
Department of Computer Science
Series of Publications A

Report A-2023-4

Increasing Release Frequency by Accelerating
Software Development Cycles in Software

Engineering

Simo Mäkinen

Doctoral dissertation, to be presented for public examination with
the permission of the Faculty of Science of the University of
Helsinki in Auditorium CK112, Exactum building, on 28th April
2023 at 13 o’clock.

University of Helsinki
Finland

Supervisors
Tomi Männistö, University of Helsinki, Finland
Tommi Mikkonen, University of Jyväskylä, Finland
Antti-Pekka Tuovinen, University of Helsinki, Finland

Pre-examiners
Ville Leppänen, University of Turku, Finland
Ali Babar, University of Adelaide, Australia

Opponent
Eric Knauss, Chalmers University of Technology and University of
Gothenburg, Sweden

Custos
Tomi Männistö, University of Helsinki, Finland

Contact information

Department of Computer Science
P.O. Box 68 (Pietari Kalmin katu 5)
FI-00014 University of Helsinki
Finland

Email address: info@cs.helsinki.fi
URL: http://cs.helsinki.fi/
Telephone: +358 2941 911

Copyright c© 2023 Simo Mäkinen
ISSN 1238-8645 (print)
ISSN 2814-4031 (online)
ISBN 978-951-51-9144-1 (paperback)
ISBN 978-951-51-9145-8 (PDF)
Helsinki 2023
Unigrafia

Increasing Release Frequency by Accelerating Software
Development Cycles in Software Engineering

Simo Mäkinen

Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
simo.makinen@cs.helsinki.fi

PhD Thesis, Series of Publications A, Report A-2023-4
Helsinki, April 2023, 130 + 66 pages
ISSN 1238-8645 (print)
ISSN 2814-4031 (online)
ISBN 978-951-51-9144-1 (paperback)
ISBN 978-951-51-9145-8 (PDF)

Abstract

In recent years, companies engaged in software development have taken
into use practices that allow the companies to release software changes al-
most daily to their users. Previously, release frequency for software has
been counted in months or even years so the leap to daily releases can be
considered big. The underlying change to software development practices is
equally large, spanning from individual development teams to organizations
as a whole.

The phenomenon has been framed as continuous software engineering by
the software engineering research community. Researchers are beginning to
realize the impact of continuous software engineering to existing disciplines
in the field. Continuous software engineering can be seen to touch almost
every aspect of software development from the inception of an idea to its
eventual manifestation as a release to the public. Release management or
release engineering has become an art in itself that must be mastered in
order to be effective in releasing changes rapidly. Empirical studies in the
area should be helpful in further exploring the industry-driven phenomenon
and understanding the effects of continuous software engineering better.

The purpose of this thesis is to provide insight into the habit of releasing
software changes often that is promoted by continuous software engineer-
ing. There are three main themes in the thesis. A main theme in the

iii

iv

thesis is seeking an answer to the rationale of frequent releases. The second
theme focuses on charting the software processes and practices that need
to be in place when releasing changes frequently. Organizational circum-
stances surrounding the adoption of frequent releases and related practices
are highlighted in the third theme.

Methodologically, this thesis builds on a set of case studies. Focusing on
software development practices of Finnish industrial companies, the thesis
data has been collected from 33 different cases using a multiple-case design.
Semi-structured interviews were used for data collection along with a sin-
gle survey. Respondents for the interviews included developers, architects
and other people involved in software development. Thematic analysis was
the primary qualitative approach used to analyze the interview responses.
Survey data from the single survey was analyzed with quantitative analysis.

Results of the thesis indicate that a higher release frequency makes sense
in many cases but there are constraints in selected domains. Daily releases
were reported to be rare in the case projects. In most cases, there was a
significant difference between the capability to deploy changes and the ac-
tual release cycle. A strong positive correlation was found between delivery
capability and a high degree of task automation. Respondents perceived
that with frequent releases, users get changes faster, the rate of feedback
cycles is increased, and product quality can improve.

Breaking down the software development process to four quadrants of re-
quirements, development, testing, and operations and infrastructure, the
results suggest continuity is required in all four to support frequent releases.
In the case companies, the supporting development practices were usually in
place but specific types of testing and the facilities for deploying the changes
effortlessly were not. Realigning processes and practices accordingly needs
strong organizational support. The responses imply that the organizational
culture, division of labor, employee training, and customer relationships all
need attention.

With the right processes and the right organizational framework, frequent
releases are indeed possible in specific domains and environments. In the
end, release practices need to be considered individually in each case by
weighing the associated risks and benefits. At best, users get to enjoy
enhancements quicker and to experience an increase in the perceived value
of software sooner than would otherwise be possible.

v

Computing Reviews (2012) Categories and Subject
Descriptors:

Software and its engineering → Software creation and management
→ Software development process management → Software
development methods
Software and its engineering → Software creation and management
→ Software verification and validation
Software and its engineering → Software notations and tools →
Software configuration management and version control systems
Software and its engineering → Software creation and management
→ Collaboration in software development → Programming teams
Social and professional topics → Professional topics →
Management of computing and information systems → Project and
people management
General and reference → Cross-computing tools and techniques →
Empirical studies

General Terms:
software process improvement, continuous software engineering, release
engineering, agile software development

Additional Key Words and Phrases:
continuous deployment, continuous delivery, continuous integration,
DevOps, refactoring, maturity models, deployment pipeline, release
models, lead time

vi

Acknowledgements

Pursuing a doctoral degree is akin to a journey that is unique for everyone
who decides to embark on the journey. For me, this thesis marks an end
to a journey that began a decade or so ago. Speaking metaphorically, one
of the publications in the thesis speaks of highways and country roads for
achieving certain objectives. I am inclined to think the road taken for this
thesis journey resembles a country road. A long windy country road at
that. Luckily, I have not had to travel alone. Here, I would like to express
gratitude to all the people I have had the good fortune of meeting along the
road, starting from the very beginning.

Before I begin my story, I would like to offer my sincere thanks to
the honored opponent Eric Knauss hailing from the Chalmers University of
Technology and the University of Gothenburg, and the pre-examiners of the
thesis. Pre-examiners Ville Leppänen from the University of Turku and Ali
Babar from the University of Adelaide did the initial screening of the thesis,
making good remarks in the process. Academia thrives from collaboration.
Also, review and critical evaluation are at the core of science. Without
international and national collaboration, assessing the merit and worth of
doctoral theses would not be possible. I appreciate the comments of the
reviewing parties, and the time and effort invested in the evaluation of this
thesis.

The preparations for this academic voyage of mine were already made a
few years before I actually started my doctoral studies. While I was still a
graduate student in 2011, university lecturer Matti Luukkainen hinted that
there was a teaching assistant position open at the University of Helsinki.
A new professor had just started at the department and needed an assistant
for his courses. Matti Luukkainen is an amazing lecturer who is genuinely
interested in bringing in the best possible teaching methods to his students’
benefit. Matti also supervised my master’s thesis. Thanks Matti for point-
ing out the way.

The period before my doctoral studies during which I worked for pro-
fessor Jürgen Münch was an important one. Research activities in the soft-

vii

viii

ware engineering research group oriented me towards research work. Seeing
the role and importance of international conferences and journals was an
important lesson for the coming doctoral studies. Writing an article on
test-driven development together with Jürgen was particularly instructive
for me. Vielen danke, Jürgen.

For the past several years, many of us have worked remotely due to
the pandemic caused by the coronavirus. As a result, there have been
fewer chances to meet people at offices in many trades and professions.
Fortunately, the world was different in 2013. Tomi Männistö had then just
started as a professor of software engineering at the University of Helsinki.
His office was across the hall in the same corridor where most of our research
group was situated at the time. One day I decided to knock on the door
and greet the new professor.

From the very first visit, Tomi struck me as an easily approachable
person who was willing to lend an ear to anyone walking in the room.
Tomi’s office was always open for those passing by. I was glad when Tomi
accepted to supervise my doctoral thesis. I am grateful not only for Tomi’s
involvement in all of the thesis publications but also for other support and
advice. Over the years, I have had the privilege of hearing about Tomi’s
travels around the world as well. I have truly enjoyed listening to tales from
places like the south pole where penguin colonies inhabit the frozen land.
While the trip with the thesis has mostly been an intellectual one, thank
you Tomi for being with me on this journey.

At the same time, I would like to express my gratitude to my other
two doctoral thesis supervisors Tommi Mikkonen from the University of
Jyväskylä and Antti-Pekka Tuovinen from the University of Helsinki. With
his wide experience, Tommi has given excellent feedback especially during
the writing process of the thesis introduction. Tommi is always looking
forward and thinking about the next step, which helped a lot when we
were working on the maturity model topic. With Antti-Pekka, I worked
closely on many fronts, including collaboration in all research aspects for
the refactoring study. Antti-Pekka is well versed in software engineering.
It was helpful for me to be able to throw out ideas on the table related to
the thesis and discuss them with Antti-Pekka. Having not just one great
supervisor but three was more than I could hope for. Thank you Tommi
and Antti-Pekka for your support and wisdom as well.

This thesis would not have been possible without the Need for Speed re-
search program (N4S) that launched in early 2014. Need for Speed brought
many universities and industrial companies together in Finland. This col-
laboration and the outline of the research program gave a solid framework

ix

on top of which to build a doctoral thesis. There were many workshops,
meetings and gatherings that shaped the research initiatives for the pro-
gram and for this thesis, too. My warm thanks go to all the people who
were involved with the research program. The Finnish innovation agencies
of Tekes and later DIMECC (Digital, Internet, Materials, and Engineering
Co-Creation) provided the financial and organizational basis that made the
program flourish for years.

Working together with other researchers and industrial organizations
in Need for Speed proved to be fruitful from the outset. In one of the
early gatherings in 2014, we met researchers from the Tampere University
of Technology and Aalto University who were also interested in finding
out the mysteries behind continuously providing users with new software
versions. In particular, I found a shared interest with Marko Leppänen
from the Tampere University of Technology.

Research activities with Marko and the others started quickly after our
initial meeting. It did not take more than a week or two after which designs
for the first study were drawn. The interviews followed shortly after. By late
summer, we already had an article draft ready. The joint efforts continued
in the same good spirit in other studies. I am grateful for having had
the chance to explore the topic with Marko. I also appreciate the efforts
of Marko’s colleague Terhi Kilamo from Tampere who brought clarity and
form to many of the studies.

On the same note, I would like to thank all the other researchers who
coauthored the thesis publications and helped with the studies. Many bril-
liant minds from the University of Helsinki, Tampere University of Tech-
nology, Aalto University, and the University of Oulu joined forces for the
studies. Diversity of opinion brings forth ideas, viewpoints, and validation
of hypotheses in all research stages. This thesis would not have been the
same without the contribution of everyone involved in the studies.

Of course, any empirical study is only as good as the collected data.
Many companies in the Finnish software industry both inside and outside
the Need for Speed research program opened their doors to us. Hearing
development experiences directly from people involved in software develop-
ment was enlightening. My heartfelt thanks go to all the wonderful people
and interviewees who dedicated their time to support software engineering
research.

By no small measure, the working environment and atmosphere for do-
ing research is created by persons you interact with on a daily basis. Besides
our research group at the University of Helsinki, I would like to thank the

x

good people who walked the halls of the university and brightened the day
with friendly conversations from time to time.

Sharing the same office space or hall over the years with group members
Patrik Johnson, Max Pagels, Fabian Fagerholm, Hanna Mäenpää, Sezin
Yaman, Leah Riungu-Kalliosaari, Myriam Munezero, and Juha Tiihonen
was a delight. For instance, Fabian’s presence was warmly welcome not
only because he was a trusted friend and colleague but also because he
could clarify any aspect in software engineering when I was in doubt. I
enjoyed the company of everyone else, too. Thanks to Hanna, I got an
introduction to the research of open source ecosystems, which was quite
interesting. Likewise, I am grateful to Petri Kettunen from our group for
providing thought-provoking hints and leads that made me consider the
topic area more broadly. I would also like to mention Arto Hellas, whose
visits and good humor lifted the spirits on many an occasion. Thank you
all.

Ultimately, we all draw strength from our immediate family and loved
ones. I would like to thank my family for their continued support over
the years. My father introduced me to computers at an early age when
hacking computers mostly meant bashing the keyboard of a historic Telmac.
When she was still with us, my mother encouraged and supported me in
my lifelong journey of learning. It is to her memory that I also dedicate this
thesis. Finally, I would like to thank my sister and her family for making
me feel at home whenever I visited them.

Helsinki, April 2023
Simo Mäkinen

List of Original Publications

Publication I M. Leppänen, S. Mäkinen, M. Pagels, V. Eloranta, J.
Itkonen, M. V.Mäntylä, and T. Männistö. The High-
ways and Country Roads to Continuous Deployment.
IEEE Software, 32(2):64–72, March 2015.

Publication II S. Mäkinen, M. Leppänen, T. Kilamo, A.-L. Mattila,
E. Laukkanen, M. Pagels, and T. Männistö. Improv-
ing the Delivery Cycle: A Multiple-Case Study of
the Toolchains in Finnish Software Intensive Enter-
prises. Information and Software Technology, 80:175–
194, 2016.

Publication III S. Mäkinen, T. Lehtonen, T. Kilamo, M. Puonti, T.
Mikkonen, and T. Männistö. Revisiting Continuous
Deployment Maturity: A Two-Year Perspective. In
Proceedings of the 34th ACM/SIGAPP Symposium
on Applied Computing, SAC ’19, pages 1810–1817,
2019. Association for Computing Machinery.

Publication IV M. Leppänen, S. Mäkinen, S. Lahtinen, O.
Sievi-Korte, A. P. Tuovinen, and T. Männistö.
Refactoring-A Shot in the Dark? IEEE Software,
32(6):62–70, November 2015.

Publication V L. Riungu-Kalliosaari, S. Mäkinen, L. E. Lwakatare,
J. Tiihonen, and T. Männistö. DevOps Adop-
tion Benefits and Challenges in Practice: A Case
Study. In P. Abrahamsson, A. Jedlitschka, A. Duc,
M. Felderer, S. Amasaki, and T. Mikkonen, edi-
tors, Product-Focused Software Process Improvement,
PROFES 2016, pages 590—597, November 2016.
Springer International Publishing.

xi

xii

Author Contributions

Overall, the doctoral candidate had a substantial role in all publications
included in the thesis collection while focusing on the primary research ob-
jectives of finding out the rationale of frequent releases, charting the soft-
ware development practices needed to release frequently, and investigating
the organizational implications of frequent releases that are the core contri-
butions of this thesis. All the original five publications have been prepared
jointly with a number of universities and authors.

The roles and responsibilities of the doctoral candidate in preparing and
conducting the studies are highlighted here. Author contributions for each
publication are described using the contributor role taxonomy (CRediT)
(Allen et al., 2014; Larivière et al., 2021). The current version of the tax-
onomy has 14 contributor roles ranging from conceptualization of the study
to writing manuscripts, matching the nature of work important in different
research phases (Larivière et al., 2021).

Publication I: The Highways and Country Roads to Contin-
uous Deployment

Publication I is based on a set of qualitative interviews related to continuous
deployment. The doctoral candidate had a role in all research phases. In the
conceptualization phase, the doctoral candidate planned the research objec-
tives with the other authors. Preparing and formulating the questions to
be used for the semi-structured interview was a joint task in which the doc-
toral candidate participated by writing and revising interview questions and
matching the questions with research objectives. For project administration
purposes, the doctoral candidate was in contact with certain companies to
acquire company cases for the study. The investigation phase consisted of
collecting data with interviews. Acting as an interviewer, the doctoral can-
didate lead several interviews with help from Author 3. Researchers from
each participating university collected data from their respective geograph-
ical regions. Author 1 was in charge of most of the interviews.

In the data curation and analysis phases, the interviews were partially
transcribed and analyzed with thematic analysis. The doctoral candidate
listened to interview records, read interview notes and partial transcripts in
order to find common continuous deployment themes from the interviews.
Based on the analyzed data and joint discussion, the authors were able to
create models for release frequency metrics and release objectives. The doc-
toral candidate also took part in validating the findings of other researchers
by comparing and cross-checking interview notes with interview recordings.

xiii

Table 1: Contributor roles per author for Publication I according to the contribu-
tor role taxonomy (Allen et al., 2014; Larivière et al., 2021). Legend: DC=Doctoral
Candidate.

Contributor Role

A
u
th
or

1

A
u
th
or

2
(D

C
)

A
u
th
or

3

A
u
th
or

4

A
u
th
or

5

A
u
th
or

6

A
u
th
or

7

Conceptualization • • • • • •
Data Curation • • • • • •
Formal Analysis • • • • • •
Funding Acquisition •
Investigation • • • • • •
Methodology • • • • • •
Project Administration • • •
Resources •
Software

Supervision •
Validation • • • • • •
Visualization •
Writing – original draft • • • • • •
Writing – review & editing • • • • • • •

The results of the analysis were drawn in the writing phase that included
a round of revisions. The doctoral candidate focused specifically on writing
the challenges of adopting continuous deployment. All authors participated
in the review and editing phase after receiving a favorable initial decision
from the publisher. The contributor roles for Publication I are further
summarized in Table 1.

Publication II: Improving the Delivery Cycle: A Multiple-
case Study of the Toolchains in Finnish Software Intensive
Enterprises

Publication II builds on the semi-structured interviews and the data col-
lected for the study reported in Publication I. Thus, the contributor roles for
the conceptualization and investigation phases are similar to the role attri-

xiv

Table 2: Contributor roles per author for Publication II according to the contribu-
tor role taxonomy (Allen et al., 2014; Larivière et al., 2021). Legend: DC=Doctoral
Candidate.

Contributor Role

A
u
th
or

1
(D

C
)

A
u
th
or

2

A
u
th
or

3

A
u
th
or

4

A
u
th
or

5

A
u
th
or

6

A
u
th
or

7

Conceptualization • • • • • •
Data Curation • • • • • •
Formal Analysis • • • • • •
Funding Acquisition •
Investigation • • • • •
Methodology • • • • • •
Project Administration • • •
Resources •
Software

Supervision •
Validation • • • • • •
Visualization • • • • • • •
Writing – original draft • • • • •
Writing – review & editing • • • • •

butions as stated for Publication I. In the conceptualization phase, together
with the other authors, the doctoral candidate set the research objectives
to drill down on the software delivery processes of the companies.

During the data curation and analysis phases, the authors returned to
the interview data such as process descriptions and diagrams drawn in the
original interview sessions. The doctoral candidate extracted software de-
livery practices from the data and annotated the practices and used tech-
nologies with higher-order themes to be used later in the analysis. To
help visualize the software delivery process, the doctoral candidate created
graphical illustrations for the manuscript. The authors cross-checked the
findings and validated the results of the analysis from company respondents.

In the initial writing phase, the focus of the doctoral candidate was on
depicting the software processes used by the companies and making obser-
vations on the state of the companies’ deployment pipelines. After receiving

xv

the reviewer comments, the doctoral candidate edited the manuscript, try-
ing to make sure that all reviewer comments were promptly addressed.

The doctoral candidate had a leading role in the project administra-
tion of Publication II. As a corresponding author, the doctoral candidate
was the primary publisher contact. The responsibilities included submit-
ting manuscripts, planning and organizing revision rounds, and drafting
response letters to reviewers. Table 2 shows how all the roles were assigned
in Publication II.

Publication III: Revisiting Continuous Deployment Matu-
rity: A Two-year Perspective

Publication III reports of a longitudinal case study from the industry where
a survey was used to collect data about the maturity of software processes
in the case company projects. Upon receiving the company survey response
data, the doctoral candidate performed data curation especially to the open
feedback responses by normalizing terms to make responses comparable.
The doctoral candidate also quantified the normalized terms to show the
evolution of software development practices in the company. Author 2 and
Author 4 had a key role in the quantitative, statistical, analysis of the survey
responses. Besides quantitative methods, qualitative methods were used to
analyze the data. With Author 3, the doctoral candidate did qualitative
analysis on the survey feedback to determine the fit of the custom maturity
model to projects in the company.

Results derived from both quantitative and qualitative analysis provided
the basis for writing the manuscript. In the writing phase, the doctoral
candidate focused on writing down the analysis for project lead times that
imply how frequently specific projects are able to release new software ver-
sions. The doctoral candidate also authored the technological overview of
the projects and the impact of technology on project maturity while edit-
ing the manuscript for submission with the other authors. On the side of
visualization, the doctoral candidate crafted visual aids for the manuscript
in the form of graphs and created visualizations summarizing the results for
the conference presentation.

The doctoral candidate had the lead in project administration. In the
role of the corresponding author, the doctoral candidate submitted the
manuscript for publishing and managed the communication to the pub-
lisher. The doctoral candidate also presented the work at the conference
where the manuscript was submitted to. Author roles for Publication III
are listed in Table 3.

xvi

Table 3: Contributor roles per author for Publication III according to the
contributor role taxonomy (Allen et al., 2014; Larivière et al., 2021). Legend:
DC=Doctoral Candidate.

Contributor Role

A
u
th
or

1
(D

C
)

A
u
th
or

2

A
u
th
or

3

A
u
th
or

4

A
u
th
or

5

A
u
th
or

6

Conceptualization • • • •
Data Curation • • • •
Formal Analysis • • • •
Funding Acquisition • •
Investigation • • • •
Methodology • • • •
Project Administration • • • •
Resources • •
Software •
Supervision • •
Validation • • • •
Visualization • • •
Writing – original draft • • • • •
Writing – review & editing • • • • • •

Publication IV: Refactoring-A Shot in the Dark?

Publication IV is a report on a study of refactoring practices in the industry.
The doctoral candidate had a substantial role in preparing and conceptual-
izing the study. To gain an understanding of which themes were considered
important for refactoring and could thus be useful in the study, the doc-
toral candidate sought out existing studies on refactoring, turning themes
of previous studies into actionable interview questions. Based on a previous
study on continuous deployment, the doctoral candidate also made a sug-
gestion of interview questions that could be used to elicit and characterize
the general maturity of software development in company cases. All in all,
the case interviews and the semi-structured interview protocol for the study
were planned cooperatively by the authors.

xvii

Table 4: Contributor roles per author for Publication IV according to the
contributor role taxonomy (Allen et al., 2014; Larivière et al., 2021). Legend:
DC=Doctoral Candidate.

Contributor Role

A
u
th
or

1

A
u
th
or

2
(D

C
)

A
u
th
or

3

A
u
th
or

4

A
u
th
or

5

A
u
th
or

6

Conceptualization • • • • •
Data Curation • • • • •
Formal Analysis • • • • •
Funding Acquisition •
Investigation • • • • •
Methodology • • • • •
Project Administration • • • •
Resources •
Software

Supervision • •
Validation • • • • •
Visualization • • • • •
Writing – original draft • • • • • •
Writing – review & editing • • • • • •

Investigation and data collection in the study was made using semi-
structured company case interviews. The doctoral candidate took part in
the data collection effort by doing interviews with Author 5 whereas Author
1 had a leading role in conducting the interviews. Analysis of the results
was done using thematic analysis where the doctoral candidate read the
interview transcripts and annotated text passages with higher-order themes.
The higher-order themes turned into headings in the manuscript during the
writing phase in which the emphasis of the doctoral candidate was on the
risks and benefits of refactoring. Considering the effects of refactoring can
be seen important to the overarching theme of the thesis as continuous
forms of development need to constantly assess when structural code and
other changes are needed. Writing the manuscript also involved a revision
round. An overview of the role assignations for Publication IV are further
illustrated in Table 4.

xviii

Table 5: Contributor roles per author for Publication V according to the contribu-
tor role taxonomy (Allen et al., 2014; Larivière et al., 2021). Legend: DC=Doctoral
Candidate.

Contributor Role

A
u
th
or

1

A
u
th
or

2
(D

C
)

A
u
th
or

3

A
u
th
or

4

A
u
th
or

5

Conceptualization • • •
Data Curation • •
Formal Analysis • •
Funding Acquisition •
Investigation • • •
Methodology • • •
Project Administration • • • •
Resources •
Software

Supervision •
Validation • • •
Visualization • •
Writing – original draft • • • •
Writing – review & editing • • • • •

Publication V: DevOps Adoption Benefits and Challenges in
Practice: A Case Study

Publication V introduces a case study on DevOps based on a set of inter-
views. During the investigation phase consisting of interviews, the doctoral
candidate collected data with Author 1. Author 3 had a key role in the
conceptualization of the study and in the data collection. The doctoral
candidate verified the analytic themes grouped by Author 1 from the in-
terview data. A model of the perceived benefits and challenges of DevOps
was created in the process, which was visualized by the doctoral candidate
in the manuscript.

The doctoral candidate had a lead role in writing the original draft of the
manuscript. While writing the manuscript, the doctoral candidate selected
the most important observations flowing from the analytical DevOps themes

xix

annotated earlier. Connecting to the original theme of the doctoral thesis,
the doctoral candidate wrote down analysis of which factors hinder the
adoption of DevOps and therefore limit release frequency. In addition,
the doctoral candidate described the associated gains that DevOps and
consequently an increase in release frequency could produce according to
the respondents.

Publication V is a conference article which was submitted to an inter-
national conference. In reference to the visualization phase of the study,
the doctoral candidate was responsible for preparing the presentation and
eventually presenting the work at the conference. Table 5 displays the re-
lationships between contributor roles and authors in Publication V.

Previous Thesis

Publication I, Publication II and Publication IV have been previously in-
troduced in a thesis from the Tampere University of Technology (Leppänen,
2017). Publication III and Publication V are not part of previous theses.

Leppänen’s thesis (Leppänen, 2017) can be seen as companion to this
thesis. The general idea of the interaction of processes, architecture, and
infrastructure with delivery speed presented by Leppänen is extended and
magnified in this thesis. The blueprint for software processes described
here further breaks down continuous software engineering practices to each
development stage.

Additionally, the unit of analysis in this thesis is shifted to the level
of organizations by offering a longitudinal perspective to software process
improvement and focusing more on organizational behavior. In comparison,
viewpoints on DevOps and its impact on organizations reported in the thesis
extend the original scope of continuous deployment.

xx

Contents

1 Introduction 1

2 Continuous Software Engineering 5
2.1 Continuous Integration . 6

2.1.1 Version Control in Continuous Integration 8
2.1.2 Automated Build and Testing 10

2.2 Continuous Delivery and Deployment 14
2.2.1 The Deployment Pipeline 16
2.2.2 Releases . 20

2.3 DevOps . 23

3 Research Method 27
3.1 Research Questions . 28
3.2 Research Design . 30

3.2.1 Case Selection . 33
3.2.2 Data Collection . 35
3.2.3 Data Analysis . 38

3.3 Summary of Publications 41

4 Results 51
4.1 Principles for Managing Releases and Release Frequency . . 51

4.1.1 Metrics for Characterizing Deployment and Release
Cycles . 52

4.1.2 Choosing the Right Release Frequency 55
4.2 Meeting Process Demands of High Frequency Releases . . . 59

4.2.1 Activities in a Software Engineering Process 60
4.2.2 Determining Maturity of Software Engineering Pro-

cesses . 64
4.2.3 A Process for Continuous Software Engineering . . . 67

4.3 Organizing Work in Continuous Software Engineering 71
4.3.1 Leadership and Showing the Way 72

xxi

xxii Contents

4.3.2 People, Attitudes and the Adaptive Organization . . 73
4.3.3 Reshaping Customer Relationships 74

5 Discussion 77
5.1 An Overview of the Research Questions 77
5.2 Threats to Validity . 85

5.2.1 Internal Validity . 86
5.2.2 Construct Validity 89
5.2.3 External Validity . 93
5.2.4 Reliability . 96

5.3 Related Work . 98
5.3.1 An Overview of Literature 98
5.3.2 Reflections on Research Questions 110

5.4 Implications to Theory and Practice 115

6 Conclusions 117

References 121

Chapter 1

Introduction

Good help is hard to find, they say. Especially if you are not quite certain
what you are looking for. Yet in recent years this has been the case in the
software industry. A thorough analysis of job ads shows that companies,
both large and small, are looking for release and build engineers who could
help them automate software releases (Kerzazi and Adams, 2016). The
position of a release engineer is rather new and the companies are uncertain
what a release engineer actually needs to know and do.

Supposedly, these information technology handymen should know a
thing or two about continuous integration of changes, be adept at man-
aging infrastructure for software systems, have in-depth experience in re-
leasing changes to the public, and have enough understanding to automate
all the possible workflows in a software engineering process (Kerzazi and
Adams, 2016). That is quite a lot to ask from any single individual. But
why are companies looking for these professionals?

Companies are in the market for skilled professionals to handle releases
because the expectations in the software industry have changed. Software
development in large internet companies has shifted to a more continuous
form of development with no clear end in sight as is the case at Facebook
(Feitelson et al., 2013). Facebook leverages the full potential of the web
platform by being able to deliver smaller fixes every day and major up-
dates every week to its users. Owing to the high frequency of releases and
dynamic configuration of features, Facebook can experiment on real users
when introducing new functionality without disrupting the experience of all
users. It has been argued that other companies want to follow the lead in
an effort to build similar competences with the help of the release engineers
the companies are so eagerly looking for (Kerzazi and Adams, 2016).

While the software industry has been at the forefront in terms of devel-
oping methods for more continuous forms of software development, software

1

2 1 Introduction

engineering research is slowly catching up. Major conferences have estab-
lished tracks and workshops around the topic labeled continuous software
engineering. The 2014 workshop of Rapid Continuous Software Engineer-
ing serves as an early example (Tichy et al., 2014). Program chairs of
the workshop acknowledged that continuous software engineering pushes
the boundaries of agile software development from development teams to
the level of organizations as a whole. In their view, to be able to release
software changes rapidly, development and testing functions must be well
aligned with overall product and release management. To keep up with
modern-day software development, the software engineering research field
needs to consider the impact continuous software engineering has on soft-
ware engineering disciplines. At least areas such as software development
methodology, requirements engineering, software and system architecture
design, software testing, and release engineering are seen to be affected.

More empirical studies are needed to study the phenomenon of contin-
uous software engineering with scientific methods in real industry environ-
ments. Prior to 2011, empirical studies on the topic have been scarce (Ro-
dríguez et al., 2017). The scientific field is not completely barren, though. A
fair number of studies have been conducted on continuous integration (Kar-
vonen et al., 2017). Continuous integration is a practice that stresses the
importance of frequent integration of changes from developers along with
automated processes for building and testing software versions (Fowler and
Foemmel, 2000). Continuous software engineering practices build on contin-
uous integration but continuous integration alone does not imply frequent
release of changes to users (Fitzgerald and Stol, 2014).

Studies that have featured continuous software engineering practices and
frequent release of changes in the past have been important but have not al-
ways been of the highest scientific quality (Rodríguez et al., 2017). Without
proper description of the research environment and the data collection and
analysis methods, it is more difficult to generalize the results of the studies.
Many previous empirical studies are also various experience reports from
the industry that rely on interviews. Respondents might speak of benefits
of continuous software engineering practices but often there is not much
hard evidence to back up the opinions or claims (Rodríguez et al., 2017).
Findings based on purely qualitative studies can thus be considered some-
what subjective and the research field could benefit from more quantitative
studies where possible (Karvonen et al., 2017). Still, studying software
development in a realistic industrial setting and collecting the experiences
of industry professionals is essential because laboratory conditions cannot

3

compare to the complex relationships between parties found in the field
(Rodríguez et al., 2017).

This thesis aims to seek understanding whether the software industry’s
quest for release engineers is warranted. More specifically, the focus of
the thesis is on release frequency. The research questions of the thesis
touch upon topics such as the rationale and mechanisms of releasing changes
frequently. Industry experience reports speak of the perks of having a more
direct channel to end users but critical scientific evidence on the benefits has
been limited so far. Practitioners from the industry have described what
actions are necessary to release software frequently but the relation of these
actions to software engineering disciplines has not been fully explored. Since
continuous software engineering is believed to have an impact on the whole
organization (Tichy et al., 2014), the thesis also covers the organizational
and working method aspects of releasing changes frequently. By examining
the phenomena in real world software industry cases with empirical research
methods, it is possible to make a contribution to the scientific body of
knowledge that is relevant to the industry as well.

Including the initial introductory chapter, the thesis has been divided
into six distinct chapters. Continuous software engineering as a phenomenon
is described in greater detail in Chapter 2. The background theory in the
second chapter explains the role of different developer, development and op-
erations practices, such as continuous integration, continuous delivery, and
continuous deployment that are essential when releasing software changes
(Ståhl et al., 2017). In Chapter 3, the focus is on the research method of the
thesis. The fundamental research questions driving the thesis are presented
in the chapter along with the specifics of the research design. In addition
to describing the research methodology applied in the thesis, the chapter
shows how data for the thesis was collected and analyzed.

The last three chapters present the actual results of the thesis studies
along with further discussion of the implications of the results. Intertwined
with the layout of the research questions, Chapter 4 gathers the results of
the empirical studies for each research question. The three main themes
of the thesis and the implications of the work are further explored in the
discussion of Chapter 5. As part of the discussion, the chapter also points
out the limitations of the inferences made in the thesis studies. A review
of related literature in the chapter positions the findings made in the thesis
to other work in the field. Finally, Chapter 6 wraps up the thesis with
conclusions.

4 1 Introduction

Chapter 2

Continuous Software Engineering

Who knows, perhaps continuous software engineering started to take form
with the advent of agile values and software development processes such
as Extreme Programming (XP) (Beck, 2000). Practices in Extreme Pro-
gramming include continuous integration, which essentially means checking
in work frequently and getting early feedback about integration problems.
In continuous integration, checking in work refers to integrating developed
source code and other artifacts to a version control system (Beck, 2000). At
the same time, developers receive early feedback about integration problems
when automated tests are executed after the changes have been received.
Continuous integration (Fowler and Foemmel, 2000) became regarded as
a developer practice in its own right, outside of Extreme Programming.
Clearly, continuous integration is an important step towards more contin-
uous forms of software development that it might have catalyzed. Still,
continuous integration is a step amongst many in what has recently become
known as continuous software engineering (Bosch, 2014; Fitzgerald and Stol,
2014). But what is the continuity about in continuous software engineering
and has software engineering been particularly discontinuous in the past?

