
atlas of the electrical properties of the human head
based on 3D-MRI of 107 healthy human subjects. The
atlas takes into consideration the natural variability
of the internal structures and the electrical properties
of themain tissues. The proposed atlas also comprises
the dynamic effects of pulsatile arterial blood flow in
the main vascular territories of the brain and their
influence on the electrical properties of the brain. The
relation between blood flow velocity and its electrical
properties have been identified before, both in vitro
and in vivo [11–13] and modeled as

∆σℓ

σref
= 0.58H

[
1− exp

(
−0.20

∣∣∣∣ v̄R
∣∣∣∣0.41

)]
(1)

by Visser and collaborators [25, 26]. This expres-
sion relates the longitudinal conductivity change
∆σℓ with the cross-sectional average velocity v̄ in

the blood vessel. In this expression, σref is the
reference conductivity (still blood), H is the hemato-
crit (volumetric percentage of red blood cells), v̄ is the
average cross-sectional velocity, and R is the radius of
the artery.

The velocity is computed via the solution of the
Navier–Stokes equations for the pulsatile blood flow
in the main arteries. The blood flow model and sim-
ulation are described in the next subsection.

The atlas is presented as a Gaussian random vec-
tor S(t) given by

A∼N (µ̄,Γ) (2)

A ′(t)∼N (µ̄ ′(t),Γ ′(t)) (3)

S(t) = A+A ′(t)∼N (µ̄+ µ̄ ′(t),Γ+Γ ′(t)), (4)

where A is the static component of the atlas and A ′(t)
is the dynamic component, assumed to be independ-
ent of each other.We selected the averages in different
situations to create σ0,σd, and σs to reflect the overall
distribution of the population. From figure 5 in the
results section, it is evident that the end of the dia-
stole occurs at t= 0 s while peak of systole happens at
t= 0.25 s and used to define σd and σs

σ0 = E{A}= µ̄ (5)

σd = E{S(t= 0)}= µ̄+ µ̄ ′(t= 0) (6)

σs = E{S(t= 0.25)}= µ̄+ µ̄ ′(t= 0.25). (7)

2.3. Blood flowmodel
Visser’smodel (1) requires the cross-sectional average
velocity in each vessel of the arterial tree. The velo-
cities are obtained from the solution of the Navier–
Stokes equations in the superior aortic arterial tree
model, presented in figure 3, using the openBF solver
[27, 28].

Blood is assumed Newtonian with density ρ=
1050 kgm−3, dynamic viscosity µ= 4.5× 10−3 Pas,
and hematocrit H= 0.5 moving in a network of
narrow long circular vessels (arteries) with fully
developed flow. The vessels are straight, have linearly
elastic compliant walls, and are connected to other
vessels at the ends. The following system describes
the 1D blood flow, together with the constitutive
equation of the compliant walls [27, 28]

∂A

∂t
+

∂Q

∂z
= 0, (8)

∂Q

∂t
+

∂

∂z

(
α
Q2

A

)
+

A

ρ

∂P

∂z
=−2

µ

ρ
(γ+ 2)

Q

A
, (9)
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Figure 3.Model of the superior aortic system. Acronyms:
anterior cerebral artery (ACA), anterior communicating
artery (ACoA), common carotid artery (CCA), external
carotid artery (ECA), internal carotid artery (ICA), middle
cerebral artery (MCA), posterior cerebral artery (PCA),
posterior communicating artery (PCoA), and superior
cerebellar artery (SCA).

