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Bioclimatic atlas of the terrestrial 
arctic
Mika Rantanen  1 ✉, Matti Kämäräinen1, Pekka Niittynen2,3, Gareth K. Phoenix4, 
Jonathan Lenoir  5, Ilya Maclean  6, Miska Luoto  3 & Juha aalto1,3

the arctic is the region on Earth that is warming at the fastest rate. In addition to rising means of 
temperature-related variables, Arctic ecosystems are affected by increasingly frequent extreme 
weather events causing disturbance to arctic ecosystems. Here, we introduce a new dataset of 
bioclimatic indices relevant for investigating the changes of arctic terrestrial ecosystems. the dataset, 
called aRCLIM, consists of several climate and event-type indices for the northern high-latitude land 
areas > 45°N. The indices are calculated from the hourly ERA5-Land reanalysis data for 1950–2021 in 
a spatial grid of 0.1 degree (~9 km) resolution. The indices are provided in three subsets: (1) the annual 
values during 1950–2021; (2) the average conditions for the 1991–2020 climatology; and (3) temporal 
trends over 1951–2021. The 72-year time series of various climate and event-type indices draws a 
comprehensive picture of the occurrence and recurrence of extreme weather events and climate 
variability of the changing arctic bioclimate.

Background & Summary
Over the last four decades, the Arctic has warmed four times faster than the global average1–3. This warming 
has led to diminishing snow and ice4, increased evaporation and precipitation5, thawing permafrost6 and other 
consequences for the natural ecosystems, living biotas and societies7,8. The warming has also driven increasing 
occurrences of extreme weather events such as persistent heatwaves9,10 or winter warming events11. Changes in 
temperature and precipitation have already caused major alterations in Arctic life and ecosystems12,13.

One of the most fundamental and profound changes has been the overall poleward increase in vegetation 
productivity, commonly referred to as “Arctic greening”14–16. However, the converse, i.e., “Arctic browning” has 
also occurred in some Arctic regions14,17,18. The climatic drivers of these biome-shift trends are multifarious and 
can be linked to baseline air temperature conditions as well as to both gradual climatic changes in bioclimate, 
e.g., growing season air temperature (greening or browning depending on the magnitude and direction of air 
temperature change), and sudden weather events, e.g., extreme winter warming (browning).

Critically, much current understanding of how Arctic terrestrial life and ecosystems will respond to climate 
change is based on data of long-term climate averages, such as the 30-year average climatologies, at coarse 
spatial resolutions of 10–100 km. However, short-term (intra- and interannual) bioclimatic variability linked 
with seasons and extreme weather events can exert a strong influence on the structuring and functioning of 
ecosystems19, and extreme events may have disproportionate impacts on ecosystems due to passing ecological 
or biological thresholds20. Thus, at the ecosystem level, climate change has manifested throughout trends in both 
annual and seasonal temperature and precipitation patterns, but also throughout extreme events, such as tran-
sient periods of extreme winter warmth, summer drought or high wind speeds. Such trends may only become 
apparent in daily or sub-daily climatic datasets extending over sufficiently long time periods.

Many scientific domains rely on high-quality climate information in an applicable format. For example, 
upscaling measurements of greenhouse gas fluxes21 or modeling of species distributions22 under past, current 
and future climates are typically carried-out on gridded climate datasets. Obviously, the realism of the outcome 
is partly dependent on the relevance of the used climate indices and the spatiotemporal resolution of the climate 
data.
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Today, atmospheric reanalyses23,24 provide temporally and spatially consistent evolution on climate vari-
ables without being limited by the challenges arising from the uneven coverage of in-situ observations. 
Furthermore, by applying various downscaling methods, several spatially fine-grained bioclimatic datasets have 
been published in recent decades, e.g., WorldClim25, TerraClimate26, CHELSA27 or MERRAclim28. However, 
the climatologies traditionally presented – such as annual, seasonal, or monthly averages – focus mainly on 
seasonally-averaged temperature and precipitation, which may fail to capture many ecologically important 
aspects of the Arctic climate. For example, snow cover duration29,30, rain-on-snow events31, water vapor pressure 
deficit32 or extreme wind events33 are relevant for many biological, biogeochemical or geomorphological pro-
cesses happening in the Arctic but may not be fully represented by the more commonly used climate statistics. 
Climate datasets important for the Arctic and its terrestrial ecosystems may therefore still lack the relevant 
temporal resolution or the relevant bioclimatic indices to better capture extreme events, and their recurrence 
and impacts.