Software engineering has many practices and stages or phases that are
possible to carry out in a continuous manner. In fact, the possibilities are
numerous enough across the software development areas of planning, devel-
opment and operations that there is a whole family of continuous practices
dubbed continuous * (star) (Fitzgerald and Stol, 2014, 2017). Continuous
software engineering and continuous star are well able to capture the idea
that the practices from different development areas are interconnected and
cannot work in isolation. In the pre-agile software development era, the
stage-gates between development areas have firmly stood on the ground
with companies trying later to fit agile processes into the whole (Wallin
et al., 2002). Here, discontinuity has meant the rigidity of handing off soft-

5

6 2 Continuous Software Engineering

ware from one process phase to another. From development to verification
and validation, and from there to launch, the gates have been heavy to open
and close. Similar gates still exist with the practices related to continuous
software engineering but the emphasis is on the effort to make the gates
swing easily.

Each continuous practice has its own position around or between the
gates. Continuous practices that have recently been most prominent in
research can essentially be broken down into developer, development, and
operations practices (Ståhl et al., 2017). Continuous integration is a devel-
oper practice whereas continuous delivery (Humble and Farley, 2010), which
aims for release readiness at all times, is a development practice. Contin-
uous deployment (Fitz, 2009; Humble and Farley, 2010) is an operations
practice that goes beyond release readiness and emphasizes a streamlined
release process with frequent software deployment to production. In a sense,
these continuous practices can be considered as stepping stones from one
stone to another that ultimately lead to a more responsive way of develop-
ing software: mastery in continuous integration is required before heading
further down the path towards continuous deployment (Olsson et al., 2012).

Individual continuous practices as such do not yet win the day, though.
It is the interaction between the continuous practices that in the end cre-
ates a solid foundation for a release engineering process of the modern era
(Adams and McIntosh, 2016). Release engineering processes consider how
source code from the developer’s workstation finds its way through the
pipeline all the way to the production environment having been tested prior
to deployment and final release. Similarly, DevOps focuses on knitting some,
if not all, of the continuous practices together to form continuous loops from
continuous integration to continuous deployment (Ståhl et al., 2017).

This chapter explains the key components of continuous software en-
gineering. The first theme in Section 2.1 is continuous integration, which
forms the backbone of continuous software engineering. Continuous deliv-
ery and continuous deployment, which rely on continuous integration, are
covered next in Section 2.2. Finally, the integration of continuous prac-
tices is examined by taking a look at DevOps in Section 2.3 that closes the
chapter.

2.1 Continuous Integration

As a developer practice, continuous integration and its components can
be seen to constitute the underlying infrastructure necessary for frequently
checking in source code from developers, building new software versions and

2.1 Continuous Integration 7

Version Control Check-In

Version Control Checkout

Continuous Integration Server
Build and Test Cycle

Continuous
Integration

Server

Developer Version
Control
System

checks out recent version

checks in changes

provides latest revision

merges changes

monitors version control changes,
triggers on change

provides infrastructure for build and test

provides feedback on build and test results

integrates to

Legend

Input

Activity

Trigger

Input
provisioning

Figure 2.1: Basic process of continuous integration (Beck, 2000; Fowler and
Foemmel, 2000).

testing them accordingly (Fowler and Foemmel, 2000). Here, frequently
means that integration and checking in code should be done as often as
possible, at least once a day, as it has been argued that postponing inte-
gration of code changes will only make it more difficult in the end (Beck,
2000).

The centerpieces in continuous integration are the developer who is
checking in and checking out the code, the version control system where
the code is stored, and the continuous integration server or other build sys-
tem that fetches newly checked in code from the version control and builds
a new software version. This process is depicted in Figure 2.1 using the no-
tation for modeling continuous integration flows (Ståhl and Bosch, 2014a).
In the notation, triangles represent inputs, rectangles activities, circles and
arrows triggers, and dashed lines input provisioning to other components.
As shown in Figure 2.1, typically the developer does not interact directly
with the continuous integration server. Instead, the developer works with
the version control system that is actively monitored by the continuous in-
tegration server triggering the automated build and test when needed. Be
it either success or failure, the flow halts in the end by informing the devel-
oper of the outcome of the build and test activities in some manner. It has
been recognized that in reality, continuous integration practices and exact
steps might vary considerably from case to case with certain cases being less
continuous and involving activities not found in others (Ståhl and Bosch,
2014a,b). Regardless, the roles of core components and the basic principle
behind continuous integration in the ideal model remain the same.

8 2 Continuous Software Engineering

2.1.1 Version Control in Continuous Integration

A cycle of continuous integration starts when a developer has been work-
ing on code and feels that either the particular task has been completed or
the code is otherwise ready for integration even if only partially complete
(Fowler and Foemmel, 2000). The trigger for continuous integration is the
developer who has the code changes ready on a workstation. On the re-
ceiving end, where the developer checks in code, is a version control system
that has a repository for storing project files.

Version control systems have been around for a really long time (Roch-
kind, 1975; Tichy, 1985) and a good number of the operations are still
similar today. Just as was the idea all those years ago (Tichy, 1985), a
developer has a two-way connection to the version control system: files can
be either checked out or checked in. When checking out, the latest versions
of files in the version control system for a particular project are transferred
or updated to the developer’s local copy. Checking in is a reverse operation
of checking out so that project source code or other files are sent to the
version control repository. Besides storing the files, version control systems
keep track of the version history of files that makes it possible to store the
files efficiently by storing edit operations (deltas) rather than complete files,
and to compare files, to merge different file versions, and to branch version
graphs into multiple subtrees supporting parallel development of different
versions (Tichy, 1985).

While the modern-day version control systems share some of the same
characteristics and basic operations as the previous generation version con-
trol systems, there have been changes of late. Version control systems that
are in use today can be divided intro centralized and distributed version
control systems (CVCS and DVCS, respectively) (Muşlu et al., 2014). Pre-
vious version control systems were centralized, meaning that code and other
files always had to be checked in to a central location, like a network server
where the version control repository was hosted. Distributed version control
systems, which have taken prominence lately (Brindescu et al., 2014; Muşlu
et al., 2014), maintain a local repository that holds the complete history
of all repository files instead of a single snapshot like the local repository
copies in centralized version control systems (de Alwis and Sillito, 2009).
Thus, operations like checking in, also known as committing, and checking
out are directed initially at the local repository and not at the central repos-
itory. A central repository is in many cases used, nevertheless, as a place
through which developers exchange fruit of their labor (Muşlu et al., 2014).
Although a central repository has a role in the decentralized version control
system paradigm, as opposed to the centralized version control system, in

2.1 Continuous Integration 9

theory any repository could be selected to be a central repository since local
repositories hold the full history of changes.

Distributed version control systems offer certain benefits. Developers
seem to appreciate the fact that not all changes need to be checked in to the
central repository; they can rather work directly with the local repositories
allowing incremental workflows and the ability to work offline (Brindescu
et al., 2014; Muşlu et al., 2014). Local repositories are particularly handy in
open source projects where all project members creating patches might not
have all the privileges to a centralized repository but they could still work on
a local repository from a distributed version control system and then submit
the patch (de Alwis and Sillito, 2009). Along with incremental modes of
working, it also appears that the commits (i.e. check-ins) developers per-
form on repositories tend to be smaller and more frequent with distributed
version control systems such as Git than with centralized version control
systems such as Subversion (Brindescu et al., 2014). Even with centralized
version control systems, daily integrations are certainly possible and many
developers report to integrate as frequently as once a day with centralized
version control systems (Brindescu et al., 2014). It looks like a fair share of
developers are living up to the original ideal of frequent integrations (Fowler
and Foemmel, 2000) in continuous integration. Beside these and other ben-
efits, distributed version control systems have one distinct advantage that
developers find appealing and that is the branches and branching in the
version control tree that offer flexibility to software development (de Alwis
and Sillito, 2009; Muşlu et al., 2014).

Branches in version control can be considered relevant for software devel-
opment because branches affect how developers interact with version con-
trol repositories. There are many approaches to version control branch
structures of which one alternative is to separate the current release branch
frozen for specific releases, a master branch for on-going development of
upcoming releases, and individual feature branches for isolating develop-
ment of a feature that should be later merged to the master development
branch (Adams and McIntosh, 2016). Specific branching models tailored
for the decentralized Git version control system follow along these lines
with slight alterations by having a master branch reflecting production, a
develop branch for on-going development, feature branches for specific fea-
tures, release branches for preparing for upcoming releases, and finally hot-
fix branches that are used to apply critical fixes to the production through
the master branch (Driessen, 2010). Branches allow developers to work
in isolation although merging branches can cause merge conflicts, which is
why some might choose to avoid branches altogether (Adams and McIn-

10 2 Continuous Software Engineering

tosh, 2016). Because of local repositories, creating a branch is seen as a
lightweight operation in decentralized version control systems, making it
possible to switch between features and tasks with less effort and experi-
ment with code more quickly (Muşlu et al., 2014). In centralized version
control systems, branch creation is more expensive due to the non-private
nature of branches that need to be synchronized with the central reposi-
tory on each commit – whereas with decentralized version control systems
branches can stay privately in the developer’s local repository without the
need to share branches with other developers (Muşlu et al., 2014).

Version control branches guide developer behavior that can affect how
readily available source and other files are to the main development branch
and ultimately the production environment as part of continuous integra-
tion. The frequency that developers check in their work to a branch might
differ considerably from the frequency of integrating work to the main de-
velopment branch. While checking in to the branch can be done daily,
integrating the branch to the main line could take as long as three weeks
or so (Mårtensson et al., 2017). This is reported to be partly due to the
hardships and potential merge conflicts involved in merging branches with
the main line. The good news is that at least decentralized version control
systems make developers feel that they can somewhat increase the code ve-
locity, that is, the speed at which changes propagate to the main branch
(Muşlu et al., 2014). When thinking about continuous integration, it should
be kept clearly in mind whether the focus is on actual code velocity, branch
check-in frequency signifying daily developer activity, or both.

2.1.2 Automated Build and Testing

Once source code and other files required by a project have been checked
in to version control, the next step is to build a package out of the files
and subject the build to testing (Fowler and Foemmel, 2000). Building and
testing are multi-step processes and it is up to the developer team to define
which exact steps should be executed.

Building can involve such tasks as compiling source code files and pack-
aging and assembling compiled code to compressed archives like the Jar
archives in Java (Fowler and Foemmel, 2000). Of course, not all program-
ming languages are comparable to Java and require compilation. With
dynamic programing languages such as Ruby or Javascript, the emphasis
of the build and test phase tends to be on testing (Meyer, 2014). Even
without compilers spotting compile-time errors as part of the build (Fowler
and Foemmel, 2000), continuous integration is still a recognized choice for
many projects that have been made on top of dynamic programming lan-

2.1 Continuous Integration 11

guages. In fact, a fair share of the open source projects in Github working
with dynamic programming languages are taking advantage of continuous
integration: around two out of three projects using the dynamic program-
ming languages Scala or Ruby have continuous integration taken into use
as opposed to the compiled Java projects that have continuous integration
in about one out of three projects (Hilton et al., 2016). Besides compil-
ing, other build tasks may include preparing environments and databases
for testing the build, and deploying the package to testing environments
(Brooks, 2008). Regardless of the build steps taken, all necessary files like
properties files or scripts required for a successful build should be checked
in to version control (Fowler and Foemmel, 2000). Missing or invalid files
in version control can cause build failures in the form of compilation er-
rors, which are common reasons for failing builds along with other build
configuration issues (Rausch et al., 2017).

For a developer, a build should be sufficiently straightforward to pro-
duce. The build steps should be automated so that the execution of a
single command should result in a working build (Fowler and Foemmel,
2000). Such a requirement warrants the presence of a distinct build sys-
tem to handle the build process although shell scripts that execute com-
mands line by line can be a good start. Essentially, build systems and build
tools can be categorized by the technology used to low-level, abstraction-
based, framework-driven and dependency management build systems and
tools (McIntosh et al., 2015).

Low-level tools such as make, Ant and Rake define specific targets that
are mapped to a number of output files and the manner in which the out-
put files should be created, and by which commands. Abstraction-based
build tools can be used to specify and transform a generic higher-level build
specification to a lower-level platform-specific build specification. As an
example, CMake is an abstraction-based build tool allowing generation of
files to several different platforms. For framework-driven build systems like
Maven, it is characteristic to require less initial configuration in build spec-
ifications as the systems rely more on conventions, instead assuming where
to find source code files and such without explicit configuration.

Yet another task for build systems is resolving external libraries for a
project by reading required libraries and their respective library versions
from build specification files, and downloading the libraries from external
repositories as needed. Dependency management tools do just that. Maven
– which also functions as a framework-driven build system – and Bundler
are some of the known tools for dependency management. Regardless of the
type, build systems tend to be rather programming language-specific. For

12 2 Continuous Software Engineering

instance, Maven and Ant are most often associated with projects favoring
Java, Make and CMake with C and C++ whereas Rake and Bundler tend
to be used with the Ruby programming language (McIntosh et al., 2015).

Besides building, automated testing is an important part of the con-
tinuous integration build and test cycle where running unit tests focus on
verifying class-level functionality and acceptance tests focus on broader as-
pects of system-level behavior (Fowler and Foemmel, 2000). The degree of
test automation should be relatively high when using continuous integra-
tion. Writing good automated tests can be tedious and not having enough
automated tests in a project can sway developer teams to omit continuous
integration altogether (Hilton et al., 2016). Manual or exploratory testing
does complement automated testing in certain cases where continuous inte-
gration is applied by detecting problematic areas that automated tests miss
(Mårtensson et al., 2017). Despite being helpful, excessive manual testing is
seen as an impediment to continuous integration as manual tests make the
integration cycles less straightforward with additional steps before code in-
tegration (Debbiche et al., 2014). Moreover, continuous integration boosts
the usefulness of automated tests. Without an automated build and test
system that executes tests, there is a danger that developers forgo running
tests, resulting in failed builds when tests are eventually run (Hilton et al.,
2017). With continuous integration, developers are more aware of the status
of the test suite and are more inclined to write automated tests.

Having continuous integration in place does not guarantee that tests
would not be broken or fail to pass, though. Test failures account for a fairly
large portion of all build failures, at least in certain open-source projects
(Rausch et al., 2017). Despite breaking the integration flow, failing tests are
helpful in detecting faults and for giving developers timely feedback about
potential problems in code and configuration before actual users experience
any difficulties (Hilton et al., 2017). Feedback from automated tests might
at times be less than immediate if there are many tests to be executed.
Regression tests that can take several days to complete can hamper contin-
uous integration cycles by prolonging the test feedback time to developers
(Debbiche et al., 2014).

Developers would rather not wait too long for the whole continuous
integration cycle with its build and test phases to complete. Ten minutes has
traditionally been set as a threshold for build times considered acceptable
(Beck, 2000). It appears that the idea of a ten minute build has been well
internalized by developers since it is a commonly held belief that builds
should not take more than ten minutes (Hilton et al., 2017). Fifteen minutes
is already considered too long (Mårtensson et al., 2017). In reality, the

2.1 Continuous Integration 13

average build times including testing might just be under 10 minutes for
certain cases but build times around 25 minutes are not uncommon, either
(Hilton et al., 2016). Build times can vary a lot from team to team in
the same organization, too. A complete build with tests might pass in 5
minutes in one project and in another the build could take closer to 40
minutes (Brooks, 2008).

Continuous integration becomes less useful for developers the longer it
takes to build (Hilton et al., 2017). As a side effect, long build times af-
fect developer behavior. Code is no longer integrated frequently in small
batches but the size of change sets grow and developers become more re-
luctant to change code with long build times (Brooks, 2008). For those
who prefer working synchronously, a modest delay in integration can offer
a chance to reflect on the recent changes – perhaps with a fellow developer
– while waiting but when working asynchronously, task switching back to
the original task in the case of integration failures can be difficult if there
is a long delay between integration and the ensuing build feedback (Beck,
2000). Fortunately, measures can be taken to shorten the time it takes to
build and test the most recent changes.

One way to speed up the continuous integration build and test cycle is
to optimize potentially lengthy testing processes that are triggered by each
checked in change. Known approaches for optimizing testing include the
selection and priorization of test cases (Elbaum et al., 2014). If there is a
large amount of test cases, it might not make sense to select and execute
them all. Test cases or suites that have been known not to fail recently
could be safely omitted as long as the frequently omitted tests get selected
for execution every now and then (Elbaum et al., 2014). There are some
dangers in aggressive test case selection and leaving out test cases as the
ability to detect faults decreases and subsequently the chance of introducing
undesirable regression increases. Besides merely looking at failed tests as
such, test case selection can be based on the combination of analyzing source
code changes and finding tests that fail alongside with source code changes
(Knauss et al., 2015). In certain scenarios, associating historical test failure
data with source code changes can more than halve the amount of tests
selected and speed up test execution with a factor of three or so (Knauss
et al., 2015).

The build and test cycle can usually be initiated both locally on the
developer’s workstation and on a remote server that has been tasked for
the purpose (Fowler and Foemmel, 2000). Local builds prior to checking in
code to version control can reduce the likelihood of introducing defects that
could hamper the work of other developers. The remote server, dubbed

14 2 Continuous Software Engineering

the continuous integration server, is an essential component without which
continuous integration would not be complete (Meyer, 2014).

The continuous integration server is at the core of continuous integra-
tion. Keeping watch in the background, the server build jobs are triggered
soon after a developer checks in code as illustrated in Figure 2.1 (Beck,
2000; Fowler and Foemmel, 2000; Meyer, 2014). The version control system
is continuously monitored for any sign of change at regular intervals like
every few minutes. Whenever a change is detected, the continuous integra-
tion server checks out the most recent code version and starts executing all
the build and test steps defined as part of the build (Fowler and Foemmel,
2000). Once the build and test run has been completed, the respective de-
velopers are notified of the results and whether all steps succeeded in some
manner such as by e-mail or by other forms of communication (Beck, 2000;
Fowler and Foemmel, 2000). Developers can then proceed to remedy broken
builds, if needed.

Continuous integration servers are basically servers that have a specific
continuous integration system installed. For instance, Jenkins is a contin-
uous integration system that can be installed on-premise on proprietary
hardware (Meyer, 2014). Not all continuous integration servers operate
on-premises on dedicated hardware. Services that are hosted elsewhere by
third parties and offered as a service, such as Travis, have become popular
especially with certain open source projects. Out of a large number of open
source projects in GitHub, over 40 percent used continuous integration and
over 90 percent of these had chosen to use Travis as a continuous integra-
tion service solution (Hilton et al., 2016). Setting up continuous integration
requires effort and configuring a continuous integration server or service is
not as simple as it could be (Hilton et al., 2017, 2016). Having continu-
ous integration in a project can well be worth all the effort, though. Not
only do developers feel more confident with their code when it is double-
checked by all the steps involved in continuous integration but frequent,
small integrations make the whole product easier to push into the produc-
tion environment (Hilton et al., 2017).

2.2 Continuous Delivery and Deployment

With the help of a number of practices, continuous integration can put
developer teams into a working mode where they are in a better position
to integrate code faster with shorter iterations and be provided with timely
feedback on the quality of recently integrated changes (Hilton et al., 2017).

2.2 Continuous Delivery and Deployment 15

Out of the family of continuous practices, what more can continuous delivery
and continuous deployment bring to the table?

In terms of software delivery, a key question is what happens to the
whole set of recently packaged code and other bits of software after the
initial rounds of continuous integration testing have successfully finished?
With continuous integration, this is where the flow mostly stops. Continu-
ous delivery (Humble and Farley, 2010) and continuous deployment (Fitz,
2009; Humble and Farley, 2010) take a step further by moving the focus to
ensuring release readiness and actually shipping the goods over to produc-
tion environments where the end users can enjoy the recent changes. Passing
software bundles from one system to another and ultimately to production is
no longer simply a matter of how the developers organize their daily work
but a principle by which the organization or one of its projects live. To
accommodate the increased interaction between different systems and the
required extra effort to prepare software packages ready for release, con-
tinuous delivery is more generally a development practice instead of being
merely a developer practice like continuous integration (Ståhl et al., 2017).
When deliverables are frequently placed into production environments as
part of continuous deployment, even more coordination and orchestration
is required, making continuous deployment an operations practice (Ståhl
et al., 2017). Continuous deployment induces a different, more experimen-
tal and agile, way of thinking about software releases and product planning
with production environments facing end users who get to experience fre-
quent software changes first hand (Olsson et al., 2012).

Continuous deployment puts the individual practices of continuous inte-
gration and continuous delivery together, and adds its own set of practices
that are particularly geared towards shifting the deliverables from one sys-
tem to another. Automated testing in its various forms is still an essential
part of continuous deployment, even more so since there is a chance that
any code or other recently constructed piece of software is finding its way
to the production environment rather soon (Parnin et al., 2017). Once the
preliminary tests pass, staging environments can then be used for further
verifying release readiness. Testing in a staging environment is followed by
sufficiently automated deployment to production environments, although
production deployment does not necessarily mean that all features of the
software update are released immediately to the users (Parnin et al., 2017).
Features can be made invisible for the time being or released only to a small
proportion of users to gain further understanding on how the users respond
to the changes. Whether making a release available to a smaller sample
of users or all of them, monitoring the production environment and the

16 2 Continuous Software Engineering

Build

• Continuous
integration

• Branching

• Infrastructure
as code

Test

• Automated
unit testing

• Automated
acceptance
testing

• Non-
functional
testing
(performance,
security)

Deploy

• Automated
deployment

• Staging

Release

• Feature flags

• Dark
launching

• Canary
releasing

• Telemetry

Figure 2.2: Practices of continuous delivery and continuous deployment in the
stages of a deployment pipeline (Humble et al., 2006; Humble and Farley, 2010;
Adams and McIntosh, 2016; Parnin et al., 2017).

running application for user behavior or signs of trouble are good habits to
have when deploying often to production (Parnin et al., 2017; Adams and
McIntosh, 2016).

Putting all, or most, of the practices of continuous integration, continu-
ous delivery, and continuous deployment together form a pipeline from the
hands of the developer triggering the software flow all the way to the pro-
duction environment. A deployment pipeline (Humble and Farley, 2010)
with all the parts in place have been called deployment production lines
(Humble et al., 2006) or release engineering pipelines (Adams and McIn-
tosh, 2016) although in practice a single project might not apply all of the
principles (Humble et al., 2006). In this section, the deployment pipeline
is deconstructed to smaller components to get an overview of the process,
and a closer look is afforded to releases and releasing new software versions
in production.

2.2.1 The Deployment Pipeline

Roughly speaking, a deployment pipeline is assembled from four larger parts
or areas of practice: building, testing, deploying and releasing (Humble and
Farley, 2010). Automated scripts for building and testing with proper con-
figuration management along with automated deployment to various envi-
ronments are the hallmarks of a functioning deployment pipeline. Figure 2.2
illustrates some of the practices and activities linked to the various stages
of the deployment pipeline, commonly associated with continuous delivery
and continuous deployment (Humble et al., 2006; Humble and Farley, 2010;
Adams and McIntosh, 2016; Parnin et al., 2017).

2.2 Continuous Delivery and Deployment 17

Activities in the build stage of a deployment pipeline are well aligned
with those found in continuous integration. Developers use build systems
and check in code to version control systems, aware of the possibility to
use version control branches for efficiently managing changes from multiple
developers working on the same code (Adams and McIntosh, 2016). With
the prospect of delivering the changes rapidly to further test, staging and
production environments in mind, emphasis is put on efficient builds (Hum-
ble et al., 2006). The arrangement and building of software modules should
be such that all necessary source code is compiled in a single run, preferably
without many compiled intermediate binaries that other projects might rely
on. Having fewer build and compilation stages of other projects triggered
helps to minimize the time for the build stage of a single project. This mode
of thinking that puts speed at the forefront is an overarching principle in the
design and implementation of a deployment pipeline (Humble and Farley,
2010). Automated and manual processes that are part of the pipeline can
be timed to understand which of the processes have the greatest effect on
cycle time and thus have room for improvement.

A version control system is one of the primary junctions in a deployment
pipeline also for the reason that a version control system can serve other
purposes beyond storing software code and related artifacts. For ensuring
proper configuration management, version control systems can be used to
store infrastructure blueprints for servers and complete copies of virtual-
ized servers in the form of virtual machine images (Humble and Farley,
2010). Stored infrastructure configuration written in a specific infrastruc-
ture programming language and virtual machines help to establish similar
environments for development, testing and production, which facilitates the
rapid flow of software changes from one environment to another (Humble
and Farley, 2010; Adams and McIntosh, 2016).

Testing as part of the deployment pipeline consists of performing auto-
mated and manual tests split into test suites that test the validity of the
built software version on different tiers with emphasis on automated tests
(Humble et al., 2006). In the lower-level tiers, testing includes performing
unit-level and other tests that focus on isolated code components and units.
Unit tests are followed by higher-order functional and integration tests that
can take advantage of production-like testing environments. Passing unit
and integration tests indicate that the software version under test might
very well be a potential release candidate and ready for the highest cate-
gory of acceptance tests.

Deployment and the capability to deliver packaged software versions to
other environments becomes important at this stage at the latest, as ac-

18 2 Continuous Software Engineering

ceptance tests should at the very least be tested in an environment that
resembles the production environment (Humble and Farley, 2010). Accep-
tance tests and the acceptance criteria for the tests can be either functional
or non-functional. Functional acceptance tests, which can be automated,
are driven by user stories to determine whether the implementation fulfills
the needs set by the user regardless of the technicalities in the background.
Working with the customer and users in short cycles, continuous deploy-
ment favors rapid validation of what is being implemented at any given time
(Olsson et al., 2012). Acceptance tests as such have their place in ensuring
that the perspective of the user is not forgotten. Acceptance test criteria
can also be non-functional in the sense that properties such as performance
and security can be tested in a production-like environment to get a sense
of whether the system and the current release candidate respond according
to the set performance thresholds without serious security vulnerabilities
(Humble et al., 2006).

Preferably, acceptance testing should be done in an environment that
resembles the production environment, which calls for proper configura-
tion management and provisioning of test infrastructure. If the creation
of testing environments for acceptance testing is not properly automated,
developer teams might not get the immediate feedback necessary for con-
tinuous delivery and deployment. Setting up testing environments without
automation takes considerable time not only from the developers but from
other people as well and as a result acceptance testing tasks do not move
in the development workflow towards deployment to production, piling up
when testing resources eventually become available (Chen, 2017). Replicat-
ing production environments for testing is not an easy task when configu-
ration between environments can still vary due to various reasons, making
it difficult to ascertain the release readiness of the built version (Parnin
et al., 2017). A high rate of incoming changes and inconsistency in envi-
ronment configuration means testing is partly done in production, which is
an undesired situation and increases the possibility of observed failures.

Fine-tuned deployment practices and automated deployment are pre-
requisites for efficiently testing a particular software version and ultimately
shipping the tested version to a production environment with minimal over-
head. Without proper deployment practices, the process of deploying a
new version for testing in another environment can take days instead of
the mere hour or so it takes with automated deployment (Humble et al.,
2006). Continuous integration servers, such as Jenkins, enhanced with ca-
pabilities for workflow orchestration and deployment can provide assistance
in automating the end of the deployment pipeline suitable for continuous

2.2 Continuous Delivery and Deployment 19

delivery and continuous deployment (Armenise, 2015). Workflows in Jenk-
ins can be composed of any number of arbitrary phases that build software
packages, execute automated functional and non-functional tests in various
environments, process the resources in any manner and deploy the packages
to various environments. Phases that require human intervention can be
configured to halt, waiting for additional permission to continue with the
subsequent phases upon approval by promoting the build to the next phase.
Workflow tools that are able to illustrate and visualize parts of the deploy-
ment pipeline (Armenise, 2015), help raise developer awareness of parts of
the pipeline that still require attention in terms of continuous delivery and
continuous deployment (Chen, 2017). Automating deployment gives de-
velopers the chance to deploy changes to production at will that can also
strain and put pressure on developers as they are responsible for their own
changes, needing to keep alert and monitor production systems for errors
when the changed code is invoked for the first time by users (Parnin et al.,
2017).

Deployment and specifically deployment to production environments
does not necessarily mean that a new software version is immediately re-
leased to all users. Releasing software changes right away was incorporated
in the original line of thought of continuous deployment (Fitz, 2009). Fewer
changes at once was seen to make it easier to pinpoint and correct any
possible failures in production, owing to the fact that there would be less
ground to cover and where to look for failures. Chiefly, the idea still rings
true and remains valid but in the continuous deployment parlance of late
there has been a tendency to clearly distinguish between deployment and
release. Deployment refers to the capability of moving necessary files re-
lated to a particular software version from one environment to another with
appropriate environment configurations while releasing means making the
version available to the end users (Adams and McIntosh, 2016). Continuous
delivery and continuous deployment deal with both concepts – deployment
and release – but the terms are not entirely interchangeable.

Continuous delivery can be seen as a precursor to continuous deploy-
ment. What separates the two is their relationship to deployment to pro-
duction. There is a shared understanding that in continuous delivery, the
deployment pipeline has been set up so that development teams have the
capability to push and deploy recent changes to production but deployment
and release have not been fully automated unlike in continuous deployment
(Ståhl et al., 2017; Fitzgerald and Stol, 2017). Continuous deployment goes
a step further in ensuring that changes made in development are effectively
deployed to production and released to end users with a rapid schedule.

20 2 Continuous Software Engineering

Conceptually, this difference in the operation of the last part of the de-
ployment pipeline is the major difference between continuous delivery and
continuous deployment although there has been some ambiguity in the use
of the terms and their meaning has been mixed over the years (Fitzgerald
and Stol, 2014, 2017).

An automated deployment pipeline can make the task of releasing new
software versions to the end users easier, especially so if the pipeline extends
all the way to the production environment as it should in continuous de-
ployment. Releases and releasing changes, however, can take many forms.
Strictly speaking, if a deployed software change or feature that is part of the
release cannot be used by the end users or is not otherwise available, the
change has not been released yet. Forms and modes of release exist where
this is exactly the case as new code and other changes can be silently de-
ployed to production but associated features remain disabled for end users
with the help of feature flags or then the whole feature is built incremen-
tally step-by-step with dark launches (Parnin et al., 2017). Other options
include releasing changes only to some users but not to all of them with
canary releasing (Humble and Farley, 2010; Adams and McIntosh, 2016;
Parnin et al., 2017).

Beyond disabling individual features and releasing versions only to a
small subset of users lies the most experimental release and deployment
methodologies where end users are exposed to different versions based on a
certain logic in dividing users into various groups. Experimental methods
like A/B testing are part of this continuum in which implicit user feed-
back and telemetry from the production environment guides development
efforts (Adams and McIntosh, 2016). In continuous software engineering,
continuous innovation and continuous experimentation are linked to work-
ing methods that combine frequent releases of continuous deployment with
user centered experimentation (Fitzgerald and Stol, 2017). Such methods
form the basis of experiment systems that are at the top of the conceptual
user centered agile software development staircase (Olsson et al., 2012) –
methods that require the capability to deploy and release often to work in
a sensible manner. The next section covers some of the release models that
can be used in conjunction with continuous deployment.

2.2.2 Releases

A well-automated deployment pipeline makes software changes fluid, flow-
ing from one end of the pipeline to the other with ease but a developer task
related to a change cannot be truly defined as done if the change has not
been released or made available to the users (Humble and Farley, 2010).

2.2 Continuous Delivery and Deployment 21

Production

Developers see and feel

Users

Rapid change merge

Invisible to users

Deployment – dark launch release

🎭 Staging

0 %

(a) Dark launching

Production

Developers gather feedback

Users

Visible to some users

Deployment – canary release

🎭 Staging

10 %

(b) Canary releasing

Production

Developers gather feedback

Users

Visible to all users

Deployment – full release

Feature flags configurable

🎭 Staging

100 %

(c) Full release

Figure 2.3: Software changes deployed to the production environment can be
hidden from all or some users with dark launching and canary releasing models to
prepare for a full release (Humble and Farley, 2010; Adams and McIntosh, 2016;
Parnin et al., 2017).

Every change that is ready to be deployed or that is alternatively deployed
directly to the production environment, however, does not form a mean-
ingful feature that could readily be taken into use by the users (Humble
and Farley, 2010). Dark launching and feature toggles support such partial
deployment of changes and provide the minimal exposure or no exposure
at all to users (Adams and McIntosh, 2016; Parnin et al., 2017). Gradual
rollouts with canary releasing are useful to making the changes available to
some, but not all, users to determine whether the changes work well enough
and are received favorably by the users (Humble and Farley, 2010; Adams
and McIntosh, 2016; Parnin et al., 2017). A change that is made available
to all users is a release that has possibly gone through the various release
phases but developer and release teams can also skip all of the intermedi-
ate phases by deploying the change to the production environment without
restrictions on user visibility. Figure 2.3 illustrates the main features of
the various release models starting from dark launching (Figure 2.3a) and
canary releasing (Figure 2.3b) that are useful in preparing a full release
(Figure 2.3c) later on.

Dark launching and feature flags defy logic at first glance. Why would
anyone want to make a release that has no evident effect on how the system
works from the users’ perspective? One reason lies with the hardships in-
volved in integrating work from version control system branches that have
not been integrated to the main line of development in a while (Mårtensson
et al., 2017). Developers practicing continuous integration saw benefits in
integrating often to the main development branch with small batches of
changes, and the same applies in continuous deployment with dark launch-
ing. A smaller set of changes is easier to merge and large architectural

22 2 Continuous Software Engineering

changes in software architecture less painful to piece together by deploying
the changes often by the principle of dark launching (Parnin et al., 2017).

Likewise, feature toggles or feature flags allow the same flexibility as dark
launching, making it possible for developers to try out and run code in the
production environment by including the necessary software services in the
set of changes deployed to production but hiding components from the users
if certain Boolean expressions or other conditions in code evaluate to true
or false (Adams and McIntosh, 2016; Parnin et al., 2017). Feature flags can
be used either at compile time or at run time. Compile time flags that are
disabled by setting the condition to false might not end up in the compiled
code at all depending on the compiler. Run time feature flags are evaluated
when the code is executed so the value for the feature flag – whether to
show or hide a feature – can be read from a dynamic configuration source
like a configuration server. What is helpful in development is also helpful
when a released feature is not working as expected since the configuration
source can be used to disable the feature without making a new release to
fix the possibly faulty feature.