P= Pext +

√
π

A0

Eh0
1− ν2

(√
A

A0
− 1

)
, (10)

where z is the longitudinal coordinate, A(z, t) is the
cross-sectional area of the vessel, Q(z, t) is the volu-
metric flow rate, α is the Corioli’s coefficient, P(z, t)
is the static blood pressure, γ is a velocity profile shape
parameter, Pext is the external pressure, E(z) is the ves-
sel wall Young’s modulus, and ν is the Poisson’s ratio
of the wall. A0(z) is the reference cross-sectional area,
and h0 the wall thickness at rest. Geometrical and
mechanical properties of the arteries under consider-
ation (figure 3) are presented in [14]. The boundary
conditions at the terminal vessels are three-element
windkessel models, and the input is a half-sinusoidal
wave model of the cardiac output flow in one cycle

Q(t) =

{
K sin

(π t
τ

)
t< τ

0 otherwise
, 0⩽ t⩽ T

(11)

whereK= 485mls−1, τ = 0.3 s, and the cardiac cycle
period T= 1 s (60 bpm), following [29].

2.4. EEG localization error assessment
Source localization is conducted using three different
methods: LCMV beamformer, sLORETA, and DS. All
of them were implemented as plugins in the Zeffiro
Interface. The methods were selected based on their
widespread usage and methodological differences. In
this case, we have the following mathematical lin-
ear presentation to relate the measured EEG data to
neural activity sources modeled as 3D dipoles

y= Lx+ n, (12)

where y ∈ Rm denotes the measurements obtained
and L ∈ Rm×n is the lead field matrix. Each triplet
of the unknown vector x ∈ Rn represents the coeffi-
cients of the basis current vector functions that form
the estimated current distribution in 3D. The vector
n represents the measurement noise that is assumed
to be zero-mean Gaussian. The following subsections
describe the compared inverse methods in detail.

2.4.1. LCMV beamformer
The beamforming is a widely used spatial filtering
approach imported from signal processing to brain
imaging [22, 30]. In this study, we are using a vector-
type implementation of LCMV beamformer, where
the weight matrix is defined as W=

(
wx, wy, wz

)
with coordinate vectors wx,wy,wz ∈ Rm×1. The
weight matrix is defined as the minimizer of the fol-
lowing optimization problem

min WTCW, subject toWT(p)L(p) = I, (13)

where C is the measurement noise covariance matrix
and the vector p represents a single source position
to which the constraints’ submatrices correspond.
The optimized weights are then used to estimate the
source activity as a weighted sum of the measured
data.

2.4.2. sLORETA
Standardized LORETA, also called sLORETA, is based
on the idea of standardizing current density, which
means that both noise variances in measurements
and biological variances are assumed to be taken into
account by scaling the minimum norm estimated
reconstruction [31] by the resolution matrix [23]. In
the case of noiseless measurements, this results in lin-
ear source localization with respect to data with zero
localization error [32–34].

2.4.3. DS
DS is based on the best-fit solution thatminimizes the
residual variance between the measured data and a
dipole forward mapped to measurement space [24].
The goodness of the fit for jth source location is
defined as

gj = 1−

∥∥∥y− LjL
+
j y
∥∥∥2
2

∥y∥22
, (14)

where Lj ∈ Rm×3 is a sub-matrix of the lead field and
(·)+ is the pseudoinverse operator.

2.5. Numerical simulation protocol and
localization error mapping on the brain surfaces
Our aim with the analysis is to assess (a) whether we
benefit from taking into consideration the dynamic
effects of the arterial blood flow in source localiza-
tion when we have a personalized conductivity model

4
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of the patient and (b) whether we benefit from the
more accurate model when we employ an average
conductivity model for various patients and with
measurement noise of various signal-to-noise (SNR)
ratios.

2.5.1. Personalized conductivity model
In this experiment, we have sampled 1500 uniformly
randomized source locations within the brain model
with diastolic conductivity σd, representing data col-
lection of a patient at the end of the diastole. We
picked the corresponding location from the oppos-
ite hemisphere to ensure symmetry from a synthetic
data perspective. Following that, a dipole was placed
at each location one at a time to generate synthetic
EEG data caused by the dipole adding 30 dB SNR
Gaussian noise. Thus, we used a total of 3000 different
data realizations in our experiment.We used the same
random number generator seed to generate noise for
each EEG measurement data set. In this way, the ran-
dom effect created by the randomized noise has been
removed between the models for comparison.