Here, we present a new dataset of Arctic bioclimatic indices, called the Bioclimatic Atlas of the Arctic 
(ARCLIM). The ARCLIM dataset consists of 14 climate and event-type indicators that are particularly relevant 
for investigating the changes in the Arctic ecosystems driven by both trends (push) and stochastic events (pulse) 
accompanying climate change, such as growing season length, the number of rain-on-snow events or the heat-
wave magnitude index (Fig. 1). The ARCLIM variables are computed from the ERA5-Land dataset34, which 
includes global hourly data at 0.1 degree (i.e. 9 km) of spatial resolution for various surface parameters. The 
ARCLIM dataset covers the northern high-latitudes (45–90°N) from 1950 to 2021, hence providing a 72-year 
long consistent time series of seasonal climate and extreme event indicators in the Arctic. We provide ARCLIM 
variables representing: (1) the mean conditions for the climatology 1991–2020; (2) temporal trends over  
1951–2021; and (3) annual values during 1950–2021.

Methods
The ERA5-Land dataset. The ARCLIM dataset is derived purely from the ERA5-Land dataset34. ERA5-
Land, provided by European Centre for Medium-Range Weather Forecasts (ECMWF), is a downscaled re-sim-
ulation of the land component of global ERA5 reanalysis23. The horizontal resolution of ERA5-Land is 0.1°, 
downscaled from 0.25° used in ERA5. The ERA5-Land dataset is produced by the ECMWF land surface model 
Carbon Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land35, which is forced by the meteoro-
logical fields from ERA5. Observations are indirectly incorporated via comprehensive assimilation of instrumen-
tal and remote sensing observations into the ERA5 reanalysis dataset23. The ERA5-Land dataset is currently the 
most accurate modern reanalysis product in terms of horizontal and temporal resolution, making it a suitable 
dataset to use as a basis of the ARCLIM dataset. It is updated near real time, making it computationally feasible to 
update the ARCLIM dataset regularly.

Downloading and pre-processing the input data. The ERA5-Land dataset was downloaded from 
Copernicus Climate Data Store (CDS, cds.climate.copernicus.eu) for the period 1950–202136,37. The list of all 
downloaded input variables is shown in Table 1. The variables were downloaded for the domain north of 45°N, in 
the native 9-km spatial resolution and with a one-hour temporal interval (Fig. 2).

Due to the large data volume of the hourly ERA5-Land dataset, for each day, we computed daily mean,  
maximum, minimum and sum values of the variables. These daily statistics were archived to CSC (Finnish IT 
center for science) Allas object storage system (Fig. 2). For the instantaneous variables (2t, 2d,skt, snowc, u10, v10),  
daily mean, maximum and minimum values were archived, and for the accumulated variables (tp, sf) only 
the daily sum values were archived. Furthermore, according to the ERA5-Land convention34, the accumulated 
variables are accumulated from 00 UTC to the next 24 hours (i.e., the accumulation at 00 UTC represents the 
accumulation during the previous day). Thus, before archiving tp and sf variables, we shifted the time axis back-
ward by one day so that the accumulations at 00 UTC correspond to the actual day, and not the previous day.

Calculation of ARCLIM variables from the pre-processed ERA5-Land dataset. For each year dur-
ing 1950–2021, we read the archived daily ERA5-Land data from CSC Allas and calculated the set of ARCLIM 
variables (Table 2). The reading of archived ERA5-Land files and the calculation of ARCLIM variables were 
performed with Python programming language and standard packages, such as Xarray38. The calculation of 
ARCLIM utilised parallel computing with the Dask tool.