Release strategies where the changes are deployed and released to a
share of the users while withholding the changes from others derive from
the principle of canary releasing (Humble and Farley, 2010; Parnin et al.,
2017). The decision which users get to interact with the released feature
can be based e.g. on the geographical region where the user is from (Adams
and McIntosh, 2016). Canary releasing functions much like a dynamically
configured feature flag: if the result of the evaluation is true, the feature is
shown to the user and if it is false, the feature is hidden. The configuration
and evaluation of a release canary feature might just involve more logic and
the value of the configuration is not globally the same to all of the users.
Monitoring the production environment closely is a necessity with release
canaries. Tracking feature usage through telemetry is needed to see how
the users interact with the features and to see that the new features are
not causing any system failures (Adams and McIntosh, 2016; Parnin et al.,
2017). The general objective of canary releasing is to gather implicit or
explicit feedback from the users (Humble and Farley, 2010).

Eventual full releases to all of the users follow the intermediate release
phases if everything seems to be in working order and the quality metrics
from the production environment look acceptable. Telemetry data is still
useful when a release has been done to catch the occasional program ex-
ception or two and to generally get a feeling of how new features are being
used after a release (Parnin et al., 2017).

2.3 DevOps 23

Continuous deployment as a practice does not strictly dictate whether
to silently push changes to production with dark launching, or to use re-
lease canaries to try out new features with a limited audience, or to deploy
and release all changes without prior experimentation on users. The gen-
eral expectation for continuous deployment is to have changes deployed and
released quite often (Fitz, 2009). Since the release frequency is not locked
as such, it has been suggested that the concept of continuous release should
be added to the family of continuous software engineering practices to dif-
ferentiate between deployment and actual release of changes (Ståhl et al.,
2017). Continuous deployment still encourages developer teams to release
more often, turning months between releases into weeks or even days (Chen,
2017).

2.3 DevOps

The primary concern of continuous deployment is getting changes quickly
through the deployment pipeline and preparing a release to the users who
can then enjoy the latest changes in the production environment. A devel-
oper who pushes changes to the deployment pipeline by writing the code and
automated tests, and possibly deciding when to release a particular change,
has a lot of responsibility. A developer has to be a master not only of de-
velopment but of quality assurance and of operations as well. Development
skills are evident in programming, quality assurance skills in testing and
operations skills in orchestrating and managing network infrastructure and
server environments before and after releases. As the name of the concept
suggests, DevOps has its roots in this kind of thinking where the bound-
aries of particular roles in a development team have become blurred (Roche,
2013). No more strictly separated competences and people, throwing the
ball over the wall to operations upon releases. Team aspects and bridging
the separate worlds are important to DevOps, yet conceptually DevOps is
a broader topic that covers the whole lifespan of a product (Roche, 2013).

DevOps has objectives that are similar to continuous deployment. The
objective set for DevOps to reduce the time it takes for changes to prop-
agate from development to production with sufficient quality ensured by
automated tests (Bass, 2018) aligns well with the objective of continuous
deployment. DevOps stresses the importance of automated build and con-
tinuous integration just as continuous deployment does (Ebert et al., 2016).
The shared identity of DevOps and continuous deployment can perhaps be
explained by the fact that continuous deployment is sometimes seen as a
part of DevOps (Zhu et al., 2016; Ståhl et al., 2017; Bass, 2018) as illus-

24 2 Continuous Software Engineering

DevOps

Continuous
deployment

Continuous
integration

Figure 2.4: DevOps aims to unify development, testing and operations and its
practices for reducing cycle time include continuous deployment and continuous
integration among others (Zhu et al., 2016; Ståhl et al., 2017; Bass, 2018).

trated in Figure 2.4. Besides enclosing continuous deployment, DevOps has
other notable characteristics that are related more to team structures, roles,
and operations practices in general.

Bridging the chasm between developers and operations personnel with
a certain regard to the whole lifespan of a product is driven by a different
mindset to software development, development practices, and tools to sup-
port the way of working. According to the mindset, every person in the
developer team is more or less responsible for the maintainability of a soft-
ware product being developed and generally accountable for each change
released to the users (Roche, 2013).

Team composition and structure of a DevOps team should reflect the
added responsibility so that the team should have sufficient skills to deal
with the operations context at its disposal. Instead of having horizontally
aligned teams where each specialty forms their own department and team
such as development, quality assurance and operations, there should be
vertically aligned cross-functional teams that have the ability to develop,
test, deploy, release, and monitor environments (Balalaie et al., 2016; Ebert
et al., 2016; Dörnenburg, 2018). Such empowered teams serve the purpose
of avoiding rigid handovers between teams and specialties where respon-
sibility is shifted from team to team after finishing a particular phase in
development; responsibility in DevOps teams is shared.

2.3 DevOps 25

Preferably, DevOps teams should be small in size (Balalaie et al., 2016;
Dörnenburg, 2018). A group of ten people or so well versed in development,
quality assurance and operations can work more effectively on delivering
individual software components or services. Thus, a single DevOps team
might not actually work on the entire software product and its components
but just a small part of it. These microservices are used to decompose soft-
ware into independent services that communicate with each other through
service interfaces that depend on service contracts (Balalaie et al., 2016).

Microservices and service-oriented architecture help teams to work with
a degree of freedom on a service they are responsible for (Dörnenburg, 2018).
A microservice can have its own deployment pipeline separated from other
services and components that allows independent deployment and release
(Balalaie et al., 2016). DevOps can be employed successfully without mi-
croservices since bridging development and operations is possible by other
means but implementing microservices does require a streamlined deploy-
ment process such as advocated by DevOps (Ebert et al., 2016). In other
words, DevOps does not need microservices but microservices can be help-
ful. Due to the independence of individual microservices, change sets can
be small and focus on a single service, which can in turn help to attain the
ideal of continuous deployment and DevOps (Bass, 2018).

Monitoring and telemetry were important in continuous deployment but
DevOps puts even more emphasis on these areas, making sure that the op-
erational environments are up and running properly. The infrastructure
as code principle with separate version control repositories for server con-
figurations and such is strongly encouraged in DevOps to recreate similar
environments for all development phases (Ebert et al., 2016; Bass, 2018).
Further assurance that all operations environments meet the same require-
ments and that the code has been deployed successfully can be made with
specific compliance checking (Callanan and Spillane, 2016). Compliance
checks look at the status of processes on the server and verify the existence
of binaries and other libraries. Monitoring involves collecting and analyz-
ing server and application health statistics with tools suited to the purpose
(Ebert et al., 2016). Application logs on servers are an important source
of information on application exceptions (Ebert et al., 2016; Balalaie et al.,
2016). Logs can be centrally monitored in a DevOps fashion with good
search indices in order to react quickly to any problem that might surface
when deploying new versions or in the day-to-day operation of a software
system.

DevOps is a broader concept than the other continuous software engi-
neering practices described in this chapter. The true meaning of DevOps

26 2 Continuous Software Engineering

has been contested and it can be seen not as a single practice but a collection
of different values, principles, methods, practices and tools to unify devel-
opment, quality assurance and operations (Ståhl et al., 2017). DevOps is
perhaps more about fostering a culture of collaboration than anything else
(Ståhl et al., 2017; Fitzgerald and Stol, 2017). Nevertheless, the nature of
this collaboration should bring cross-functional development teams closer
and ultimately make it easier to ship releases faster while considering the
whole lifespan of a software product or service.

Chapter 3

Research Method

Software engineering is a field that is open to many research methods such
as case studies, surveys, controlled experiments, or simulations to name a
few (Stol and Fitzgerald, 2018). Research questions drive the selection of a
research method for studies as some types of questions are better addressed
by specific methods (Yin, 2014; Wohlin and Aurum, 2015). The research set-
ting, i.e. the environment in which research for the study is conducted, also
has an impact on the applicability of research methods (Stol and Fitzgerald,
2018). Natural settings in the field are more realistic than contrived settings
in the laboratory. Empirical observations can be made in the field and in
the laboratory but in non-empirical settings, research is done at a purely
theoretical level. In neutral settings, the researcher tries to minimize the
effects of the environment because there is little control over the environ-
ment of the test subjects like is the case in questionnaires found in survey
studies.

Research settings differ in terms of how obtrusive they are and how well
the research findings can be generalized (Stol and Fitzgerald, 2018). Real-
istic settings in field studies are not very obtrusive but it is more difficult
to generalize the findings compared to more obtrusive and controlled labo-
ratory experiments in contrived settings. Control over the research setting
comes at the price of realism.

This chapter describes the research setting and presents the research
method for the series of field studies conducted for the thesis. A series of
field studies is a good starting point to explore and understand in which
light frequent software releases are seen in a realistic setting of companies
engaged in software development. The important research questions that
drive the selection of research methods and are at the core of the studies are
covered in Section 3.1. A more detailed overview of the research design for
each individual study in the thesis along with steps of case selection, data

27

28 3 Research Method

Table 3.1: Research questions of the thesis.

Identifier Research Question

RQ1 Why should software releases be frequent?
RQ2 How can a software engineering process be organized in or-

der to release software frequently?
RQ3 What are the implications of frequent software releases to

organizing work?

collection, and data analysis is covered in Section 3.2. An overview of the
five publications in the thesis is provided in Section 3.3, where the research
settings and outcomes are summarized study by study.

3.1 Research Questions

In the quest of examining the phenomenon of frequent software releases,
the primary focus in this thesis is on three distinct themes divided into
three research questions. The first theme and research question (RQ1) puts
an emphasis on the rationale of frequent releases: why should releases be
frequent in the first place and what is to be gained from releasing software
frequently? Given that it is desirable to aim for frequent releases, what
would it require from the whole development process and the development
team in order to prepare releases with a rapid schedule? In the second
theme (RQ2), the highlight is on development processes that enable frequent
releases. Software development processes are not transformed on their own,
however, but require the strength of willpower in those in charge and the
collaboration of many people engaged in software development in different
roles. The final research question (RQ3) seeks to explore what impact
frequent releases carry in terms of organizing work and how people need to
adapt to their new roles. These research questions are summarized in Table
3.1 and further elaborated in this section.

The research questions are explored in five distinct publications that
each address one or more of the research questions. The rationale behind
frequent releases for RQ1 is covered in the industry interview and surveys
studies reported in Publication I, Publication II, Publication III, and Pub-
lication V. Software engineering process factors, which are at the core of
RQ2, are present in all of the five publications. Organizational behavior,
the changing role of development teams and their interaction with other
key parties, and the organizational forces required to support the adop-

3.1 Research Questions 29

RQ1: Why should software
releases be frequent?

•Publication I

•Publication II

•Publication III

•Publication V

RQ2: How can a software
engineering process be

organized to release
software frequently?

•Publication I

•Publication II

•Publication III

•Publication IV
•Publication V

RQ3: What are the
implications of frequent

software releases to
organizing work?

•Publication I

•Publication III

•Publication IV

•Publication V

Figure 3.1: Each publication in the thesis addresses one or more of the research
questions.

tion of frequent releases are key elements of RQ3. Elements of RQ3 are
especially considered in Publication I, Publication IV, Publication III and
Publication V. Figure 3.1 further illustrates the relationships between re-
search questions and publications in the thesis.

RQ1: Why should software releases be frequent?

Large companies such as Facebook have already introduced deployment
processes in which developers can opt in to have their changes released dur-
ing the same day and thousands of changes are pushed to the users each
day (Savor et al., 2016). As speed is not a virtue by itself, it is only ra-
tional to ask, why should releases be frequent in the first place? What is
the value that increasing the release frequency brings? Instead of having
weekly releases, a software company could choose to release software bi-
weekly, monthly or every six months or so, or whenever it suits them best.
In some cases, companies have turned an infrequent release process where
releases are six months or more apart into weekly and daily releases (Chen,
2017) but why weren’t the lengthier processes suitable or good enough? It
is worth also to inquire whether the domain for which the software is being
developed makes a difference. These are some of the questions covered as
part of the examination of RQ1.

RQ2: How can a software engineering process be organized
to release software frequently?

Software development practices favoring frequent releases to production en-
vironments for all users to enjoy, such as continuous delivery (Humble et al.,
2006; Humble and Farley, 2010) or continuous deployment (Fitz, 2009),

30 3 Research Method

have grown from the practical knowledge and ideas of software profession-
als in the field. The constituent parts of the deployment pipeline used in
continuous delivery have been outlined earlier (Humble et al., 2006; Hum-
ble and Farley, 2010) but not all of the practical ideas have been written
down as clear playbook guidelines for software engineering. Without a com-
mon understanding until recently, there has not always been agreement on
what concepts like continuous delivery, continuous deployment, and Dev-
Ops mean in practice although they seem to share similar objectives (Ståhl
et al., 2017). With this in mind, RQ2 seeks to find out which activities in a
software engineering process help or hinder frequent releases. How should
a modern deployment pipeline be formed so that design ideas flow freely
from their inception through development, testing, and release to the end
user? What is the difference to a traditional style of software development
where the releases are more infrequent? Should the development team have
a particular structure? Such concerns form the basis for RQ2.

RQ3: What are the implications of frequent software releases
to organizing work?

A software process supported by the right technological choices can help
people in a development team to work effectively in a uniform manner to-
wards more frequent releases. Putting a practice into use, however, requires
more than just processes and tools. Making a change to the current way
of working requires changes in people, their attitudes, and the surrounding
culture, which might all be much more difficult to influence than technol-
ogy and tools (Fitzgerald and Stol, 2017). Development teams are not the
only ones that need to adapt to new ways of working. The surrounding
organization and its key partners such as the customers must redefine their
relationships with each other if releases are to be more frequent. By study-
ing the opinions, attitudes, hopes, and fears of the people who work in
software engineering about increasing release frequency, it could be possible
to gain some understanding in which way the organizational culture would
need to be changed.

3.2 Research Design

Research questions are the driving force behind all research settings as the
form of the questions can limit available research options (Yin, 2014; Wohlin
and Aurum, 2015). Questions in the form of how, why, what, where, and
how many have a relationship to research methods that are most suitable
for answering questions in a specific form (Yin, 2014). Case studies, for

3.2 Research Design 31

instance, are especially suited for research questions in the form of how and
why whereas surveys are useful when answers are sought for questions like
how many or how much. Research questions and methods are also inter-
linked with research purposes. The purposes of research can for instance be
to explore a particular phenomenon, which allows a wider range of research
questions and methods to be used (Yin, 2014). Descriptive and explanatory
research purpose types are types that go beyond exploring a phenomenon
with the aim of better understanding why an event leads to an outcome in
the case of explanatory research purposes (Runeson and Höst, 2009; Yin,
2014). The selection of a research method also rests heavily on the fact
whether behavior of the subjects needs to be controlled like in controlled
experiments (Yin, 2014). When studying past events or historical archives,
directing test subjects is no longer an option so the study’s chosen emphasis
on contemporary or historical events has an impact on the research method,
too.

The long path from research questions to research findings can be seen
as a series of decisions that govern which type of study is being conducted,
which research methods are applied, in which manner the data is collected
and finally how the data is analyzed. For illustrating research designs,
eight central decision points grouped into strategy, tactical, and operational
phases can be used to depict the decisions made at each point and phase in
research (Wohlin and Aurum, 2015).

The strategy phase consists of the decision points for research outcome
(decision point 1), research logic (decision point 2), research purpose (deci-
sion point 3) and research approach (decision point 4). Research outcome
defines whether the research is basic research or applied research seeking an
answer to a specific problem. Research logic determines the logic behind
reasoning for the study, be it either inductive reasoning from data or deduc-
tive reasoning for testing a theory. The decision point for research purpose
relates to the exploratory, descriptive or explanatory nature of research and
the overall research objective. Research approach deals with the ontologi-
cal and epistemological foundations, the theory of knowledge, on which the
study is based. Experimental studies tend to have a positivist approach to
research while less objective approaches can for instance be interpretivist or
even critical, rejecting the possibility to obtain truly objective knowledge.

In the tactical phase of research design, the decisions are about the
research process (decision point 5) and the research methodology (decision
point 6). The research process can be qualitative focusing on verbal or other
accounts of study subjects, quantitative with a focus on numerical data, or
a mixed process of the two. Research methodologies in the decision-making

32 3 Research Method

1. Research
Outcome
•Basic research

2. Research Logic
•Inductive research

3. Research Purpose
•Exploratory

4. Research
Approach
•Intepretivist

5. Research Process
•Qualitative
•Quantitative
•Mixed approach

6. Research
Methodology
•Case study

7. Data Collection
Methods
•Interviews
•Survey

8. Data Analysis
Methods
•Thematic analysis
•Statistical analysis

Figure 3.2: Research design for the thesis studies following the eight point re-
search decision-making structure (Wohlin and Aurum, 2015).

structure are broader concepts than research methods but are identifiable
by research method names such as case studies or action research.

Operational decision points in the last phase are concerned with data
collection methods (decision point 7) and data analysis methods (decision
point 8). Interviews are suitable for collecting qualitative data but the
data collection methods are different for quantitative data, which is better
collected with surveys and experiments. Data can be analyzed with the help
of several distinct analysis methods that are coupled with the whole research
process and data collection methods. Qualitative data from interviews can
be analyzed, for instance, with thematic analysis or with grounded theory
analysis methods whereas quantitative data can be subjected to statistical
analysis. Ultimately, analysis of the data leads to the research findings,
which is the final step of the operational phase in the research decision-
making structure.

Putting all the decisions from the strategy, tactical and operational
phases together, Figure 3.2 summarizes the decisions made for the research
design of the studies in the thesis. These decisions are further elaborated
and expanded in this section.

3.2 Research Design 33

The first four strategic phase decision points (decision points 1–4) il-
lustrated in Figure 3.2 sets the foundation for the the study design of the
thesis studies. For the research outcome, the studies are best characterized
as being basic research. Basic research is more fitting in this case since
the focus is on understanding the circumstances when and how release fre-
quency should be increased, not on solving an applied research problem as
such. In the absence of a specific theory to be tested, the research logic is
inductive with observations flowing from the data collected. Research ques-
tions in the form of how and why are usually associated with explanatory
studies (Yin, 2014), but the primary research purpose is exploratory despite
the explanatory elements. The purpose is to broaden the understanding of
the phenomenon with exploratory research. Seeing the impacts of increas-
ing release frequency and evaluating the whole software engineering process
through the eyes of the study participants in their respective environments
is important in gaining understanding, which makes the research approach
interpretivist.

For the tactial phase (decision points 5–6), Figure 3.2 shows the research
process and research methodology of the studies. By focusing on the sub-
jective experiences of the study participants and their description of the
circumstances in which they do software development, the research process
is predominantly qualitative. Several studies in the thesis have, however,
quantitative qualities and a mixed research process with both qualitative
and quantitative components is used in several cases. A mixed process
is used especially in the study reported in Publication II where qualita-
tive interview responses for the reported release frequencies are quantified
and treated as numerical data. The quantitative research process is most
evident in a single survey study reported in Publication III that utilizes
aggregation of standardized survey response data. Case studies are used to
study phenomena in a real-world setting where the circumstances cannot
be controlled in a similar manner as it is possible for controlled experiments
(Runeson and Höst, 2009; Yin, 2014). Case studies are mostly suitable for
exploratory studies (Runeson and Höst, 2009) and are suited to answering
questions in the form of how and why (Yin, 2014). These factors make case
study a logical choice for the encompassing research methodology of the
thesis.

3.2.1 Case Selection

Selecting which cases should be part of a case study – the selection strategy
– is an important step in planning and conducting case studies (Runeson
and Höst, 2009). Cases should be selected in such manner that the research

34 3 Research Method

questions for the case study can be properly addressed (Yin, 2014). The
real-world contexts for a software engineering study are companies and other
organizations that are engaged in software development or other software
engineering activities. To this end, the selected cases are from different
domains of the Finnish software industry.

A total of 31 Finnish software companies were selected from industry
domains ranging from web service development to companies involved in
embedded software development and industry automation. The smallest
selected companies had only 10 people or so working for them while the
largest had thousands of workers. Chiefly, the companies that participated
in the studies were active in a nationwide research program called Need for
Speed (DIMECC, 2022). The program, which went on from 2014 to 2017 in
Finland, had roughly 40 industry and academic partners. Letters of invita-
tion from the academic collaborators were sent to the industry partners in
the program, asking for their interest in participating in the studies. The
companies had the liberty to accept or decline the invitation so the selection
of the companies can be considered self-selection. To broaden the range of
companies and to strengthen views for specific types of industries, more
companies for the studies were enlisted outside of the research program.
For the companies outside the research program, the selection was based on
both the domain of the companies and convenience as the companies were
known to the researchers. Overall, from the selected 31 companies there
were 33 cases as there were multiple cases from several companies.

Defining and bounding a case to a specific unit of analysis is just as
important as defining the research questions for a case study (Runeson and
Höst, 2009; Yin, 2014; Wohlin and Aurum, 2015). The unit of analysis,
i.e. the case, can be for instance individuals, small groups, organizations,
processes or projects. Bounding of the case should also include the temporal
dimension to determine at which period in time the real world phenomena
should be studied (Yin, 2014). Multiple units of analysis are possible in case
studies where the cases have many embedded units of analysis, focusing on
more than one unit in the same study (Runeson and Höst, 2009; Yin, 2014).
Besides having multiple units of analysis, case studies can also have multiple
cases as opposed to having just a single case to study (Yin, 2014). Case
studies with multiple cases are classified as multiple-case designs and those
with just a single case as single-case designs. Single-case designs are good
for longitudinal studies or in cases where the single case is critical enough
to test a theory or unique in some other manner. Multiple-case designs are
considered more robust and useful for replicating the studies in different
contexts and environments, which in turn allows cross-case analysis (Yin,

3.2 Research Design 35

2014). Multiple-case designs can contain embedded units of analysis just
like single-case designs.

A multiple-case design with embedded units of analysis is used in a ma-
jority of the thesis studies. Software development companies in the studies
form the real-world study context for the cases. One key unit of analysis
is the software development process used to deliver and deploy software in
each case. Many of the companies involved in the studies operate in a set-
ting with many projects running at the same time. Software development
teams and practices can change by project in such settings. Thus, the con-
crete case is a software development project that is developed by a software
development team. Individual team members are also the embedded units
of analysis since qualitative data is collected about their personal opinions
and attitudes regarding software development and their understanding of
the software process. The temporal bounding of the cases in the multiple-
case design studies was the present moment, reflecting the state of the active
projects and other matters when the data was collected. In the longitudinal
single-case design case study reported in Publication III, the primary unit
of analysis and case is the organization and the embedded units of analysis
are the surveyed projects. In summary, organizations, software processes,
projects, development teams and team members are all used as units of
analysis in the studies.

3.2.2 Data Collection

Methods for data collection can be classified as direct or indirect methods
(Runeson and Höst, 2009). Direct data collection methods are first degree
methods where the researchers gather data by interacting with the study
subjects such as by interviewing the subjects. Indirect data collection meth-
ods are second and third degree methods. In second degree methods, data
is collected through some kind of automated mechanisms. The most indi-
rect form of data collection methods are the third degree collection meth-
ods where the data already exists prior to its study and data is collected
from previously stored documents or from other systems like organizational
repositories. Figure 3.2 (decision point 7) shows the data collection meth-
ods used for the thesis studies with interviews being the main first degree
collection method along with a single survey as a second degree method.

Interviews are used to elicit information and detailed views from study
subjects with the help of a set of questions presented either locally or re-
motely (Wohlin and Aurum, 2015). Questions in interviews are generally
open questions that allow more room for the answers or closed questions
where the subjects are encouraged to answer questions in a particular form

36 3 Research Method

or structure, e.g. choosing an answer from a set of possible answers (Rune-
son and Höst, 2009). Unstructured interviews tend to follow the natural
flow of discourse, having mostly open questions in the interview protocol
(Runeson and Höst, 2009; Wohlin and Aurum, 2015). As opposed to un-
structured interviews, structured interviews favor closed questions whereas
semi-structured interviews try to strike a balance between open and closed
questions (Runeson and Höst, 2009; Wohlin and Aurum, 2015).

An interview can be divided into phases and sections: an introductory
phase traditionally begins the interview followed by background questions
and the main questions for the interview (Runeson and Höst, 2009). Each
question asked in an interview can also be classified according to its level
of enquiry in a five-level classification (Yin, 2014). Level 1 questions are
questions regarding the interviewee as an individual and the attitudes of the
individual. Level 2 questions are questions about the case being studied and
are thus the most common in case studies. Levels beyond Level 2 approach
broader questions not only about the single case but more general questions
about the cross-case findings, for instance.

Interviews for the 33 cases in the thesis were carried out during the years
2014 and 2015. Themes for the interviews varied by study so three distinct
interview question sets were used for the interviews. The studies reported in
Publication I and Publication II used the same interview protocol. In these
two studies, case companies were approached with the idea that it would be
helpful if the people who were interviewed were from software development
teams and projects that were in a relatively advanced state. This way, the
concrete cases could represent not only the typical case in a company but
also reflect the best software development practices and processes available
in the context of the company.

A single interview session was used in all of the 19 cases that were part of
the first set of interviews. The people who were interviewed worked mostly
as developers, architects or team leads in small software development teams
developing a particular product. Around two hours were reserved for each
interview. Usually, two researchers and one to two members of the soft-
ware development team were present in the interview. The roles between
researchers were generally divided so that one researcher asked the ques-
tions following the interview guideline while the other researcher took notes
and asked clarifying questions when necessary. A digital voice recorder was
used to record the interviews with the consent of the interviewees. The
interviews followed a semi-structured pattern with both open and closed
questions. Background questions about the company and the interviewee
were asked in the first sections. Most questions in the interview were Level

3.2 Research Design 37

2 questions about the concrete case, the project or product, with which the
interviewees were working. These questions were aimed at gaining insight
into the practical ways of software development, testing, and deployment
of software releases in the setting of project or product developer teams. A
small number of personal Level 1 questions about hypothetical situations
and individual perceptions of software development were included in the
interview protocol. For instance, the interviewees were asked what bene-
fits or challenges they could see with a release model where releases and
deployment to production environments were more frequent. Besides open
and closed questions that could be answered verbally, the interview proto-
col included interactive parts. The interviewees were asked to depict their
software development process from start to finish with a freeform process
diagram on a whiteboard or on other similar surface. Notes taken in the
interview about specifics of the development process were sent back to the
interviewees for verification after the interview. In all but two cases the
process descriptions were verified.

The second set of 10 case interviews reported in Publication IV had a
similar design as the first interviews. With one or two researchers present,
the semi-structured interviews on refactoring were recorded and transcribed.
The people who were interviewed were senior software developers and ar-
chitects from a wide range of Finnish companies engaged in software de-
velopment. Background questions were used to contextualize the cases and
characterize the individuals being interviewed. There were a number of
questions that could be classified as Level 1 questions since the interest
was also to gather information about how senior developers and architects
understand and define refactoring. Although the primary unit of analysis
and case was the project and the development process used in the project,
individual development team members were the embedded units of analysis
in the company’s organizational context. Questions in the second interview
set were mostly open questions but also several closed questions were asked
in the course of the interview. The closed questions included, for instance,
estimating the maturity of a project using a five step software development
maturity model as reference (Olsson et al., 2012).

Interviews in the third interview set of the case study reported in Publi-
cation V touched on the topic of DevOps. Three cases from three companies
were selected for the study. The data was collected in three separate inter-
view sessions where questions regarding the development and testing prac-
tices of the companies were combined with reflective questions about the
presumed benefits and challenges of DevOps. The interviews lasted around
two hours and followed a semi-structured format. Two of the interviews

38 3 Research Method

were conducted on-site and one of the interviews was conducted remotely.
All interviews were recorded and transcribed later.

Data collection for the longitudinal survey study reported in Publica-
tion III was done using an online questionnaire that can be classified as
an indirect second degree method of collecting data. The survey measured
project-level maturity of software development practices in areas such as
test automation, quality, build and deployment, running and monitoring,
and the lead time to release new versions over a two-year time period in a
Finnish company. Selection of projects in the company was based on self-
selection as project representatives were free to choose whether to answer
the survey or not. Information about the survey was sent via e-mail to all
active projects in the company. Initially, the survey had been conducted in
2015 and it was replicated in 2017 with minor changes to the questionnaire.
There were responses from 43 projects in 2017, which is comparable to the
35 project responses in 2015. Since the company was involved in developing
customer projects, the projects changed from time to time. Out of the 43
projects in 2017, 10 were the same as in 2015. Thus the bounding of the
case is twofold. The context is the company itself with the organization
being a unit of analysis as well as the individual projects that were active
both in 2015 and in 2017.

3.2.3 Data Analysis

Research findings follow from the collection of data and its analysis. Quali-
tative data such as interview recordings and transcripts has different meth-
ods of analysis to that of quantitative data that can often be characterized
in numerical terms. Figure 3.2 illustrates the two data analysis methods
(decision point 8), thematic analysis and statistical analysis, used in the
thesis studies. The primary source of data in the thesis studies were inter-
views to which the qualitative analysis method thematic analysis fits well.
Statistical analysis was used in a single survey study (Publication III) to
compare survey results between the two data points when the data was
collected.

Qualitative data analysis relies on establishing a solid chain of evidence
from events that have occurred or from subjective standpoints to the even-
tual conclusions (Runeson and Höst, 2009). The primary objective of inter-
views is to collect subjective data from people about their experiences and
about their understanding of situations in their context. Traditional links
in the chain of evidence are the sound recordings taken from the interviews
that can be transcribed later on. Passages and quotes are then coded and

3.2 Research Design 39

grouped, forming a solid basis for the conclusions and completing the chain
of evidence from the collected data.

Analysis of qualitative data begins with the coding phase (Runeson and
Höst, 2009; Wohlin and Aurum, 2015). In the coding phase, researchers read
through transcribed text and assign labels to noteworthy sections. Patterns
or themes start to emerge when similar labels can be used to characterize
sections multiple times within and across cases. Themes can be further
organized to higher-level categories. Identifying codes and themes is the
process of open coding and finding the relationships between themes and
categories is axial coding (Wohlin and Aurum, 2015). Thematic analysis
is an analysis method that can be used to structure analysis of qualitative
data by further formalizing the analysis phases.

Thematic analysis wraps up general phases of qualitative data analysis
to six different phases (Wohlin and Aurum, 2015). Getting to know the
data is the first important phase. Researchers should immerse themselves
in reading and understanding the collected data (Cruzes and Dybå, 2011).
An initial set of codes can be defined in the second phase once there is
enough understanding about the data. Coding in thematic analysis is typi-
cally open coding (Wohlin and Aurum, 2015) that requires multiple passes
to get the codes right (Cruzes and Dybå, 2011). Coding approaches include
inductive coding where codes are drawn purely from the data, deductive
coding that favors predetermined codes to label data, and integrative cod-
ing that mixes the two approaches (Cruzes and Dybå, 2011). Phases three
to five in thematic analysis are related to finding explicit semantic or la-
tent, hidden, themes in the data and codes, and defining and reviewing
the themes (Wohlin and Aurum, 2015). Codes can be plentiful so themes
help to categorize the codes by narrowing down the amount of analytical
units originating from the text (Cruzes and Dybå, 2011). Themes can also
have relationships to higher-order themes if the themes relate to the same
topic. A thematic map connecting themes to other themes and higher-order
themes can be used to develop a taxonomy of sorts (Cruzes and Dybå, 2011).
The final sixth step in thematic analysis is creating the report based on the
analysis (Wohlin and Aurum, 2015).

Thematic analysis as an analysis method has been extended by the
method of thematic synthesis. Thematic synthesis is similar to thematic
analysis but the method emphasizes the importance of theme development
in the analysis of data (Cruzes and Dybå, 2011). Thematic synthesis in
software engineering has been noted to be of use with systematic litera-
ture reviews in classifying primary studies (Cruzes and Dybå, 2011) but

40 3 Research Method

the suggested guidelines for coding text and developing themes should be
applicable for other qualitative data such as interviews as well.

All studies in this thesis took advantage of thematic analysis in various
forms. Thematic analysis in studies reported in Publication I and Publica-
tion II was applied in a similar manner as the studies shared much of the
same interview data. The interviews were recorded, partially transcribed
on-site by researchers acting as scribes and later checked against record-
ings to keep the chain of evidence intact. Besides the partial transcripts,
interview summaries made by the researchers were taken into account in
the data analysis. An integrated approach to coding was used in these two
studies. The higher-order themes to which the themes and codes were asso-
ciated with originated from the layout of the interview questions e.g. for the
rationale why projects should move to continuous deployment as seen by
respondents. The process analysis reported in Publication II applied the-
matic analysis by coding process descriptions and technologies listed in the
process diagrams drawn by the respondents. Software process phases were
the higher-order themes used in coding to determine software development
practices in each case and project.

Although the study reported in Publication III used quantitative data
from a survey, the study also had a qualitative nature. The survey had an
open feedback section used to gather feedback on the usage of the maturity
model survey in the company. Open feedback from both the 2015 and 2017
survey was grouped and analyzed by thematic analysis. Since the format of
the feedback was flexible, the data analysis was mostly inductive, drawing
codes and themes from the data. Themes that appeared often in the text
were highlighted in the report. Thematic analysis of the open feedback gave
an idea of how the respondents perceived maturity models in the context
of their company beyond the quantitative results.

As for the thematic analysis carried out in the study reported in Pub-
lication IV, the approach resembled that of the first two studies. Tran-
scripts from interview recordings were coded using an integrated approach
to determine how the respondents understood refactoring and how they saw
refactoring taking place in their projects. The interview recordings for the
study were mostly written out by professionals from third party transcrip-
tion service providers, which added more detail to the transcripts compared
to researcher notes. The themes of the questions in the semi-structured
interview provided the framework for the thematic analysis but the coded
responses gave form to the content of the analysis. Several researchers took
part in the coding so the same transcript or parts of it could be coded by
multiple researchers. Clarification requests were sent on occasion to the

3.3 Summary of Publications 41

respondents if the original interview and the interview transcript failed to
provide a sufficient answer to the overall questions posed.