The dipoles were then reconstructed using LCMV
beamformer, sLORETA, and DS for three conduct-
ivity distributions used as prior information: (a) σd

indicating the case where the prior information about
the conductivity is perfectly known, (b) σs indicating
a dynamic model but at the wrong instant, and (c) σ0

neglecting the effects of blood.
From the reconstructions, we evaluated the loc-

ation of a dipole using the maximum principle. The
maximum principle is known to be a reliable estima-
tion technique with dipole scanning [35–37] and dif-
ferent beamformingmethods, e.g. oscillation [38, 39]
and standard [40, 41] techniques. The method is
also used to determine the location estimation via
sLORETA [23].

The dipole localization error (DLE) was determ-
ined as the Euclidean distance from the true and
estimated dipole locations. The DLEs obtained were
placed in the head model for the location of each
true dipole and extended to cover the entire model
by using smooth nearest-neighbor interpolation, giv-
ing a visual representation for each case. Moreover,
the localization discrepancies, i.e. distance between
estimated locations, between models based on differ-
ent prior information were calculated.

2.5.2. Interpatient variation and measurement noise
level
The effect of conductivity is analyzed further by sim-
ulating 225 virtual patients σi

(.). The patients are
divided into 3 sets of 75 patients. In the first set,
denoted as set B (Brain), the statistical atlas (2)–(4)
is utilized. More precisely, we sampled 25 conductiv-
ity distributions for σd, σs and σ0 each

σi
0 ∼ A (15)

Figure 4. Location and orientation of the synthetic
dipolar source used in 25 cases of modeled patients
(green arrow). The azimuthal angle of the source is
16.8◦ and elevation angle is 34.7◦.

σi
d ∼ S(t= 0) i= 1, . . . ,25 (16)

σi
s ∼ S(t= 0.25) (17)

while fixing the conductivity of the skull, scalp and the
electrode positions. This set represents a case where
the geometry of the electrodes and skull conductivit-
ies are known, but the conductivity of the brain tis-
sues are unknown. In the second set, denoted as BS
(Brain+Skull), the state of the brain and the con-
ductivity of the skull are unknown. In the third set,
denoted as BSE (Brain+ Skull+ Electrodes), elec-
trode positions are also not accurately known. Skull
conductivity and electrode positions are Gaussian
distributed. Standard deviation of the skull con-
ductivity is set to 0.0075 Sm−1 while the mean is
0.02 Sm−1, following [10]. The skull conductivity is
not allowed to go under 0.0042 Sm−1, and scalp con-
ductivity was set to 0.33 Sm−1. Standard deviation of
electrode positions is 2.5mm.Those conductivity val-
ues are then used to create simulated measurements
of a deep activity from the left entorhinal cortex,
shown in figure 4, where the conductivity difference
between the average σ0 and both average σd and σs

is the largest. In this experiment setup, we used ten
noise realizations with 30 dB SNR for each simulated
patient. Dipole strength is selected to be 10 nAm,
a typical dipolar primary current amplitude in the
brain [42, 43].

The localization is done in each of the virtual
patients, assuming the standard model without ves-
sels σ0 and the arterial blood flow based model
with σd as prior information to invert (equations (5)
and (6)). These priors emulate the situation of using
an average head model on various patients.

The effect of measurement noise is studied for the
case of a single patient from the Brain set, σd using
either the correct prior σd or σ0 and measurements
with SNR ranging from 5 dB to 30 dB. We simu-
lated 50 realizations for each SNR value to evaluate its
effects over the localization of the source presented in
figure 4.

5
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To further analyze the effect of the vessel model
in different locations of the brain and the presence
of uncertainties in the blood, skull conductivity, and
electrode positions, we performed a numerical exper-
iment with 25 patients σi

d of set BSE by sampling 200
random source locations and adding a counter part
of each of them from another hemisphere for each
patient, resulting in 10 000 randomized source loc-
ations. The experiment and its visualization is done
likewise in section 2.5.1. Briefly, we solved the inverse
problem with both σd and σ0 priors, computed the
DLEs, and determined the discrepancies between the
solutions and the true locations.