The calculations of the ARCLIM variables were done in the native 0.1° by 0.1° regular latitude-longitude 
ERA5-Land grid. Thus, no spatial interpolation was performed in any stage of the production of the ARCLIM 
dataset. As ERA5-Land is a land-only dataset, the ARCLIM variables were calculated only for terrestrial areas. 
Therefore, the grid cells representing the ocean are marked as missing values and are displayed as NaN in the 
Xarray datasets.

After computing the annual values for each year during 1950–2021, we calculated the average conditions 
for the period 1991–2020 and the trends for 1951–2021 for each variable (Fig. 2). The magnitude and statistical 
significance of the trends were calculated using the Theil-Sen slope estimator39,40 and Mann-Kendall trend test, 
respectively, as implemented in the pyMannKendall Python package41. The p-values representing the statistical 
significance of the trends are provided in the dataset. The trends are calculated starting from 1951, because 1951 
is the first complete year representing the winter conditions in the ERA5-Land dataset.

Below, we provide short descriptions of the ARCLIM variables. The maps depicting both the average con-
ditions of 1991–2020 and the trends over 1951–2021 for each variable can be found from the supplementary 
material (Figs. S1–S18). In addition to the 14 listed bioclimatic variables, ARCLIM includes annual mean  
2-m temperature, annual precipitation, annual snowfall and annual mean 10-m wind speed (Table 2).
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Fig. 1 Examples for 3 out of the 14 ARCLIM variables. The left panels show the average conditions for the most 
recent climatological normal 1991–2020 and the right panels show the 1951–2021 linear trend in (a,b) the 
thermal growing season length (GSL), (c,d) the number of rain-on-snow events (considered from Nov-Apr 
period each year) and (e,f) the heatwave magnitude index. Note that the area shown in the maps extends north 
of 60°N, while the spatial domain of the dataset covers 45–90°N. The trends (b,d,f) are calculated using Theil-
Sen slope estimator, and areas with statistically insignificant trends (p > 0.05, according to Mann-Kendall trend 
test) have been masked out (in white). The areas without rain-on-snow events (c) are shown with white color. 
See Methods section for the definitions of the variables.
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Thermal growing season length (GSL). The period of the year when daily mean temperature remains perma-
nently at or over a predefined threshold. In agreement with several previous studies42–45, 5 °C is used as a thresh-
old. The beginning and the end of the growing season are determined using the integral method46. The integral 
method identifies the local minimum of the summation curve of T - 5 °C, where T is the daily mean temperature 
in degrees Celsius. The day subsequent to this minimum is the first day of the growing season. Likewise, the 
absolute maximum of the sum T - 5 °C is used to determine the end date of the growing season. Moreover, the 
onset date must be earlier than the 1st of July, otherwise the growing season is not defined. Productivity and life 
cycles of Arctic organisms are limited not only by the overall temperatures but also by the length of the short 
growing season47. Thus, even a minor absolute lengthening of the thermal growing season can induce profound 
consequences in relative terms in the Arctic.

Thermal growing degree day sum (GDD). The sum of daily mean temperatures which exceed the 5 °C threshold 
during the growing season. The growing season is defined as above by the GSL variable. Temperatures below 
the threshold within the growing season do not decrease the sum. Thermal growing degree day sum integrates 
the length and overall warmth of the warm season and is a commonly used variable to characterize the overall 
summer thermal conditions in ecological modeling of cold ecosystems46,48.

Frost during the growing season (FGS). The sum of daily minimum skin temperatures which are below freezing 
during the growing season, as defined by GSL. Skin temperature is extracted from ERA5-Land dataset and rep-
resents the temperature of the uppermost surface layer of the Earth. The frost sum is positive and sums negative 
temperature values, e.g., a skin temperature of −4 °C increases the sum by 4 °C. Arctic plants and other organ-
isms can generally tolerate cold temperatures, but they are typically most sensitive to frost damage during the 
early flowering season when reproductive organs are exposed49.