Publication V provided results from a study that took advantage of
thematic analysis. The pattern of analysis was similar to the other studies
in that the recorded interviews were transcribed by professionals and later
coded by the researchers. Coding was facilitated by a qualitative research
analysis tool named Atlas.ti to which the detailed transcripts were loaded.
Searching for codes and themes related to the adoption of DevOps was an
inductive effort, relying on the interview data. Codes and themes were
grouped to a thematic map that highlighted the main themes of the study.
The discovered themes were finally used to organize the results in the study
report,

Besides qualitative data analysis and thematic analysis, quantitative
data analysis methods were used for the survey study results reported in
Publication III. Statistical analysis of quantitative data can be used to com-
pare between-sample means (Blaikie, 2011). The null hypothesis in the
case is that there is no difference in the continuous deployment maturity
of the case company projects as measured in 2015 and 2017. Because the
survey utilized an ordinal scale in the survey questions where the respon-
dents selected the most suitable maturity level for a process area, only
non-parametric statistical tests are applicable. Parametric tests like the t
test need the data to be normally distributed and thus parametric tests
cannot be applied to non-metric data (Blaikie, 2011).

Instead, the non-parametric Mann-Whitney U test that fits ordinal data
(Blaikie, 2011) was used to test for statistical significance from the survey
responses. The statistical test was applied for the response means in the
process areas of test automation, quality, build and deployment, and run-
ning and monitoring, taking into account the response means of both years
2015 and 2017, respectively. A metric for the U value is the result of Mann-
Whitney U test that was in the end used to determine statistical significance
based on lookup values of the metric.

3.3 Summary of Publications

All five publications in the thesis report of studies that have their respective
research context and environment. This section introduces the context of
each study and summarizes the key findings for the studies.

42 3 Research Method

Publication I: The Highways and Country Roads to Contin-
uous Deployment

The groundwork for the study of the continuous deployment phenomenon
was laid by a series of semi-structured case study interviews in 15 Finnish
software companies from various domains. Companies in the study included
were involved in such fields as web software development, mobile applica-
tions, telecommunications and embedded systems in industry automation
and medical systems. Themes of the semi-structured interview varied but
for Publication I the main interests were the general state of the field in
terms of continuous deployment with an emphasis on the perceived bene-
fits and obstacles to continuous deployment in particular cases. The semi-
structured interviews with open-ended and closed-ended interview ques-
tions were recorded on-site and analyzed using the qualitative, inductive,
approach of thematic analysis and synthesis (Cruzes and Dybå, 2011).

Metrics yielded from the interviews included five distinct metrics that
could be used to characterize the state of continuous deployment in a com-
pany case. These metrics showed how fast a company could release a small
change if applicable in the domain, how fast it typically releases, how fast it
prepares a release that could theoretically be deployed, and whether changes
propagate automatically to the testing environment or the production envi-
ronment, or both. In the best case, one of the companies could prepare and
deploy a change within an hour if needed. None of the companies, however,
had an automatic deployment pipeline all the way to the production envi-
ronment. Some of the companies were releasing at regular intervals every
few weeks but in domains with severe restrictions, the release frequency
could be up to over a year. The industry domain made a large difference
and the customers were not always prepared to accept releases frequently.

Coding and grouping the interview responses resulted in several theme
groups for perceived advantages and obstacles for continuous deployments.
A definite advantage according to the responses was that continuous de-
ployment could lead to more frequent releases, which in turn would in all
likelihood reduce the time to market and make the end users happier by
creating value to them sooner than could be done with more infrequent re-
leases. Automating repeated routine tasks might also save some effort in the
future. With high-grade test automation and small change sets, the quality
of the products could also be improved. Continuous deployment could also
foster a culture of collaboration between developers and people involved in
the operations line of work, those working with technological infrastructure
such as servers.

3.3 Summary of Publications 43

Considering their current projects in the company and their attitudes to-
wards continuous deployment, the respondents could also see several things
that could be seen as obstacles to adopting continuous deployment. Cul-
tures within the companies need to be receptive towards change in general
to enable transforming the ways of working needed for continuous deploy-
ment. Not only the companies themselves might need the change, though.
Customers were not always in the position to receive frequent releases al-
though in some cases the companies had the capability to deploy and release
at a faster pace. In some domains, the whole idea of continuous deployment
is almost impossible. At the extreme, embedded medical systems rely on
heavy standardization, which makes frequent releases difficult, and it is not
easy to push changes to a factory plant running an automation system,
either. Mobile applications suffer from the fragmentation of devices that
according to the respondents cause the need to have manual testing and
the marketplaces might also put extra constraints on delivery. Products
that are viewed more like art such as games have a different relationship to
releasing altogether with possibly long release cycles.

Testing has aspects that can require extra effort with continuous deploy-
ment, which was seen in the interview responses. Projects that have been
developed without too many automated tests are at a disadvantage when
moving to continuous deployment. Legacy systems are examples where the
transition would be challenging. Manual or exploratory testing phases slow
down the flow in the deployment pipeline. Performance testing and other
non-functional testing are also the types of testing that can be hard to au-
tomate. At times there can be too many automated tests that take a long
time to execute and could be an obstacle to continuous deployment. Mul-
tiple interdependencies with other projects or otherwise complex structures
for building projects can be challenging just the same.

Continuous deployment requires confidence in the whole deployment
pipeline and the test automation that is part of the pipeline. Companies
are willing to invest in setting up a deployment pipeline to prepare releases
at a quicker pace, recognizing at the same time that it might take a lot
of effort to do so and might not be possible in all cases. Fear of breaking
builds and shipping faulty releases to the end users is in the background.
Trust is needed between developers and customers, and between developers
and the deployment pipeline to overcome the anxiety related to continuous
deployment. Many companies interviewed in the study have the potential
to ship releases frequently but have opted not to do so. Taking the next
step to continuous deployment could provide them with a shorter time to
market eventually to the benefit of the customers and end users.

44 3 Research Method

Publication II: Improving the Delivery Cycle: A Multiple-
case Study of the Toolchains in Finnish Software Intensive
Enterprises

Automation is one of the key aspects in building a functional deployment
pipeline that can be used to enhance release readiness of software (Humble
et al., 2006; Humble and Farley, 2010). Software changes and the release ver-
sions the changes amount to pass through phases in the deployment pipeline
such as building, testing, and deployment, which all should preferably be
automated. Automation implies the usage of automated tools that could
perform these duties. In the study reported in Publication II, the focus
is precisely on the processes and tools that companies use as part of their
daily software development work. The study is an extension study of the
study reported in Publication I. One company from the earlier study had to
be left out because of insufficient data for assessing the level of automation
in the company.

Understanding the degree of automation used in the case companies
was an objective in the study as was finding out the reasons for not having
tools in specific phases of the deployment pipeline. Another objective was
to see if there would be any connection between the degree of automation
and deployment capability. An important part of the interview protocol
was to have the respondents draw their software development process and
assign tools in use to the phases they illustrated in the process diagram.
Deployment capability and release frequency metrics were extracted from
the qualitative interview data and quantified. Analysis of data used both
the qualitative coding of interview responses and the quantitative metrics
in order to look for associations.

Six major areas or elements of software development were identified in
the illustrations and process descriptions gathered from the respondents.
A model of a modern software development was seen to consist of such
elements as requirements, development, operations, testing, quality, and
communication and feedback. Each element had several sub-elements like
version control, build, continuous integration and artifact repository for the
development parent element.

Analysis of the company cases revealed that certain elements and phases
in the development process are better supported by technological tools than
others. Requirements engineering has shifted towards agile software devel-
opment and backlog management tools such as Jira. Version control systems
like Git were found in all of the companies. Continuous integration was in
many cases part of the basic inventory and remote continuous integration
servers were triggering build phases from version control systems just as a

3.3 Summary of Publications 45

working deployment pipeline should. Only a few companies took advantage
of artifact repositories for storing compiled binaries. Virtualization and au-
tomated configuration management had found their way to about half of
the companies, which allowed them to bring up environment-specific virtual
machines with little effort and configure servers centrally.

Automated deployment was found to be rare but build promotion schemes
were in place that allowed deployment to other environments after build ap-
proval. In the most advanced cases, deployment used new virtual machines
for each release so that the update of the new virtual machines was fol-
lowed by a switch from the old virtual machines that were discarded in the
process, speeding up the release process.

Testing is an important part of the software development cycle, which
was evident in the fact that most of the companies used automated unit
tests in their work. There were a few areas, however, where automated
testing was neglected, notably in acceptance testing and user interface test-
ing. Exploratory and manual testing without tools were used often, and in
certain fields predominantly so without any automated testing. Tools for
performance, load, and availability testing were most prominent in the de-
velopment of web applications. Code quality was sometimes kept in check
with integrated code review tools allowing peer review of code, and static
code analysis for detecting code anomalies.

Explicit and implicit feedback both within companies and with end users
spurs development. Many companies had some sort of internal communi-
cation channel for discussing development issues such as a Skype or Slack
channel. Although not that common, some of the communication tools were
integrated with the development process in order to give developers feed-
back from continuous integration servers. Direct communication with the
end users was rarely assisted by tools but implicit user data was at times
collected to provide telemetry on user behavior.

Deployment capability and release frequency varied greatly between the
cases, ranging from minutes to years. Based on the quantified metrics ob-
tained from the interviews, release frequency is often considerably longer
than the capability to deploy software. Grouping the cases by the degree of
tool assistance in various software development phases, there was some ev-
idence to support that those with a well-stocked deployment pipeline were
in a better position to deploy rapidly with some exceptions to the rule.

Companies and developer teams employ tools in various areas of software
development to help them in daily development activities. An automated
deployment pipeline requires the reduction of manual phases but the man-
ual work was still commonplace in the studied cases. Testing is a good

46 3 Research Method

example where companies still rely on manual or exploratory testing, and
especially acceptance testing required human assessment instead of relying
on automated acceptance tests. A tool for a specific activity might also not
be used if the activity, like testing, is outsourced, or seen otherwise as irrel-
evant for the current product. Continuous integration and unit testing, for
instance, were not seen as important in the mobile games sector as in other
domains. Companies must constantly evaluate whether technology support
in any development activity can aide them in developing their product fur-
ther, in reducing effort, or perhaps in bringing releases more frequently to
users.

Publication III: Revisiting Continuous Deployment Matu-
rity: A Two-year Perspective

Maturity models such as CMMI (Capability Maturity Model Integration)
can help organizations in process improvement by offering a set of generic
guidelines to process areas and activities an organization might encounter in
their line of work (CMMI Product Team, 2010). Due to their generic nature,
models such as CMMI require interpretation when working with agile soft-
ware development and thus might not be fully suited to evaluating software
development practices like continuous deployment. Continuous delivery or
deployment can be considered as a sign of agile software development but
agility is difficult to define based on generic process adherence as suggested
in CMMI (Fontana et al., 2014). Another option is to use more context
specific maturity models for assessing continuous deployment maturity as
presented in Publication III. The study reported in Publication III outlines
the adoption of a company specific maturity model for capturing continuous
deployment maturity. As a longitudinal study, the data was collected with
an online questionnaire twice in the time span of two years. There were
responses from 35 projects during the first year and from 43 projects two
years later. All projects were from the same case company, a fairly large
Finnish software development company.

The maturity model developed in the case company was a tiered matu-
rity model including such process areas as test automation, quality, build
and deployment, running and monitoring and typical lead time for deploy-
ing changes. Respondents self-assessed the state of their project with the
help of instructions containing the development practices a project needed
to have to reach a particular maturity level in a process area. The tiers
ranged between tier 1 and tier 5, where tier 1 represented the least amount
of maturity in a category and tier 5 represented the highest maturity level.

3.3 Summary of Publications 47

Survey responses from both years indicated minor changes in maturity
levels of the company’s projects. While not statistically significant, maturity
in areas of build and deployment, and running and monitoring had improved
a little. Individual projects that were still ongoing two years later were in
some cases slightly better off but in other cases the perceived maturity had
reduced. The typical lead time to deploy and release changes was around
a month, which had not improved much. Continuous deployment during
the same day was not a standard practice and project teams hardly even
desired more frequent releases than every few weeks.

Self-developed maturity models and surveys can help companies to com-
pare projects and understand which type of software development activities
they should undertake to reach objectives such as those required by contin-
uous deployment. As shown in Publication III, tiered maturity models have
their challenges. Choosing between tiers is not easy nor is the maturity of
a project always in the hands of the developer team. Active projects and
those in the maintenance phase have different objectives. Customer pref-
erences also take precedence over the development teams’ considerations,
affecting the maturity levels that can be attained.

Publication IV: Refactoring-A Shot in the Dark?

Refactoring is a development practice in which internal code structures are
altered with the hope of improving software design without changing the
expected behavior of software (Fowler, 1999). Continuous deployment en-
courages rapid code changes that incrementally build up the design and
architecture of software. In a sense, architectural design is continuous as
well with the idea of continuous architecture being that design decisions
are postponed until the very last minute decisions are required (Erder and
Pureur, 2016). Continuous architecture can benefit from continuous deploy-
ment by allowing the integration of the flux of structural changes. Refactor-
ing is a necessary practice to allow the structural changes to happen when
required.

In the study reported in Publication IV, to better understand how refac-
toring fits into the development cycles in the industry, semi-structured in-
terviews were carried out in nine companies involved in software develop-
ment. The companies were from different industry domains ranging from
industrial automation to web development. Themes for the semi-structured
interviews touched on views of refactoring, the manners in which companies
integrate refactoring, and the benefits and risks related to refactoring. The
interviews were recorded and transcribed, followed by a qualitative coding
and analysis phase of the transcriptions.

48 3 Research Method

Refactoring was seen to be an important part of software development.
Developers spend roughly at least a fifth of their time refactoring code
depending on the project. Refactoring is needed because the needs and
understanding of required code structures evolve as development progresses.
At the same time, there appears to be no good metrics for quantifying
refactoring needs. Developers need to rely on intuition, which makes it
harder to assure other parties that refactoring is needed. Large refactorings
cannot be slipstreamed into normal development cycles as easily as smaller
structural code changes and require more coordination.

Responses of the interview study reported in Publication IV indicate
that by refactoring code, developers make an investment in the future.
Without refactoring, development could later be more difficult or perhaps
not possible at all. Through refactoring, code becomes easier to understand
and reuse. In the background, there is always the risk that refactoring
might not provide benefits at all, or that refactoring might break the code
and cause failures in the field. Regardless of the industry domain, refactor-
ing is an everyday development practice that involves weighing the future
benefits and risks of refactoring code structures.

Publication V: DevOps Adoption Benefits and Challenges in
Practice: A Case Study

Continuous deployment can be seen as a practice of DevOps, which is a
broader concept including cultural aspects as well as aspects of collaboration
between developers and operations personnel (Ståhl et al., 2017; Bass, 2018).
Publication V presents an industry case study looking to gain insight into
what companies see as the benefits in DevOps and the factors they see
hindering the adoption of DevOps. The case companies were three software
companies where semi-structured interviews were held to collect data for
the study. Thematic analysis was used to code interview transcripts and to
group themes of the benefits and challenges of adopting DevOps.

DevOps was seen as a pathway to more frequent releases due to the
increased code integration velocity made possible by DevOps and ultimately
to more features being implemented with low overhead release processes.
Thanks to the test automation advocated by DevOps, the quality of releases
could also go up. When collaboration between developers and operations
people is increased, knowledge can be exchanged between people and their
skills are put to better use. A higher release rate was also seen to lead to
increased feedback from the customers or users, which allowed features to
be more readily available and make an experimental approach to software
development possible.

3.3 Summary of Publications 49

Several factors can slow down or make it difficult to adopt DevOps.
While the idea of DevOps is to promote communication between specialties,
bridging the communication gap may fail if not given enough attention and
people are left to mind their own territories. Developers might care about
getting releases out quickly while the operations people are more concerned
about server uptime. People need to adapt to new roles.

A cultural shift is required, which according to the interviewees in the
study, is more difficult to grasp than the technical challenges. DevOps might
not suit all business domains where access to production environments is
limited, or to environments in which replication of production environments
for development is difficult. Conceptually, the term DevOps has also been
overloaded to some extent in the past, leaving practitioners wondering what
the true DevOps way to follow is. Results from the study reported in Pub-
lication V suggest that there are technical challenges to adopting DevOps
but many of the perceived obstacles relate to the cultural context and the
social behavior of groups and individuals in a work setting.

50 3 Research Method

Chapter 4

Results

Reducing the period between releases and taking continuous software engi-
neering practices into use that can accelerate development cycles requires
understanding both about the technical and cultural conditions that can
be specific to industrial domains. It is also worth considering what the
justification is to increasing release frequency and does it ultimately pay
off. Adopting the necessary changes to practices and processes may have
implications to organizational behavior that need to be addressed, too. In
this chapter, the focus is on the three research questions and main themes
of the thesis, which are reviewed in turn by evaluating results of the original
publications ranging from Publication I to Publication V.

Regarding the rationale of increasing release frequency, the results for
RQ1 are covered in Section 4.1. As part of analyzing software process factors
for RQ2, Section 4.2 casts an overview on the elements of the software
engineering process that need to be in place when moving towards more
frequent release cycles. Section 4.3 investigates organizational implications:
the role of management and leadership in adaptive organizations considering
continuous software engineering practices, employee attitudes, and changing
customer relationships, which are all part of RQ3.

4.1 Principles for Managing Releases and Release
Frequency

Releasing software is a tricky process that involves a fair number of steps
starting from integrating the developer’s changes and constructing a work-
ing version that can be subjected to a series of tests and ultimately deployed
to a production environment where the changes are finally released to the
end users (Adams and McIntosh, 2016). Being able to perform such a feat

51

52 4 Results

every week or even every day is no small task. It can take years to build
the competence and the deployment pipeline required to do frequent re-
leases every week (Savor et al., 2016; Chen, 2017). Yet some succeed. At
Facebook, for instance, developers can decide themselves whether to release
their changes in a weekly or a daily release (Savor et al., 2016). Is it worth
the effort to convert a six-month release cycle (Chen, 2017) into a weekly
or daily cycle or would six months suffice in many cases? This is one of the
questions this section tries to answer, focusing on exploring RQ1.

4.1.1 Metrics for Characterizing Deployment and Release
Cycles

A release cycle consists of all the activities that take place between two
releases and release cycle time is essentially the period of time between the
releases measured in minutes, hours, days, weeks, months or years. A release
cycle time of a month means a new software version of a particular system
is released every month. In reality, to better understand deployment and
release capability, the release cycle needs to be broken into smaller pieces.

Excluding the actual development of a feature, deployment capability
of the deployment pipeline can for instance be characterized by how much
time is spent on individual parts of the deployment pipeline (Bass, 2016).
Deployment time can thus be seen to consist of nine factors that each have
an effect on how quickly a change can be released (Bass, 2016). These factors
include the time it takes to build a version, run integration tests, deploy
changes to a staging environment, run acceptance and other tests in staging
environments, and the time it takes to reach a decision on whether the
version in the staging environment is ready for release or not. When canary
releasing is used, additional time is spent on deploying release canaries to
selected users and figuring out how the canaries work out. The final factors
are then deploying the version to the production environment, effectively
releasing it to all users, and keeping an eye out for unexpected failures in
the production system.

Time in the deployment pipeline is partly spent on activities preparing
the release, which do not have a direct impact on the end users as they are
internal to the company or organization. Only when a change is released,
can users interact with the version with the changes. Internal deployment
capability could in addition be measured by measuring the time it takes
to have the next version ready at the staging environment, just waiting
for the go-ahead from people responsible for the acceptance test phase.
This leads to several metrics useful in characterizing deployment capability
and release frequency: cycle time to potentially deployable software (de-

4.1 Principles for Managing Releases and Release Frequency 53

Build

Test

Deploy

•M1 Cycle time to
potentially deployable
software

•M2 Is deployment
pipeline to potentially
deployable software
automatic?

Release

•M3 Fastest possible
cycle time to
production

•M4 Actual cycle time
to production
deployment

•M5 Is deployment
pipeline to production
automated?

Figure 4.1: Five metrics for characterizing deployment capability and release
cycles in stages of the deployment pipeline (Publication I).

noted M1 in Figure 4.1) and actual cycle time to production deployment
or release (M4) (Publication I; Publication II). Understanding whether the
deployment pipeline is automated up to the staging environment (M2) or
all the way up to the production environment gives additional yes or no
metrics (M5), signifying the degree of automation (Publication I). Inertia
of the deployment pipeline can be reflected on by thinking about the time
it takes for a small change like a change to a single line of code to propa-
gate through the deployment pipeline to the production environment (M3)
(Publication I). The five metrics that can help to understand the internal
capability for preparing releases and actual release practices are mapped
to the respective deploy and release stages of the deployment pipeline and
further illustrated in Figure 4.1.

In practice, there seems to be a great difference in the cycle time to
potentially deployable software and the actual cycle time to production
deployment (i.e. release cycle time). This means that in many cases the
deployment capability or deployment readiness is much higher than the rate
at which software is actually released. Company cases illustrated in Figure
4.2 show in months the relation of release cycle times depicted in gray to po-
tentially deployable software cycle times depicted in black (Publication II).
Release cycle times are often in the order of several months although the

54 4 Results

Figure 4.2: The cycle time to release (gray) is in many cases considerably longer
than the cycle time to potentially deployable software (black) (Publication II).

cycle time to potentially deployable software suggest that there would be
capability to release at least every month or every few weeks. In some
cases, the difference is notable as for instance in cases C5 and C10 where
the release cycle time is a year or over but the cycle time to potentially de-
ployable sofware is a month or less. It appears that in practice continuous
delivery is more likely or at least more common than continuous deployment
to production.

There are a number of factors that can at least partly explain why
there is such a large discrepancy between release cycle times and poten-
tially deployable software cycle times. Factors such as the domain in which
a company operates and the platform for which the software is built seem
to make a difference. Companies that had the longest release cycles devel-
oped software for embedded systems, telecommunications devices, or mobile
devices in the mobile games domain (Publication II). When access to the
devices is constrained in some manner such as is the case in the telecommu-
nications industry or in a factory housed with embedded systems, there is a
lesser tendency towards continuous deployment (Publication I). Continuous
deployment and frequent release cycles are also less likely in the embedded
medical systems domain where devices are required to adhere to quality
standards for ensuring the safety of devices and users. Longer release cy-
cles in mobile games may be due to games being treated more as a form
of art where testing is more subjective and not only focused on functional

4.1 Principles for Managing Releases and Release Frequency 55

correctness but on the overall user experience (Publication II). Reasons for
ramping up or scaling down release frequency are further explored in the
following section.

4.1.2 Choosing the Right Release Frequency

At first, choosing to release changes as quickly as possible seems like an easy
choice to make. Why would anyone deliberately choose to release software
slower than they theoretically could deliver? A rapid rate in releasing does
seem to bring certain benefits to the table but rapid releases might not
suit all situations nor is releasing frequently always the objective. This
section highlights the potential benefits and obstacles of increasing release
frequency, and reviews objectives and motives of selecting release frequency
for software versions.

An increase in the number of releases and frequent releases overall may
benefit both the development side internally and the external end users.
Adopting practices such as continuous deployment and DevOps that aim
to improve release frequency are seen as pathways to improve the time
to market and the speed at which end users get to enjoy new features
(Publication I; Publication V). When versions of software do not have to
wait on the shelf for months but can be released promptly, customers get
serviced better with a possible perception of added value brought by the set
of changes included in the release. Indeed, this added value provided in a
release may be one of the key reasons why releases should be frequent. If a
particular feature has been tested and is ready for release but not shipped
until say two months later when there is a release date, there is value loss
to those users who might find the feature useful. Whether there actually
is loss of value for a particular user and how much likely depends on such
matters as the frequency of the usage of the application and the feature in
question, and the amount of value users see in the feature for themselves.
With more users, the question of value may be more significant, too.

Short release cycles can also be helpful to developers. Feedback from the
users is more immediate and seeing how users interact with features helps
to develop the features further (Publication I; Publication V). Fast user
feedback allows an experimental development approach where reactivity is
higher and ideas can be tested more quickly with real users (Publication V).
An indirect benefit of an increased release frequency to developers comes
from the practices and tools used in the deployment pipeline.

A sufficiently automated deployment pipeline has continuous integra-
tion servers running test suites that can be used to send direct feedback
to developers on test failures (Publication I). Automated tests ensure that

56 4 Results

fewer errors get through the deployment pipeline, which improves product
quality or at least gives a sense of better quality to developers (Publica-
tion I; Publication V). Releases done more frequently reduce the size of
each individual release so that releases are not overloaded with features,
which may itself improve product quality by limiting the space where errors
may occur. Automation also has the upside that repeated tasks requiring
manual work in the release process can be automated, saving effort every
time there is a release (Publication I). Releases or preparing the deployment
pipeline still require some level of coordination between developers and op-
erations people in charge of the technical infrastructure such as network
servers. Coordination leads to collaboration between people and as a bonus
brings people together, allowing them to combine their talents to solve the
issues at hand (Publication I; Publication V).

Beneficial as increasing the release frequency may be with its direct and
indirect benefits, continuous deployment or DevOps practices and short re-
lease cycles may not perfectly fit all situations. One of the most important
factors to consider is the application domain as discussed in the previous
section. Technological advances in the embedded systems domain in a con-
nected world certainly provide new avenues for software updates but it is
hard to see that embedded system chips in a factory automation system or
medical devices for patients would in the near future be updated with the
same degree of freedom as non-safety critical web services (Publication I).
An overlapping concern with domain considerations is the customer’s will-
ingness and ability to accept frequent releases from the development orga-
nization (Publication I). When multiple parties are involved in delivering
and releasing software, release practices must be compatible.

A host of other matters may make it more difficult to reach tiers of
continuous deployment or DevOps where production deployments are done
every day. Manual or exploratory testing in its many forms may well in-
hibit continuous deployment if testing takes a long time (Publication I).
It is possible that testing is partly manual because phases in the deploy-
ment pipeline such as acceptance testing have not been automated (Publi-
cation II). Missing automated tests can slow down flow in the deployment
pipeline but too many automated tests can do the same, taking hours or
more to finish (Publication I). A project with a modular structure hanging
on other projects might make builds for the project slow or more difficult
to automate, too. Slow builds have room to improve, though, and measures
can be taken to reduce build times from hours to minutes by optimizing
the build process and installing new hardware (Publication II). When stag-
ing and production environments do not have similar configurations or vary

4.1 Principles for Managing Releases and Release Frequency 57

significantly enough, developers might be more hesitant to try continuous
deployment with frequent releases if the quality of releases cannot be suf-
ficiently guaranteed (Publication I; Publication V). Encountering any of
these other issues does not necessarily mean that releases could not still
happen during the same day as the changes are done by the developers.
Continuous deployment is still an option to consider and processes can be
improved to streamline releases, which is less likely in the case of tighter
domain constraints or regulations.

What is the right release frequency then, should all strive for continuous
deployment and daily releases or even more often than that? It depends
on the objectives one has, which are in part tied to the expectations and
possibilities in a specific industry domain. Four distinct release frequency
objective categories were identified when interview respondents from the
industry were asked to state their current release practices and point in
the direction where they wanted to be: fully automated continuous de-
ployment, continuous deployment capability, on demand deployment, and
calendar-based deployment (Publication I). Table 4.1 summarizes the cate-
gories explained further in the section.

Release frequency objective categories fully automated continuous de-
ployment and continuous deployment capability correspond roughly to prac-
tices of continuous deployment and continuous delivery, respectively. Con-
tinuous deployment without too many manual phases in the process and
proper deployment practices into production was an objective for some
companies but not for too many. Continuous delivery or continuous de-
ployment capability as it was named, emphasizes internal delivery capabil-
ities of a company to have release-ready versions at hand frequently but
not deployed to production. This mode of release frequency was just about
as popular as the fully automated version of continuous deployment. Of
these categories, fully automated continuous deployment has the potential
to provide value fastest to the end users but the ability to quickly pro-
vide release-ready development versions for internal testing should not be
overlooked, either.

On-demand deployment is the most sporadic of the release frequency ob-
jectives mentioned in the interviews. In this category, releases are infrequent
or happen when a suitable release time is booked together with customers
that all parties agree to. Because releases are infrequent, it seems likely
that there is less motivation to automate the deployment pipeline. Less au-
tomation and more manual work have at least the potential to make releases
more error-prone. On-demand deployment is still fit for industries where

58 4 Results

Table 4.1: Categories for release frequency objectives. (Publication I)

Category Description

Fully automated
continuous deployment

Release changes frequently to production. With a
fully automated deployment pipeline, changes prop-
agate automatically through build, test and deploy
stages to staging environments. Upon passing the
tests, changes are continuously deployed to produc-
tion, making daily releases possible. Corresponds to
the standard notion of continuous deployment.

Continuous deployment
capability

Deploy changes to internal testing and staging envi-
ronments but hold release until current version ac-
cepted for release later. An internal version for test-
ing is readily available. The practice of continuous
delivery that aims for release readiness matches this
category.

On-demand deployment Release changes upon agreement with customers and
other stakeholders. Sporadic releases are especially
suitable for specific domains where release cycles are
long for one reason or the other.

Calendar-based
deployment

Release changes periodically to production using a
fixed schedule. Maintain a fixed release period such
as every week, every two weeks or every month. In-
troduces predictability to the release process.

releases are major milestones, amounting to years of craftmanship preparing
products of artistic value such as found in games and entertainment.

A fixed schedule for releasing is certainly a good method for adding pre-
dictability to the development and release process. Calendar-based releases
have fixed intervals at a rate specific to a project. A release can take place,
for instance, every week or every two weeks. With calendar-based releases,
developers know when the next release train is departing and several com-
panies seem to appreciate the fixed schedule of calendar-based deployment
(Publication I; Publication II). Interestingly enough, in about third of the
cases, the companies had the internal capability to release changes in a week
or two (Publication II). In another setting, where the lead time of several
dozen consulting projects was surveyed, the median value of responses for
lead time was two to four weeks (Publication III). It would not be an over-
statement to say that a fair share of the companies involved in the studies
either release or are prepared to release new features following the contours
and spirit of weekly to monthly calendar-based deployment. Perhaps the

4.2 Meeting Process Demands of High Frequency Releases 59

resemblance is coincidental but could they all be following a similar software
process framework?

Scrum is a software development process that advocates development
sprints in which features are implemented and reviewed in one to four week
cycles (Schwaber, 1997). If Scrum is indeed the prevalent software develop-
ment process for many of the companies in their projects, Scrum could also
drive the deployment capability and release frequency to match the sprint
intervals. In order to increase release frequency beyond weekly releases, the
underlying software development process and methodology might need to
be changed as well, if Scrum is in itself somehow incompatible with daily
releases. Many reasons could lead to weekly or monthly releases so the
causality between Scrum and the observed deployment capability and re-
lease frequency is purely hypothetical but nevertheless still interesting to
consider.

Release frequency determines how often new software versions are placed
in a production environment where users can interact with new features or
otherwise experience the updated version unless changes are mostly struc-
tural. The best release frequency is the frequency that suits all parties –
developers, customers, users, and other stakeholders – in a given situation
that might be unique to a project and the domain in question. Interest
in a fully automated deployment pipeline with daily releases seems to be
relatively low (Publication I; Publication III) although users might benefit
from frequent releases. Being able to produce a development version quickly
to testing and having the capability to deliver appears to have some impor-
tance even if releases are not that frequent (Publication I). Calendar-based
releases with a fixed schedule are quite well balanced somewhere between
sporadic on-demand releases and daily releases (Publication I). Attitudes
towards daily releases can of course change over time but the predominant
culture has to change, too. Software processes need to be solid enough to
support the other changes required for frequent releases so the next section
focuses on the processes in greater detail.

4.2 Meeting Process Demands of High Frequency
Releases

Software engineering practices that emphasize making the fruit of labor
of developers frequently available in the production environment such as
continuous deployment requires mature software processes. Repeated tasks
need to be automated as much as possible in order for continuous deploy-
ment to succeed. A blueprint for a deployment pipeline (Humble et al., 2006;

60 4 Results

Humble and Farley, 2010) gives a fair idea of which parts are needed but
assembling all the parts and welding them with software processes already
in use is an effort in itself. Continuity is needed throughout the develop-
ment process, yet in some parts the needs are more pressing than in others
if continuous deployment is the objective. Improving on the aspects related
to releasing software frequently builds upon the understanding what the
necessary process elements are and the ability to evaluate process maturity
in a given situation. In this section, the aim is to explore the second research
question regarding the software process requirements of high frequency re-
lease by looking at the activities found in modern software development and
the methods to evaluate the maturity of processes.

4.2.1 Activities in a Software Engineering Process

Software engineering is a field where multiple skilled professionals work to-
gether from the inception of a development idea to the release of a software
product to end users. Every release is a milestone in developing software
but in most cases maintaining software, monitoring software systems and
gathering implicit and explicit feedback from people and systems calls for
continuity in the development process beyond releases. The key to prepar-
ing releases frequently lies in automation and tools but making swift deci-
sions in the development process demands flexibility from the whole process.
Activities in such software process areas as requirements, development, op-
erations, quality, testing, and communications and feebdack, summarized in
Figure 4.3 (Publication II), characterize the manner in which software is
developed in the modern era.

Requirements are the fuel that keeps the deployment pipeline flowing.
Without requirements, there would be nothing to test, deploy or release.
Requirements elicitation entails finding out from persons inside and outside
of development organizations, from existing systems, or from other sources,
what the software system in question would need to be like to serve its
potential users well. Requirements or reported defects in modern software
development turn readily into backlog management items that are require-
ments that are to be implemented in upcoming sprints. Backlog manage-
ment items and sprints are part of terminology and practice used commonly
in the Scrum software development process (Schwaber, 1997). A continuous
flow of requirements is a vital part of a functioning software development
process since without requirements and a list of backlog items, developers
do not have much to work on (Publication II).

Implementing the required changes captured in backlog items, user sto-
ries, or other requirements records calls for development practices and activ-

4.2 Meeting Process Demands of High Frequency Releases 61

Communication and Feedback

Requirements Development Operations Testing Quality

Version
Control

Build

Continuous
Integration

Artifact
Repository

Requirements
Elicitation

Backlog
Management

Bug Tracking

Provisioning

Virtualization

Deployment

Unit Testing

UI Testing

Acceptance
Testing

Quality &
Performance

Code Review

Figure 4.3: Software development in the modern era has a range of activities
that support development, help setting up infrastructure, and verify and validate
software products (Publication II).

ities. Developers store source code and other artifacts related to a change
in version control systems. Distributed version control systems and dif-
ferent version control branch management strategies enable developers to
integrate their work in shorter bursts at least locally, working in isolation
when needed. Build systems help developers to assemble software packages
by compiling source code, execute automated tests, deploy packages to de-
velopment environments, and manage dependencies. Remote build systems
operate on external servers where additional build steps can be executed.
Continuous integration servers monitor changes from the version control
system but double as remote build systems triggered by version control
changes, combining multiple build steps and managing complex workflows
such as orchestrating virtual machines for testing purposes (Publication II).
Build systems can be further augmented by artifact repositories where com-
piled and tested binaries of in-house developed software can be stored to
reduce build times. Both internal and external dependencies from various

62 4 Results

libraries or other programs are used in software development to compose
software; artifact repositories especially help with internal dependencies.

