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Abstract

Summary: Estimation of effects of multiple explanatory variables on multiple outcome measures has become
routine across life sciences with high-throughput molecular technologies. The linemodels R-package allows a
probabilistic clustering of variables based on their observed effect sizes on two outcomes.

Availability and implementation: An open source implementation in R available at github.com/mjpirinen/linemodels.

1 Introduction

In a recent study, COVID-19 Host Genetics Initiative (2022) asked
whether each genetic variant associated with COVID-19 endpoints is
actually associated with susceptibility to infection or severity of the
disease. In another recent study, Hautakangas et al. (2022) assessed
which migraine risk variants are specific to the subtype of migraine
with aura. Both analyses were based on a Bayesian model comparison
framework (Trochet et al., 2019) which can handle correlated estima-
tors due to, for example, overlapping samples between the analyses.
The motivation for the linemodels package is to extend this frame-
work to allow for modelling of arbitrary linear relationships between
the variables and to provide an easy-to-use implementation in R.

In linemodels, the user specifies each model by three parameters:

• scale, i.e. the magnitude of the effects,
• slope, i.e. the multiplicative relationship between the expected

values of the two effects, and
• correlation, i.e. the expected consistency with the expected values.

linemodels then estimates the membership probabilities of the varia-
bles in the given models, by taking into account the uncertainty in the
effect estimates and the possible correlation of the two effect estimators.
The package further allows for optimization of any set of model param-
eters using an expectation-maximization (EM) algorithm and estimation
of the proportion parameters of the underlying mixture model using a
Gibbs sampler.

2 Materials and methods

Let b̂ ij be the effect estimate of variable i ¼ 1; . . . ;n on outcome
j¼1, 2, and r̂ij its estimated standard error. It is assumed that the

effect estimators for different variables are independent while the
two estimators of the same variable on the two outcomes may be
correlated. Define, for k ¼ 1; . . . K, a line model Mk via three
parameters, Mk ¼ ðsk; bk; rkÞ, called scale sk, slope bk, and correl-
ation rk. Intuitively, Mk models the effects as centred around line
bi2 ¼ bkbi1, with larger of the two effects having prior standard de-
viation (‘scale’) of sk and the deviation from the line determined by
the correlation coefficient rk. I first define the model for a diagonal
case (slope¼1), and then use an orthogonal transformation to ro-
tate the model to match the target slope.

For given Mk ¼ ðsk;bk; rkÞ, define the corresponding diagonal
distribution of effect sizes as a bivariate Gaussian N 2ð0;DkÞ, where
the covariance matrix is

Dk ¼
1 rk

rk 1

� �
:

Let Tk be the rotation matrix that transforms the diagonal line
to the line with slope bk:

Tk ¼
cosðaÞ �sinðaÞ
sinðaÞ cosðaÞ

� �
; where a ¼ arctanðbkÞ �

p
4
:

The prior distribution of the effect sizes according to modelMk is

then defined asN 2ð0;HkÞ; where covariance matrix Hk ¼
s2
k

mk
TkDkTT

k

and normalization by mk ¼ maxfTkDkTT
k g confirms that the larger

of the standard deviations of the two effects is sk. In linemodels, it is
also possible to specify the prior distribution of the effects as a mixture
of Gaussians, for example, to model heavier tails than in a Gaussian.

The observed effect size estimates are assumed a Gaussian distri-
bution around the true effect sizes with covariance matrix
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R̂i ¼ r̂2
i1 r̂i1r̂i2q̂ i

r̂i1r̂ i2q̂i r̂2
i2

 !
;

where r̂ij is the standard error on outcome j¼1, 2, and q̂i describes
how the two effect size estimators are correlated, for example, be-
cause of the sample overlap in the datasets from where the two
effects have been estimated.

It follows that by combining the Gaussian prior with the
Gaussian observation model, the marginal distribution for the
observed effect size estimates b̂i ¼ ðb̂i1; b̂ i2ÞT under modelMk is

b̂ijMk � N 2ð0;Hk þ R̂iÞ:

When it is not feasible to fix every parameter of the line models
before the analysis, linemodels provides an option to optimize any
subset of the parameters using an EM algorithm.