3. Results

The wave forms of flow rates, cross-sectional aver-
age velocities, and longitudinal conductivity changes
∆σℓ/σref from the Navier–Stokes system (8)–(10)
along the cardiac cycle are shown in figure 5. Simula-
tions show that the conductivities of blood are 12%–
16% higher than the reference (still blood). The vari-
ability of conductivity in different vessels is the result
of different flow rates and vessel diameters.

Figure 6 present slices of the conductivity distri-
butions σ0, σd, and σs obtained from the anatomical
atlas. In order to emphasize the differences, σd and σs

are presented as differences between these distribu-
tions and σ0. The regions with the largest differences
are located where the main arteries of the brain are
located.

Relative differences between the lead fields of con-
ductivity distributions σs and σ0 with respect to the
lead field of σd are presented in figure 7, together
with histograms. The relative difference is defined
(element-wise) as

ϵj(σ) =
∥Lj(σ)− Lj(σd)∥2

∥Lj(σd)∥2
, j= 1, . . . ,n (18)

where Lj ∈ Rm represents a column of the lead field
matrix L in (12).

The figure shows that the relative difference ϵ(σs)
is much smaller (Q1 = 1.3× 10−3, Q2 = 1.8× 10−3,
and Q3 = 2.6× 10−3), than the relative difference
ϵ(σ0) (Q1 = 6.3× 10−2, Q2 = 8.4× 10−2, and Q3 =
1.2× 10−1). This shows that modeling the vessels
brings considerable changes to the lead field, but the
effects of pulsatility are much smaller.

3.1. Personalized conductivity model
Figures 8–10 present exploded-view plots of the brain
colored accordingly with the DLEs for each source
localization method. The first three rows in each
figure show the DLEs using σd, σd and σ0 pri-
ors, respectively. The fourth and fifth rows present
localization discrepancies between the reconstruc-
tions using σd versus σs and σd versus σ0 priors,
respectively.

Figure 5.Waveforms in the main arteries of the brain and
scalp in one cardiac cycle. From left to right: flow rate,
cross-sectional average velocity, and blood conductivity
changes.

Figure 6. Conductivity distributions obtained from the
anatomical atlas. First row: conductivity values of the
non-vessel model σ0. Second and third rows: the difference
between the conductivity values derived from the arterial
blood flow model σd and σs, respectively, and the
non-vessel model σ0.

Figure 7. Relative difference of the forward models created
using conductivity distributions σs (upper) and σ0

(bottom) with respect to lead field of conductivity
distribution σd. For each case, a histogram is also presented,
where the vertical lines indicate the quartiles. Data with
zero difference were removed from the histograms.

In the case of the LCMV beamformer and DS,
we see an improvement in source localization using
either σd or σs, i.e. prior models with vessels, in com-
parison to the solution with σ0 (no vessels). DLEs are
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Figure 8. Dipole localization errors using sLORETA as a
function of the prior conductivity used in the inversion.
The fourth and fifth rows present localization discrepancies
between the reconstructions using σd versus σs and σd

versus σ0 priors, respectively.

Figure 9. Dipole localization errors using LCMV
beamformer as a function of the prior conductivity used in
the inversion. The fourth and fifth rows present localization
discrepancies between the reconstructions using σd versus
σs and σd versus σ0 priors, respectively.

larger with σ0 as the prior, corroborating the fact that
σ0 is the worst prior among the options considered.

sLORETA errors are visibly poor in the deep
structures of the brain and locations where con-
ductivity values are highest. On the surface level of
the brain and brainstem, however, we can obtain
less than 10 mm localization errors. Additionally,
we can obtain small differences between the static
model and the ones derived from the arterial blood
flow model. The obtained differences, however, are
concentrated in areas close to the main blood
vessels.