Development and testing of software are usually done in separate en-
vironments, which are in turn separated from the production environment
where the current software version is running. Setting up the environments
and configuring the environments or network infrastructure is part of the
operations work integral to the deployment pipeline. Provisioning and vir-
tualization are used to build environments out of environment specifications
on the fly. Virtual machines for network infrastructure such as servers have
their blueprints that allow environments to be recreated and reused, time
after time, for each build if needed. Configuring servers automatically with
configuration scripts ensures that there are minimal differences between the
environments. Replicating testing, staging, and production environments is
important to avoid failures originating from characteristics of the environ-
ment itself (Publication II). Orchestrating the creation of virtual machines,
environments and provisioning in general needs supporting technologies,
which in some case may be provided by cloud service providers. Deploy-
ment is a necessary step in the deployment pipeline to transfer software
packages between environments and deployment automation with scripts or
dedicated tools help in the process.

Testing is a fundamental activity in a software engineering process to
verify that the software is working as it should and that it generally meets
the needs and expectations for which it has been made. Object-oriented pro-
gramming guides programmers to write program code out of units such as
classes that can have hierarchical relationships between them. Unit testing
refers to testing the individual units, classes, in isolation to assess whether
methods or functions within the smaller units work correctly. Unit testing
is an activity that has proven to be a good candidate for test automation
(Publication II). User interface testing focuses on testing whether users are
able to interact properly with the displayed elements in the program and
whether correct results are shown on the display. Visual elements, aesthetics
and evaluating experience of users is by default more difficult to automate
than unit testing. Acceptance testing is the step required in order to put a
stamp marking acceptance or failure on the tested software version before
continuing with deployment and release to production environments.

Software quality is not only evaluated by testing that individual features
in the program work correctly. Aside from functional testing, non-functional
properties such as performance, robustness of design or of code structures
can be tested, too. Performance testing is an important aspect in the web
domain where software systems may be subject to varying degrees of user

4.2 Meeting Process Demands of High Frequency Releases 63

load, making it useful to see how well a software system can operate under
heavy load (Publication II). Load testing every now and then at given load
thresholds sets a good baseline for web services but some forms of testing
and quality assurance are more continuous in nature. Constant monitoring
of software systems and servers, for instance, provides telemetry and health
data that help to check the availability of services and catch failures early.
Code designs and structures can be checked either with static code analysis
tools or developer code reviews, which both serve as indicators of internal
software quality (Publication II).

Communication and feedback processes within development teams and
outside glue the other activities together. Developers send messages to each
other and to third parties with instant messaging services that help develop-
ment and assist in creating social identities for developer teams. Messaging
services can even be connected with development processes so that contin-
uous integration servers feed developers with real time information on the
status of build and test jobs (Publication II). Not all messaging is instant
like is the case with e-mail and meeting someone in person for a good old
fashioned talk is still an effective way to communicate development needs.

Feedback from the users is essential when trying to build appealing soft-
ware products that would meet the expectations of the users. In general
terms, the initiative to provide feedback can come from the development
organizations or from the users themselves. When developers ask users for
feedback, it is a form of pull communication, and when users are the active
party and supply the feedback to developers, it is referred to as push com-
munication (Maalej et al., 2009). With either push or pull communication
modes, feedback can be obtained explicitly by interacting with the users
or implicitly by observing and analyzing user behavior. Support e-mails or
contact forms on a website are classic examples for explicit push communi-
cation but modern push mechanisms include the possibility to use real-time
interaction with users like chats that can be overwhelming for developers
(Publication II). Gathering feedback from users with interviews and sur-
veys are useful pull communication processes to elicit requirements. Web
services, on the other hand, are especially suited for implicit pull mecha-
nisms since user actions on web sites can be tracked and analyzed to increase
understanding of user behavior (Publication II), directing the development
effort. Rich internal communication and taking advantage of continuous
user feedback in one form or another ensure that development stays on the
right track.

64 4 Results

4.2.2 Determining Maturity of Software Engineering Pro-
cesses

Software engineering projects, or rather the people involved in the projects,
apply different practices and activities that form the core of the software
engineering process for a particular project. Even within a single software
development organization, the process may very well vary from project to
project. Projects are possibly in different phases in the software lifecycle,
some old, some young, which lends to the varying characteristics of software
processes. Beyond the projects, there is the organization itself that has
capabilities embodied in its documented processes and imprinted in the
minds of its personnel who follow a particular way of working. Capabilities
can thus span many projects in an organization.

Software engineering process maturity in a given organizational context
is defined by evaluating the capability and maturity the organization and
its processes have compared to a theoretical baseline. Maturity models
such as CMMI (CMMI Product Team, 2010) offer guidelines on evaluating
capability and maturity in an organization but the guidelines may be too
generic and rigid for agile software projects (Fontana et al., 2014). Applying
both CMMI and agile methods like Scrum together brings more flexibility
to planning and increases the predictability of releases at the same time
(Sutherland et al., 2008). Even so, more precise methods to determine ma-
turity in terms of continuous software engineering and its practices may be
helpful for evaluating and improving processes and activities. One method
is to take several representative projects in an organization and depict the
whole development process from requirements to release by interviewing
project personnel and collecting data corresponding to the various phases
of the deployment pipeline (Publication II). A detailed breakdown of the
development process yields plenty of information about the practices and
activities in a project but getting the information involves a lot of work. In
an environment where there is a plethora of projects and the objective is to
get a general understanding of the maturity of the projects, a brief survey
sent to key project members can suffice (Publication III).

Depicting the development process from different projects in a detailed
manner helps to evaluate maturity and identify points of interest in the
development process. By covering each activity that form the deployment
pipeline, it is possible to see whether certain activities are properly auto-
mated and supported by a suitable technology stack for the purpose, and
to compare project practices to other projects (Publication II). Detecting
gaps in the deployment pipeline and in the level of automation shows where
there is room for improvement. Figure 4.4 illustrates the degree of tech-

4.2 Meeting Process Demands of High Frequency Releases 65

Feed-

back

 R
e

q
u

ir
e

m
e

n
ts

 E
lic

it
at

io
n

 B
ac

kl
o

g
M

an
ag

e
m

e
n

t

 B
u

g
Tr

ac
ki

n
g

 V
e

rs
io

n
 C

o
n

tr
o

l

 B
u

ild

 C
o

n
ti

n
u

o
u

s
In

te
gr

at
io

n

 A
rt

if
ac

t
R

e
p

o
si

to
ry

 P
ro

vi
si

o
n

in
g

an
d

 E
n

vi
ro

n
m

e
n

ts

 D
e

p
lo

ym
e

n
t

 U
n

it
 T

e
st

in
g

 U
se

r
In

te
rf

ac
e

 T
e

st
in

g

 A
cc

e
p

ta
n

ce
 T

e
st

in
g

 Q
u

al
it

y
an

d

 P
e

rf
o

rm
an

ce

 C
o

d
e

 R
e

vi
e

w

 C
o

m
m

u
n

ic
at

io
n

 a
n

d

 F
e

e
d

b
ac

k

C1 CO notmentionedused used used used used used notmentionednotused used used notused used used used

C2 CO notmentionedused used used used used used used notmentioned used used notused used used notused

C3 CO notmentionedused used used used used notmentionedused used used used notused used notused used

C4 CO notmentionedused used used used used notmentionednotmentionedused used used notused used notused used

C5 CO used used used used used used notmentionednotmentionedused used used notused used used notused

C6 ES notmentionednotmentionedused used used used notmentionednotmentionedirrelevant notmentioned irrelevant notmentioned notmentioned used irrelevant

C7 IA used used used used used used notmentionedused notused used used used used used used

C8 MG notusednotusednotused used used notused notusednotusedused notused notused notused notused notmentioned used

C9 MG notmentionedused notmentioned used notmentioned notmentioned notmentionednotmentionedused used notmentioned notmentioned used notmentioned used

C10 MG notusedused used used used notused used used notused notused notused notused notused notused used

C11 TC notmentionedused used used used used used used used used used used used notused irrelevant

C12 TC used used used used used used used notusedused used irrelevant irrelevant notmentioned used used

C13 TC notmentionednotmentionednotmentioned used used used notmentionednotmentionednotmentioned notmentioned notmentioned notmentioned used used notmentioned

C14 UI notmentionednotmentionedused used used used notmentionednotmentionednotmentioned used used notused used used notused

C15 UI notmentionedused used used used used notmentionedused notmentioned used notmentioned used notmentioned used used

C16 WS notmentionedused used used notmentioned used notmentionedused used used used notused used used used

C17 WS notmentionedused used used used used notmentionedused used used used used used used used

C18 WS used used used used used used used used used used used used used notused used

notused irrelevant

notmentioned

used

Quality

not used

not mentioned

used

irrelevant

Case Domain

Requirements Development Operations Testing

Figure 4.4: The usage of tools in case companies for each development phase
categorized by domain suggest which phases involve manual work (Publication II).

Domains: CO = Consulting, ES = Embedded Systems, IA = Industrial Automa-
tion, MG = Mobile Games, TC = Telecom, UI = UI Framework, WS = Web
Service

nology support, automation, and tooling across phases and activities in the
deployment pipeline in several different companies and industry domains
(Publication II). Evidently, there are areas in which the companies have
laid a strong foundation and have mature, technology supported, processes
in such areas as development consisting of version control, build, and con-
tinuous integration. Development activities for most companies require less
attention than does, for instance, testing and acceptance testing that seem
to require more manual work in these cases. Of course, the domain needs to
be taken into account when considering the maturity of processes. Devices
that do not have a user interface for the end users to interact with, as is the
case in certain embedded systems, are difficult to subject to user interface

66 4 Results

testing and thus can be irrelevant in terms of project maturity. Maturity
can also be hard to capture if the whole branch of industry seems to live
by a different code where an activity appears to be somewhat neglected,
mobile games and testing in general being the prime example. The appear-
ance can be deceiving since companies can rely on outsourced testing or test
their products manually with explorative testing techniques. Still, learning
which activities have less technological support or are otherwise overlooked
in a project or more widely in the organization can be an important driver
in improving the processes needed to deploy and release versions frequently
with good quality.

Surveying project practices with questionnaires aimed for project rep-
resentatives is an efficient method for acquiring information about the ma-
turity of projects in an organization (Publication III). In a setting where
existing maturity models are not specific enough or are not applicable for
some other reason, it is possible to construct and tailor a maturity model
for specific needs. A theoretical maturity model can include a number of
process areas for which there are defined capability levels based on the
maturity of processes in the area, corresponding to the general conception
of continuous representation in the CMMI model (CMMI Product Team,
2010). A maturity model tailored for measuring maturity in terms of con-
tinuous deployment capability, for instance, can include process areas from
the deployment pipeline such as test automation, quality, build and deploy-
ment, running and monitoring, lead time, and security (Publication III).
Each tier in a process area can include a set of conditions that have to
be met in order to reach the level. Having a continuous integration server
that polls the version control system for changes could for example be a
requirement for reaching a particular level in the build and deployment
process area. The higher the tier, the more advanced are the practices that
need to be in place. Tiers can have a particular range that seems fit for
the model like ranging from zero to five. Continuous delivery and deploy-
ment to production environment could be a practice on the highest tier of
build and deployment. After constructing a maturity model, it can then be
used as part of company-wide surveys to help understand the maturity of
a company and the capabilities of its processes in projects.

Surveys that integrate maturity model self-assessment in project-level
questionnaires can give an overview of the state of the company’s processes
and a sense of direction of software process improvement initiatives when
replicated over a longer time period (Publication III). Performing maturity
model surveys has a number of benefits but there are some drawbacks, too,
and care must be taken when interpreting survey results. A positive signal

4.2 Meeting Process Demands of High Frequency Releases 67

is that just by participating in a survey, people in the project have to reflect
on the practices used in a project. Comparing results and practices with
other projects encourages healthy competition between development teams.

The downside is that different characteristics of projects make the prac-
tices used in projects difficult to compare (Publication III). Projects are dif-
ferent: the team structures, domain, customer involvement, lifecycle phase
and project age can all vary. Small development teams working on main-
tenance tasks in a soon to be terminated project do not have the same
incentives to keep improving aspects of the deployment pipeline as might
reasonably sized development teams working on recently established and
active projects. Customers who are directing the development effort as
product owners in agile software development projects in collaboration with
developers might also be less willing to invest in technical process improve-
ments if the cost is having fewer features implemented. Companies can serve
customers from different industry sectors and have a wide range of projects,
each of which is tied to technological and other constraints inherent in the
industry domains. Comparing maturity survey results between company
projects in these circumstances can be difficult. A tiered maturity model
with predefined requirements for capability levels in process areas does not
fit all projects, either. Choosing the correct capability level is somewhat
subjective as a project might not pass all the requirements to reach a par-
ticular level but still the project might apply development practices linked
to higher tiers in the hierarchy. Despite the shortcomings, maturity model
surveys provide a sense of the state of processes in a given environment,
making it easier to place resources in software process improvement ac-
tivities where needed and to raise the awareness of people about project
practices that might need attention in order to excel.

4.2.3 A Process for Continuous Software Engineering

The deployment pipeline is long with its many stages of building, testing,
deploying, and releasing (Humble et al., 2006; Humble and Farley, 2010;
Adams and McIntosh, 2016) but there is more to continuous software engi-
neering than just the deployment pipeline. Software development is part of
the process but continuity is needed in product planning and maintenance
of the product as well (Fitzgerald and Stol, 2017). The deployment pipeline
needs a constant flow of requirements to keep going and effective commu-
nication to convey ideas or other feedback internally within development
teams and externally with users and customers (Publication II).

Defining and working with requirements are fundamental activities in
the continuous software engineering process. Keeping the release frequency

68 4 Results

high means there should be an equally high frequency of collecting require-
ments or at least ensuring that development teams have enough work to
keep them busy during the short development iterations. Without tasks
selected for development, developers have no choice but to find something
else to do while waiting for the requirements to come in (Publication II).
Interacting with end users and releasing new versions often creates oppor-
tunities to receive direct feedback, which development teams find beneficial
when thinking about what to develop next (Publication I; Publication V).
Engaging the end users and opening up communications channels for feed-
back provides good input for requirements but the added layer of interaction
can wear down developers (Publication II). Implicit user feedback obtained
by analyzing software usage data and other telemetry from environments
in use may be less straining for developers. Developers should not be over-
whelmed by development tasks so there should be a good balance between
incoming requirements and tasks selected for development. Without having
the right balance, developers might feel that they do not have enough time
to develop high quality products, leading to less than perfect designs that
need attention later (Publication IV).

Implementing a feature request or other requirement is part of the de-
velopment cycle where solid development practices are needed to keep cycle
times short. Version control is a central component that developers use
to integrate their work frequently and it is hard to think about software
development without version control (Publication II). Branching strategies
for common distributed version control systems affect the check in behavior
of developers. Integrating changes often to the main development branch
from feature-specific version control branches is considered a good practice
by developers and the practice also reduces the chance of merge conflicts
when integrating changes (Muşlu et al., 2014). Automated builds are a fine
companion to version control systems and continuous integration servers
that are all needed to construct deployable software packages from changes
checked in to version control. Build phases in the deployment pipeline
should not merely be automated but be optimized for efficiency as well as
fine tuned build processes can save hours in build times (Publication II).

A steady and continuous stream of requirements means that developers
need to embrace change in development, too. Software structures, designs
and the whole software architecture are subject to change when new ideas
emerge. Ample time in development should be reserved for refactoring not
only because developers are at the outset uncertain of how the system will
evolve but because code and designs regularly need a certain amount of
tidying up (Publication IV). Without keeping the code clean, it might be

4.2 Meeting Process Demands of High Frequency Releases 69

impossible to do future development on top of the old structures. Developers
working with impractical structures are faced with hard decisions whether
to try changing the existing code or scrap the code and start from scratch.
Refactoring needs should be acknowledged by the whole development team
and made visible to customers or other product owners as clearly as possible
(Publication IV). Customers or product owners might not be able to grasp
the evolution of software code and its structures as well as developers but
refactoring work should not remain hidden, either. After all, refactoring
might take considerable time and not always be successful so the decision
to refactor is not for the developers to make alone. Any development team
applying a continuous software engineering process with a high velocity
of incoming feature requests and changes should consider refactoring and
its place in the development process to keep the code clean, adjust software
structures to current needs, and prepare for the future by making structures
easy to change.

A high velocity of features and changes puts great demands on testing,
too. Testing and automated testing in particular are central to the delivery
and deployment pipeline (Humble et al., 2006; Humble and Farley, 2010),
and for good reason. Without automated testing and tests that cover a
fair portion of program code, developers find it difficult to implement con-
tinuous deployment (Publication I). For one thing, automated tests ensure
that there are no unexpected failures after changes and that there is no
regression, i.e. failures in components that have previously worked fine.
Regression testing is also an important safeguard for refactoring as struc-
tural changes can potentially have undesirable effects that developers would
like to avoid (Publication IV). Automated tests executed after each change
reduce the likelihood of end users coming across features that do not work
properly. A higher degree of test automation required by continuous soft-
ware engineering practices can thus be seen as beneficial in increasing the
perceived quality of software (Publication I; Publication V).

Automated tests in a functional deployment pipeline should include tests
from different phases. Unit testing for individual code components is a good
place to start (Publication II) but unit tests alone are not enough. User
interface tests or browser-based end-to-end tests might be harder to im-
plement, or at least they are not as common as unit tests (Publication II;
Publication III). Where applicable, automated user interface tests can still
save someone from having to do exploratory testing or to otherwise check the
behavior of a system through the user interface. Manual testing, inspections
and getting early feedback from selected end users or other test groups prior
to a release might have their place in certain cases where user experience

70 4 Results

is critical (Publication II). Nevertheless, any testing activity that requires
significant human intervention such as exploratory testing slows down the
deployment pipeline (Publication I). Making the call whether a release or a
particular feature is ready to be shipped and deployed to production is an-
other example of work that is commonly left to people rather than to a set of
automated acceptance tests (Publication II). Automated acceptance testing
is an area that should not be overlooked when considering the deployment
pipeline.

Non-functional testing of aspects like performance and security usu-
ally falls to the same category in which high levels of test automation are
difficult to achieve (Publication I; Publication III). Aspects such as per-
formance and security are cross-cutting concerns for the whole software
system being tested and it is reasonable to test that expectations are met
for non-functional quality. If testing of non-functional quality attributes is
not possible for every incoming change, perhaps manual quality checks can
be repeated every once in a while if there are significant changes to system
or software architecture.

Regardless of the exact composition of the automated test suite, test
execution should be fast enough to allow frequent test runs. Thousands of
automated tests take a while to run, which reduces the likelihood of being
able to release new versions very frequently (Publication I). Developers
might have to wait hours for tests to finish (Publication II). Rapid feedback
to developers from automated tests is useful but getting the feedback fast
requires a well-adjusted deployment pipeline.

Using matching technological environments for development, testing,
and production is beneficial for getting reliable test results. Depending on
the domain, environments consist of such components as operating systems,
installed software, databases, configuration, and physical or virtual hard-
ware like memory or processors. Tests are less trustworthy in environments
that are not alike so constructing testing environments with similar char-
acteristics should be a priority (Publication I; Publication II). Even having
dissimilar databases, database structures or insufficient test data is likely to
make it harder to adopt development practices suitable for frequent releases
(Publication V).

Orchestrating or setting up similar environments can be facilitated with
virtualization services (Publication II). Network infrastructure blueprints
that are stored in repositories can be reused, which reduces the chance of
unexpected failures due to differences in environment configuration. Infras-
tructures provisioned from public cloud vendors provide an alternative to
proprietary hardware (Publication II; Publication III). Together, virtual-

4.3 Organizing Work in Continuous Software Engineering 71

ization and cloud infrastructures assist in rapidly releasing new versions as
servers can be provisioned and updated at will at least in the web domain
where such services are available (Publication II).

Getting feedback throughout the development process is critical. In-
formation should flow effortlessly between people and all the activities in
various stages of the deployment pipeline. Feedback from external sources,
like the end users, can be used in developing features for a system (Publi-
cation I) but internal communication is just as important (Publication II).
Practices like DevOps where the stages are integrated, are harder to imple-
ment when people do not engage and talk to each other (Publication V).
Instant messaging services and chatting have the potential to bring people
closer by offering a direct line of communication between team members
(Publication II). Efficient communication inside development teams is com-
plemented by keeping communications channels open from systems as well
as people. Developers appreciate timely feedback from systems such as
continuous integration servers to keep track of the state of the code and
automated tests (Publication I).

Development teams can thus leverage feedback from within and without
to increase their reactivity to changes in development, spotting errors early
on in the deployment pipeline, and responding promptly to external feature
requests. Higher reactivity with enhanced communication and feedback
can be seen as an enabler for increasing release velocity, supporting and
ultimately completing the process for continuous software engineering.

4.3 Organizing Work in Continuous Software En-
gineering

A software development organization employs software engineering experts
who work with support functions in various kinds of branches, groups and
teams that might have managerial boundaries between them. Software de-
velopment organizations develop software either for their own use internally
or for the use of other external customers. A blueprint of processes needing
change for continuous software engineering gives an idea of what should be
changed but above all changing processes means changing organizational
behavior, behavior to which people have been used in the past. In fact, the
technical challenges in adopting continuous software engineering practices
like DevOps are thought to be easier to face than than the changes required
for the organizational culture (Publication V).

People might have reservations about the new roles they might need
to take. If the experts internally might have reservations related to imple-

72 4 Results

menting new processes, so might internal and external customers for whom
the software is being developed. Management should also consider its own
role in the change process.

This section covers the results for RQ3 that explores the implications
of frequent software releases to organizing work. The first part looks at the
managerial and leadership considerations that organizations may need to
address before implementing continuous software engineering processes and
increasing their release frequency. In the second part of the section, the
attitudes and concerns of people and their need to adapt to new circum-
stances surrounding continuous software engineering are discussed further.
The third part shows how the customer relationships might also need to
change since customers have a definite say in which way software is devel-
oped and released to the end users.

4.3.1 Leadership and Showing the Way

An organization needs a supportive and encouraging atmosphere from all
tiers of the organizations to carry out changes in its operating procedures
like increasing the release frequency of software. Management needs to be
behind improvement initiatives, lest development teams are left on their own
and discouraged to substantially improve existing practices (Publication I).
The organizations need to be receptive towards change (Publication V).

Besides being receptive to change, the organization and specifically its
superiors should be active agents of change. Without stated objectives and
a clear enough plan, development teams zero in on maintaining existing
project practices and not necessarily on improving all aspects over time
(Publication III). It is arguably more difficult to increase release frequency
or halve lead times if there is not such an objective in a particular project.
Management should give guidelines and a sense of direction to the develop-
ment teams to increase the awareness of greater organizational ambitions.

A general understanding that project practices should be improved up
to a certain level, can be helpful in pushing for an organization-wide change
but improvements might not make sense for all projects. Projects that are
barely on life support and are less actively developed are probably not first
on the list to transition to rapid releases (Publication III). The same kind of
feasibility evaluation is made when thinking of large structural and architec-
tural changes to an existing project (Publication IV). Improving a software
process or software architecture should reasonably benefit future develop-
ment and deployment to be sensible. Insight is needed per project, gauging
where the current practices are e.g. through maturity surveys (Publica-
tion III), and making it explicit what the desired level of maturity is for a

4.3 Organizing Work in Continuous Software Engineering 73

project given its current and future standing in the organization’s project
portfolio.

Once there is a shared understanding in the organization about the de-
sire to adopt continuous software engineering practices in projects and to
perhaps increase the release frequency, the internal organizational culture
needs to be shaped accordingly. A change involving multiple changes to
the development process does not happen overnight. Development teams
need time to learn the skills needed to change the software development pro-
cess. It might be difficult to arrange sufficient time for process improvement
in the hectic everyday working life of development teams (Publication I).
Management should acknowledge the difficulties and allocate development
teams enough time and resources that they need to transform and enhance
old processes.

4.3.2 People, Attitudes and the Adaptive Organization

Time is not merely needed to learn new skills and improve processes, it is
needed on a personal and interpersonal level to adapt to the possible change
in roles with added responsibilities. When processes get more streamlined
and development is closer to operations and infrastructure like in DevOps,
people might need to share their previously exclusive territory, which can
cause stress and concerns (Publication V). An increase in release frequency
might mean sharing responsibility over the operations environment and re-
defining who is in charge of monitoring the environments for system health
after releases.

Development teams also have reservations about the development style
associated with frequent releases and the deployment pipeline with its auto-
mated building, testing, deploying and releasing of changes. Relying solely
on automated tests makes teams uneasy and worried that the tests might
miss faults in code and releases, sometimes rightfully so (Publication I).
Replacing a trained eye with automated tests is not an easy task. Auto-
mated tests also play an important role in refactoring where automated tests
verify that changed structures still work as intended after changes (Publica-
tion IV). The fear of breaking code without being able to see what is broken
after refactoring is a similar sentiment to the fear of releasing broken builds
to production environments in the first place.

Shipping broken builds and features to the users is obviously a genuine
concern among development teams. Features and changes should undergo
testing, automated or manual, so that teams could trust the releases to
be free of defects. Building trust in the deployment pipeline is essential
(Publication I). It follows from the idea of building trust and alleviating

74 4 Results

fear that development teams should strive for a decent code coverage with
automated tests if possible.

Deploying changes to the production environment immediately or at
frequent intervals can be risky. The risk that a failure is encountered after
a release will in all likelihood be realized sooner or later. The risk factor
increases but it might be worth to take the risk. When the releases are more
frequent, change sets are smaller and it is easier to get direct or indirect
feedback from the real users (Publication V). A reactive development style
allows the operations environments to be monitored and errors can trigger
alerts to the development teams who can work on the fixes. Besides, if
the release frequency is high, deploying a quick fix to the production envi-
ronment should not take long either. Companies and development teams
can thus work with high frequency release by accepting an elevated level of
risk in domains where failures are not life threatening or excessively costly
(Publication I).

Despite having concerns, developers have also expressed a range of pos-
itive emotions when thinking of high frequency releases. Releasing new
versions can be stressful but less so when development teams do not have
to work with too many changes at a time. Smaller releases can be seen
to lead to a better working atmosphere overall (Publication V). A positive
working atmosphere can be a source of happiness to developers, which can
also be seen in refactoring. Developers have intrinsic motivation factors
and it appears that developers find it rewarding when they have a chance
to refactor code structures to a better shape according to their development
ideals (Publication IV). Shorter release cycles and the possibility to refactor
can thus reduce stress and give a boost to spirits at work.

4.3.3 Reshaping Customer Relationships

A software development organization is well positioned to increase its fre-
quency of software releases or take other continuous software engineering
practices into use if the management is committed and the organization has
the needed capabilities along with a motivated staff. There are multiple
cases, however, where software is not being developed for an internal cus-
tomer but for an external one. The relationship between the developers and
the customers may vary.

Customers may not be willing, for instance, to accept frequent releases
for some reasons even if the development organization has the capability
to do so (Publication I). The situation is even more delicate if the devel-
opment organization has been hired to work as part of the customer orga-
nization. Development teams or individual members who are working as

4.3 Organizing Work in Continuous Software Engineering 75

consultants do not have the same access to operations environments and
have limited possibilities to change processes in the customer organization
(Publication III). A development organization that is in a consultancy rela-
tionship with a customer organization might have better readiness to release
changes more frequently than the customer organization.

Customer organizations might not be willing to invest heavily in process
improvement as such given the choice (Publication III). This is understand-
able since development tasks related with improving process aspects and
the deployment pipeline do not progress the project in a similar manner as
does typical feature development. If the consultancy relationship is one in
which the customer simply oversees development and the customer organi-
zation does not have a development team of their own, gaining the approval
for process improvement from the customer could be harder still.

The challenge in developer-customer relationships does not only concern
process improvement but also structural and architectural changes that do
not have directly visible results to the customer like in refactoring code.
Without good metrics, it is not easy to show to the customer that refactor-
ing is really needed and justified by hard data (Publication IV). Whether
putting effort into refactoring or improving software processes with a higher
release frequency in mind, development teams and organizations should be
transparent enough so that customers understand how project resources are
being used.

Negotiating with the customers and convincing them of the potential
benefits of adopting continuous software engineering practices should prob-
ably be done at the outset before starting development of a project. Only
then can the customer get to know the working habits of development teams
and gradually gain understanding about high frequency release models in
domains where they are suitable. Both the benefits and drawbacks should be
discussed so that the customer can decide which release model to choose for
a project. Consultants integrated into in-house development teams should
similarly bring their expertise to customer projects. Prior to starting devel-
opment, consultancies and customers should agree whether customer pro-
cesses need attention in terms of fine tuning the deployment pipeline and
taking other continuous software engineering practices into use. Changing
attitudes to be more favorable to continuous software engineering practices
and redefining organization relationships might take time but the change
should start from somewhere, little by little.

76 4 Results

Chapter 5

Discussion

Results of the empirical studies covered in this thesis have provided enough
information for formulating answers to the original research questions of the
thesis. In this chapter, it is time to revisit the research questions and sum-
marize the key findings for each question. As with all research, the findings
and the inferences made from the results of the studies are not without lim-
itations. The limitations are discussed more broadly in the validity threats
section. Following the section on validity threats, the findings of the thesis
are compared to previous work done in the field. Given the boundaries set
by the validity threats, the findings can be seen to have a certain degree
of merit as noted in the final closing section of the chapter concerning the
theoretical and practical implications of this thesis.

5.1 An Overview of the Research Questions

The three research questions posed in this thesis focus on different aspects of
increasing release frequency and its implications in software development or-
ganizations. To recap, RQ1 ponders the rationale of doing frequent software
releases. In RQ2, the setting of the question is the landscape of software
processes and deployment pipelines needed to provide software changes fre-
quently to end users. The final research question RQ3 has its focus on the
organization of work and managing change towards more frequent releases.
This section summarizes the discussion and findings for all three research
questions in turn.

RQ1: Why should software releases be frequent?

An increase in release frequency can be a boon to software development,
helping developers and users in a number of ways. When the period between

77

78 5 Discussion

releases shortens, software features become available to users quicker and
the time to market for features improves. Developers benefit from shorter
release cycles as well. Shorter release cycles allow for a more experimental
style of development, where feedback of implemented features flows back to
developers, given that feedback channels exist and production environments
are monitored sufficiently. Increases in release frequency require a certain
degree of test automation that can have positive effects on product quality.
Preparing releases calls for the interplay of plenty of people with different
skills in the development team and beyond. Working together can thus
bring people together and improve collaboration of people, at least before
most stages are automated.

Theoretically, the idea of added value to the user can be considered one
of the driving factors behind increasing release frequency. If users are able
to enjoy features almost as soon as feature development is completed, there
could be a perceivable value gain for the users over more infrequent releases.

A high rate of releases might not suit all domains, though. There are cir-
cumstances in which it is difficult to think about software changes streaming
into systems and devices with minimal preparation and less than compre-
hensive testing. Obviously, medical devices have high standards of safety
that can require long certification procedures that add up to the length
of the release cycle. Embedded domains in which circuitry controls whole
factories and their production lines are not much easier to hook up with
immediately propagated software changes given the possible consequences
of updates gone awry. Again, some domains are less compatible with piece-
meal releases because the software changes made over time constitute a
single, coherent, piece of work. Such works of artistic quality can be found,
for instance, in the entertainment sector and mobile games.

In domains where a high frequency of releases are possible, other factors
can slow down the rate of adoption. The deployment pipeline has many
parts and any part lacking automation makes it a little bit more difficult to
deploy changes directly to production environments. Testing phases may
be manual or otherwise exploratory, or require physical devices to verify
correct software behavior. Especially acceptance testing is an activity usu-
ally without automation. Environments used for development and testing
might also vary too much from the production environment to make de-
velopment teams uncomfortable with fully automated deployments. Even
with adequate automatic testing, rapid releases might be difficult due to
the lengthy test runs. Improvements in the testing processes and hardware
can still bring the testing time down considerably.

5.1 An Overview of the Research Questions 79

Having the most streamlined testing and deployment process in place
does not guarantee that development teams could push their changes to
production at will. Customer readiness to receive frequent releases limits
the options development teams have in providing new releases to end users.
The willingness of customers is one matter to deal with but at times the
development teams and organizations are themselves hesitant to take high
frequency releases into use in their projects.

There are many release and deployment models to choose from. Fully
automated pipelines have the capability to push changes from developers di-
rectly into production environments when selected tests pass, corresponding
to continuous deployment. Keeping staging environments up-to-date and
putting the release on hold until a decision has been made leans towards
continuous delivery. In continuous delivery, release readiness is high with a
good capability for releases without actually pushing the changes to produc-
tion automatically. A fixed release schedule is a predictable way of releasing
after a fixed period like every few weeks or every month, for instance. Re-
leases performed more or less on-demand when the situation calls for it are
more sporadic in nature.

Rather few development teams or organizations desire very frequent,
same day, deployments and releases to end users. Even having continuous
deployment capability as understood by continuous delivery is not a com-
mon objective for software development teams or organizations. Projects
in the industry seem to have release cycles on the order of months or at
least several weeks. Underlying software development processes and de-
velopment sprints in processes such as Scrum could hypothetically impact
release cycles in projects. Longer release cycles and on-demand releases are
reasonable for software in domains where it is harder to split features into
smaller releases. An interesting notion is that in many cases development
teams working with projects would be capable of releasing their changes
much faster to users than they do. Release readiness is thus at a higher
level than the release frequency.

For a good number of reasons, releases ought to be frequent to provide
users with software that matches their need, gradually evolves over time,
and provides added value in a timely manner. Then again, there is a fair
share of reasons and circumstances where releases ought not to be frequent.
Releasing changes from developers immediately to the production environ-
ment during the same day is certainly not the only choice but a choice
among others as far as release cycles go. The perfect release cycle for any
project, frequent or not, is the one that makes all parties such as developers,
customers and end users equally happy and satisfied with the result.