Full name Short name Unit Pre-processing

2 metre temperature 2t K DMEA, DMAX, DMIN

2 metre dew point temperature 2d K DMEA, DMAX, DMIN

Skin temperature skt K DMEA, DMAX, DMIN

Total precipitation tp m DSUM

Snowfall sf m of water equivalent DSUM

Snow cover snowc % DMEA, DMAX, DMIN

10 metre U wind component u10 m/s DMEA, DMAX, DMIN

10 metre V wind component v10 m/s DMEA, DMAX, DMIN

Table 1. List of input variables in the ERA5-Land dataset. DMEA = daily mean, DMAX = daily maximum, 
DMIN = daily minimum, and DSUM = daily sum.

Full name Abbreviation Unit Reference, if any
Input 
variable(s)

Thermal growing season length GSL days Aalto et al.42 2t

Thermal growing degree day sum GDD °C days Aalto et al.42 2t

Frost during the growing season FGS °C days 2t, skt

Freezing degree days FDD °C days 2t

Number of rain-on-snow events ROS year−1 Cohen et al.51 tp, sf, snowc

Number of winter warming events WWE year−1 Treharne et al.55 2t, snowc

Intensity of winter warming events WWI °C days Treharne et al.55 2t, snowc

Heatwave magnitude index HWMI Dobricic et al.10 2t

Vapor pressure deficit magnitude index VPDI 2t, 2d

Summer warmth index SWI °C Berner et al.62 2t

Snow season length SSL days snowc

Onset of snow season SSO Day of year snowc

End of snow season SSE Day of year snowc

Number of high wind speed events HWE year−1 u10, v10

Annual mean temperature TAVG K 2t

Annual precipitation PRA m tp

Annual snowfall SFA m sf

Annual 10-m wind speed WSA ms−1 u10, v10

Table 2. The list of ARCLIM variables. Further details and definitions are provided in the main text.
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Freezing degree days (FDD). The sum of daily mean temperatures which are below freezing during the winter 
season. The onset of the freezing season is determined by the integral method (i.e., the local maximum in the 
summation curve of daily mean temperatures). The end of the freezing season is determined using the local 
minimum of cumulative daily mean temperatures. The year denotes the year of the late winter season (e.g., 
freezing season 2020 refers to the period of July 2019–June 2020). The freezing degree day sum is positive and 
sums negative temperature values, e.g., a daily mean temperature of −4 °C increases the sum by 4 °C. Freezing 
degree day summarizes the ‘harshness’ of winter conditions relevant for organisms exposed to free atmosphere 
conditions without the shelter of snow cover50.

Number of rain-on-snow events (ROS). Rain-on-snow (ROS) events are defined as days with total liquid pre-
cipitation greater than 5 mm on a snow-covered grid cell. A snow-covered grid cell is defined as a grid cell whose 
daily averaged snow cover fraction is 0.5 or greater. Daily liquid precipitation is obtained by subtracting snow-
fall from the total precipitation. The definition is based on a combination of definitions by Cohen et al.51 and 
Mooney and Li52. All ROS events are considered from the whole winter (Nov-Apr) season. The year denotes the 
year of the late winter season (e.g., ROS events in 2020 refers to the period from November 2019 to April 2020). 
ROS events can drastically affect the properties of snow pack, soil temperatures, cause surface icing and thus 
damage plants and affect feeding of Arctic mammals31,53,54.

Number of winter warming events (WWE). Adapted from Treharne et al.55, winter warming events (WWEs) 
are defined as days when daily mean temperature of 2 °C or higher occurs in a grid cell which is snow-covered. 
A snow-covered grid cell is defined as a grid cell whose daily averaged snow cover fraction is 0.5 or greater. In 
line with Treharne et al.55, WWEs are calculated only from the November-April period to avoid these extreme 
events being confounded with warm periods towards the end of autumn or start of spring. The year denotes the 
year of the late winter season (e.g., WWEs in 2020 refers to the period of November 2019 until April 2020). The 
so-called WWEs can melt the insulating snowpack, lead to premature loss of winter freeze tolerance in plants 
and thus, cause frost damage in vegetation if followed by cold temperatures55,56.