Figure 10. Dipole localization errors using DS as a function
of the prior conductivity used in the inversion. The fourth
and fifth rows present localization discrepancies between
the reconstructions using σd versus σs and σd versus σ0

priors, respectively. The DLE is zero for both σd and σs

across the model.

3.2. Interpatient variation andmeasurement noise
level
Considering now the effects of conductivity uncer-
tainties and measurement noise on source localiza-
tion, figure 11 showboxplots of the localization errors
from the virtual patients σi

(.) (equations (15)–(17)),
adopting either the averages σd or σ0 as priors
(equations (5) and (6)) and 30 dB SNR values. The
results of all three sets of patients are presented in the
figure.

The boxplots show improvement for all methodes
in the cases that there is a match between the vir-
tual patient σi

(.) and the average used as prior for the
inversion, even in the presence of that level of noise,
although the improvement becomes more modest as
the amount of uncertainty sources increases (B→
BS→ BSE). This is expressed either with smaller
median values or smaller interquartile ranges, spe-
cially for groups σi

d and σ
i
s indicating the correct prior

ismore robust in the presence of perturbation of vari-
ous kinds. This observation is corroborated by Wil-
coxon’s rank sum test to check the null hypothesisH0

that the localization errors obtained from σd or σ0 as
priors come from the same distribution. The results
of the tests are summarized in table 1 for each group
of virtual patients and methods.

The table shows that set B benefits from using
an accurate prior in general, except for LCMV and
σi
0, where p-value does not reach 0.05. The trend is

the same for BS and BSE sets, but the slight increase
in p-value, specially for LCMV beamformer and DS
indicates that the effect of the correct blood con-
ductivity prior diminishes when more uncertainty
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Figure 11. Localization errors from the virtual patients σi
(.)

from sets B, BS, and BSE (measurements with 30 dB SNR).
Values are in mm. Left column: inversion is done using a
lead field with averaged σd conductivity. Right column:
inversion is done using a lead field with averaged σ0

conductivity.

Table 1. P-values given by Wilcoxon’s rank sum test for the
multipatient experiment (figure 11). p< 0.05 rejects the null
hypothesis that both inversion results come from the same
distribution. Colors represent p-values as indicated in the table.

Patient
group σi

d σi
s σi

0

B sLORETA
LCMV
DS

BS sLORETA
LCMV
DS

BSE sLORETA
LCMV
DS

p< 0.15

p< 0.05

p< 0.01

p< 0.001

factors are introduced for both the inversion and the
measurement models aspects.

Boxplots of DLEs as functions of noise SNR for σd

and σ0 priors are shown in figure 12. The left column
shows the results with the correct prior σd. The box-
plots show that reducing the SNR causes an increase
in DLE. Noise also reduces the differences between

Figure 12. Boxplots of DLE versus measurement noise level;
columns indicate the conductivity used in prior
calculations. In this experiment, σd is the correct prior.

Table 2. P-values given by Wilcoxon’s rank sum test for
measurement noise results in figure 12. p< 0.05 rejects the null
hypothesis that both inversion results come from the same
distribution. Colors represents the significance level as indicated
in the table.

SNR (dB) 30 25 20 15 10 5

sLORETA
LCMV
DS

p< 0.15

p< 0.05

p< 0.01

p< 0.001

the DLEs of the priors, indicating that measurement
noise dominates the error at a certain SNR level.

Measurement noise dominance can be clearly
seen with a Wilcoxon’s rank sum test, presented in
table 2, where p< 0.05 rejects the null hypothesis
that both inversion results come from the same
distribution. The table shows that sLORETA and
LCMV beamformer DLEs distributions are dif-
ferent for SNR⩾ 15 dB. After that, the results
are statistically indistinguishable. However, in the
case of sLORETA, the activity is mostly unrecov-
erable at that point due to the large DLE. In
the case of DS, noise dominates even with high
SNRs.