80 5 Discussion

RQ2: How can a software engineering process be organized
to release software frequently?

Releasing software frequently is no small task. Between gathering require-
ments for a software system and releasing new software versions to users
lie many phases and stages. Processes and activities in stages such as re-
quirements management, development, testing and quality assurance, and
operations and infrastructure management, must be well integrated with
each other without too much delay when moving through stages. The pro-
cesses and activities roughly constitute the deployment pipeline that gen-
erally needs to have a high degree of automation for frequent releases to be
possible.

The first facet in the continuous software engineering process is the con-
tinuous management of requirements. Feedback should be collected implic-
itly and explicitly from the end users through monitoring systems, asking for
feedback, and providing direct feedback channels to users. Feedback helps
to develop future versions and keeps the development teams occupied with
enough features on their backlog. If direct feedback channels to users are
provided, care must be taken that development teams are not overwhelmed
by requests. The rate of incoming feature and change requests either from
internal or external sources must match the team’s development capability.

Development is the second facet in the continuous software engineering
process, encompassing various activities developers are involved in every
day. Developers should have access to a distributed version control system
to which they can frequently integrate changes, first locally and then to
a shared repository. A smart branching strategy guarantees that version
control branches used for feature development are short-lived enough not
to cause merge conflicts. Build systems used as part of the development
workflows have the responsibility of compiling code and assembling pack-
ages for subsequent development stages. Continuous integration servers
have a role in monitoring selected version control branches and triggering
further build and testing jobs in the deployment pipeline when changes are
available. Build processes should not only be automated but optimized to
keep build and testing times sufficiently short. Optimizing build processes
may require hardware changes in the network infrastructure such as servers.
Proper optimizations in build and testing processes with the right hardware
can potentially save hours in automated build and testing times.

Development should be interlaced with regular, almost daily, episodes of
refactoring code and other artifacts. A high rate of code changes and making
architectural decisions on the go call for refactoring. Developing future
versions and preparing new releases might not be possible if development

5.1 An Overview of the Research Questions 81

teams are not allowed enough time to improve internal code structures to
better fit the evolving environment. As much as a fifth of development time
should be reserved for refactoring, time spent not only on developing new
features but improving the structures. Refactoring needs to be part of the
daily development routines to keep code in check. For better transparency
of the development process, development routines and refactoring should
also be appropriately explained to customers involved in development.

Refactoring requires automated test suites to verify that structural chang-
es do not have negative effects. Automated tests are no less important in
the continuous software engineering process with frequent releases in mind.
Testing in its many forms is the third facet in the process. Lower-level code
constructs such as classes and methods should be verified by respective
automated unit tests on every turn of build and test cycles. Where possi-
ble, more comprehensive user interface tests can complement unit tests by
providing the possibility to verify behavior the user of the system would
experience. The user’s perspective is also central to forms of acceptance
testing that is aimed at resolving whether a particular feature or a set of
features is ready to be shipped to end users. Acceptance testing requires
thorough consideration of the sensibility of changes made and thus is one
of the more difficult types of testing to automate. Non-functional proper-
ties like performance and security are not easy to test automatically either
but assuring a smooth and safe user experience can be considered valuable.
Since it is difficult to automate, perhaps testing of some non-functional
properties could be tied to larger architectural changes that are more likely
to affect such properties.

For many types of testing, emphasis should be given to test automation.
Automating tests is an avenue to better perceived product quality, at least if
judged by developers. When automated, tests should complete reasonably
quickly to make sure that the deployment pipeline maintains a steady speed
and activities for subsequent phases can proceed. Developers are not too
keen to wait for hours for tests to complete. Tests that are not automated
have to be skipped or tested by manual labour. Manual and exploratory
testing have their places, especially when matters of opinion are involved in
the aspects being tested. Nevertheless, the distance to a fully automated
pipeline capable of deploying changes to users in a heartbeat grows with
each manual step and stage required.

The fourth facet in the process, operations and infrastructure manage-
ment, is important not only to testing but also to deploying and releasing
new versions in various environments. Testing environments should be as
similar as possible to production environments for testing to be effective.

82 5 Discussion

Testing in environments that differ in critical supporting software such as
database systems can give a false sense of security. Virtualization and or-
chestrating virtual environments provide a convenient means for replicating
environments in development and in testing, reducing insecurity related to
environments. Deployment as the act of shipping software packages across
environments and making new versions available to users can also benefit
from virtualization. In compatible domains, cloud infrastructure together
with virtualization can make the transition from one version to the other
easier by helping to ramp up a completely new virtual server infrastructure
for new version on the fly. Regardless of the domain, the last mile to pro-
duction environments and to the end users should be considered carefully
with appropriate deployment and release strategies.

Perceiving software engineering processes from the different angles af-
forded by the four facets of the continuous software engineering process can
help to realize which activities might need improvement. The sense of how
activities should be organized is of great importance but more information
about the state of practice in any given company or organization is needed
to truly kickstart the change process. Companies should look towards re-
flective interviews of internal project personnel or broad company-wide ma-
turity surveys to gauge the current situation in a company.

Detailed interviews help to illustrate which parts of the process are
currently handled best and where more work would be needed to improve
practices. The degree of manual work versus automated processes is also
a good measure to have when conducting interviews. The downside is the
amount of work involved in interviews.

Surveys that take advantage of company-specific maturity models offer
another avenue for gaining an understanding of the maturity and capability
of the organization and its projects. Maturity models can for instance in-
clude elements from the four facets ranging from development and quality
aspects to infrastructure management as desired. Tiered maturity models
can have a set of requirements for each tier for determining maturity. There
lies a challenge in dividing maturity models to clearly progressive tiers be-
cause practices used in real projects vary. Surveys are tailored to reach a
broad audience inside any organization and are helpful as such in spite of
being less detailed than interviews.

Both interviews and surveys are helpful in collecting information about
development practices and comparing projects inside companies. Because
of the different nature of projects, it might be difficult to compare project
practices with one another. The project domain, phase of development
lifecycle, and available technologies can all be different and limit options for

5.1 An Overview of the Research Questions 83

taking certain development practices into use. Taking the limiting factors
into account, companies can take advantage of the collected data and direct
resources to improving development processes in projects that matter the
most.

RQ3: What are the implications of frequent software releases
to organizing work?

Adopting continuous software engineering practices that enable frequent re-
leases to end users can be a daunting task for any organization. Working
habits must change with support from the whole organization and its cus-
tomers. A cultural revolution of sorts is needed and it has implications on
all levels of the organization.

As with any organizational level change, management must show lead-
ership in carrying out the necessary changes. Management should seek to
understand what the current status of its development practices is and set
clear objectives for improvement where necessary. Not every project in the
organization needs similar attention as projects are in different phases of
development. Some projects are in active development and some are merely
being maintained for the time being. Employees should be encouraged to
actively reform processes, practices and deployment pipeline stages that in
the end help to release software versions more frequently. A learning orga-
nization gives support and enough resources to its employees. Developers
and other members of the development team might need to acquire new
skills to improve existing practices sufficiently.

Reorganizing work to accommodate a more responsive development style
suited to frequent releases may require shifting responsibilities. Develop-
ment teams must work more closely with other functions to bring up and
maintain infrastructure like servers as needed. It will take time before ev-
eryone is used to the arrangements and the situation can be stressing for
employees. Members of the development team and others may also have
reservations about the effectiveness of the deployment pipeline in catching
defects before they turn into failures visible to users. Automated tests help
in building trust in the deployment pipeline.

Comprehensive test suites also help with other important development
activities like refactoring. Even so, there are certain risks involved in fre-
quent releases and deploying directly into production environments. De-
pending on the domain, the risks may well be acceptable but erring on the
side of caution in domains such as health and industry automation may be
the safer choice.

84 5 Discussion

On the positive side, making smaller releases more frequently may re-
duce tensions caused by infrequent and unavoidably larger releases. Devel-
oper spirits may well be lifted if the working atmosphere is positive and
accepting towards practices such as refactoring where developers have a
chance to perfect their code, embracing the change that comes with contin-
uous software engineering and frequent releases.

Readjusting work and realigning attitudes internally in development or-
ganizations are critical factors when considering more frequent releases.
Internal matters are important but so are the external relations a devel-
opment organization has. Software is in many cases developed in partner-
ships with customers, perhaps even on customer premises. In such joint
endeavours, developers might find it difficult to bring their expertise on fre-
quent releases and continuous software engineering practices to the table.
Customer organizations are not necessarily interested in investing heavily
in process improvement. Feature development can have a higher priority
for the customer, which is understandable. The problem is not limited to
integrated development teams. Customer representatives in development
projects might not consider process improvement tasks to be as valuable to
them as feature development tasks.

Customers should be made aware of the possibilities of frequent re-
leases and continuous software engineering practices even before starting a
project. Equipped with enough knowledge, they can decide whether to pur-
sue more frequent release models and improve software processes either for
themselves or for the development organization. At times, the development
organization’s capability to deliver and deploy new releases far exceeds the
customers’ capability to handle them. Customers should be able to opt out
of frequent releases if the idea does not suit their current way of working.

Reassuring the customer that frequent releases might be beneficial for
them might be difficult, though. Akin to refactoring, good metrics showing
indisputable benefits of more responsive development and frequent releases
are hard to find. No matter the choice, the development process should be
transparent enough so that the customer has a clear understanding of how
development resources are being used. If in the end the decision is made
to aim for frequent releases, at least the end users might have the chance
to enjoy evolving applications that are rapidly molded according to their
wishes.

5.2 Threats to Validity 85

5.2 Threats to Validity

The validity of studies is judged by the strength and correctness of infer-
ences made in a study, meaning validity is not a property of the studies
or research methods per se (Shadish et al., 2002). As the very concept
of truth is contested, human judgment remains the primary method for as-
sessing correctness of inferences in a study. Inferences might be undermined
and threatened by overlooked or otherwise unknown factors that could also
explain the findings (Shadish et al., 2002). These factors are the threats to
validity of inferences made in a study.

Validity and thus threats to validity can be divided into several different
classes. A common categorization of threats to validity include internal va-
lidity, construct validity, external validity and reliability (Runeson and Höst,
2009; Yin, 2014). Previous validity topologies have considered statistical
conclusion validity as a class of its own although inferences based on analy-
sis of statistical data are also part of internal validity (Shadish et al., 2002).
Broadly speaking, internal validity concerns matters of causal relations in-
ferences about whether a treatment leads to a specific outcome (Shadish
et al., 2002; Runeson and Höst, 2009; Yin, 2014). Construct validity refers
to the inferences made in turning the real-world phenomenon being studied
into tangible operational measures (Runeson and Höst, 2009; Yin, 2014) or
to higher-order constructs in other words (Shadish et al., 2002). External va-
lidity deals with the generalization of findings and how well the inferences of
the study apply in other domains (Runeson and Höst, 2009; Yin, 2014). For
external validity, it is reasonable to question whether the inferences would
hold if a different group of people were observed in a different setting, or if
the treatment or measurement variables would be different (Shadish et al.,
2002). Inferences should also be repeatable across researchers, which is a
concern specific to reliability (Runeson and Höst, 2009; Yin, 2014). Given
the same data and research protocol, other researchers should be able to
replicate the study and reach the same conclusions independently of the
original researchers.

Validity concerns vary according to the type of study and the used re-
search methodologies. When there is a high degree of control over the study
conditions, for instance, the setting might be less realistic. Such conditions
make threats to internal validity less plausible as the causal relationships
can be more readily observed but external validity might be at risk due to
the artificial conditions as found in laboratory experiments (Shadish et al.,
2002; Stol and Fitzgerald, 2018). In contrast to laboratory experiments, in
case studies threats to internal validity are less prominent since claims about
causal relationships are generally not made in descriptive or exploratory

86 5 Discussion

studies (Yin, 2014). Since case study is the primary research methodology
used in the thesis studies, the validity threats that apply to inferences made
in case studies in particular are the most relevant.

Threats to validity can be mitigated using a set of countermeasures
(Runeson and Höst, 2009) or tactics that are specific to different phases
in research (Yin, 2014). If at all possible, the design of studies should
be robust enough with design controls in place that reduce the threats to
validity (Shadish et al., 2002). For example, the strength of inferences
related to construct validity in case studies increase when multiple sources
of evidence are used and there is a clear chain from data to findings that
can be followed (Yin, 2014).

All classes of validity have their distinct threats that should be duly
addressed. The plausibility of each threat depends on the conducted study.
This section elaborates the threats to internal validity, construct validity,
external validity, and reliability of the inferences made in the thesis studies.

5.2.1 Internal Validity

Causal inferences are claims that, based on observations, there is a reason
to believe that it was in fact specific events that lead to the outcome. Such
causal relationships are put under scrutiny when internal validity of infer-
ences are considered (Shadish et al., 2002; Runeson and Höst, 2009; Yin,
2014). Besides the stated causal relationship, other unknown factors could
be at play that might as well explain the findings (Yin, 2014). In fact, ex-
amination of causal relations begins by ruling out other possible causes until
other possibilities are exhausted and only the most plausible one remains
(Shadish et al., 2002).

There are numerous threats to internal validity that might have unde-
sired effects on the study results and the inferences drawn from the results
(Shadish et al., 2002). At times, the sequence of causes and effects can
be fuzzy and it is unknown whether the effects occurred before or after
administering a particular treatment, owing to the internal validity threat
ambiguous temporal precedence. Another threat to internal validity is selec-
tion, which signifies the fact that any observed effect could in fact be due
to the inherent attributes of the selected subjects and not the treatment in
question. Even if the selected subjects were on level ground before starting
a study, the situation can evolve during the study, leading to validity threats
of history or maturity. Internal validity threats that are more plausible in
experiments include regression, attrition, testing and instrumentation. The
validity threats specific to experiments are less of a concern for inferences
based on case study interviews. Respondents in interviews do not take or

5.2 Threats to Validity 87

retake series of tests and the instrument of the study is mostly the person
asking the questions in the interview.

Inferences may be subject not just to a single but many internal validity
threats at the same time. The effects of threats can accumulate, weakening
the inferences further. This threat of interaction is acknowledged as a threat
of its own as additive and interactive effects (Shadish et al., 2002). Poor
selection of test subjects, perhaps without randomization, may be enhanced
by special local history events when the study is being conducted. The dual
internal validity threats of selection and history would be in effect at the
same time, causing uncertainty to inferences about the real effect of the
applied treatment.

Threats to internal validity have to be considered whenever causal in-
ferences are made in a study. Causal inferences do not appear in all types
of studies, though. Case studies, for instance, can be exploratory or de-
scriptive in nature and thus lack strong causal inferences (Yin, 2014). Data
collection in case studies can consist of interviews with only limited direct
observations where inferences are drawn from interview data (Yin, 2014).

As the primary research methodology for the thesis studies is case study
and the research purpose is exploratory, there are not many causal relation-
ships or inferences to examine. Still, several inferences made in the thesis
studies need to be considered in respect to internal validity threats. Ac-
cording to one of the inferences, continuous deployment and DevOps can
be seen to lead to a number of benefits. Another inference states that in
software industry, the degree of tooling is positively correlated with the ca-
pability to deploy. For these inferences, only a few of the internal validity
threats can be considered plausible.

To some degree, the plausible threats to internal validity in the thesis
studies include ambiguous temporal precedence and selection as summarized
in Table 5.1. The temporal ambiguity aspect relates to the case study in-
terviews where the respondents were asked to name the benefits they saw
associated with continuous deployment (Publication I) and DevOps (Pub-
lication V) practices. Because continuous deployment practices and auto-
mated deployment to production in particular were quite rarely used in the
case study companies, the mentioned benefits are in most cases benefits the
respondents thought the practices could have. In a sense, the application of
continuous deployment and DevOps practices did not precede the moment
when the interviews were conducted. If the usage of the development prac-
tices would have been more widespread, the implications might have been
assessed in a different light by the respondents.

88 5 Discussion

Table 5.1: Plausible threats to internal validity in the thesis studies.

Threat Category Validity Threat

Ambiguous temporal
precedence

Inferences for benefits of continuous deployment
and DevOps are weakened by low adoption rates
of said practices in the selected industry cases.
Respondents might have had limited experience
about the benefits prior to answering what they
thought of as the benefits of the development
practices.

Selection The selected cases from the industry were from
various domains but their background might
have had an impact on the findings. Other rival
factors based on the domain and specifics of the
companies cannot be completely ruled out when
examining the causal relationship between de-
ployment capability and the degree of tooling.

Selection of cases in a case study is not quite the same as for con-
trolled experiments as the selected cases are not intended to be statistically
representative (Runeson and Höst, 2009). Selection bias is more likely in
experiments where randomization of subjects to treatment groups has not
been perfect (Shadish et al., 2002). Nevertheless, selection of cases has an
impact on the findings of the thesis studies and on a number of drawn in-
ferences. All in all, the selected 33 cases for the thesis studies came from
31 different companies in Finland. Many companies were partners in a re-
search program and were from a wide range of industry domains. Effort
was made to select at least several cases from similar domains to get an
understanding of the operating principles in a specific domain.

The internal validity threat of selection applies in particular to the infer-
ence that concludes that there are signs of correlation between the degree
of tooling and deployment capability in companies (Publication II). One
strategy to tackle internal validity threats in case studies is to address rival
explanations (Yin, 2014). The question is, does the level of tooling sig-
nificantly affect the capability to deliver and deploy software releases, or
could there be other factors that might have an effect? Other factors like
the industry domain, company infrastructure, employee work experience,

5.2 Threats to Validity 89

customers or many other factors could explain the deployment capability
although the degree of tooling might reflect these factors.

5.2.2 Construct Validity

Concepts in general can have many meanings and it may be difficult to
capture the true essence of a concept being studied. For research purposes,
concepts or constructs should be specified in a manner that makes it possible
to clearly distinguish and measure the construct by identifying valid opera-
tional measures (Yin, 2014). Constructs that should be well defined are not
limited to outcome measures, i.e., how to measure a particular construct.
Besides outcome measures, it is equally important to define the underlying
construct and phenomenon that is being studied (Shadish et al., 2002; Yin,
2014). Likewise, labels can be attached to groups of people who are selected
for the study and to the settings that offer the circumstances for a study
(Shadish et al., 2002). Understanding the clarity of the definition of such
categories is just as important as for outcome measures.

Construct validity threats include a host of issues that relate not only
to the specificity of constructs but also to the operational measures and
methods used in measurement, and to the various motivational factors that
can affect both test subjects and experimenters (Shadish et al., 2002). The
threat inadequate explication of constructs applies whenever the construct
cannot be accurately described either because there is insufficient informa-
tion to do so or the description is too specific. The application of invalid con-
structs altogether and mistakenly merging features of multiple constructs to
a single construct fall into the same threat category. No matter how well the
construct is defined, the characterization of other constructs may overlap
leading to threats such as construct confounding or confounding constructs
with levels of constructs used with ambiguous constructs.

The operational measures for a construct may sometimes offer too nar-
row a view to support the inferences (Shadish et al., 2002). Using only a
single measure for a construct exposes inferences to mono-operation bias.
Multiple measures for a construct strengthen the inferences as there are
more sources of data to infer from, giving more confidence to the findings
when results from the multiple outcome measures point the same way. The
bias applies also to person constructs if only a single type of person is used.
Another bias is the monomethod bias that threatens construct validity when
data for outcome measures is collected using a single method. The data col-
lection method may have its limitations that are reflected in the findings
and the real effect may remain unobserved because of the method itself. A
remedy to fight off such construct validity threats is to use many sources

90 5 Discussion

of evidence (Runeson and Höst, 2009; Yin, 2014), effectively increasing the
certainty that a valid set of measures is being used and that the data col-
lection methods are appropriate for the measures. Making use of multiple
data sources and multiple methods is at times referred to as triangulation
(Runeson and Höst, 2009).

Interaction between experimenters and test subjects in the experimental
situation has potential to affect the responses, too (Shadish et al., 2002).
Reactions from the experimenters in the experimental situation are not
irrelevant to the outcome, either. Experimenters can project their own
thoughts and emotions about the possible outcomes of a treatment to the
test subjects. As a result of the experimenter expectancies threat, the sub-
jects might modify their behavior according to the expectations, possibly
altering the effect of the treatment. Even when interactions between the
experimenters and the participants are neutral, the behavior of the partic-
ipants might change due to the experimental situation. Merely being part
of an experiment might induce novelty and disruption effects that are inde-
pendent of the treatment. Introducing change might be seen as an exciting
factor in itself. The introduced change and being involved in an experiment
could also impede the work of the participants in some way, disrupting
their routine processes. Applying a treatment to a group of people can lead
to other construct validity threats that stem from the sensitivity of test
subjects to treatment conditions. Sensitivity to group membership can be
a factor in some cases but is of less significance in case study interviews
where the respondents represent the case in question.

Notable construct validity threats in the thesis studies are related to
the clarity of the concepts used in the interviews and surveys, the measures
used in gauging the constructs, and the methods used in data collection.
The three recognized threats to construct validity are summarized in Table
5.2 and elaborated further in the next passage. One of the challenges is that
concepts used in the thesis studies such as continuous delivery and continu-
ous deployment (Publication I; Publication II), refactoring (Publication IV)
and DevOps (Publication V) are concepts that are hard to exhaustively de-
fine. Over the years, even experts have modified their views on the exact
meaning of continuous delivery and continuous deployment (Fitzgerald and
Stol, 2014, 2017).

When industry experts were asked in the thesis study interviews what
they thought refactoring was, they generally understood refactoring as struc-
tural changes without behavioral changes but their views were broader than
the original meaning of refactoring (Publication IV). Similarly, one of the
findings from the DevOps study was that DevOps is not too clear as a

5.2 Threats to Validity 91

Table 5.2: Plausible threats to construct validity in the thesis studies.

Threat Category Validity Threat

Inadequate explica-
tion of constructs

Constructs like continuous delivery and deploy-
ment, refactoring, and DevOps have no distinct
boundaries. Inferences about their advantages
and disadvantages may have been blurred by
the lack of a clear definition. Release frequency
and particularly the construct lead time without
qualifiers are subject to multiple interpretations.

Mono-operation bias Only a single measure was utilized for lead time
in the survey study. Without multiple measures,
the inferences for lead time are not as strong as
could be.

Monomethod bias Interviews were the primary means of data col-
lection. Inferences for release frequency and
refactoring measures derived from the interviews
could have benefited from the usage of other
supportive sources like version control systems.
Similar triangulation might have been beneficial
for the survey study and its lead time measure.

concept to industry experts, either (Publication V). While the variety of
views was expected and acknowledged as part of the case study interview
protocol, a threat of inadequate explication of constructs is a plausible con-
struct validity threat to inferences made about the benefits or challenges of
continuous delivery and deployment, refactoring, and DevOps, and opera-
tionalized measures such as refactoring frequency. When the respondents
were asked to consider these aspects, their understanding of the constructs
may have influenced the responses. To take an example, responders thought
that DevOps leads to improved quality assurance that can be seen as an in-
ference for a specific study in the thesis (Publication V). Since the meaning
of DevOps is contested, the inference becomes weaker as it is not known
what actually leads to improved quality assurance.

Release frequency is another tricky construct because software versions
can be deployed to various staging environments before the release is ac-
tually made. There may also be shortcuts to releasing new versions if the
situation calls for it, as is the case with urgent fixes. The same concerns

92 5 Discussion

apply for the similar construct of lead time. Akin to release frequency, lead
time can be understood to characterize the time it typically takes for a
change or a set of changes to be introduced into a production environment.
It is less clear to define when time starts running for the lead time measure
and when it stops. If the clock for lead time is started at the instant when a
feature request is received and written down somewhere, the measure sum-
marizes the reactivity of the whole development flow from the inception of
the idea to release of the new version. Other development phases such as
starting implementation of a feature or perhaps even finishing testing could
be equally justifiable starting points for lead time if the objective is to judge
the capability to develop and release changes.

Capturing all the possible release scenarios was a challenge in the semi-
structured interviews (Publication I; Publication II). When asked how fre-
quent the releases in a project are, respondents might in fact mean releases
to one of the testing or staging environments, or answer about the release
frequency to production. To mitigate the threat against inadequate expli-
cation of constructs and to mono-operation bias, multiple release frequency
measures were used in the interviews (Publication I; Publication II). Re-
spondents were asked to recall the whole release process in the case study
project and to illustrate the flow with drawings of their own. They were
asked about the typical speed of delivery to production environments and
also the minimal time to release a small change. An in-depth elaboration
was possible in the interview studies but less so in the survey study (Pub-
lication III).

The survey study that had a self-assessed maturity level for lead time
(Publication III) and the inferences based on the quantitative results on
the average lead time might have suffered from the threat of inadequate
explication of constructs. Survey participants were given a survey guide to
help them fill the survey. In a survey based on an on-line questionnaire there
is no dialogue or similar interaction with the researchers so it is more difficult
to address the threat. The mono-operation bias applies to the survey study
since only one measure was used for lead time if not taking the target lead
time the project was aiming for into account. Deployment to production is
mentioned in one of the process area maturity level measures for build and
deployment but the highest maturity level has other requirements as well
besides deployment directly to production.

Another plausible construct validity threat that applies not only to the
lead time and release frequency measures but also to other constructs in
the thesis studies is the monomethod bias. For the survey study (Publica-
tion III), the lead time measure is based solely on self-assessment and there

5.2 Threats to Validity 93

are no other sources to back up the respondents’ answer to the question.
The multiple release frequency measures used in the semi-structured inter-
views (Publication I; Publication II) and the fact that the responses about
the development process were sent back to the respondents for verification
mitigates the monomethod bias to a certain extent.

Nevertheless, the inferences would have been stronger if there had been
proper triangulation with hard data from version control systems or other
information systems where release tags and dates could have provided a
secondary source of evidence. Analysis of version control system history
might have also offered an additional data collection source when assess-
ing the refactoring frequency of projects (Publication IV). Semi-structured
interviews are essential in collecting data for case studies but getting data
from other sources helps to confirm the findings and to build a stronger
case.

5.2.3 External Validity

Research outcomes are generally more helpful if the findings are applicable
to a wider population than just the sample population used in the study.
External validity focuses specifically on this matter of generalizing findings
and assessing the strength of causal inferences in cases beyond the ones in
the study (Shadish et al., 2002; Runeson and Höst, 2009). In the general
case, there could be greater variance in people and the environments, or the
outcome measures and treatments could differ, too (Shadish et al., 2002).
The generalization can go both ways from the narrow sample of cases to the
broad population and from a broad population to a narrow, more specific
case or setting (Shadish et al., 2002). Generalizing to other cases with sim-
ilar characteristics is another form of generalization. Whether the findings
are relevant for cases that have slightly different characteristics is of interest
as well.

For instance, when investigating software engineering phenomena and
cases in the Finnish software industry as in the thesis studies, the gener-
alization could theoretically take many forms. From a sample of software
industry companies, the generalization could be to the wider population
of software development companies in Finland or perhaps even to software
companies around the globe. When considering generalization from the gen-
eral population to the narrower case, the findings could be from a general
population such as software companies in Finland. The interest would then
be whether the generic population inferences would hold in a specific do-
main and case, say for a publisher producing electronic educational material
for public schools in Finland.

94 5 Discussion

The generalization to a similar case seems most straightforward. A soft-
ware company involved in providing non-critical software services through
web interfaces with the software running on their own servers or in the
cloud would match many of the cases in the thesis studies. Any inferences
in the studies should have the best fit to such cases. But even cases that
appear to be similar have differences. Perhaps the people working in the
company have specific backgrounds, education or experience that makes it
harder to draw inferences from companies in the study. Requirements for
the industry domain could well differ, making the setting dissimilar.

As a rule, external validity for the inferences in a study is stronger the
more variety is included in the persons, settings, and outcome measures
but there are challenges to this strategy (Shadish et al., 2002). The down-
side with increased variety is that the arrangements for the study become
harder to handle and the size of individual groups grow smaller, making it
unfeasible to have too much variety in the studies.

For case studies, the rules for generalization are not quite the same as for
studies that have statistically representative samples and where data is an-
alyzed with statistical methods (Runeson and Höst, 2009; Yin, 2014). Case
studies are focused on individual cases that do not represent samples from
a broader population as such. Statistical generalization is for generalizing
from samples to broader populations but without representative samples
case studies rely on analytical generalization. In analytical generalization,
the findings are generalized to a theory, not to a population.

External validity and generalizability can be threatened if some condi-
tions in the study interact with causal inferences (Shadish et al., 2002).
Inferences may be weakened because they no longer hold in a different set-
ting, or when different units or outcome variables are used. If units of only
one kind are used in the study like only males and no females as subjects,
the inferences could be coupled with the unit and the threat interaction of
causal relationships with units might apply.

Subtle or substantial differences in the setting may mean that the results
are not transferable to other settings if certain features of the setting interact
with the findings (Shadish et al., 2002). Such a threat of interaction of
causal relationship with settings is present when the original setting, say a
large city, has different features and possibilities that could not be found
in a countryside town. Similarly, treatment effects can be tied to specific
conditions that appear as treatment variations but which ultimately impact
the inferences of a study. Thus, an inference might not hold elsewhere if
there is interaction of causal relationships over treatment variations, which
also applies in cases where combinations of treatments interact in a way that

5.2 Threats to Validity 95

Table 5.3: Plausible threats to external validity in the thesis studies.

Threat Category Validity Threat

Interaction of causal
relationships with set-
tings

The operating domain of a company may sig-
nificantly impact the inferences for the posi-
tive correlation between automated deployment
pipelines and deployment capability in compa-
nies.

Interaction of causal
relationship with out-
comes

Given the deployment capability outcome mea-
sure used in the inference between automated
deployment pipelines and deployment capabil-
ity, the positive correlation might not be ob-
served if another outcome measure such as ac-
tual release frequency is used. Many other
company-specific factors can affect the actual
release cycles and hide the potential to release
more frequently.

changes the outcome. An outcome measure may be constructed in multiple
ways so the selection of one can interact with causal inferences, too. The
threat of interaction of causal relationship with outcomes is possible when
inferences are good for a particular outcome measure but fail to hold for a
related outcome measure.

Since external validity threats are concerned mostly with causal infer-
ences, which are rare in the thesis case studies, only a limited number of
external validity threats apply and are plausible. As was discussed in the in-
ternal validity section, causal inferences are found mainly in Publication II
where the correlation between technological maturity and continuous de-
ployment capability is explored. There were signs of a positive correlation
indicating that companies with more tools and an automated pipeline had
better deployment capability than companies with fewer tools and auto-
mated stages in their pipeline. Regarding the inference, it is possible that
settings or outcomes might have interacted with the causal relationship as
presented in Table 5.3.

After reviewing results from companies, operating in a range of domains
as reported in Publication II, the results already hinted that the domain was
a significant factor in determining deployment capability. Thus the threat
of interaction of causal relationships with settings is a plausible external

96 5 Discussion

validity threat in the thesis studies. An industrial factory setting differs
from a software service setting running on the web. The implication of the
threat is that increasing the degree of automation and tooling might not help
with deployment capability, if the operating principles of the domain are
not compatible with the idea of pushing changes frequently to staging and
production environments. The results are not generalizable to all domains.

Considering the chosen outcome measures and the deployment capabil-
ity construct used in the inference, the external validity threat interaction
of the causal relationship with outcomes is plausible. Release frequency can
be measured by many different outcome measures. The measure for deploy-
ment capability was chosen because actual release frequency cycles in the
company cases were fairly long and it seemed that many companies had the
potential to release new software versions more frequently than they actu-
ally did. There is a strong possibility that the degree of automation and
tooling in the deployment pipeline would not show such a positive corre-
lation if another release frequency outcome measure like the actual release
frequency would be used. Plenty of good reasons prevent companies from
releasing their products to customers and end users as discussed in Chapter
4. Having an automated deployment pipeline helps companies in preparing
the releases but the technological maturity does not directly lead to more
frequent release cycles.

To mitigate external validity threats and enhance theory building from
cases, case studies should apply replication logic when a multiple-case de-
sign is used (Yin, 2014). Except for the survey study, all the thesis case
studies have a multiple-case design as explained in Chapter 3. For instance,
the studies reported in Publication I and Publication II use literal replica-
tion inside particular domains to explore similar cases. At the same time,
theoretical replication is used to explore cases in different domains, selecting
cases in the web development and embedded system domains, for instance.
Having a sound replication logic strengthens the external validity of infer-
ences in the thesis studies although theory building is somewhat weaker in
the included case studies that have fewer cases.

5.2.4 Reliability

Any finding in a case study should be based on a solid chain of evidence orig-
inating from the collected data and its analysis (Runeson and Höst, 2009).
Reliability of a study’s inferences means that other researchers should be
able to follow the trail of evidence and come to the same conclusions given
the same data (Runeson and Höst, 2009; Yin, 2014).

5.2 Threats to Validity 97

Table 5.4: Plausible threats to reliability in the thesis studies.

Threat Category Validity Threat

Lacking documenta-
tion

A case study protocol was followed in all of
the studies. Data was collected using semi-
structured interviews in most cases. While the
steps of the research protocol were documented,
only themes of the interview sections were men-
tioned in the majority of reports. Specific in-
terview questions were not made available, save
selected questions used to characterize release
frequency.

Reliability is threatened if others are unable to follow the trail of thought.
A clear threat to reliability is lacking or missing documentation about the
study protocol (Yin, 2014). Shortage of documented steps gives an impres-
sion that data collection and analysis have not been systematic or thorough.
Theoretically, it would be difficult for other researchers to reach the same
conclusions if they were to repeat the same study. The obvious solution
is to document steps in the study well enough so that the study protocol
could be followed (Yin, 2014).

There are some plausible threats to reliability for the inferences made in
the thesis studies. For the majority of the studies, there was a case study
protocol that was the same for all the cases in a study. Semi-structured
interviews were used for data collection in the interviews and more or less
the same set of questions were asked of all the respondents. There was slight
variation to the protocol and to the order of questions if the respondent had
already covered the topic in earlier responses. When possible, the interviews
were recorded.