Membership probabilities. Given K line models, ðMkÞKk¼1 and
their prior probabilities p ¼ ðpkÞKk¼1, one can estimate the posterior
probabilities that each variable belongs to each of the models as

Prði �MkjDataiÞ ¼
pkN 2ðb̂ij0;Hk þ R̂iÞPK

‘¼1

p‘N 2ðb̂ij0;H‘ þ R̂iÞ
:

This calculation can be done separately for each variable and is
implemented in linemodels.

If one does not want to pre-specify the numerical values of the
prior probabilities of each model, one can set a prior distribution on
p and estimate its posterior distribution together with the probabilis-
tic assignment of variables into models. In linemodels, a prior distri-
bution for this task is p � Dirichletðd1; . . . ; dKÞ, where the default
values of the hyper-parameter are dk ¼ 1

K for each k ¼ 1; . . . ;K: A
Gibbs sampler to estimate the posterior distribution of this model is
implemented in linemodels.

2.1 COVID-19 Host Genetics Initiative data
COVID-19 Host Genetics Initiative (2022) release 6 included gen-
ome-wide association studies (GWAS) of infection (INF, 114 516
SARS-Cov-2 infected versus 2 138 237 population controls) and hos-
pitalization (HOS, 23 988 hospitalized for COVID-19 versus
2 834 885 population controls) that together identified 23 genome-
wide significant lead variants (P<5e�8). The question is, for each
lead variant, whether the variant is associated with susceptibility to
infection or with severity of the disease.

The two GWAS were nested (hospitalized patients were also
cases in infection GWAS) and hospitalized patients were strongly
enriched among infection GWAS cases compared to a random sam-
ple of the infected from the population. For these data, COVID-19
Host Genetics Initiative (2022) estimated that a pure susceptibility

variant would show effect sizes bINF � bHOS and a pure severity vari-
ant is expected to follow the relationship bINF � 0:2 � bHOS.
Additionally, here I also consider a model for variants that may af-
fect both susceptibility and severity, described by the line
bINF � 0:535 � bHOS, where the slope is chosen to halve the angle be-
tween the lines of the other two models. Thus, I model these data
with three line models (Fig. 1A):

• susceptibility effect (s ¼ 0:15; b ¼ 1; r ¼ 0:999),
• severity effect (s ¼ 0:15;b ¼ 0:2; r ¼ 0:999),
• both susceptibility and severity effects (s ¼ 0:15; b ¼ 0:535;

r ¼ 0:999).

The chosen scale (s¼0.15) assumes that most GWAS effects are
small: about 95% of the effect sizes are below log odds ratio of
0.30. Correlation r¼0.999 allows some deviation from the exact
relationships (see dotted lines in Fig. 1) and thus adds robustness
against model misspecification. The prior used for the proportion
parameters of the three models was Dirichlet 1

3 ;
1
3 ;

1
3

� �
.

3 Results

linemodels applied on the COVID-19 Host Genetics Initiative var-
iants estimates that 64% (95% credible interval 42%, 82%) are
pure disease severity variants, 25% (9%, 45%) are pure infection
susceptibility variants, and the remaining 11% (0%, 31%) affect
both. With posterior probability threshold of 0.95, 5 variants are
affecting only susceptibility, 12 variants are affecting only severity,
and 6 variants remain uncertain at this threshold (Fig. 1A).
Figure 1B shows examples of a pure severity variant (1), a pure sus-
ceptibility variant (2), and a variant that potentially affects both
phenotypes (3). See Supplementary Information for detailed results.

4 Conclusion

linemodels package provides tools for probabilistic clustering of var-
iables based on linear relationships in their effect sizes on two
outcomes.
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Figure 1 (A) COVID-19 HGI effect sizes from hospitalization (HOS) GWAS and in-

fection (INF) GWAS for 23 variants with 95% confidence intervals. Three line mod-

els with 95% regions are shown by coloured lines. Variants with posterior

probability >95% in one of the models are coloured according to the corresponding

model. Three variants are labelled and posterior distributions of their assignment

probabilities are shown in panel B
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