Figure 13 presents the localization discrepancies
of 25 patients σi

d of set BSE when averaged σd and
σ0 models are used as priors. The brain plots show
differences up to 15 mm for sLORETA and LCMV
beamformer, and 10mm for DS. The localization dis-
crepancies are spread everywhere in the brain model,
but the highest differences are located on the brain-
stem and entorhinal cortices where the differences on
blood conductivities are highest in the inverse mod-
els. The highest differences can be observed near the
blood vessels as well as in the cerebellum, thalami and
the posterior part of the brain using sLORETA, how-
ever, as presented before, sLORETA errors are visibly
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Figure 13. Dipole localization discrepancies between the
reconstructions using σd versus σ0 priors.

poor in the deep structures of the brain. Overall, in
regions far from the main blood vessels, the discrep-
ancies are smaller than 3 mm.

4. Discussion

It is known experimentally that blood flow affects the
electrical properties of blood. In this in silico study,
we assessed the effects of cerebral circulation on EEG
source localization inverse problem. For that, a 3D
time-varying anatomical atlas of the electrical proper-
ties of the human head is used to create virtual patient
heads for EEG. The atlas contains a model of the
cerebral circulation, connecting the Navier–Stokes
equations with the electrical properties of blood via
Visser’smodel.We considered virtual patients in three
situations: (a) at the end of diastole and (b) at peak
systole to evaluate the extremes of the pulsatile flow,
along with (c) a static model without blood flow that
is usually used for EEG source localization.

The results from the Navier–Stokes solver show
that the blood in the main arteries of the brain is
between 12% (diastole) and 16% (systole) more con-
ductive than the reference (still blood). These changes
are significant for source localization in deep struc-
tures near the brainstem, base of the thalamus, and
hypothalamus because of the presence of the circle of
Willis and main arteries of the brain.

EEG source localization was done using the
LCMV beamformer, sLORETA, and DS. Dipole loc-
alization reconstructions using σd (end of diastole)
and σs (peak sistole) as priors are very similar
(figures 8–10), whichmight be due to the fact that the
relative forward model difference is small (figure 7).
DLEs usingσ0 are larger inmost cases. This difference
indicates that the average flow rate plays an important
role in source localization, while the pulsatility effect
is very small and can be neglected. The results suggest
that one could adopt average flow rates to set the con-
ductivity of blood, substantially simplifying the ana-
lysis. It is important to stress that the Navier–Stokes
equations are still needed to find average flow rates in
each blood vessel.

Based on the visual representation of the DLEs,
we can see the greatest differences at locations
with the highest discrepancies in conductivity val-
ues, i.e. the base of the brain, brainstem, thalamus,
hypothalamus, lateral sulci, longitudinal fissure, and
basal surface of the temporal and occipital lobes.
These are all regions near the main arteries of the
brain. This result can be clearly seen in figures 8–10.

When noise is introduced together with vary-
ing conductivities (virtual patients), the results high-
light the importance of an accurate forwardmodeling
scheme in figure 11 and table 1. The aim was to sim-
ulate patient-wise conductivity deviations that can be
witnessed in a real scenario. We studied the effects of
the blood vessels with increasing number or sources
of uncertainty, namely, brain tissue electrical prop-
erties, skull electrical properties, and electrode posi-
tions, in addition to measurement noise. The results
show improvement in the cases where there is amatch
between the virtual patient and the prior average for
moderate noise levels, specially for sLORETA and DS
in all scenarios under consideration. However, when
the amount of measurement noise increase above a
certain level, these dominate the DLEs, masking the
effects of conductivity priors.

The results indicate also that the effects of con-
ductivity mismatch are detectable even for moder-
ate measurement noise for DS, sLORETA, and LCMV
beamformer (figure 12 and table 2). Noting that the
EEG measurement model assumes dipolar activity,
it is somewhat expected to obtain good results with
dipole fitting methods like DS and beamformer. Even
with SNR noise of 30 dB, measurement noise seems
to dominates conductivity prior mismatch in DS.
The linear growth of the median DLEs of DS can be
explained by the fact that it does not consider noise
as its own modeling parameter, unlike the compared
methods. Noise weakens the goodness of the fit and
thus the confidence in the accuracy of the estimation.