For the studies reported in Publication I and Publication II, there were
close to 50 questions. Themes and a general outline of the questions are
reported in Publication II but the complete set of interview questions has
never been released. Clearly, lacking documentation of the interview ques-
tions hinders reliability although the analysis is based on the data collected
using a solid interview protocol as summarized in Table 5.4. A case study
protocol was also followed for the other case study interviews reported in
Publication IV and Publication V but the complete semi-structured inter-
view question sets were omitted from the reports, showing only the interview
themes.

98 5 Discussion

Analysis in the interview studies relies on thematic analysis that is done
by coding transcribed passages with labels. Multiple researchers were in-
volved in reviewing the identified themes in all of the cases, which supports
the reliability aspect and strengthens the inferences made about the im-
portant themes. Especially with the cases found in Publication II, findings
derived from interview data were sent back to the respondents for confir-
mation, further reducing the chance of errors made in the analysis.

As for the questionnaire used in the continuous deployment maturity
survey study (Publication III), the questions and themes are described on
a general level. The reliability for the inferences in the survey study is
improved by the supplementary survey guideline describing some of the
conditions the respondents weighed when choosing the correct maturity
level for their project.

5.3 Related Work

Continuous software engineering and its related software development prac-
tices have been studied previously in different settings. While there are
empirical studies from the industry concerning such topics as continuous
delivery, continuous deployment, and DevOps, a number of more theoreti-
cal studies also exist.

In this section, some of the relevant earlier work is presented and com-
pared to the results derived from the thesis studies. The section has been
divided into two parts so that the first part focuses on giving an overview
of the existing literature on continuous software engineering topics. The
second part of the section digs deeper into the results of individual studies
by weighing the results against the outcomes of the thesis studies.

5.3.1 An Overview of Literature

Research of continuous software engineering practices and phenomena such
as continuous deployment has been carried out roughly around a decade
or so with a clear increase in research output since 2011 (Rodríguez et al.,
2017). Over the years, there have been empirical studies that have reported
of case studies, surveys, panel discussions, and workshops, not forgetting
the more theoretical work. Even if somewhat informal, various published
experience reports from the industry also add up to the body of knowledge.

The existing literature consists of both primary studies and secondary
studies. Primary studies report of direct observations or experiences, de-
pending on the type of the study. Secondary studies survey the literature
landscape for a given topic by analyzing the results of primary studies.

5.3 Related Work 99

Literature surveys or reviews that gather the results of multiple studies
provide a good starting point for a general overview of existing literature
on continuous software engineering.

Systematic literature reviews and systematic mapping studies are ex-
amples of secondary studies that harvest existing primary studies to answer
research questions (Kitchenham and Charters, 2007). What makes them
systematic is the use of well documented search strategies and explicit cri-
teria according to which primary studies are included or excluded from the
study. Secondary studies following the systematic review protocol are more
rigorous since the search strings and sources are known. The difference
between systematic literature reviews and systematic mapping studies is
that mapping studies are used to cluster information with a broader, less
focused, approach.

To give an overview of existing literature, this section provides a lim-
ited tertiary review of systematic literature reviews and systematic mapping
studies that have been conducted on continuous software engineering top-
ics. These secondary studies have focused on topics such as continuous
deployment, continuous delivery, and agile release engineering. Table 5.5
summarizes the benefits and challenges of continuous software engineering
practices drawn from the three secondary studies selected for the tertiary
review (Rodríguez et al., 2017; Karvonen et al., 2017; Laukkanen et al.,
2017). The table also illustrates how many primary studies were included
in each secondary study, ranging from 30 to 71 primary studies. While the
themes and the emphasis of the studies are somewhat different, all studies
use similar search strings for searching primary studies. The summary of
the benefits show that there is some consensus to benefits such as increased
responsiveness of development in terms of shorter lead time and improved
feedback. For the challenges, testing seems to be a major concern men-
tioned in all of the secondary studies. The findings of each secondary study
are further described in this section.

Rodríguez et al. (2017) conducted a systematic mapping study on con-
tinuous deployment. Using a wide array of search terms equivalent to con-
tinuous deployment, they selected 50 primary studies for closer analysis.
Many of the studies reported of empirical experiences from the industry.
The scientific quality of the primary studies is apparently slightly compro-
mised as quite a few studies did not disclose too much information about
the research context or describe the validity threats appropriately.

Rodríguez et al. (2017) were able to identify 10 recurring themes from
the primary studies. Most studies mentioned the acceleration of release
cycles, which can be seen as one of the key objectives of continuous deploy-

100 5 Discussion

Table 5.5: Benefits and challenges of continuous software engineering practices
reported in secondary studies.

Publication Theme Primary
Studies

Benefits Challenges

Rodríguez
et al. 2017

continuous
deployment

50 shorter time-to-
market, improved
release reliability,
increased customer
satisfaction, im-
proved developer
productivity, smaller
testing scope, contin-
uous feedback, rapid
innovation

realigning processes
and people, increased
QA effort, embedded
domain constraints,
customer willingness

Karvonen
et al. 2017

agile
release
engineering

71 frequent feedback,
improved commu-
nication, customer
satisfaction, im-
proved lead time,
improved developer
productivity

domain constraints,
insufficient testing
resources, size and
complexity, changing
mindset and culture

Laukkanen
et al. 2017

continuous
delivery
adoption

30 40 problems identi-
fied in 7 themes,
system design and
testing most criti-
cal with incompati-
ble architecture and
time-consuming and
unreliable testing

ment. The role of automation in the development process was considered
central in the studies partly because manually performed activities slow
down the release flow. Quality assurance and testing in general is one of
the major themes of continuous deployment. If deployment is to be contin-
uous, so must testing be. There is a slight risk that by focusing on testing
of individual changes, sight of the big picture is lost. At the same time,
continuous testing is seen to foster a culture of quality. The change in the
nature of testing also shows in that the amount of defects can increase in
some cases and a great number of releases are used to fix defects intro-
duced by rapid releases. Version control systems need to be able to keep up
to speed of changes so configuration management with various branching
strategies has been one of the themes in the studies.

5.3 Related Work 101

The aggregated themes also reflect the reactive nature of development
and possibilities of continuous deployment. Design and development of fea-
tures can be made in smaller batches with feedback gathered from real users
guiding planning and implementation of features and fixes. Customers and
end users can be more heavily involved in the development process. Mon-
itoring system health after releases is yet another possibility for gathering
implicit user data for upcoming tasks. If something goes awry, individual
features can be more easily rolled back thanks to the smaller size of re-
leases. Flexibility in design and development adds up to potentially more
experimental workflows as highlighted in the themes. Architecture of the
system must bend together with the rapid changes, too. Constant archi-
tectural change may lead to incurring technical debt that needs to be paid
later. The position of continuous deployment in relation to agile software
development is brought up in the primary studies. Continuous deployment
is thought to be compatible with agile and lean software development but
the aspect of continuity makes it different.

Finally, organizational matters arise as an important theme from the
primary studies according to Rodríguez et al. (2017). Changing the devel-
opment process to support continuous deployment requires effort from all
stakeholders across the organization. Previous team divisions according to
function might not work because planning of features is continuous and fea-
tures might be rolled out to customers before marketing, for instance, has
had time to react. Teams need to be cross-functional with expertise from
multiple fields made available in the same team. Development team mem-
bers might face added responsibilities but all development activity should be
kept transparent so everyone is on the same page about what has changed
and when, even if the system breaks due to a bad release.

Aside from the major themes, based on the analysis of the primary
studies Rodríguez et al. (2017) were able to identify a number of benefits and
challenges of continuous deployment practices that are listed in Table 5.5.
An often mentioned benefit in the primary studies is the ability to shorten
the release cycle from several months to perhaps several weeks that shortens
the time-to-market as well. Despite some of the worries related to quality of
releases, automated tests give a sense of reliability to releases. Customers
are also said to be happier with shorter release cycles since they do not
have to wait so long for requested fixes and features. Because individual
features can be shipped and released independently, the overall productivity
of developers is reported to increase when continuous deployment practices
are in place. Tests can be focused on the individual features being deployed
and thanks to the smaller testing scope, it is easier to find defects. Feedback

102 5 Discussion

that flows continuously between developers and customers binds the parties
stronger together, improving relationships and leading to the additional
benefit of rapid innovation together with customers.

The challenges listed by Rodríguez et al. (2017) deal with concerns about
changing the process to suit continuous deployment practices. Realigning
processes and people takes great effort within the organization, posing a
challenge. Another challenge is that compared to previous software devel-
opment processes where releases were done less often, more resources might
need to be allocated to testing. Several primary studies highlight the fact
that a continuous process might not fit the embedded domain due to archi-
tectural incompatibilities. In some cases, the challenge is that customers
may have doubts about the quality of rapid releases and are not willing to
accept more frequent releases. Importantly, the listed benefits and chal-
lenges are noted mostly to be the perceptions of professionals and as such
are not necessarily backed up by empirical evidence from the field.

In another systematic literature review, Karvonen et al. (2017) studied
agile release engineering practices by analyzing 71 primary studies. Besides
continuous deployment, continuous delivery and rapid releases, the search
terms also included continuous integration. The primary focus of the re-
view was to understand the various impacts agile release engineering has on
software development and its outputs. Clustering of the primary studies re-
sulted in several clusters for impact featuring the advantages and challenges
of agile release engineering, methods to mitigate adoption challenges, im-
proving and refitting of development processes, prevalence of the practices
in the industry, the impact of the practice on various success factors, and a
larger cluster of lessons learned.

Owing to the broader theme, the benefits and challenges summarized
in Table 5.5 for the systematic literature review of Karvonen et al. (2017)
contain elements associated with continuous integration as well. Frequent
feedback is once more mentioned to be one of the benefits of agile release
engineering. It is not only feedback from customers but also feedback re-
sulting from the development process to developers and other parties that is
to be considered important. Integrating changes quickly works well only if
feedback from testing to developers, for instance, is prompt. Quick feedback
in the development flow is seen to improve communication. While customer
feedback is deemed important to software development, the actual methods
for eliciting feedback are not covered well in the analyzed primary studies.
Customers for whom software is being developed, are more satisfied with
iterative development that is characteristic of agile software development in
general.

5.3 Related Work 103

When moving from long release intervals to shorter ones, the lead time
of changes improves. Introducing changes or fixes to products has been
found to take less time if release cycles are measured in several weeks,
not in several months. Version control systems and continuous integration
systems can handle workflows where developers work on multiple changes at
the same time, which is seen to lead to the benefit of increasing productivity
of developers.

The challenges of agile release engineering that appear in the primary
studies analyzed by Karvonen et al. (2017) are related to many aspects of
software development. Concerning the environment for development, con-
straints that are specific to domains such as telecommunications and mobile
make it more difficult to release changes frequently. Even if the environment
is suitable, establishing a proper development process for handling frequent
changes can be difficult. Testing is recognized as an activity that takes the
most effort when performing releases. Adopting agile release engineering
practices is hard if there are not enough resources to allocate to testing. A
development organization may not have the necessary technological capa-
bilities with appropriate testing tools in place, either. Another challenge
is that the system and its architecture may be too big or complex, making
integration of changes harder to handle.

Karvonen et al. (2017) take note of several organizational challenges
when people have to adapt to processes required by agile release engineering.
The changes to previous ways of working can be disruptive and people can
experience great strain because of the skill demands of the new process.
Developers need to have the right mindset when working with a continuous
stream of changes.

In addition to the benefits and challenges, Karvonen et al. (2017) searched
for evidence of how commonly agile release engineering practices are used in
practice. Interestingly enough, it seems that industry organizations rarely
practice continuous deployment. Only a few known cases of continuous
deployment are reported in the primary studies. In those cases where con-
tinuous deployment is in use, the platform is predominantly web. The share
of desktop software that is updated continuously is reported to be small.
Looking at the statistics for mobile application stores, only percentiles re-
ceive updates every week and for the rest the release cycle is more infrequent.
Open source repositories allow a different viewpoint to assessing prevalence
since the code and configuration of projects is freely available. The usage of
continuous integration has not exactly skyrocketed in open source projects
lately and the rate of adoption has remained roughly the same as before.

104 5 Discussion

Based on the findings of the primary studies, Karvonen et al. (2017)
have drafted a list of recommendations that organizations should adhere to
if continuous deployment is the objective. According to the recommenda-
tions, agile software development should be the primary mode of working
in the organization to start with and everyone should be comfortable with
working agilely. Continuous integration should be an everyday practice in
the organization. Whatever tests the continuous integration server exe-
cutes, the tests should have a good coverage of code to promote trust in the
tested versions. Acceptance testing should not be forgotten when testing the
changes. In order for version control to work properly, any and all changes
should be pushed to version control branches that only have a short lifespan.
The architecture of the products and systems should support the frequent
integration of changes. Deployed versions and new releases should not cause
any adverse effects. The service for end users should remain uninterrupted
by changes and information about any bigger change in software behavior
should be made available to end users. Dependencies must be taken care
of, too. Other third party applications that take advantage of the services
offered should work equally well after the changes. The transition to con-
tinuous deployment itself should be made with full transparency and with
consent of all involved parties. This list of recommendations serves as a
good reminder what to take into account when considering the transition
to continuous deployment.

Instead of focusing on potential gains of continuous software engineer-
ing practices, the systematic literature review by Laukkanen et al. (2017)
drills down into specific adoption problems of continuous delivery. The de-
tailed review analyzes 30 empirical primary studies that have reported on
adoption problems related to continuous integration, continuous delivery
and continuous deployment. Due to the low number of studies published on
continuous deployment experiences, the main focus is on continuous integra-
tion and continuous delivery. Through analysis and synthesis, Laukkanen
et al. (2017) also extract causes and propose solutions for the identified
problems.

Laukkanen et al. (2017) were able to identify a total of 40 distinct prob-
lems that were categorized into 7 themes. The themes were build design,
system design, integration, testing, release, human and organizational, and
resource. Problems from the themes integration and testing appeared most
often in the primary studies. In many of the analyzed cases, there was ei-
ther an explicit or an implicit theme that could be considered critical. As
illustrated in Table 5.5, the two critical themes with problems that raised
the most concern were system design and testing. From the design perspec-

5.3 Related Work 105

tive, the overall system and software architecture can be incompatible with
the concept of continuous delivery. Software may be structured in such a
way that the dependencies are hard to handle when making changes; the
components may be too intertwined. Architecture that is too modular has a
similar effect. Modular architecture has its benefits but making a build can
be more complex. Critical testing problems revolve around the feedback
tests have to offer. Testing might take such a long time that the waiting
for the results kills the pace of development. Tests that do not consistently
give the same result is yet another matter to consider as a critical testing
problem. Problems from both of these critical themes lead to all kinds of
other problems.

Besides the themes that were considered most critical in many cases,
the analysis of Laukkanen et al. (2017) covers a host of other significant
adoption problems in other themes. Build design problems are related to
system design problems since complex designs may lead to complex builds
and build scripts that take a lot of effort to maintain. Together with testing,
integration is a major problem theme. Version control systems act as a
central hub for integrating changes and any problems in integration has a
direct impact on the work of developers. The probability of time-consuming
merge conflicts increases if the integration frequency is low and the size of
commits grow due to poor version control branch practices. Merge conflicts
may then lead to broken builds, making it impossible for other developers
to continue their work and stopping the development flow of developers.

Merge conflicts and broken builds may actually originate from problems
in testing, as noted by Laukkanen et al. (2017). When testing takes ages to
complete, developers are discouraged from integrating their work frequently.
As a result, code commits grow in size, which can cause problems in inte-
gration. There is also a greater chance for broken builds if the tests are
not reliable. In the end, the chain reaction is complete when work cannot
be integrated frequently, causing merge conflicts and broken builds, which
makes it harder still to integrate work. Testing that takes much time is clas-
sified as a critical problem for good reason. Testing needs to support the
integration flows in order for continuous delivery practices to be possible. In
environments where testing is more difficult due to hardware requirements
or due to the necessity to test on multiple devices, there tends to be more
adoption problems.

After testing, the logical next stage in the development process is the
deployment and release of changes. Laukkanen et al. (2017) mention there
is little empirical evidence of release problems found in the primary studies.
In some cases, deploying changes has been reported to be difficult if the

106 5 Discussion

system is broken into too many small pieces. The concern for the end user
or customer experience is generally reflected in the listed release problems.
Frequent releases might mean frequent user exposure to failures caused by
bad releases. Even if the release is good, deploying a new version may
cause downtime observable by the user. Making a release fully backwards
compatible with previous versions is a problem of its own. When third
parties depend on the software functionalities, extra caution in releases is
warranted. Due to the caused disruptions, certain users might not be favor-
able to frequent releases, either. When deployed, users might not be able
to take advantage of new or changed features unless properly advertised.
Documenting and marketing a versionless product is hard as well.

According to Laukkanen et al. (2017), human and organizational adop-
tion problems are more general problems that are not particular to any spe-
cific phase in development. Organizational structures have an impact on
the way resources are allocated and managed. Without the right resources,
teams may lack the skills they would need to prepare changes frequently.
Multi-disciplinary teams may be the answer but the accelerated pace of de-
velopment also calls for increased communication and collaboration between
teams, which may be lacking in problematic scenarios.

In addition to organizational structures and management, personal traits
of team members influence the outcomes of a development process as sug-
gested by the analysis of Laukkanen et al. (2017). Developers may find it
hard to stick to the agreed development protocol and integrate their work
frequently if the process is not fluent enough in testing, for instance. Per-
haps the resolve of developers is not always strong enough to follow the
process to the letter and the problem is the lack of discipline. Integrating
changes may be less frequent and tests may not be written as often as they
should be. The motivation of team members may waver especially when
setting up the deployment pipelines at the outset if people are not allocated
enough time to do the changes. Motivational issues are important but at
the same time the effort required in the transformation process is a resource
problem. In order to reach the maturity required by continuous delivery,
team members need to master many skills, which can cause a great deal of
stress especially to the less experienced team members who have much to
learn.

Although there are numerous problems associated with continuous de-
livery adoption, the bright side is that Laukkanen et al. (2017) were able to
identify solutions to most of the problems from the primary studies. Only
some of the build design problems remained without apparent solutions.
Problems in the system design and integration themes prevent changes from

5.3 Related Work 107

being integrated frequently. To keep the integration frequency of changes
high, features that are not ready can be integrated but disabled with fea-
ture toggles until development is complete. Using only a single version
control branch for all changes forces developers to integrate changes with
care, which can solve integration problems. At the same time, it is essential
to protect the version control system from breaking changes using appro-
priate review protocols since work is halted with broken builds. Making
sure that developers can execute the build steps reasonably fast is a good
antidote against infrequent integration of changes, too. The same principle
should be applied to testing.

Running automated tests can take a long time and the delayed response
and feedback was identified as a problem. Several solutions mentioned in
the analysis of Laukkanen et al. (2017) can help to save time from test-
ing. Changing the execution order of tests can reveal problems from critical
tests earlier than without reordering tests. Testing can even be dynamic
and adaptive so that tests that have failed most often in the past are auto-
matically put to the top of the test queue. Executing tests in parallel can
speed up the response time for tests if the existing testing infrastructure
cannot cope with the amount of tests. In domains where software is devel-
oped for specific hardware, simulators can replace some of the need to test
on actual devices. If defects slip through to production environments in
spite of all the testing, it is good to have redundant services and the ability
to roll back changes in the case of failure.

The suggested solutions for release problems include useful hints for re-
lease management. Advertising new features in blogs could help users in
discovering features. Practical advice is offered for customers who dislike
receiving frequent updates. In suitable situations, the discomfort of the cus-
tomer can be reduced by letting the customer decide on their own whether
they want to receive frequent updates or not.

Finally, problems related to the human and organization theme require
broad solutions that address cross-cutting concerns in organization as de-
scribed by Laukkanen et al. (2017). Management must be alert when intro-
ducing continuous delivery practices in an organization by devising a strat-
egy and a plan that the organization can follow. Because of the higher skill
requirements, employees should be offered ample opportunities for learn-
ing. It is all the better if at least some complexity can be hidden behind
abstractions and tools of the trade to flatten the learning curve. Bringing
about an open working atmosphere where people are allowed to freely share
their concerns is one way to reduce anxieties and stress that operating in
a different fashion can induce. In general, work can be directed so that

108 5 Discussion

developer teams can more easily address problems in development. Due to
the disruptive nature of truly blocking problems such as broken builds or
other hard problems, shifting the attention of the team momentarily on the
problem can provide a quick solution. Collaboration between team mem-
bers should be encouraged. In the case of motivational problems, being
open about the value and expected benefits of continuous delivery practices
can sway opinions of employees in doubt and give a sense of purpose to the
improvement activities.

Summary of Literature Review Findings

The findings from the literature reviewed in the three secondary studies
(Rodríguez et al., 2017; Karvonen et al., 2017; Laukkanen et al., 2017)
share common ground, having similar inferences drawn from the primary
studies. These findings are also well aligned with the findings made in the
thesis studies as will be summarized in this section.

Looking at the identified benefits and challenges of continuous software
engineering described in Table 5.5, common themes emerge from the sum-
mary. Adopting continuous software engineering practices can be seen to
lead to a shorter time to market or to an improved lead time (Rodríguez
et al., 2017; Karvonen et al., 2017). Both of the mentioned perks of con-
tinuous software engineering mean that it is possible to increase the release
frequency; a fact that is also highlighted in the thesis studies.

The importance of feedback within and outside the development orga-
nizations is acknowledged in the literature reviews (Rodríguez et al., 2017;
Karvonen et al., 2017). Receiving prompt feedback from customers to feed
the development process is considered beneficial as is the rapid feedback de-
velopers can get internally when developing a particular feature. A tighter
relationship with the customers and end users was deemed important and
seen to improve feedback cycles in the thesis studies, too. Reacting swiftly
to feedback and developing corresponding software functionality desired by
customers and end users is seen as a pathway to improved customer satis-
faction (Rodríguez et al., 2017; Karvonen et al., 2017).

Maintaining a high quality of releases together with an increased release
frequency was seen as a concern in all of the three literature reviews (Ro-
dríguez et al., 2017; Karvonen et al., 2017; Laukkanen et al., 2017). Quality
assurance is a major theme in continuous software engineering because test-
ing can take a lot of time and there might not be enough resources to carry
out extensive testing when releases are made more often. Similar adoption
challenges such as the required manual effort in testing, the difficulty of
performing acceptance testing automatically, and testing taking too long a

5.3 Related Work 109

time were brought up in the thesis study interviews. The fear of introducing
breaking changes when releasing often came up in the thesis studies and the
fact was mirrored in the review studies (Laukkanen et al., 2017).

Findings from the literature reviews are in agreement with the the-
sis findings that impediments to adopting continuous software engineering
practices have been recognized in specific domains. Software development in
embedded and mobile domains makes for an environment in which it is more
difficult to deploy changes quickly (Rodríguez et al., 2017; Karvonen et al.,
2017). In particular, there seem to be more adoption problems in hardware
intensive domains when testing is more difficult (Laukkanen et al., 2017).
The architecture of software systems in the embedded domain might con-
strain software development and rapid deployment of changes (Rodríguez
et al., 2017). Adoption challenges related to architecture are known to be
issues in other domains as well (Laukkanen et al., 2017). Similar architec-
tural issues such as complexity of the build process and modularization were
also pointed out by the respondents in the thesis study interviews.

Adoption challenges relating to organizational aspects have not been
forgotten in the literature reviews, either. The effects of adopting new
practices can be disruptive to the current working habits and have an effect
on people (Karvonen et al., 2017). Personal motivation is another human
factor in adopting continuous software engineering and can be a challenge
(Laukkanen et al., 2017). Successful adoption of continuous software en-
gineering practices calls for an organization-wide plan (Laukkanen et al.,
2017). Managerial responsibilities and human factors were emphasized in
the thesis findings, too.

The guidelines for adopting continuous deployment offered in the litera-
ture reviews (Karvonen et al., 2017) is a close match to the continuous soft-
ware engineering process blueprint described further in the thesis. Having
an agile software development process in place with continuous integration
servers running tests that have a good coverage is a fine recommendation
for continuous deployment. The insights in the literature reviews regarding
the guidelines are backed up by the analysis of the software development
processes carried out in the thesis studies. Adopting continuous deploy-
ment requires many practices in place and it is not completely suited for all
domains or environments where there are complex architectural dependen-
cies. Perhaps the adoption challenges can partly explain why continuous
deployment is not a reality yet in many domains (Karvonen et al., 2017).
The findings from the thesis studies do corroborate the low adoption rates
of continuous deployment identified in the reviews.

110 5 Discussion

5.3.2 Reflections on Research Questions

While an overview based on literature surveys synthesizes results from exist-
ing primary studies well, there is room for a closer inspection of the results
from the primary studies in order to compare the results to those obtained
in the thesis studies. Following the structure of the three research questions
of the thesis, this section reflects on primary study results individually for
each research question.

Reflections on RQ1: Why should software releases be frequent?

Regarding the rationale of high frequency releases as discussed as part of the
examination of RQ1, other studies have found benefits and challenges asso-
ciated with continuous software engineering practices. Akin to the findings
of the thesis studies, improved time to market of developed features is gener-
ally seen as the benefit of continuous deployment (Chen, 2017; Parnin et al.,
2017). Increasing release frequency obviously decreases the time to market
of particular features, as shown by Facebook where daily deployments are
possible (Savor et al., 2016). Because continuous delivery, continuous de-
ployment and DevOps require a certain degree of automation and fluency
in the development process, it can also be more efficient to implement indi-
vidual features (Itkonen et al., 2016; Chen, 2017; Snyder and Curtis, 2018).
Although productivity is notoriously difficult to measure, increases in pro-
ductivity have been observed when moving to shorter release cycles even
if the deployments are not done every day (Snyder and Curtis, 2018). A
similar notion of improved productivity was also brought up in the thesis
interview responses.

For product quality, the experiences are mixed. Improving test au-
tomation was seen to lead to better product quality in the thesis interview
responses. The reduction of observed defects and general improvements in
quality have been noted as benefits also in other studies (Itkonen et al.,
2016; Chen, 2017; Parnin et al., 2017). In contrast, the reduction of product
quality has sometimes been identified as a challenge of continuous deploy-
ment due to the chance of frequently introducing unnoticed defects (Claps
et al., 2015). The fear of shipping broken code resonates well with the thesis
interview responses, too. Automated tests build confidence in releases but
it is not always enough to prevent all failures from happening. Although the
fear of deploying broken code may be warranted, even daily deployments do
not appear to degrade software quality significantly more than is expected
(Savor et al., 2016).

5.3 Related Work 111

The role and importance of feedback from users is recognized in the
thesis interview responses as one of the additional benefits. Other expe-
riences and opinions from the industry seem to match the idea that with
more frequent releases there is the possibility to collect user feedback more
frequently and thus build better, more meaningful, products overall (Chen,
2017; Parnin et al., 2017). While gathering data from users is a definite
advantage, monitoring and analyzing feedback requires skill and can be a
challenge in itself (Claps et al., 2015).

The proposition of providing user value faster through rapid releases
gains some theoretical support from previous work (Dingsøyr and Lasse-
nius, 2016). Continuous deployment and high frequency releases can be
seen to be on the same continuum with continuous value delivery. Ranging
from business value to relative worth, value has many meanings. It may
be difficult to measure value to the user before a feature is actually im-
plemented. Continuous deployment may help in this so that it provides a
means to quickly provide various features for user testing. Together with
other continuous software engineering practices and monitoring production
environments for user behavior, continuous deployment strengthens the abil-
ity to supply features that matter the most.

The suitability of continuously deploying changes to production systems
running in specific safety critical domains was questioned in the thesis in-
terview responses as was the difficulty of deploying changes in the mobile
domain. There is agreement that the web domain is considered the least
challenging of domains when striving for continuous deployment (Adams
et al., 2015). A continuous stream of changes is considered more difficult in
the mobile domain where there is no ownership of the whole ecosystem and
harder still in safety critical domains (Adams et al., 2015).

The picture might not be so bleak for safety-critical domains, though.
Steps have already been taken in the automotive industry to integrate con-
tinuous deployment activities in the complex development process (Pellic-
cione et al., 2017). Safety is a real concern and there are many stakeholders
involved but with cars having open communication channels to infrastruc-
ture services, deploying changes on the road is not far from reality.

In addition, there are signs from the highly regulated healthcare domain
that at least continuous delivery and more flexible development procedures
are being considered if not completely adopted (Giorgi and Paulisch, 2019).
Risks in the healthcare domain software need to be well controlled and evalu-
ated throughout the product life cycle but mechanisms have been developed
to cope with the regulations. Automated workflows that integrate directly
with version control systems can assist in detecting changes in source code

112 5 Discussion

that require a safety standard compliance review (Stirbu and Mikkonen,
2020). When safety is so built into the daily development workflow, it is
possible to guide the creation of the necessary safety-related documentation
and architecture diagrams, even when the integration frequency is high.

It is not only the automotive industry or software development in the
medical sector where advances in change and release management are ob-
served. With the help of DevOps, release cycles seem to be shortening in
the financial sector, too (Snyder and Curtis, 2018).

Reflections on RQ2: How can a software engineering process be
organized in order to release software frequently?

Already the early illustrations of a pipeline suitable for continuously de-
ploying changes to production systems (Humble et al., 2006) described the
interplay between development stages and output artifacts such as versioned
code and other binaries needed in the software development process. The
discussion of RQ2 echoed the necessity that to be truly continuous, con-
tinuous software engineering needs a process of its own. Existing studies
have also highlighted key features that a continuous software engineering
process should have. As one of the arguments goes, current process meta-
models are not even adequate at describing the parallel workflows required
to handle individual incoming change requests as they come (Krusche and
Bruegge, 2017). Apparently, an event-based process model where events
trigger workflows is more suitable for continuous software engineering (Kr-
usche and Bruegge, 2017). Such an approach is noted to be more appropri-
ate for handling feedback loops and introducing continuous changes as part
of the software development.

In practice, it has been mentioned that applications and the surrounding
infrastructure should have certain architectural qualities that make it eas-
ier to deploy changes more frequently (Bellomo et al., 2014). For instance,
any steps that can be taken to improve testability help in easing automated
testing and thus doing deployments at a more rapid pace. Dividing a bigger
component into smaller components can in a similar way reduce building,
testing, and deployment efforts because there is less code to work with and
fewer tests to execute on every test run. In this context, it was also noticed
that deployment was in some of the cases made easier by harmonizing en-
vironments with virtualization techniques and by applying the blue-green
release switching technique to deployments. These notions are quite similar
to the findings of the thesis for the continuous software engineering process
blueprint discussed as part of RQ2.

5.3 Related Work 113

The journey from fixed releases to more frequent releases can be long.
An example from the industry shows the steps a company had to take when
moving to shorter release cycles (Neely and Stolt, 2013). The company
wanted to cut down the release cycles from eight weeks so a release could be
made without a fixed schedule. Old development processes no longer worked
as they used to have. Without fixed releases, there was no need for regular
planning meetings since work items were updated on the go. A cornerstone
in the transformation was the mantra to automate the development process
as much as possible. Especially automating and optimizing testing was
considered critical because the duration of testing was seen to impact the
minimum continuous delivery time. Both of these observations match the
ones made in the thesis well. A keen idea in the company was to improve
the processes gradually so the release frequency could improve slowly from
eight weeks to two weeks and onward from there. In the end, the company
had a continuous delivery process in place with which they could release
new versions when they wanted. There was a learning curve to get all
parts in place and people had to adapt to new working conditions but they
succeeded in the end.

Reflections on RQ3: What are the implications of frequent soft-
ware releases to organizing work?

Setting up a deployment pipeline and introducing new processes and roles
for software development requires changes across the whole organization.
Such profound changes cannot be done without the help of management
who should show leadership accordingly as described as part of the thesis
results ensuing after the discussion of RQ3. The essential nature of manage-
ment has been noted in a number of other studies as well. If management
is not committed to software process improvement, there may simply not
be enough driving force to implement a demanding practice like continuous
deployment throughout the organization (Claps et al., 2015). Management
holds the key to resources so they may need persuasion (Chen, 2017). Man-
agers who are not too keen to improve processes may hold back the true
potential of development teams (Savor et al., 2016).

Development teams might have a hard time adjusting to the new roles
required by continuous deployment and DevOps as pointed out in the the-
sis. Responsibilities are shared and work is distributed in different con-
figurations across developers and people who were previously in charge of
infrastructure. There is evidence from other studies that there are hard-
ships involved in taking on duties that members of the development team
are possibly unfamiliar with. Adapting to new roles has been found to be

114 5 Discussion

one of the challenges related to implementing continuous deployment (Claps
et al., 2015). Different team configurations are possible in situations where
development teams are striving for continuous delivery and continuous de-
ployment. Either developers take more responsibilities from the operations
personnel or collaboration between the two realms is substantially enhanced
to allow for more flexible releases (Shahin et al., 2017). Teams can also be
collocated or merged so that a single cross-functional team has all the capa-
bilities it needs for developing and deploying releases (Shahin et al., 2017;
Chen, 2017).

Joining development and operations functions, and working according
to continuous software engineering practices is not an easy task. Individual
team members may need a broader skill set than before, which naturally
leads to the need to learn, as pointed out in the thesis. Other studies rein-
force the idea that the experience of the team is requisite for the successful
implementation of continuous deployment (Claps et al., 2015). Unfortu-
nately, practitioners recognize that the curricula in universities and other
schools is not completely up to date regarding essential skills for release en-
gineering and deployment (Adams et al., 2015; Parnin et al., 2017). Those
working in the industry have expressed that they feel like they have to learn
all these valuable skills while working (Shahin et al., 2017). One proposed
solution to limit the burden on individual teams is to form specific teams
that are charged with building a deployment pipeline that can be used
across the whole organization (Shahin et al., 2017; Chen, 2017). Such an
arrangement is argued to free up resources especially in large organizations
since project teams can call in help when needed and actual project team
members do not have to invest so much time in building the deployment
pipeline.

Be it either the end user who is using the software or the customer for
whom the software is made, it is important to nurture the relationship be-
tween different parties. There is some evidence that by moving to more
continuous forms of development, communication between developers and
customers is accelerated and thus collaboration improves (Itkonen et al.,
2016). Relationships have been seen to be less tense after the adoption of
continuous deployment (Chen, 2017). In general, customers are thought to
be more satisfied if continuous deployment practices can be applied (Parnin
et al., 2017). Like the thesis results show, there are more sides to customer
relationships and not all customers are ready for more continuous releases.
The same phenomenon has been witnessed in other studies. Customers may
not be willing to accept the continuous deployment model with rolling up-

5.4 Implications to Theory and Practice 115

dates for their system due to preference or insecurities related to successful
deployment of releases (Claps et al., 2015; Parnin et al., 2017).