Intensity of winter warming events (WWI). To better capture the biological importance of WWEs, a further 
intensity metric was used. The intensity of WWEs is defined according to Treharne et al.55. The cumulative 
daily mean air temperature (°C) is linearly weighted by the duration throughout the WWE: for example, for a 
3-day event with daily mean air temperatures of 4 °C, 6 °C and 3 °C, the intensity is defined as (4 * 1) + (6 * 2) +  
(3 * 3) = 25 °C days. This is used to capture the increasing importance of duration in initiating biological 
responses (such as loss of cold tolerance in plants). The annual intensity is the total accumulated intensity of the 
events within a given winter. The events are calculated only from the November-April period. The year denotes 
the year of the late winter season (e.g., WWEs in 2020 refer to the period of November 2019 until April 2020).

Heatwave magnitude index (HWMI). This indicator is calculated according to the definition presented in  
earlier studies10,57. The index is based on daily maximum 2-m temperature, and its calculation consists of the 
following stages:

 1. For each day of the June-August period, we calculate the 90th percentile of daily maximum temperatures 
using a 31-day moving window and the 1981–2010 climatology. This means a distribution of 930 values  
(31 days × 30 years) for each summer day from which the 90th percentile is calculated.

 2. Heatwave days are then defined as days during the June-August period when the daily maximum temper-
ature exceeds the predefined 90th percentile for that calendar day. The heatwave needs to last at least three 
consecutive days. Hence, events which last less than three days are excluded from the computation.

 3. Based on Dobricic et al.10, the daily magnitude of the heatwave is defined as MD = (Td-T25)/(T75-T25), 
where Td is the daily maximum temperature, and T75 and T25 are the 75th and 25th percentiles, respective-
ly, of annual maximum temperature during the 1981–2010 period (30 values). Thus, if the daily maximum 
temperature equals the 75th percentile, Md gets a value of 1.

 4. The magnitude of each separate heatwave in a given summer is defined as the cumulative sum of daily 
heatwave magnitudes (step 3 above) during the heatwave. There may be several heatwaves in the grid cell 
within a given summer, so the cumulative values are calculated separately for each heatwave.

 5. Finally, the heatwave magnitude index for a given grid cell is defined as the maximum cumulative magni-
tude of the strongest single heatwave occurring within a given summer.

Intensive heatwaves can cause unprecedented melting rates in the Arctic ice sheets and rapid permafrost 
thawing, intensified wildfires and drought that can damage the Arctic plants not adapted to high temperatures10.

Vapor pressure deficit magnitude index (VPDI). This indicator represents high vapor pressure deficit (VPD) 
events during the summer period (June-August). The VPD variable is calculated from the difference between 
the saturated vapor pressure and the actual vapor pressure, as follows:

VPD VPsat VPair ,= −

where VPsat is the saturated vapor pressure (in Pa), calculated with improved Magnus formula58.

VPsat e610 94 ,T m T m( (17 625 2 )/(243 04 2 ))= . . . +∗ ∗
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and VPair is the actual vapor pressure (or the vapor pressure at dew point temperature):

VPair e610 94 D m D m( (17 625 2 )/(243 04 2 ))= . ∗ .. ∗ . +

In these equations, T2m and D2m are the daily-averaged 2-m temperature and 2-m dew point temperature 
in Celcius, respectively. The vapor pressure magnitude index (VPDI) is calculated following the methodology 
of heatwave magnitude index (see above), but using VPD instead of the daily maximum temperature. Thus, the 
VPDI represents the magnitude of the strongest single VPD event within a given summer. Increasing VPD influ-
ences plants’ stomatal conductance and transpiration and thus has subsequent impacts on photosynthesis and 
growth with higher risks of carbon starvation and desiccation59,60. In addition, increasing VPD, through reduced 
transpiration, reduces the buffering effect of vegetation on local microclimatic conditions61.