Considering the inversion via the lead field with
the correct conductivity distribution σd and the static
conductivity distribution σ0, we can state from the
results that the conductivitymodelσd is valid to 15 dB
and after with sLORETA and LCMVbeamformer and
to 30 dB and after with DS to reconstruct deep activ-
ity. The table of the Wilcoxon rank sum test (table 2)
further demonstrates this for sLORETA and LCMV.
TheDLE difference of DS shown by the box plots can-
not be neglected because it shows numerically the dif-
ference between the compared models. On the other
hand, even if the relative difference is high, DS is so
accurate in both cases that the differences are small in
clinical settings and in terms of EEG source localiza-
tion accuracy and its limits [44].

Previously, Fiederer et al [45] studied the effects
of blood vessels in a high-resolution volume con-
ductor model for EEG. The authors observed large
errors near the main cerebral arteries and piercing
vessels, e.g. the carotid foramina and intraosseous
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veins. Their results show that the piercing vessels
act as shunting paths for electrical signals, causing
large errors if the model does not take them into
account. Our work is consistent with their results and
complements part of the limitations of the referred
work as mentioned by the authors, namely taking
in consideration interpatient variations, inhomogen-
eous segments, and the relation between the elec-
trical properties of blood and its speed inside the
blood vessels. The main novelty of our approach is
that we employ a numerical solver of the Navier–
Stokes equations for pulsatile flows in the superior
aortic system, associated with Visser’s model to con-
nect these equations with the electrical properties of
the blood. We also consider the main foramina to
build the anatomical atlas. Although the averaging
process to determine the statistics of the atlas makes
these openings not very well resolvable in the images,
their effects are statistically present.

Effects of conductivity uncertainties on localiza-
tion of deep activities have not been studied much,
but comparing to other studies about the influence of
tissue conductivity to localization accuracy of dipole
fitting methods on EEG [46–48] and in deep or oth-
erwise inferior sources in a case of a static conduct-
ivity distribution [5, 49], the obtained DLEs of DS
are consistent with the reported ones. The accuracy
of the LCMV beamformer was slightly worse than it
has been reported with a cortical source in low and
high noise cases [41] which could be explained by the
depth of the true source. However, the discrepancy is
so small that it can be explained by any modeling dif-
ference or by a combination of those.

The obtained measurement noise robustness of
sLORETA has previously been demonstrated [50, 51].
As a comparison to localization errors obtained with
real measurements and similar SNR levels, DS in the
case of σd-based inverse model and sLORETA have
lower median errors than those obtained at 20–30 dB
(over 11 mm for an inferior source) [52, 53]. How-
ever, it is worth noting that the SNR levels are estim-
ated and not claimed to be defined, and the head
models in both cases are simplified in the studies of
Cuffin et al. On the other hand, our settings are syn-
thetic, and the Simplex method used is not compared
in this study.

Blood flow prior model has an effect on source
localization, even when skull conductivity and elec-
trode locations uncertainty are added to the problem
(figure 13). The results show differences up to 15 mm
for sLORETA and LCMVbeamformer and 10mm for
DS in the brainstem and entorhinal cortices regions.
In regions far from the main arteries vessels, the dis-
crepancies are smaller than 3 mm.

4.1. Clinical perspectives and study limitations
The model of the superior aortic arterial tree model
requires knowledge about the geometry of the ves-
sels, aswell as about themechanical properties of their

walls and physiological conditions of the patient. We
can group the parameters into three main categor-
ies: (a) Geometry: vessel lengths and diameters, (b)
Boundary conditions: cardiac output flow per cycle,
heart rate, and terminal resistances, and (c) Mechan-
ical: Young modulus of the vessel’s walls.