5.4 Implications to Theory and Practice

The work published as part of this thesis can be seen both as a contribution
to the scientific body of knowledge in software engineering and as a set
of blueprints and guidelines for the industry. Being the primary research
methodology for the studies in the thesis, a case study has the advantage of
being rooted in practical reality while making it possible to devise broader
theories about the phenomena in the field. This section shows a number of
implications the presented work could have to theory and practice.

Theoretical implications can be seen to be elements in the research find-
ings that bring up novel ideas or theories, or increase understanding and
so advances science. The case studies from the software industry presented
in the thesis contribute to the current understanding of how software is be-
ing developed and delivered to end users in different industry domains. An
analysis of the release practices in the industry shows that release frequency
has many aspects. The results from the case studies help build a theory for
the rationale of frequent releases, that is, why frequent releases make sense
in certain domains and less in others.

Release frequency can be characterized by many metrics. The actual pe-
riod between releases is a useful metric but the additional release frequency
and deployment capability metrics presented in the thesis show that a sin-
gle metric is not sufficient for understanding the current state and potential
of a software engineering organization and its projects. A theory devised
from the case studies in the thesis proposes that deployment capability in
particular is furthered by the availability of certain tools in proper stages of
the deployment pipeline. By the devised theory, deployment capability is
also strongly conditioned by the operational domain for which the software
is being developed.

An analysis of the software development processes in the presented in-
dustrial cases helps to build a clearer picture of development stages required
to prepare, develop and release new software versions to users. Derived from
the analysis of the processes, the development blueprints show what should
be taken into account in each stage in order to prepare the development and
deployment pipeline to better support increasing release frequency. Further
analysis of the development stages brings clarity to the essential develop-
ment processes and practices by grouping development aspects into specific
facets.

116 5 Discussion

The empirical studies carried out in the industry also point out shifts in
the development philosophy that high development velocity and increasing
release frequency might induce. Supporting practices such as refactoring
have a bigger role in the development flow since structural and architec-
tural changes are more continuous. As shown in the studies, the shift in
development philosophy involves changes not only in the way development
work is organized internally in an organization but also in the manner how
releases and development is managed together with customers.

Practitioners from the industry can leverage the research findings to fur-
ther improvement of development practices in their own environment. Con-
siderations of the rationale for releasing new software versions frequently
can help to identify the release frequency that feels right for a specific prod-
uct in a specific domain. If the informed choice is to move towards more
frequent releases, understanding which metrics are relevant for characteriz-
ing release frequency assists in assessing the current situation and setting
objectives for the future.

Any organization wanting to move forward should get a grip on its cur-
rent state of affairs. Companies working in the software industry can use
similar data collection methods as introduced in the thesis such as inter-
views of project personnel or company-wide maturity surveys tailored for
the company. After having gathered enough information about the current
situation, companies can compare their development activities, practices
and processes against the continuous software engineering process blueprint
presented in the thesis. Making the comparison can be helpful in forming
ideas about areas requiring the most attention given the constrains in the
domain and the individual objectives of the company.

Moving forward implies change to current ways of working. As the
findings of the thesis studies show, there are many factors that need to
be considered when managing change towards more frequent releases and
improved development processes. Software development organizations can
take note and reflect on the various organizational aspects of change de-
tailed in the thesis. Leadership in management and supporting change in
an organization are needed and employee attitudes should not be overlooked
either. Every software project or product is different and can have internal
or external customers who might have a wide variety of opinions about high
frequency releases. The notes made in the thesis should help those in the in-
dustry in choosing the right release strategy and tactic in each case. A good
relationship with the customer and transparent communication regarding
the development process and release objectives pave the way for successful
development right from the start.

Chapter 6

Conclusions

Software releases are milestones in software development where the fruits
of labor are made public and available to its users. Every software release
involves a great deal of work from the inception of ideas to development,
testing, deploying and releasing the new version. The frequency of releases
determines how often new versions are made available. Long intervals be-
tween releases mean that the users have to wait longer for fixes or improve-
ments to current behavior. In the industry, the releases can be months
or years apart. Reducing the time between releases and increasing release
frequency seems like a sensible objective from this perspective.

Deriving from the experiences of software professionals in the industry,
the empirical studies in this thesis have explored the idea of increasing
release frequency and the continuous software engineering practices that
are closely associated with increasing release frequency. The findings of the
thesis increase the understanding of the phenomenon and give answers to
essential questions such as what the rationale for frequent releases is and
what the blueprint is for a continuous software engineering process that
best supports frequent releases. The results of the thesis also offer views
to the way work should be organized when dealing with the demands of
high frequency releases and how the change process should be properly lead
within an organization.

According to the findings of the thesis, the rationale behind increasing
the release frequency in software development projects is the hope that soft-
ware features and other revisions become available to end users at a quicker
pace than would be otherwise possible. Theoretically, the quicker the pace
of delivery and deployment of new software versions, the quicker can value
be provided to users. Developers seem to appreciate the more experimental
and accelerated mode of development allowed by frequent releases where
feedback rapidly circles back to developers from users and monitored envi-

117

118 6 Conclusions

ronments alike. An increase in release velocity drives the overall improve-
ment of development practices and the deployment pipeline used to deliver
new versions to end users. Advances in areas such as automated testing can
have positive effects on product quality.

The results indicate that frequent releases in the order of days or a few
weeks do not make sense in all circumstances. Environments and domains
such as embedded systems, industrial automation and medical devices are
notable exceptions where it is reasonable to advance with caution when
software systems are updated. Software with artistic qualities like mobile
games in the entertainment sector also have constraints in moving to fre-
quent smaller releases. Regardless of the domain, making the transition to
frequent releases may be difficult if the existing software development pro-
cess relies heavily on manual testing or other labor that cannot be easily
automated.

As shown by the studies in the thesis, there are many kinds of software
release models being used in the industry. At the time when the studies
were conducted, only in a few cases were the project development teams
capable of rapid releases and even fewer chose to do so in practice. Re-
leases might follow a more fixed schedule release train model or then be
more sporadic with on-demand releases. What is important to note is that
most observed cases had substantially higher capability to release software
frequently than their actual release cycle was in reality. This could mean
that in theory software development teams would be able to ship faster and
are just perhaps holding on to previous well known release practices instead
of adopting new ones. Of course, it is not only the development teams that
need to adapt as the customers and other involved parties need to realign
their ideas to releasing software rapidly. In the end, the release model that
makes all parties satisfied is the correct one to choose.

Reaching a high frequency in releases requires fluidity in certain aspects
of the software engineering process. Empirical observations of industry
experiences described in the thesis help to create a blueprint for a continuous
software engineering process, covering the whole deployment pipeline from
managing requirements to deploying applications to end users. The main
principle is to ensure the continuous nature of all activities in the process, be
it either the continuous supply of requirements to development, continuous
testing of changes or continuous and seamless deployment of releases to
various environments.

Continuity in the development process is best realized when there are
as few temporal gaps between finishing one activity and starting another
down the line as possible. The duration of activities is also of interest since

119

activities taking longer can delay later activities. Evidence from the thesis
suggests that companies that have invested in technology and tools in var-
ious activities to potentially reduce manual labor are in a better position
to deploy changes faster. More automation and tools seem to lead to the
possibility of increasing release frequency. The effect is somewhat condi-
tioned by the application domain, though. Optimization to the process can
be either large or small as shown in the thesis cases. Merely optimizing the
build process and switching hardware can save hours each time the code is
compiled and tested after changes.

It appears that certain activities are more difficult to automate than
others, even if technological maturity in a given organization is at a good
level. Acceptance testing, which is meant to validate implemented func-
tionality, is one such activity. Testing of non-functional properties such as
security falls into the same category. More often than not, these activities
include a human component required to either perform the activity or sub-
jectively assess outputs in order to determine the release readiness of a set
of changes.

In terms of increasing release frequency and achieving a state of contin-
uous deployment, the last mile from staged testing environments to produc-
tion environments is critical. Cloud technologies with flexible infrastructure
and virtualization can enable a steady supply of changes to different envi-
ronments. According to the industry experiences reported in the thesis, it is
rare for companies to have projects with an automated deployment pipeline
that could in one go directly provide end users with new experiences as
changes in software emerge.

The essence of continuous software engineering processes is how to deal
with changes. Understanding signals from end users by collecting feedback
leads to perceived need to change. Any activity in the process should be
aimed to keep the cycle time as quick as possible. Development teams
should be dexterous enough to handle the changes rapidly and also refactor
code structures when needed. The real challenge is to tailor the process so
that the changes find their way to production environments and end users
with sufficient quality and speed. The results from the cases show that such
a process is not easy to implement to say the least, but it is possible.

In reality, making the best use of software development processes geared
towards high frequency releases needs strong organizational support and a
different attitude to developing and releasing software altogether. Compa-
nies need to have an understanding about which projects in their portfolio
have the best fit for frequent releases. As the thesis results from maturity
surveys highlight, projects in different life cycle phases have different objec-

120 6 Conclusions

tives for process improvement. There is little sense in trying to transform
processes in projects that are barely being maintained.

Understanding the current status of projects and setting clear objectives
is part of the responsibility of management when thinking of reforming de-
velopment practices across the organization. But there are other organiza-
tional matters that need to be taken into account, especially if the objective
is to do frequent, almost daily, releases. Shifting to frequent releases might
mean that an internal cultural revolution is needed with changed working
habits and reshaped customer relationships.

Management should show leadership and take an active stance to sup-
port the change process. Employees should be given enough resources and
the chance to learn new skills where needed to retrofit automated deploy-
ment pipelines to existing software development systems. A more responsive
development style in which production environments are continuously moni-
tored and development teams have a greater responsibility for infrastructure
and releases requires the cooperation of many people. In the interview re-
sponses, this cultural shift was considered to be one of the issues people
need to overcome. At the same time, shorter release intervals leading to
smaller releases can be seen to benefit working conditions by reducing some
of the anxiety commonly attributed to large releases. Developer spirits also
seem to be boosted when they have enough time for refactoring and making
the code a little bit better for the purpose.

By no means is choosing the release frequency and improving the soft-
ware process simply an internal organization matter. Software is often done
with and for customers who should have a say about which release model is
used and how project resources are used. Naturally, customers might prefer
feature development over software process improvement. For making in-
formed decisions, customers should right away be given enough information
about the good and bad sides of frequent software releases. Unfortunately,
there are not too many distinct measures that can objectively show the
benefits of increasing release frequency. There is always the risk that re-
leasing a new version might be unsuccessful and end users are exposed to
failures. That risk needs to be weighed in every case but with a functional
automated deployment pipeline and a high rate of releases the fix ought to
be just around the corner, too.

References

Bram Adams and Shane McIntosh. Modern Release Engineering in
a Nutshell – Why Researchers Should Care. In Proceedings of the
2016 IEEE 23rd International Conference on Software Analysis, Evo-
lution, and Reengineering, volume 5, pages 78–90, March 2016. doi:
10.1109/SANER.2016.108.

Bram Adams, Stephany Bellomo, Christian Bird, Tamara Marshall-Keim,
Foutse Khomh, and Kim Moir. The Practice and Future of Release En-
gineering: A Roundtable with Three Release Engineers. IEEE Software,
32(2):42–49, 2015. doi: 10.1109/MS.2015.52.

Liz Allen, Jo Scott, Amy Brand, Marjorie Hlava, and Micah Altman. Pub-
lishing: Credit Where Credit is Due. Nature, 508(7496):312–313, 2014.

Valentina Armenise. Continuous Delivery with Jenkins: Jenkins Solutions
to Implement Continuous Delivery. In Proceedings of the Third Inter-
national Workshop on Release Engineering, RELENG ’15, pages 24–27,
2015. doi: 10.1109/RELENG.2015.19.

Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Microservices
Architecture Enables DevOps: Migration to a Cloud-Native Architecture.
IEEE Software, 33(3):42–52, May 2016. doi: 10.1109/MS.2016.64.

Len Bass. Deployability. In Ivan Mistrik, Richard Soley, Nour Ali, John
Grundy, and Bedir Tekinerdogan, editors, Software Quality Assurance,
pages xxiii–xxvii. Morgan Kaufmann, Boston, 2016. doi: 10.1016/B978-
0-12-802301-3.00019-3.

Len Bass. The Software Architect and DevOps. IEEE Software, 35(1):8–10,
January 2018. doi: 10.1109/MS.2017.4541051.

Kent Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley, 2000.

121

122 References

Stephany Bellomo, Neil Ernst, Robert Nord, and Rick Kazman. Toward
Design Decisions to Enable Deployability: Empirical Study of Three
Projects Reaching for the Continuous Delivery Holy Grail. In Proceed-
ings of the 2014 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2014, pages 702–707, 2014. doi:
10.1109/DSN.2014.104.

Norman Blaikie. Analyzing Quantitative Data. SAGE Publications Ltd,
2011. doi: 10.4135/9781849208604.

Jan Bosch. Continuous Software Engineering: An Introduction, pages 3–13.
Springer International Publishing, 2014. doi: 10.1007/978-3-319-11283-
1_1.

Caius Brindescu, Mihai Codoban, Sergii Shmarkatiuk, and Danny Dig. How
Do Centralized and Distributed Version Control Systems Impact Software
Changes? In Proceedings of the 36th International Conference on Soft-
ware Engineering, ICSE 2014, pages 322–333. Association for Computing
Machinery, 2014. doi: 10.1145/2568225.2568322.

Graham Brooks. Team Pace - Keeping Build Times Down. In Proceedings
of the Agile 2008 Conference, pages 294–297, 2008. doi: 10.1109/Ag-
ile.2008.41.

Matt Callanan and Alexandra Spillane. DevOps: Making It Easy to
Do the Right Thing. IEEE Software, 33(3):53–59, May 2016. doi:
10.1109/MS.2016.66.

Lianping Chen. Continuous Delivery: Overcoming Adoption Chal-
lenges. Journal of Systems and Software, 128:72–86, 2017. doi:
10.1016/j.jss.2017.02.013.

Gerry Gerard Claps, Richard Berntsson Svensson, and Aybüke Aurum. On
the Journey to Continuous Deployment: Technical and Social Challenges
Along the Way. Information and Software Technology, 57(0):21 – 31,
2015. doi: 10.1016/j.infsof.2014.07.009.

CMMI Product Team. CMMI for Development, Version 1.3. Tech-
nical Report CMU/SEI-2010-TR-033, Software Engineering Insti-
tute, Carnegie Mellon University, Pittsburgh, PA, 2010. URL
http://resources.sei.cmu.edu/library/asset-view.cfm?=9661.

References 123

Daniela S. Cruzes and Tore Dybå. Recommended Steps for Thematic Syn-
thesis in Software Engineering. In Proceedings of the International Sympo-
sium on Empirical Software Engineering and Measurement, ESEM 2011,
pages 275–284, September 2011. doi: 10.1109/ESEM.2011.36.

Brian de Alwis and Jonathan Sillito. Why Are Software Projects Moving
from Centralized to Decentralized Version Control Systems? In Pro-
ceedings of the 2009 ICSE Workshop on Cooperative and Human Aspects
on Software Engineering, CHASE 2009, pages 36–39, May 2009. doi:
10.1109/CHASE.2009.5071408.

Adam Debbiche, Mikael Dienér, and Richard Berntsson Svensson. Chal-
lenges When Adopting Continuous Integration: A Case Study. In An-
dreas Jedlitschka, Pasi Kuvaja, Marco Kuhrmann, Tomi Männistö, Jür-
gen Münch, and Mikko Raatikainen, editors, Product-Focused Software
Process Improvement, pages 17–32. Springer International Publishing,
2014.

DIMECC. DIMECC N4S-Program: Finnish Software Companies Speeding
Digital Economy, 2022. URL https://n4s.dimecc.com/en/. Retrieved:
January 2022.

Torgeir Dingsøyr and Casper Lassenius. Emerging Themes in Agile Software
Development: Introduction to the Special Section on Continuous Value
Delivery. Information and Software Technology, 77:56–60, 2016. doi:
10.1016/j.infsof.2016.04.018.

Vincent Driessen. A Successful Git Branching Model, 2010. URL
http://nvie.com/posts/a-successful-git-branching-model/. Re-
trieved: January 2022.

Erik Dörnenburg. The Path to DevOps. IEEE Software, 35(5):71–75,
September 2018. doi: 10.1109/MS.2018.290110337.

Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Ser-
rano. DevOps. IEEE Software, 33(3):94–100, May 2016. doi:
10.1109/MS.2016.68.

Sebastian Elbaum, Gregg Rothermel, and John Penix. Techniques for
Improving Regression Testing in Continuous Integration Development
Environments. In Proceedings of the 22nd ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, FSE 2014,
pages 235–245. Association for Computing Machinery, 2014. doi:
10.1145/2635868.2635910.

124 References

Murat Erder and Pierre Pureur. Chapter 2 - Principles of Continuous Ar-
chitecture. In Murat Erder and Pierre Pureur, editors, Continuous Archi-
tecture: Sustainable Architecture in an Agile and Cloud-Centric World,
pages 21–37. Morgan Kaufmann, Boston, 2016. doi: 10.1016/B978-0-12-
803284-8.00002-6.

Dror G. Feitelson, Eitan Frachtenberg, and Kent L. Beck. Development and
Deployment at Facebook. IEEE Internet Computing, 17(4):8–17, 2013.
doi: 10.1109/MIC.2013.25.

Timothy Fitz. Continuous Deployment, February 2009. URL
http://timothyfitz.com/2009/02/08/continuous-deployment/. Re-
trieved: January 2022.

Brian Fitzgerald and Klaas-Jan Stol. Continuous Software Engineering
and Beyond: Trends and Challenges. In Proceedings of the 1st Inter-
national Workshop on Rapid Continuous Software Engineering, RCoSE
2014, pages 1–9. Association for Computing Machinery, 2014. doi:
10.1145/2593812.2593813.

Brian Fitzgerald and Klaas-Jan Stol. Continuous Software Engineering: A
Roadmap and Agenda. Journal of Systems and Software, 123:176–189,
2017. doi: https://doi.org/10.1016/j.jss.2015.06.063.

Rafaela Mantovani Fontana, Isabela Mantovani Fontana, Paula Andrea
da Rosa Garbuio, Sheila Reinehr, and Andreia Malucelli. Processes
Versus People: How Should Agile Software Development Maturity Be
Defined? Journal of Systems and Software, 97:140–155, 2014. doi:
10.1016/j.jss.2014.07.030.

Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

Martin Fowler and Matthew Foemmel. Continuous Integration (Origi-
nal Version), 2000. URL https://www.martinfowler.com/articles/
originalContinuousIntegration.html. Retrieved: January 2022.

Fabio Giorgi and Frances Paulisch. Transition Towards Continuous Delivery
in the Healthcare Domain. In Proceedings of the 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP), ICSE-SEIP 2019, pages 253–254, 2019. doi:
10.1109/ICSE-SEIP.2019.00035.

References 125

Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny
Dig. Usage, Costs, and Benefits of Continuous Integration in Open-Source
Projects. In Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, ASE 2016, pages 426–437. Associa-
tion for Computing Machinery, 2016. doi: 10.1145/2970276.2970358.

Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and
Danny Dig. Trade-Offs in Continuous Integration: Assurance, Security,
and Flexibility. In Proceedings of the 2017 11th Joint Meeting on Foun-
dations of Software Engineering, ESEC/FSE 2017, pages 197–207. Asso-
ciation for Computing Machinery, 2017. doi: 10.1145/3106237.3106270.

Jez Humble and David Farley. Continuous Delivery: Reliable Software Re-
leases through Build, Test, and Deployment Automation. Addison-Wesley
Professional, 1st edition, 2010.

Jez Humble, Chris Read, and Dan North. The Deployment Production
Line. In Proceedings of the AGILE 2006 Conference, AGILE’06, pages
118–124, July 2006. doi: 10.1109/AGILE.2006.53.

Juha Itkonen, Raoul Udd, Casper Lassenius, and Timo Lehtonen. Perceived
Benefits of Adopting Continuous Delivery Practices. In Proceedings of the
10th ACM/IEEE International Symposium on Empirical Software Engi-
neering and Measurement, ESEM ’16. Association for Computing Ma-
chinery, 2016. doi: 10.1145/2961111.2962627.

Teemu Karvonen, Woubshet Behutiye, Markku Oivo, and Pasi Kuvaja. Sys-
tematic Literature Review on the Impacts of Agile Release Engineering
Practices. Information and Software Technology, 86:87–100, 2017. doi:
10.1016/j.infsof.2017.01.009.

Noureddine Kerzazi and Bram Adams. Who Needs Release and DevOps En-
gineers, and Why? In Proceedings of the International Workshop on Con-
tinuous Software Evolution and Delivery, CSED ’16, pages 77––83. Asso-
ciation for Computing Machinery, 2016. doi: 10.1145/2896941.2896957.

Barbara Kitchenham and Stuart Charters. Guidelines for Performing Sys-
tematic Literature Reviews in Software Engineering, Version 2.3. Tech-
nical Report EBSE-2007-01, Keele University and University of Durham,
2007.

Eric Knauss, Miroslaw Staron, Wilhelm Meding, Ola Söder, Agneta Nilsson,
and Magnus Castell. Supporting Continuous Integration by Code-Churn
Based Test Selection. In Proceedings of the 2nd International Workshop

126 References

on Rapid Continuous Software Engineering, RCoSE 2015, pages 19–25,
2015. doi: 10.1109/RCoSE.2015.11.

Stephan Krusche and Bernd Bruegge. CSEPM - A Continuous Software
Engineering Process Metamodel. In Proceedings of the 2017 IEEE/ACM
3rd International Workshop on Rapid Continuous Software Engineering,
RCoSE 2017, pages 2–8, 2017. doi: 10.1109/RCoSE.2017.6.

Vincent Larivière, David Pontille, and Cassidy R. Sugimoto. Investigat-
ing the Division of Scientific Labor Using the Contributor Roles Taxon-
omy (CRediT). Quantitative Science Studies, 2:111–128, 4 2021. ISSN
26413337. doi: 10.1162/qss_a_00097.

Eero Laukkanen, Juha Itkonen, and Casper Lassenius. Problems, Causes
and Solutions When Adopting Continuous Delivery—A Systematic Lit-
erature Review. Information and Software Technology, 82:55–79, 2017.
doi: 10.1016/j.infsof.2016.10.001.

Marko Leppänen. Vanishing Point: Where Infrastructures, Architectures,
and Processes of Software Engineering Meet. PhD thesis, Tampere Uni-
versity of Technology, 1 2017.

Marko Leppänen, Simo Mäkinen, Samuel Lahtinen, Outi Sievi-Korte, Antti-
Pekka Tuovinen, and Tomi Männistö. Refactoring-A Shot in the Dark?
IEEE Software, 32(6):62–70, November 2015a. ISSN 0740-7459. doi:
10.1109/MS.2015.132.

Marko Leppänen, Simo Mäkinen, Max Pagels, Veli-Pekka Eloranta, Juha
Itkonen, Mika V. Mäntylä, and Tomi Männistö. The Highways and
Country Roads to Continuous Deployment. IEEE Software, 32(2):64–
72, March 2015b. doi: 10.1109/MS.2015.50.

Walid Maalej, Hans-Jörg Happel, and Asarnusch Rashid. When Users Be-
come Collaborators: Towards Continuous and Context-Aware User Input.
In Proceedings of the 24th ACM SIGPLAN Conference Companion on Ob-
ject Oriented Programming Systems Languages and Applications, OOP-
SLA ’09, pages 981–990. Association for Computing Machinery, 2009.
doi: 10.1145/1639950.1640068.

Torvald Mårtensson, Daniel Ståhl, and Jan Bosch. Exploratory Testing of
Large-Scale Systems – Testing in the Continuous Integration and De-
livery Pipeline. In Michael Felderer, Daniel Méndez Fernández, Bu-
rak Turhan, Marcos Kalinowski, Federica Sarro, and Dietmar Winkler,

References 127

editors, Product-Focused Software Process Improvement, pages 368–384.
Springer International Publishing, 2017.

Shane McIntosh, Meiyappan Nagappan, Bram Adams, Audris Mockus, and
Ahmed E. Hassan. A Large-Scale Empirical Study of the Relationship
between Build Technology and Build Maintenance. Empirical Software
Engineering, 20(6):1587–1633, December 2015. doi: 10.1007/s10664-014-
9324-x.

Mathias Meyer. Continuous Integration and Its Tools. IEEE Software, 31
(3):14–16, 2014. ISSN 07407459. doi: 10.1109/MS.2014.58.

Kıvanç Muşlu, Christian Bird, Nachiappan Nagappan, and Jacek Czer-
wonka. Transition from Centralized to Decentralized Version Control
Systems: A Case Study on Reasons, Barriers, and Outcomes. In Proceed-
ings of the 36th International Conference on Software Engineering, ICSE
2014, pages 334–344. Association for Computing Machinery, 2014. doi:
10.1145/2568225.2568284.

Simo Mäkinen, Marko Leppänen, Terhi Kilamo, Anna-Liisa Mattila, Eero
Laukkanen, Max Pagels, and Tomi Männistö. Improving the Delivery
Cycle: A Multiple-Case Study of the Toolchains in Finnish Software
Intensive Enterprises. Information and Software Technology, 80:175–194,
2016. doi: 10.1016/j.infsof.2016.09.001.

Simo Mäkinen, Timo Lehtonen, Terhi Kilamo, Mikko Puonti, Tommi
Mikkonen, and Tomi Männistö. Revisiting Continuous Deployment Matu-
rity: A Two-Year Perspective. In Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, SAC ’19, pages 1810–1817. Associa-
tion for Computing Machinery, 2019. doi: 10.1145/3297280.3297458.

Torvald Mårtensson, Daniel Ståhl, and Jan Bosch. Continuous Integra-
tion Impediments in Large-Scale Industry Projects. In Proceedings of
the 2017 IEEE International Conference on Software Architecture, ICSA
2017, pages 169–178, April 2017. doi: 10.1109/ICSA.2017.11.

Steve Neely and Steve Stolt. Continuous Delivery? Easy! Just Change
Everything (Well, Maybe It Is Not That Easy). In Proceedings of the 2013
Agile Conference, pages 121–128, 2013. doi: 10.1109/AGILE.2013.17.

Helena Holmström Olsson, Hiva Alahyari, and Jan Bosch. Climbing the
"Stairway to Heaven" - A Mulitiple-Case study Exploring Barriers in the
Transition from Agile Development towards Continuous Deployment of

128 References

Software. In Vittorio Cortellessa, Henry Muccini, and Onur Demirörs, ed-
itors, Proceedings of the 38th EUROMICRO Conference on Software En-
gineering and Advanced Applications, SEAA 2012, pages 392–399. IEEE
Computer Society, 2012. doi: 10.1109/SEAA.2012.54.

Chris Parnin, Eric Helms, Chris Atlee, Harley Boughton, Mark Ghattas,
Andy Glover, James Holman, John Micco, Brendan Murphy, Tony Sa-
vor, Michael Stumm, Shari Whitaker, and Laurie Williams. The Top
10 Adages in Continuous Deployment. IEEE Software, 34(3):86–95, May
2017. doi: 10.1109/MS.2017.86.

Patrizio Pelliccione, Eric Knauss, Rogardt Heldal, S. Magnus Ågren,
Piergiuseppe Mallozzi, Anders Alminger, and Daniel Borgentun. Au-
tomotive Architecture Framework: The Experience of Volvo Cars. Jour-
nal of Systems Architecture, 77:83–100, 2017. ISSN 1383-7621. doi:
10.1016/j.sysarc.2017.02.005.

Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan Schulte.
An Empirical Analysis of Build Failures in the Continuous Integra-
tion Workflows of Java-Based Open-Source Software. In Proceedings
of the 2017 IEEE/ACM 14th International Working Conference on
Mining Software Repositories, MSR 2017, pages 345–355, 2017. doi:
10.1109/MSR.2017.54.

Leah Riungu-Kalliosaari, Simo Mäkinen, Lucy Ellen Lwakatare, Juha Ti-
ihonen, and Tomi Männistö. DevOps Adoption Benefits and Chal-
lenges in Practice: A Case Study. In Pekka Abrahamsson, Andreas
Jedlitschka, Anh Nguyen Duc, Michael Felderer, Sousuke Amasaki, and
Tommi Mikkonen, editors, Product-Focused Software Process Improve-
ment, PROFES 2016, pages 590–597. Springer International Publishing,
November 2016.

Marc J. Rochkind. The Source Code Control System. IEEE
Transactions on Software Engineering, SE-1(4):364–370, 1975. doi:
10.1109/TSE.1975.6312866.

James Roche. Adopting DevOps Practices in Quality Assurance.
Communications of the ACM, 56(11):38–43, November 2013. doi:
10.1145/2524713.2524721.

Pilar Rodríguez, Alireza Haghighatkhah, Lucy Ellen Lwakatare, Susanna
Teppola, Tanja Suomalainen, Juho Eskeli, Teemu Karvonen, Pasi Ku-
vaja, June M. Verner, and Markku Oivo. Continuous Deployment

References 129

of Software Intensive Products and Services: A Systematic Mapping
Study. Journal of Systems and Software, 123:263–291, 2017. doi:
10.1016/j.jss.2015.12.015.

Per Runeson and Martin Höst. Guidelines for Conducting and Reporting
Case Study Research in Software Engineering. Empirical software engi-
neering, 14(2):131–164, 2009.

Tony Savor, Mitchell Douglas, Michael Gentili, Laurie Williams, Kent Beck,
and Michael Stumm. Continuous Deployment at Facebook and OANDA.
In Proceedings of the 38th International Conference on Software Engi-
neering Companion, ICSE ’16, pages 21–30. Association for Computing
Machinery, 2016. doi: 10.1145/2889160.2889223.

Ken Schwaber. SCRUM Development Process. In Jeff Sutherland, Cory
Casanave, Joaquin Miller, Philip Patel, and Glenn Hollowell, editors,
Business Object Design and Implementation, pages 117–134. Springer
London, 1997.

William R. Shadish, Thomas D. Cook, and Donald T. Cmapbell. Experi-
mental and Quasi-experimental Designs for Generalized Causal Inference.
Houghton Mifflin, 2002.

Mojtaba Shahin, Mansooreh Zahedi, Muhammad Ali Babar, and Liming
Zhu. Adopting Continuous Delivery and Deployment: Impacts on Team
Structures, Collaboration and Responsibilities. In Proceedings of the 21st
International Conference on Evaluation and Assessment in Software En-
gineering, EASE’17, pages 384—-393. Association for Computing Ma-
chinery, 2017. doi: 10.1145/3084226.3084263.

Barry Snyder and Bill Curtis. Using Analytics to Guide Improvement Dur-
ing an Agile–DevOps Transformation. IEEE Software, 35(1):78–83, 2018.
doi: 10.1109/MS.2017.4541032.

Vlad Stirbu and Tommi Mikkonen. CompliancePal: A Tool for Support-
ing Practical Agile and Regulatory-Compliant Development of Medical
Software. In Proceedings of the 2020 IEEE International Conference on
Software Architecture Companion, ICSA-C 2020, pages 151–158, 2020.
doi: 10.1109/ICSA-C50368.2020.00035.

Klaas-Jan Stol and Brian Fitzgerald. The ABC of Software Engineering
Research. ACM Transactions on Software Engineering and Methodology,
27(3):1–51, September 2018. doi: 10.1145/3241743. Article 11.

130 References

Daniel Ståhl and Jan Bosch. Continuous Integration Flows. In Jan Bosch,
editor, Continuous Software Engineering, pages 107–115. Springer Inter-
national Publishing, 2014a. doi: 10.1007/978-3-319-11283-1_9.

Daniel Ståhl and Jan Bosch. Automated Software Integration Flows in
Industry: A Multiple-Case Study. In Companion Proceedings of the
36th International Conference on Software Engineering, ICSE Compan-
ion 2014, pages 54–63. Association for Computing Machinery, 2014b. doi:
10.1145/2591062.2591186.

Daniel Ståhl, Torvald Mårtensson, and Jan Bosch. Continuous Practices
and DevOps: Beyond the Buzz, What Does it All Mean? In Proceed-
ings of the 2017 43rd Euromicro Conference on Software Engineering
and Advanced Applications, SEAA 2017, pages 440–448, Aug 2017. doi:
10.1109/SEAA.2017.8114695.

Jeff Sutherland, Carsten Ruseng Jakobsen, and Kent Johnson. Scrum and
CMMI Level 5: The Magic Potion for Code Warriors. In Proceedings
of the 41st Annual Hawaii International Conference on System Sciences,
HICSS 2008, pages 466–466, Jan 2008. doi: 10.1109/HICSS.2008.384.

Matthias Tichy, Jan Bosch, Michael Goedicke, and Magnus Larsson. Mes-
sage from the Chairs. In Proceedings of the 1st International Workshop
on Rapid Continuous Software Engineering, RCoSE 2014, pages iii–v.
Association for Computing Machinery, 2014. doi: 10.1145/2593812.

Walter F. Tichy. RCS - A System for Version Control. Software: Practice
and Experience, 15(7):637–654, 1985. doi: 10.1002/spe.4380150703.

Christina Wallin, Fredrik Ekdahl, and Stig Larsson. Integrating Business
and Software Development Models. IEEE Software, 19(6):28–33, 2002.
doi: 10.1109/MS.2002.1049384.

Claes Wohlin and Aybüke Aurum. Towards a Decision-Making Struc-
ture for Selecting a Research Design in Empirical Software Engineering.
Empirical Software Engineering, 20(6):1427–1455, December 2015. doi:
10.1007/s10664-014-9319-7.

Robert K Yin. Case Study Research: Design and Methods. Sage publica-
tions, fifth edition, 2014.

Liming Zhu, Len Bass, and George Champlin-Scharff. DevOps and Its Prac-
tices. IEEE Software, 33(3):32–34, May 2016. doi: 10.1109/MS.2016.81.

	Abstract
	Acknowledgements
	List of Original Publications
	Contents
	Chapter 1: Introduction
	Chapter 2: Continuous Software Engineering
	Chapter 3: Research Method
	Chapter 4: Results
	Chapter 5: Discussion
	Chapter 6: Conclusions
	References