Summer warmth index (SWI). Summer warmth index (SWI) is calculated as the annual sum of monthly mean 
2-m temperatures above 0 °C. The monthly mean 2-m temperatures are derived from daily mean 2-m temper-
atures. The SWI is commonly used as an indicator of cumulative summer heat load in the Arctic62–64, and the 
recently increased summer air temperatures have been shown to explain large parts of the observed greening 
across the Arctic tundra62.

Snow season length (SSL). The length of the snow season (SSL) is defined as the longest continuous period 
of the year when the grid cell is snow-covered (i.e., the daily averaged snow cover fraction is 0.5 or greater). 
The year denotes the year of the late winter season (e.g., snow season 2020 refers to the winter 2019/2020). 
Besides temperature, snow cover duration limits the time of activity and availability of food resources for most 
of the Arctic terrestrial organisms65. Changes in snow cover duration may alter the energy balance of the whole 
Arctic66 but also cause major shifts in surface-level microclimates67.

Onset of snow season (SSO). The onset of the snow season (SSO) indicates the first day of the snow season, as 
defined by the variable SSL. The day is given as the ordinal day of the year (1–366). In those cases when the onset 
of the snow season occurs after the New Year, the day numbering continues after 365/366 (e.g. January 1 = 366, 
January 2 = 367,…). This procedure allows that the variable becomes continuous and there are no step changes 
in the time series after day 365. At latest the SSO determines the start of dormancy for low-growing vegeta-
tion65. Because snow effectively insulates the ground, timing of the SSO in relation to temperature fluctuations is 
important in determining the soil temperatures of early winter and is thus related, e.g., to soil microbial activity 
and permafrost6,68.

End of snow season (SSE). Similarly as SSO, the end of the snow season (SSE) indicates the day of the year 
when snow season ends, as defined by the variable SSL. The day is given as the ordinal day of the year (1–366). In 
those cases when the end of the snow season occurs before the New Year, the day numbering goes negative (e.g., 
December 31 = 0, December 30 = −1, etc.). The SSE variable is strongly related to phenology (i.e., the timing of 
life events) of Arctic organisms and can be one of the most important factors limiting the length of the growing 
season as snow can still be present long after the above air has already warmed up66,69.

Number of high wind speed events (HWE). This indicator represents the annual number of days when the 10-m 
height daily maximum wind speed in the grid cell exceeds the predefined threshold. The threshold is calculated 
using a 31-day moving window and the 1981–2010 climatology of daily maximum wind speed. This means a 
distribution of 930 values (31 days × 30 years) for each calendar day from which the 90th percentile is calculated. 
The wind speed in the grid cell is calculated from the daily maximum 10-m u- and v-wind components as:

ws u v10 102 2= +

High wind speed relocates snow, organic matter and fine sediments and distributes seeds and spores of 
plants70,71 but may also cause desiccation and wind-chill to Arctic organisms72–74.

Data Records
The ARCLIM dataset is available through Figshare repository75. The dataset consists of three subsets: (1) the 
annual values for 1950–2021; (2) the average conditions for the 1991–2020 climatology; and (3) trends and 
their associated p-values over 1951–2021. Note that the annual values (1) are aggregated over the whole year or 
over a specific time period of the year (e.g., growing season, winter season, etc.). Thus, for event-type variables, 
ARCLIM does not provide information on when a single event during the year has occurred. This information 
would require a daily temporal resolution that would multiply the volume of the data and was therefore not 
possible to provide in the public repository.