It is important to stress that physiological partic-
ularities and/or pathological conditions might affect
these parameters, e.g. ageing effects on the elastic
properties of the vessel’s walls, atherosclerosis that
can greatly reduce the lumen of the affected ves-
sels, or even the heart rate during EEG data collec-
tion. Ideally, the superior aortic arterial tree model
must be adjusted to each patient to generate accurate
blood flow waveforms and, as consequence, realistic
electrical properties. Otherwise, a validated averaged
model can be used [54], although it would be subop-
timal for the specific case.

Some parameters of themodel can be easily adjus-
ted like heart rate and, to some extent, the geometry
via non invasive anthropometric measurements to
adjust the scale of the model. Cardiac output flow per
cycle is more difficult to assess. Echocardiography is a
good candidate to determine it, but would require the
use of an ultrasound probe. In contrast, other para-
meters are today impossible or difficult to measure in
a clinical setup, like the mechanical properties of the
walls and terminal resistances.

The adjustment of the model to the needs or spe-
cial circumstances of an individual can be specially
important. A few examples are patients with stroke
induced seizures, where part of the arterial tree might
be permanently obstructed, in patients with athero-
sclerotic vessels that affects their elastic properties and
reduce their lumen, and patients with impaired cereb-
ral autoregulation that makes the blood flow more
sensitive to pressure changes.

The model can be adjusted to cases like these by
setting the parameters of the models, however model
individualization for pathological conditions is still
an open area of research, where some results can
already be found in the literature [28, 55, 56].

Ageing effects can also be taken in consideration
by setting the vessel’s wall Young Modulus, however
more studies are still necessary. Sensitivity analysis of
the blood flow model with respect to its parameters
has been studied before [55] but to what extent each
of the parameters affects EEG localization error is not
yet known and requires further investigation. These
would be the best candidates to focus for individual-
ization.Once themodel is parameterized, theNavier–
Stokes equations can be updated in reasonable time
(minutes) and the atlas can be quickly updated.

The proposedmodel has limitations. (a)We based
our analysis on in silico models. The following find-
ings should be supported by experimental data; (b)
there are no ageing effects in the blood vessel model;
(c) no collaterals other than the circle of Willis were
modeled; (d) the venous side of the circulation was
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not modeled; and (e) all tissues were modeled as
isotropic.

As a further study, a more realistic measurement
model could be used tomake the comparison between
dipolar fitting methods and distribution methods.
This can be done, e.g. by constructing volumetric
activity distributions within the brainmodel or utiliz-
ing dynamical models, like neural mass models [57],
to create the measurements. The results of this study
must be validated with experimental data, where car-
diovascular data must be recorded in parallel to EEG
data acquisition for control of the experiment.

5. Conclusion

In this study, we have examined the effects ofmodeled
conductivity caused by blood flow on source localiza-
tion using a dynamical anatomical atlas of the human
head.

In cases where a personalizedmodel of the head is
available, blood circulation mismodeling causes loc-
alization errors, especially in the deep structures of
the brain where the main cerebral arteries are loc-
ated. The average flow rate plays an important role in
source localization, while the pulsatility effect is very
small and can be neglected.

The relevance of the blood flow model is high-
lighted by the localization of a deep dipolar source
located at the position where conductivity differ-
ences between the models are most pronounced. The
results indicate that the effects of conductivity mis-
match are detectable even with moderate measure-
ment noise and considering interpatient variations
for sLORETA, and LCMV beamformer. However,
smaller SNRs dominate the error, masking the effects
of conductivity priors at a certain point. In the case
of DS, noise dominates even with high SNRs, but the
absolute error is the smallest between the methods
studied.

Blood flow prior model has an effect on source
localization, even when skull conductivity and elec-
trode locations uncertainty are added to the prob-
lem. The results show differences up to 15 mm for
sLORETA and LCMVbeamformer and 10mm for DS
in the brainstem and entorhinal cortices regions. In
regions far from themain arteries vessels, the discrep-
ancies are smaller than 3 mm

While the source localization errors tend to
increase towards the deeper areas for each method,
the significance of the atlas model seems to be
emphasized for the methods that are known to loc-
alize deeper activity in general, and in particular, the
beamformer techniques.
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