The datafiles are provided both in a NETCDF4 and GeoTIFF format. The files for annual values follow the naming 
format arclim_variable, where “variable” refers to the abbreviation shown in Table 2 (e.g., arclim_GSL.nc or arclim_
GSL.tif). The averages for the 1991–2020 climatology for all variables are in the file named arclim_means.nc, and 
analogously trends and p-values in the files named arclim_trends.nc and arclim_pvalues.nc, respectively.

technical Validation
The ARCLIM dataset is derived from ERA5-Land, which is a state-of-the-art global dataset for various land 
applications. As ERA5-Land is still a relatively new dataset, only a few studies so far have validated its perfor-
mance against in-situ observations.

https://doi.org/10.1038/s41597-023-01959-w
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Regarding snow depth, Muñoz-Sabater et al.34 documented that ERA5-Land performs varyingly compared to 
ERA5. The ERA5-Land dataset outperforms ERA5 in the US and in complex terrain where ERA5-Land benefits 
from its higher spatial resolution. Instead, in Scandinavia, ERA5 was found to perform better than ERA5-Land. 
Räisänen76 compared mean snow depth in March for 39 winter seasons (1982–2020) from ERA5-Land pre-
dictions with two Finnish station observations: Sodankylä and Helsinki. He found high interannual correla-
tion (0.92–0.97), but a slight negative bias for Sodankylä (i.e., observations had less snow than predicted by 
ERA5-Land).

For precipitation, Xu et al.77 showed that ERA5-Land and ERA5 exhibit similar performance in precipitation 
metrics on an annual basis, but both datasets were found to underestimate the mean rate of precipitation events 
over China. Given that total precipitation from ERA5 is used as an atmospheric forcing field in the production 
of ERA5-Land, their similar characteristics in precipitation metrics is perhaps not surprising.

In Finland, winter (November-March) precipitation from ERA5-Land were found to be overestimated by 
12% in Helsinki and by 18% in Sodankylä76 compared to observations, but these discrepancies may be explained 
by the rain gauge undercatch which is prominent, especially in winter, when precipitation is mostly solid78. 
Despite these slight biases in precipitation, Räisänen76 reported high interannual correlation (0.91–0.96) 
between ERA5-Land predictions and precipitation observed at meteorological stations in winter, even though 
ERA5 (and thus ERA5-Land) does not assimilate precipitation observations from Europe23.

To further assess the performance of the ERA5-Land dataset, we conducted a validation for summer 
(June-August) and winter (December-February) mean temperatures at 2-m height (T2m) using station-based 
data from the Global Historical Climatology Network Monthly (GHCN-M) database version 479. We used the 
station data which was homogenized (indicated by the suffix “.qcf ” in the GHCN-M database) for non-climatic 
effects such as station relocations or time-of-observation biases. The homogenization was also the reason 
why we did not use daily station data for validation because the daily observations in GHCN-Daily are not 
homogenized80.

As ARCLIM is primarily intended for monitoring the Arctic bioclimate and studying responses of northern 
land ecosystems to climate change, the validation was restricted for the areas north of 60°N. We calculated 
the average temperatures for summer (June-August) and winter (December-February) from both weather sta-
tion observations and ERA5-Land predictions. Only those weather stations that had complete data for at least  
60 years during the 1950–2021 period were included in the validation. The ERA5-Land data corresponding to 
the weather station locations were extracted using the grid cells that contain the location of the weather stations. 
We noted that part of the stations located at the coastline could not be used, as the nearest ERA5-Land grid point 

Fig. 2 The production of the ARCLIM dataset step by step.
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was located in the sea and therefore no data was available for those locations. In total, our criteria resulted in  
231 weather stations for the summer period (Fig. 3) and 237 weather stations for the winter period (Fig. 4).  
We calculated Pearson correlation coefficient (R), the bias (defined as the average difference: ERA5-Land pre-
dictions minus weather stations’ observations), root mean square error (RMSE) and the slope of the regression 
for each weather station. These results are discussed in the subsequent paragraphs.

The observed interannual variability in summer temperatures are reproduced relatively well in ERA5-Land 
(Fig. 3a). The median correlation (R) across all 237 weather stations is 0.94 (Fig. 3a; Table 3), with 80% of the 
weather stations reporting R > 0.90. The correlation appears to be the highest over Fennoscandia and western 
Russia. These regions also have the densest observation network, which may partly explain the higher correla-
tion, due to the larger number of assimilated observations to ERA5. In line with the highest correlation, RMSE 
is the lowest over Finland and western Russia (Fig. S19). In contrast, ERA5-Land performs the least well for the 
few stations located on the coast of Greenland, which all have R < 0.8. The median bias (−0.21 °C, Fig. 3b) is 
negative, implying that summer temperatures in ERA5-Land tend to be slightly lower than the values measured 
at the weather stations. The most negative biases are associated with the weather stations located near the coasts, 
in particular along the Norwegian coastline.

In winter, ERA5-Land performs better than in summer (Fig. 4). The correlation is R > 0.90 for 91% of the 
stations, with a median correlation across all stations of R = 0.97 (Fig. 4a, Table 3). The higher correlation in 
winter than in summer can potentially be explained by the higher interannual variability of winter temperatures 
than summer temperatures. In contrast to the negative bias in summer, the bias is mostly positive in winter 
(Fig. 4b). The warm bias is prominent especially in the interior of Siberia, which is a region known for its cold 
winters. These regions also have higher RMSE (Fig. S20). Earlier studies have demonstrated that numerical 
weather prediction models81 and reanalyses82–84 struggle to accurately simulate strong stable boundary layers 
(SBL), and therefore tend to have warm bias especially in the cold-season Arctic83. Thus, our findings of positive 
winter T2m-bias in ERA5-Land (Fig. 4b) potentially stems from SBL-issues in ERA5. Nevertheless, similar to 

Fig. 4 Validation of winter temperatures. Same as Fig. 3, but for winter (December-February) mean 
temperatures.

Fig. 3 Validation of summer temperatures. Pearson correlation coefficient (a) and bias (b) in summer  
(June-August) mean temperatures between ERA5-Land predictions and GHCN-M observations. The bias is 
defined as ERA5-Land predictions minus GHCN-M observations. The statistics are calculated only for stations 
located north from 60°N and with at least 60 years of data during the 1950–2021 period.
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the negative summer bias, the overall positive bias in winter appears to be mostly negative in the coastal stations 
of the European sector of the Arctic (Norway, Svalbard, Iceland and Greenland).

Comparing gridded predictions with weather station observations is not always meaningful due to inher-
ent mismatches in the scale of the data being compared. The temperature in the ERA5-Land represents the 
average conditions of each 0.1° grid cell (about 52 km² at 65°N), and is affected by the average elevation of the 
grid cell. Instead, the station observations are point-based. Therefore, in complex terrain, such as in Norway or 
Greenland, the average elevation of the grid cell may considerably differ from the station elevation. We found 
that especially in summer, the large negative biases in temperature are largely explained by the differences in 
the elevation (Fig. S21a). In winter, the elevation biases were found to be a less explanatory factor (Fig. S21b), 
which is in line with our assumption that issues in simulating winter SBL may play a larger role in the winter 
temperature biases.

The biases in ERA5-Land affect those ARCLIM variables which are calculated using absolute temperature 
thresholds. For example, the negative summer T2m-bias in some coastal Arctic stations (Fig. 3b), where the 
daily mean temperature barely rises above 5 °C threshold during summer, means that GDD and GSL may not 
be possible to compute in ARCLIM. However, as noted earlier, the grid cell in ARCLIM represents a wider 
area and thus the direct comparison to the in-situ observations is problematic. Nevertheless, given the high 
interannual correlation in both summer (R = 0.94) and winter (R = 0.97) temperatures, we consider that the 
ARCLIM dataset largely captures the interannual variability of the bioclimatic variables, especially those which 
are temperature-related.

Code availability
The Python codes needed to reproduce the dataset are available from Github: https://github.com/fmidev/
resiclim-climateatlas.
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